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Abstract. Mesoscale eddies, including surface-intensified eddies (SEs) and subsurface-intensified eddies (SSEs), significantly 

influence phytoplankton distribution in the ocean. Nevertheless, due to the sparse in-situ data, it is still unclear in understanding 

the characteristics of SSEs and their influence on chlorophyll-a (Chl-a) concentration. Consequently, the study utilized a deep 10 

learning model to extract SEs and SSEs in the North Indian Ocean (NIO) from 2000 to 2015, using satellite-derived sea surface 

height (SSH) and sea surface temperature (SST) data. The analysis revealed that SSEs accounted for 39% of the total eddies 

in the NIO, and their SST signatures exhibited opposite behavior compared to SEs. Furthermore, by integrating ocean color 

remote sensing data, the study investigated the contrasting impacts of SEs and SSEs on Chl-a concentration in two basins of 

the NIO: the Arabian Sea (AS) and the Bay of Bengal (BoB), known for their disparate biological productivity. In the AS, SEs 15 

induced Chl-a anomalies that were two to three times higher than those caused by SSEs. Notably, there were no significant 

differences in Chl-a anomalies induced by the same type of eddies between summer and winter. In contrast, the BoB exhibited 

distinct seasonal variations, where SEs induced slightly higher Chl-a anomalies than SSEs during the summer, while substantial 

differences were observed during the winter. Specifically, subsurface-intensified anticyclonic eddies (SSAEs) led to positive 

Chl-a anomalies, contrasting the negative anomalies induced by surface-intensified anticyclonic eddies (SAEs) with 20 

comparable magnitudes. Moreover, while both subsurface-intensified cyclonic eddies (SSCEs) and surface-intensified 

cyclonic eddies (SCEs) resulted in positive Chl-a anomalies during winter in the BoB, the magnitude of SSCEs was only one-

third of that induced by SCEs. Besides, subsurface Chl-a induced by SSAEs (SSCEs) is ~ 0.1 mg/m3 greater (less) than that 

caused by SAEs (SCEs) in the upper 30 (50) m using Biogeochemical Argo profiles. The distinct Chl-a between SEs and SSEs 

can be attributed to their contrasting subsurface structures revealed by Argo profiles. Compared to SAEs (SCEs), SSAEs 25 

(SSCEs) enhance (decrease) production via the convex (concave) of the isopycnals that occur around the mixed layer. The 

study provides a valuable approach to investigating subsurface eddies and contributes to a comprehensive understanding of 

their influence on chlorophyll concentration. 
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1 Introduction 

Mesoscale eddies are widely exist in the global ocean (Chen & Han, 2019; Chen et al., 2021; Chelton et al., 2011a; Faghmous 30 

et al., 2015), which significantly influence phytoplankton distribution through several processes, including eddy stirring 

(Chelton et al., 2011b), eddy trapping (Lehahn et al., 2011); eddy upwelling and downwelling (Gaube et al., 2013); eddy-

induced Ekman pumping (Gaube et al., 2013; Gaube et al., 2014; Siegel et al., 2011), and eddy strain-induced pumping (Zhang 

et al., 2019). Previous studies predominantly focused on investigating chlorophyll distribution induced by surface-intensified 

eddies (SEs), which can be generally classified into surface-intensified anticyclonic eddies (SAEs) and surface-intensified 35 

cyclonic eddies (SCEs) based on their rotation direction (Chen et al., 2019). It is important to note that mesoscale eddies can 

be further subdivided into distinct categories by the location of their core, where the potential vorticity reaches its maximum. 

The core can be located in the surface or subsurface layers (Assassi et al., 2016), resulting in SEs or subsurface-intensified 

eddies (SSEs). SSEs are conjectured to be due to eddy–wind interaction, local adiabatic processes, barotropic and baroclinic 

instabilities, or topographic influences (Badin et al., 2011; Meunier et al., 2018; Thomas, 2008; McGillicuddy, 2015). Due to 40 

the particular lens-like structure of isopycnals, SSEs are an important supplier of nutrients for the euphotic zone and greatly 

enhance primary production (McGillicuddy Jr et al., 2007; Ledwell et al., 2008; Karstensen et al., 2017). SSEs have been 

observed in various ocean regions using in-situ data, such as the California Undercurrent eddies in the northeastern Pacific 

(Garfield et al., 1999), the Mediterranean water eddies and slope water oceanic eddies in the northeastern Atlantic 

(Bashmachnikov et al., 2013; Paillet et al., 2002). However, the sparse availability of in-situ data makes it challenging to 45 

determine whether the eddies observed in satellite-derived maps are subsurface-intensified. Therefore, there is still uncertainty 

for further research regarding the characteristics of SSEs and their impact on chlorophyll concentration. 

The surface and interior ocean are highly correlated, and the subsurface signals in the ocean can be reflected at the surface 

(Klemas & Yan, 2014). The relationship between sea surface height (SSH) and sea surface temperature (SST) within eddies 

has proven to be an effective index for differentiating between SEs and SSEs using multi-source remote sensing data (Assassi 50 

et al., 2016; Bashmachnikov et al., 2013; Caballero et al., 2008), which has demonstrated successful application across 

diverse oceanic regions (Wang et al., 2019; Greaser et al., 2020; Trott et al., 2019). However, SST and SSH within eddies are 

subject to the intricate influence of multiple physical processes, leading to the intricate and nonlinear SST-SSH relationship 

that traditional statistical methods may not adequately capture. The deep learning (DL) technique has recently demonstrated 

remarkable capabilities in analyzing and extracting intricate patterns and relationships from multi-source big data (Ham et al., 55 

2019; Lecun et al., 2015; Lu et al., 2019; Su et al., 2015; Jiang et al., 2022; Su et al., 2021a), enabling a deeper and more 

comprehensive exploration of the intricate dynamics within SEs and SSEs. 

Mesoscale eddies are prominent features in the North Indian Ocean (NIO) (Greaser et al., 2020; Trott et al., 2019; Zhan et 

al., 2020; Chen et al., 2012; Gulakaram et al., 2020), which consists of the Bay of Bengal (BoB) and the Arabian Sea (AS), 

two distinct basins that exhibit substantial differences in terms of their biological productivity. In the NIO, intense 60 

southwesterly summer monsoon winds blow between June and September, while relatively weak northeasterly winter winds 
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blow between November and February (Prasad, 2004). Besides, the winds over the AS are stronger than the BoB due to the 

Findlater Jet during the summer monsoon (Findlater, 1969). The intense summer monsoon makes the AS one of the world's 

most productive regions (Kumar et al., 2002), with various physical processes contributing to its productivity, such as open 

ocean upwelling (Brock et al., 1991), wind-driven mixing (Lee et al., 2000), lateral advection (Kumar et al., 2001), and the 65 

coastal upwelling along Somalia (Kumar et al., 2002). Conversely, the BoB is regarded as a region with lower biological 

productivity due to weaker summer monsoon and lower salinity (Prasad, 2004; Kumar et al., 2002). Previous literature mainly 

investigates the influence of SEs on biological features in the AS and the BoB (Yang et al., 2020; Shafeeque et al., 2021; 

Smitha et al., 2022). However, both SEs and SSEs were found in the AS (Trott et al., 2019) and the BoB (Greaser et al., 2020; 

Babu et al., 1991). For example, during the southwest monsoon seasons from 2015 to 2018, Trott et al. (2019) found that 38.6% 70 

of anticyclonic eddies are subsurface-intensified, and 28.5% of cyclonic eddies are subsurface-intensified in the AS. 

Considering that the number of SSEs cannot be ignored, further investigations are needed to examine the effects of SSEs on 

chlorophyll distribution in the NIO. 

Therefore, the study proposes a DL-based model to distinguish between SEs and SSEs using satellite-derived altimetry SSH 

and infrared SST data. Consequently, the study conducts a comparative analysis to assess the differential impacts of SEs and 75 

SSEs on chlorophyll concentrations in the NIO. Section 2 introduces the satellite-derived data, in-situ data, and methods to 

distinguish and analyze SEs and SSEs. Section 3 examines and contrasts the spatial characteristics and seasonal variations of 

SST and chlorophyll anomalies caused by SEs and SSEs in the AS and the BoB. Section 4 of the study focuses on constructing 

subsurface eddy structures using in-situ data to validate the DL-based model's accuracy and explain the differences in 

chlorophyll distribution caused by SEs and SSEs. In Section 5, the study presents its conclusions based on the findings and 80 

analysis conducted throughout the research. 

2 Data and Methods 

2.1 Data 

2.1.1 Satellite-derived Dataset and Products 

The SSH anomalies (SSHA) dataset is obtained from the European Copernicus Marine Environment Monitoring Service (Pujol 85 

et al., 2016). The dataset is derived by combining data from multiple altimeter missions and is available daily. The spatial 

resolution of the dataset is 0.25°, providing detailed information about the variations in SSH across the study region. A spatial 

filter with half-power filter cutoffs of 20° longitude by 10° latitude is applied to the SSHA map to facilitate the detection of 

eddies (Chelton et al., 2011a). The SST dataset used in the study is the NOAA Optimum Interpolation (OI) SST product from 

Reynolds et al. (2007). The dataset is available daily and has a spatial resolution of 0.25°. To identify eddy‐induced SST 90 

anomalies (SSTA), temporal and spatial filters were applied to the SST field. The temporal filter utilized a band-pass 

Butterworth window to preserve the temporal signal within 7-90 days. The filter is chosen based on the typical lifetimes of 
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eddies in the NIO, ensuring that the relevant temporal variations associated with eddy dynamics are captured. Meanwhile, the 

spatial filter employed a moving average Hann window to retain spatial scales smaller than 600 km. These filters have been 

shown to provide robust results for obtaining mesoscale SSTA field (Bôas et al., 2015). 95 

In addition, the ocean color observed chlorophyll-a (Chl-a) product is used to evaluate chlorophyll concentrations induced 

by eddies. The daily Chl-a dataset of 4 km was produced by the European Space Agency (Maritorena et al., 2010). The Chl-a 

measurements were averaged onto the 0.25°grid as the SSHA observations. The unit for Chl-a concentration is mg/m3, and 

Chl-a values are firstly log-transformed due to their lognormal distribution. In order to obtain eddy-induced Chl-a anomalies 

(Chl-a'), the satellite log-transformed Chl-a field was first filtered with a 7-90 day Butterworth time filter. The time-filtered 100 

Chl-a field was then anti-log-transformed to get the original units of mg/m3 for direct comparisons of their results inside eddies 

(Gaube et al., 2013). Finally, a 600 km high-pass spatial filter was applied to the time-filtered Chl-a field, generating an eddy-

induced Chl-a' field. 

2.1.2 In-situ Data 

The study utilizes Argo profiles to construct the subsurface eddy structures. The Argo floats provide temperature and salinity 105 

measurements from the sea surface to thousands of meters below, allowing for a comprehensive understanding of subsurface 

conditions. Besides, the daily climatology of subsurface temperature and salinity values is acquired from the CSIRO Atlas of 

Regional Seas 2009 (CARS09) product. These climatological values are then subtracted from the Argo profiles, enabling the 

isolation of anomalies specific to the eddy features. In addition, we used the density-based mixed layer depth (MLD) data 

derived from Argo floats by Holte and Talley (2009) to study the relationship between MLD variations and "abnormal" eddies. 110 

MLD data within 1.5 radii (R) of the eddy core on the same day were selected for the study. 

    Furthermore, to study the differences in vertical chlorophyll distributions between SEs and SSEs, the study utilizes 

Biogeochemical Argo (BGC-Argo) floats equipped with bio-optical sensors to measure biogeochemical variables. For each 

BGC-Argo profile, we selected the highest-level data mode (delayed mode), produced later (over 1 year), and required control 

and validation by a scientific expert. Only profile data flagged as good quality were considered in the study. In addition, we 115 

conducted quality control on Chl-a profiles. First, a three-point moving median filter was applied on each profile to remove 

spikes (Haëntjens et al., 2020; Bisson et al., 2019). Next, we followed the calibration procedure of Roesler et al. (2017) and 

Haëntjens et al. (2020) to adjust the Chl-a data. Finally, quality control was applied to eddy-collocated BGC-Argo floats using 

the following criteria: (1) Chl-a data from the upper 10 m were excluded from analyses because large variability and high 

uncertainty were observed there (Su et al., 2021b); (2) Besides, each profile must contain at least one data point at a depth of 120 

200 m or greater. It is because the Chl-a is generally located at the base of the euphotic layer (50 - 200 m) in the NIO (Mignot 

et al., 2014); (3) There are more than 5 observations between 10 m and 200 m.  
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2.2 Methods 

2.2.1 DL-based Eddy Identification Model 

The study aims to extract SEs and SSEs based on the differences in their thermodynamic structures. Fig. 1a illustrates the 125 

shape of isopycnal levels for SEs and SSEs, as described in the study by Assassi et al. (2016). SAEs exhibit positive SSHA 

and the deepening of isopycnals, resulting in negative sea surface density (SS𝜌) anomalies. Conversely, SCEs show negative 

SSHA and the upward displacement of isopycnals, inducing positive anomalies in SS𝜌. Therefore, both SCEs and SAEs show 

negative relationships between SS𝜌  and SSHA. For SSEs, the scenario is slightly different. Subsurface-intensified AEs 

(SSAEs) also exhibit positive SSHA, similar to SAEs. However, the shape of isopycnal levels associated with SSAEs is lens-130 

like, indicating an upward displacement of water above the center and a downward displacement below it. Similarly, 

subsurface-intensified CEs (SSCEs) maintain negative SSHA, as observed in SCEs. However, the isopycnal levels above 

SSCEs exhibit a depressed shape, indicating a downward displacement of water, while the isopycnal below the SSCEs display 

a domed shape, indicating an upward displacement. Consequently, the SS𝜌 anomalies within SSEs have the opposite sign 

compared to SEs, leading to a positive SS𝜌/SSHA ratio for both SSAEs and SSCEs. Therefore, the sign of SS𝜌/SSHA can be 135 

used as an indicator to distinguish SAEs and SSAEs, or SCEs and SSCEs. However, it is important to note that SS𝜌 cannot be 

directly measured from remote sensing observations. Instead, at first order, SS𝜌 are primarily influenced by SST variations, 

which can be observed remotely. Thus, the SSTA-SSHA relationship within eddies can be employed to differentiate 

between SEs and SSEs, successfully applied in previous studies (Wang et al., 2019; Greaser et al., 2020; Trott et al., 2019). 

Accordingly, a DL-based model is developed to distinguish between SEs and SSEs by integrating satellite-derived SSHA 140 

and SSTA data mentioned in section 2.1.1. As shown in Fig. 1b, the DL-based model employs an encoder-decoder architecture 

(Ronneberger et al., 2015) for feature extraction from SSHA and SSTA data. The encoder-decoder architecture offers several 

advantages in terms of simplicity, reduced training time, fewer parameters, and lower sample requirements. Consequently, it 

effectively reduces computational complexity while efficiently extracting features. In the encoder part of the model, 

convolutions are utilized to extract spatial information from the input image, followed by max-pooling to reduce the feature 145 

dimensions progressively. In the decoder part, up-convolutions are employed to restore object details and spatial information. 

Besides, features from the corresponding encoder and decoder layers are concatenated to enrich the decoded information. 

Especially to address the complex nonlinear relationship between SSHA and SSTA within mesoscale eddies, a dense 

connection network (Dolz et al., 2018) is incorporated into the encoder part to facilitate the fusion of remote sensing SSHA 

and SSTA data. Unlike traditional convolutional neural networks, where information flows sequentially from one layer to the 150 

next, the dense connection network establishes direct connections from any layer to all subsequent layers in a forward manner. 

The forward propagation is represented by Eq. (1): 

𝑥𝑙
𝑠 = 𝐻𝑙

𝑠([𝑥𝑙−1
1 , 𝑥𝑙−1

2 , 𝑥𝑙−2
1 , 𝑥𝑙−2

2 , ⋯ , 𝑥0
1, 𝑥0

2]),         (1) 
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where 𝑥 represents a single network layer, the superscript 𝑠 denotes the modality of the network layer, and the subscript 𝑙 

indicates the layer number. The function 𝐻𝑙
𝑠 represents a composite operation that includes batch normalization (BN), rectified 155 

linear unit (ReLU), and convolutional operations. By incorporating dense connections, the DL-based model introduces implicit 

deep supervision, enhancing learning capabilities and improving information flow and gradient throughout the model. It not 

only facilitates the extraction of correlated spatiotemporal features of SSHA and SSTA at different scales but also mitigates 

the issue of gradient vanishing that commonly arises with increasing network depth. Consequently, the proposed model ensures 

a more efficient and accurate training process. 160 

The DL-based eddy identification model was trained and validated using datasets generated by a traditional SSH-based 

method (Chelton et al., 2011a; Liu et al., 2016), which extracts AEs and CEs by searching closed SSHA contours. Then, to 

determine whether an AE is SAE or SSAE and a CE is SCE or SSCE, the study calculates the mean SSTA within one radius 

within eddies. The mean SSTA within SCEs and SSAEs is negative, while positive within SAEs and SSCEs. As a result, we 

obtained the training dataset consisting of 1827 samples from 2000-2004 and the testing dataset consisting of 365 samples 165 

from 2005. Each sample contains four kinds of eddies in the NIO: SSCEs, SCEs, SAEs, and SSAEs, with pixels labeled as '1', 

'2', '3', and '4', respectively. The study utilized dice loss and categorical accuracy to optimize and estimate the DL-based eddy 

identification model. The dice loss is defined as:  

Loss = 1 − Dicecoef(P, G)                                                                                                                                                        (2) 

Dicecoef(P, G), i.e., dice coefficient, a popular cost function for segmentation problems in deep learning. Given the predicted 170 

segmentation P and the ground truth region G, the dice coefficient is calculated as:  

Dicecoef(P, G) =
2|𝑃∩𝐺|

|𝑃|+|𝐺|
                                                                                                                                                             (3) 

where |.| is the sum of elements in the area. A good segmentation result is explained by a dice coefficient close to 1. A low 

dice coefficient (near 0) indicates poor segmentation performance. Categorical accuracy is a metric that calculates the mean 

accuracy rate across all predictions for multi-class classification problems, which is defined as follows: 175 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                                  (4) 

TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false negatives, respectively. 

When the model was evaluated on the testing samples, it achieved a loss of approximately 0.12 and an accuracy of around 

0.95 (Figs. 1c-d). With a low loss value and a high accuracy rate, the DL-based model demonstrated promising results in 

accurately identifying and classifying the different types of eddies in the testing samples (Fig. 1e). Considering the resolution 180 

and precision of the SSHA product (Pujol et al., 2016), individual eddies with amplitudes ≥ 2 cm and radii ≥ 35 km are selected 

to avoid the noises from low-energy eddies in the study.  
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2.2.2 Surface and Subsurface Composite Analysis over Eddies 

The study conducted a surface composite analysis combining eddy-induced SSTA and Chl-a' data on a normalized grid. The 

analysis aims to examine the composite patterns of SSTA and Chl-a' associated with different types of eddies. The eddy-185 

induced SSTA and Chl-a' values within a region twice the radius (R) of each eddy were collected to construct the surface 

composite analysis. These values were then interpolated onto a normalized circle of the same size, as depicted in Fig. 2a. Next, 

composite SSTA and Chl-a' maps were generated by averaging the normalized anomaly fields over the eddies of the same 

type. This process involved grouping the eddies based on their characteristics and calculating the average SSTA and Chl-a' 

values at each grid point within the normalized circle for each group of eddies. 190 

To analyze the characteristics of eddies' subsurface structures, we select Argo profiles co-located within 1.5 R from the eddy 

core to construct the 3D structure of mesoscale eddies. Quality control was first applied to eddy-collocated Argo floats using 

the following criteria: (1) Only profiles data flagged as good quality were considered; (2) each Argo profile must contain a 

data point at a depth of 10 m or less, and at least one data point at a depth of 1,000 m or greater; (3) there are more than 30 

observations between 0 m and 1,000 m. Secondly, temperature and salinity data were interpolated on a regular 10 m grid 195 

ranging from 10 m to 1,000 m because Argo floats may or may not have observed data at the surface. Thirdly, the Argo 

profiles were processed by subtracting the CARS09 dataset to obtain temperature and salinity anomalies, specifically within 

the eddy regions. Moreover, potential density anomalies were calculated by temperature and salinity anomalies according to 

the International Thermodynamic Equation of Seawater (Mcdougall & Barker, 2011). Subsequently, the temperature and 

potential density anomalies within 1.5R of mesoscale eddies were interpolated into 0.1R × 0.1R grid points up to a horizontal 200 

distance of 1.5R (Fig. 2b) by the inversed distance weighting interpolation method (Bartier & Keller, 1996) at each depth level 

(Sun et al., 2019; Yang et al., 2013; Dong et al., 2017). For each grid point, Argo profiles located within the horizontal range 

of 0.1R are set the weight value: 

𝑤𝑖 = 𝑒−(
𝑑

𝑅
)2

                                                                                                                                                                            (5) 

where d denotes the distance from the profile to the grid point. The final temperature or potential value at each grid point, 205 

Ngrid, is calculated from the profile values Ni as: 

𝑁𝑔𝑟𝑖𝑑 =
∑ 𝑤𝑖𝑁𝑖

∑ 𝑤𝑖
                                                                                                                                                                        (6) 

3 Results 

3.1 Case Studies of SST and Chl-a within SEs and SSEs 

The study conducts case studies to preliminarily examine characteristics of SSTA and Chl-a' within SEs and SSEs. As shown 210 

in Fig. 3a, the DL-based model detected an SAE and an SCE on the AS's west coast on February 2, 2005. The SAE displays 
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positive signatures in SSTA images, indicating warm water, and negative signatures in Chl-a' images, indicating lower Chl-a 

concentrations. In contrast, the SCE shows negative SSTA and positive Chl-a' signatures. These findings are consistent with 

conventional knowledge, where AEs are generally identified as warm rings with lower Chl-a concentrations in ocean color 

maps, while CEs exhibit the opposite pattern (Gaube et al., 2014; Hsu et al., 2016). Fig. 3b shows an example of an SSAE on 215 

the east coast of the AS on March 13, 2002. The SSAE is associated with cold water and displays positive Chl-a' signatures, 

indicating higher Chl-a concentrations. Similarly, Fig. 3c presents an example of an SSCE in the North Central BoB on 

November 28, 2014. The SSCE is associated with positive SSTA, indicating warm water, but exhibits negative Chl-a' values, 

indicating lower chlorophyll-a concentrations. The above findings suggest that SSEs exhibit distinct effects on Chl-a 

concentrations compared to SEs. 220 

3.2 Spatial Distribution of SST and Chl-a within SEs and SSEs 

The study applied the DL-based model to identify SEs and SSEs in the NIO from 2000 to 2015. As a result, 61,095 SAEs, 

38,889 SSAEs, 70,596 SCEs, and 46,294 SSCEs are observed. The number represents the aggregate count of eddies of 

identical type across all eddy snapshots during 2000-2015. Figs. 4a-d depict the spatial distribution of eddy concentration, 

representing eddy numbers of the same type observed within a 1°×1° grid during 2000-2015. In the NIO, the number of SEs 225 

(SAEs and SCEs) accounted for 61% of the total, while SSEs (SSAEs and SSCEs) constituted 39%.  

The coastal areas of the Arabian Peninsula and the East Indian Coastal Current (EICC) in the BoB exhibited a pronounced 

abundance and prevalence of SEs and SSEs. These regions are known for their active eddy generation mechanisms, including 

coastal upwelling, Rossby waves, and barotropic instabilities in the AS (Zhan et al., 2020; Trott et al., 2018), as well as 

monsoon conversion, EICC instability, and westward Rossby wave energy transmission in the BoB (Chen et al., 2012; 230 

Somayajulu et al., 2003; Cheng et al., 2018; Cui et al., 2016). Figs. 4e-h display the spatial distributions of eddy-induced SSTA 

averaged within a 1°×1° grid. SAEs and SSCEs exhibit positive SSTA values (Figs. 4e, 4h), indicating warmer water, while 

SSAEs and SCEs display negative SSTA values (Figs. 4f, 4g), indicating cooler water. The distinct SSTA signatures exhibited 

by these eddies align with the expected patterns associated with SEs and SSEs defined in section 2.2.1.  

Fig. 5 illustrates the spatial distribution of Chl-a' averaged within a 1°×1° grid, specifically induced by SEs and SSEs in the 235 

NIO during 2000-2015. Chl-a' induced by SAEs (Fig. 5a) exhibits predominantly negative values across most areas of both 

basins. The western parts of both basins, particularly in the Somali Current (SC) region in the AS, exhibit the lowest 

concentrations of Chl-a'. It suggests that SAEs are associated with decreased phytoplankton biomass or lower productivity in 

these regions. Whereas, Chl-a' induced by SSAEs (Fig. 5b) shows predominantly positive signals in more areas, with a 

concentration observed along the northeastern coasts of both basins, which indicates that SSAEs are associated with higher 240 

productivity in these regions. For SCEs (Fig. 5c), eddy-induced Chl-a' exhibits positive values and a higher concentration 

along the SC region. In contrast, in most areas, Chl-a' induced by SSCEs (Fig. 5d) is generally insignificant. It shows negative 

values in the Gulf of Aden and north of the Andaman Sea. It implies that SSCEs may have less effect on primary productivity 

in these regions than SCEs.  
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3.3 Seasonal Variations of Composite SST and Chl-a within SEs and SSEs 245 

Considering distinct monsoon and productivity backgrounds in the AS and the BoB regions, we conducted a composite analysis 

of SSTA and Chl-a' within SAEs, SSAEs, SCEs, and SSCEs in summer and winter monsoons for both basins. Fig. 6 shows 

composite SSTA over SEs and SSEs in the AS and the BoB during summer and winter monsoons. In both basins, composite 

SSTA over the SEs and SSEs exhibit similar monopole patterns with opposite signals. Specifically, the composite SSTA 

signals for SAEs were positive, while those for SCEs were negative. Conversely, the signals for SSAEs were positive, and 250 

SSCEs displayed negative SSTA patterns. Despite the opposite SSTA signals between the SEs and SSEs, their magnitudes 

were comparable within the same season, indicating that the inversed SSTA signal within SSEs should not be overlooked.  

In addition, eddy-induced SSTA over both SEs and SSEs are more pronounced during summer compared to winter in the 

AS (Figs. 6a-h). Table 1 shows that composite SSTA extremums within SEs and SSEs during summer are at least 1.6 

times higher than those observed during winter. The seasonal variation in the intensity of monsoon winds is suggested to 255 

influence the impact of eddy-induced SSTA in the AS throughout the year. The intensified southwesterly winds during the 

summer monsoon contribute to enhanced upwelling and mixing processes, leading to greater changes in SSTA induced by 

eddies. In contrast, the weaker northeasterly winds during the winter monsoon are associated with reduced upwelling and 

mixing, leading to relatively less pronounced eddy-induced SSTA. However, composite SSTA over the SEs and SSEs did not 

exhibit a significant seasonal variation in the BoB. The intensities of eddy-induced SSTA were slightly larger during the 260 

summer monsoon than in winter, with a difference of 0.01°C (Table 1). The observed slight difference in intensity of composite 

eddy-induced SSTA between the BoB and the AS can be primarily attributed to the seasonal variations in monsoon winds. 

The BoB exhibits a less pronounced seasonal variation in monsoon winds than the AS. During the summer monsoon, the AS 

experiences stronger winds than the BoB, while both basins encounter relatively weaker winds during the winter monsoon. 

The divergence in wind strength contributes significantly to the distinct intensity of eddy-induced SSTA between the two 265 

basins. 

Despite the opposing signals of SSTA induced by SEs and SSEs, they generally exhibit a consistent signal in terms of Chl-

a' (Fig. 7). In the AS, composite Chl-a' shows dipole patterns with positive signals for SAEs and SSAEs and negative signals 

for SCEs and SSCEs (Figs. 7a-h). Although the Chl-a' signals within the SEs and SSEs exhibit similar patterns, their 

magnitudes significantly differ. According to the data presented in Table 1, the Chl-a' induced by SAEs during summer and 270 

winter are -0.040 mg/m3 and -0.049 mg/m3, respectively. Conversely, the Chl-a' induced by SSAEs during summer and winter 

are -0.017 mg/m3 and -0.012 mg/m3, respectively. It indicates that the Chl-a concentration within SAEs is notably lower than 

SSAEs, with approximately half of the concentration observed in the latter. On the other hand, the Chl-a concentration within 

SCEs is two to three times higher compared to SSCEs. Specifically, the Chl-a' induced by SCEs during summer and winter is 

0.076 mg/m3 and 0.084 mg/m3, respectively, whereas the Chl-a' induced by SSCEs during summer and winter is 0.018 mg/m3 275 

and 0.039 mg/m3, respectively. Notably, Chl-a' intensities over both SEs and SSEs in the AS demonstrate a relatively consistent 

pattern between the summer and winter monsoons, with no significant variation observed. Winter productivity in the AS has 
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been suggested to be comparable to, or occasionally even surpass, that of the summer (Piontkovski et al., 2011). The enhanced 

productivity during winter is attributed to the convective winter mixing, which facilitates the upward transport of nutrients to 

the surface layer (Banse & English, 2000). 280 

However, significant seasonal variations are observed in the impact of SEs and SSEs on Chl-a concentration in the BoB 

(Figs. 7i-p). During the summer monsoon, eddy-induced Chl-a' over the SEs and SSEs exhibit similar patterns (Figs. 7i-l), 

with slight differences in magnitudes. As shown in Table 1, the Chl-a' induced by SAEs and SSAEs are -0.029 mg/m3 and -

0.021 mg/m3, indicating a decrease in chlorophyll concentration compared to the surrounding areas. On the other hand, SCEs 

and SSCEs exhibit positive Chl-a' values of 0.021 mg/m3 and 0.018 mg/m3, respectively, indicating an increase in chlorophyll 285 

concentration. During the winter monsoon, composite Chl-a' induced by SEs and SSEs exhibit distinct patterns (Figs. 7m-p). 

Specifically, SAEs exhibit a predominant presence of negative Chl-a' values, with a minimum concentration of -0.018 mg/m3. 

In contrast, SSAEs are characterized by positive Chl-a' values, reaching a maximum concentration of 0.027 mg/m3. Besides, 

SCEs predominantly exhibit positive Chl-a' values, with a maximum concentration of 0.033 mg/m3, which is approximately 

three times higher than that induced by SSCEs. Additionally, the concentration of eddy-induced Chl-a' in the BoB was 290 

considerably lower than in the AS. The lower Chl-a concentration within eddies in the BoB is attributed to weakened vertical 

mixing resulting from freshwater-induced stratification and relatively weaker winds (Prasanna Kumar et al., 2002).  

4 Discussion  

Relying solely on the SSHA-SSTA relationship may lead to potential misidentification of SSEs due to various sources of errors 

(Assassi et al., 2016). For example, it is challenging when dealing with eddies exhibiting multicore structures of similar 295 

strength, making it difficult to determine the location of the most intense core accurately. Besides, in regions where salinity 

plays a significant role in stratification, variations of SS𝜌 may not be dominated by SST variations at first order. In order to 

validate the accuracy and robustness of the DL-based eddy identification model, the study employs quality-controlled Argo 

profiles to construct subsurface eddy structures for both SEs and SSEs in the AS and the BoB. During 2000-2015, the numbers 

of Argo profiles within SAEs, SSAEs, SCEs, and SSCEs were as follows: 2777, 1028, 2336, and 1747 profiles in the AS, and 300 

778, 374, 648, and 424 profiles in the BoB, respectively. 

Fig. 8 provides insights into the subsurface temperature anomalies within SEs (SAEs and SCEs) and SSEs (SSAEs and 

SSCEs) in the AS and the BoB. In the AS, SAEs and SCEs exhibit positive and negative temperature anomalies throughout 

the structure, with maximum and minimum temperature anomalies at approximately 100 m (Figs. 8a, c). Conversely, SSAEs 

and SSCEs display negative and positive temperature anomalies approximately within the MLD at around 30 m, contrasting 305 

with their subsurface layers (Figs. 8b, d). Similar differences in the subsurface temperature structure between SEs and SSEs are 

also observed in the BoB (Figs. 8e-h). Specifically, the SAEs (SCEs) showed positive (negative) temperature anomalies 

throughout the water column, while the SSAEs (SSCEs) displayed a small cap of cold (warm) water within the MLD.  
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    Furthermore, the study constructs vertical structures of potential density within the eddies (Fig. 9) to determine whether the 

isopycnal displacements of SEs and SSEs align with the definition proposed by Assassi et al. (2016). In the AS, SAEs and 310 

SCEs exhibit negative and positive potential density anomalies throughout the structure, respectively (Figs. 9a, c). However, 

SSAEs and SSCEs show a small cap of positive and negative potential density anomalies within the MLD, contrasting with 

their subsurface layers (Figs. 9b, d). Similar patterns are observed in the BoB, where SSAEs and SSCEs display positive and 

negative potential density anomalies within the MLD, respectively (Fig. 9f). Thus, SSAEs generally exhibit positive potential 

density anomalies in the near-surface layer, which can be attributed to the upward displacement of isopycnals. In contrast, 315 

SSCEs show negative potential density anomalies due to downward displacement. These findings align well with the schematic 

diagram of isopycnal displacements of SEs and SSEs depicted in Fig. 1a. By reconstructing the subsurface structure of eddies, 

the study confirms the accuracy of the DL-based model in distinguishing between SEs and SSEs. Besides, Figs. 8-9 reveal that 

the difference in the subsurface structure between SEs and SSEs is largely confined to the MLD. Such a result indicates that 

the formation of SSEs is dominated by eddy–wind interaction (McGillicuddy, 2015), which leads to lens-shaped disturbances 320 

in the thermocline. The relative motion between surface winds and eddy surface currents leads to anomalous Ekman upwelling 

(downwelling) within AEs (CEs), which can induce doming (depressing) of the upper ocean density surfaces inside AEs (CEs) 

(Gaube et al., 2015).  

Additionally, the study reveals subsurface Chl-a characteristics of SEs and SSEs using eddy-collocated BGC-Argo floats. 

In the NIO, spanning the years 2000 to 2015, we identified a total of 30 BGC-Argo profiles located within 1.5R of AEs (CEs), 325 

which met our rigorous quality control criteria, as detailed in section 2.1.2. Among these profiles, 18 (12) BGC-Argo profiles 

were found within 1.5R of SAEs (SSAEs), while 32 (13) BGC-Argo profiles were found within 1.5R of SCEs (SSCEs). Despite 

the relatively limited number of BGC-Argo profiles, our analysis unmistakably reveals discernible distinctions in the Chl-a 

profiles between SAEs and SSAEs, as well as SCEs and SSCEs. As shown in Fig. 10, the variations in Chl-a induced by eddies 

are predominantly concentrated within the upper 100 m of the water column. The observation aligns with previous research 330 

findings, which suggest that Chl-a tends to be concentrated at the base of the euphotic layer, typically spanning depths of 50 

to 200 m in the NIO (Mignot et al., 2014). Furthermore, it's worth noting that Chl-a levels induced by SSAEs exhibit a 

substantial increase, approximately 0.1 mg/m3, compared to those induced by SAEs within the upper 30 m (Fig. 10a). In 

contrast, the Chl-a concentrations induced by SSCEs are notably lower, approximately 0.1 mg/m3, in comparison to SCEs 

within the upper 50 m (Fig. 10b). These disparities can be attributed to distinct displacements of isopycnals between SEs and 335 

SSEs. The convex of isopycnals within SSAEs leads to the ascent of deeper water to the surface layer. This process facilitates 

the vertical transport of nutrients, promoting enhanced biological productivity and higher concentrations of Chl-a within 

SSAEs than SAEs. The vertical movement of water masses and the associated nutrient supply contribute to the favorable 

conditions for phytoplankton growth and the accumulation of Chl-a in SSAEs. Similarly, the concave of isopycnals within 

SSCEs leads to the subduction of surface water, resulting in lower Chl-a concentrations compared to SCEs.  340 
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5 Conclusions 

The study proposes a DL-based model that integrates satellite-derived SSH and SST data to accurately distinguish between 

SEs and SSEs in the NIO during 2000-2015. In the NIO, the number of SEs (SAEs and SCEs) accounted for 61% of the total, 

while SSEs (SSAEs and SSCEs) constituted 39%. SAEs and SCEs exhibit positive and negative SSTA, contrary to SSAEs 

and SSCEs, respectively. In addition, SEs and SSEs show significant differences in spatial characteristics and composite 345 

patterns of eddy-induced Chl-a. On the one hand, SAEs (SCEs) induce negative (positive) anomalies in Chl-a concentration, 

with the most significant effects observed in the Somali Current region. However, SSAEs cause positive Chl-a anomalies along 

the northeastern coast of both basins, while SSCEs lead to negative Chl-a anomalies in the Gulf of Aden and the northern part 

of the Andaman Sea. On the other hand, composite Chl-a within SAEs is considerably lower compared to SSAEs, which is 

about twice times lower in the latter. In contrast, the Chl-a concentration in SCEs is twice or three times higher than in the 350 

SSCEs. Moreover, using BGC-Argo profiles, SEs and SSEs show significant differences in subsurface Chl-a distribution. Chl-

a induced by SSAEs is ~ 0.1 mg/m3 greater than that caused by SAEs in the upper 30 m, while Chl-a induced by SSCEs is ~ 

0.1 mg/m3 less than that caused by SCEs in the upper 50 m.   

The distinct subsurface structures between SEs and SSEs provide insight into the contrasting impacts on Chl-a distribution. 

SAEs and SCEs exhibit negative and positive potential density anomalies throughout the structure. However, SSAEs exhibit 355 

positive potential density anomalies within the MLD, which can be attributed to the upward displacement of isopycnals. The 

upward movement facilitated the transport of deeper water to the surface layer, inducing higher Chl-a concentrations within 

SSAEs. Besides, SSCEs show negative potential density anomalies above the MLD due to the downward displacement of 

isopycnals, leading to lower Chl-a concentrations than SCEs. In conclusion, the study demonstrates the effectiveness of the 

DL-based model in distinguishing between SEs and SSEs by fusing remote sensing SSH and SST data. By applying the model, 360 

the study enhances the comprehension of the impacts of SSEs on Chl-a distribution and contributes to a deeper understanding 

of the complex interactions between eddy dynamics and biogeochemical processes. 
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Table 1. Composite extremum values ±1 Confidence Interval (CI) for SSTA/Chl-a' over four kinds of eddies. The CI was 

computed at the location of SSTA/Chl-a' extremum in composite maps.  
  

AS BoB 

  Summer Winter Summer Winter 

SSTA (°C) 

SAEs 0.14±0.004 0.08±0.002 0.09±0.003 0.08±0.003 

SSAEs -0.15±0.004 -0.09±0.002 -0.12±0.004 -0.11±0.003 

SCEs -0.16±0.004 -0.10±0.002 -0.11±0.004 -0.10±0.003 

SSCEs 0.16±0.004 0.07±0.002 0.11±0.003 0.10±0.003 

Chl-a' 

(mg/m3) 

SAEs -0.040±0.004 -0.049±0.005 -0.029±0.004 -0.018±0.002 

SSAEs -0.017±0.004 -0.012±0.002 -0.021±0.003 0.027±0.004 

SCEs 0.076±0.007 0.084±0.005 0.021±0.006 0.033±0.004 

SSCEs 0.018±0.003 0.039±0.007 0.018±0.005 0.010±0.003 
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 550 

Figure 1. (a) Isopycnal displacements, SSHA, and SSTA for SAE, SSAE, SCE, and SSCE. (b) Flow chart of the DL-based eddy 

identification model. Loss (c) and accuracy (d) curves produced by the DL-based  eddy identification model. (e) SSCEs, SCEs, SAEs, and 

SSAEs detected by the DL-based model on December 1, 2005.  
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Figure 2. Schematic of composite analysis of SST, Chl-a (a), and Argo profiles (b) for eddies.  555 
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Figure 3.  Case study of eddy imprints on SSHA, SSTA, and Chl-a' maps for an SAE and an SCE (a), an SSAE (b), and an SSCE (c). Red 

and blue lines denote eddy edges. 
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 560 

Figure 4. The spatial distribution of eddy concentration (a-d) and SSTA (e-h) within SAEs, SSAEs, SCEs, and SSCEs. N is the sum of 

eddies of the same kind observed in the NIO during 2000-2015.   
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Figure 5. Spatial distribution of eddy-induced Chl-a' for SAEs (a), SSAEs (b), SCEs (c), and SSCEs (d) in the NIO during 2000-2015. 565 
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Figure 6. Composite SSTA over SAEs, SSAEs, SCEs, and SSCEs in the AS (a-d, i-l) and BoB (e-h, m-p), respectively. Black points denote 

eddy centers, while white points represent SSTA extremum locations. N is the sum of eddies of the same kind during 2000-2015.  

 570 
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Figure 7. Composite Chl-a' over SAEs, SSAEs, SCEs, and SSCEs in the AS (a-d, i-l) and BoB (e-h, m-p), respectively. Black points denote 

eddy centers, while white points represent Chl-a' extremum locations. N is the sum of eddies of the same kind during 2000-2015.  

 

 575 
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Figure 8. Composite zonal sections of the vertical temperature structure within SAEs, SSAEs, SCEs, and SSCEs in the AS (a-d) and the 

BoB (e-h) during 2000-2015. Black lines denote contours in 0°C. The lime dashed lines in SSAEs and SSCEs denote the MLD. 
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 580 

Figure 9. Composite zonal sections of the vertical potential density structure within SAEs, SSAEs, SCEs, and SSCEs in the AS (a-d) and 

the BoB (e-h) from 2000-2015. Black lines denote potential density in 0 kg/m3. The lime dashed lines in SSAEs and SSCEs denote the MLD.  
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Figure 10. Mean (solid line) and standard deviation (shadow) values of BGC-Argo Chl-a profiles for SAEs and SSAEs (a), and SCEs and 

SSCEs (b) in the North Indian Ocean during 2000-2015. 585 

 


