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Supplementary Fig. 1 Relationships between the residual of the 𝑅 decomposition 5 

(𝑅!"#) and local anomalies of two indicators of CCN concentration near cloud base. The 6 

CCN indicators include sulfate aerosol mass concentration at 910 hPa (𝑠) and cloud 7 

droplet number concentration from cloudy pixels with the largest 10% optical thickness 8 

(𝑁$). Linear regression coefficients are plotted for (a) 𝜕𝑅!"#/𝜕 ln 𝑠 and (b) 𝜕𝑅!"#/𝜕 ln𝑁$. 9 

Stippling indicates regression coefficients that are significantly different from zero with 10 

the false discovery rate limited to 0.1 (Wilks, 2016). The averages of 𝜕𝑅!"#/𝜕 ln 𝑠 and 11 

𝜕𝑅!"#/𝜕 ln𝑁$ over ocean between 55°S and 55°N are −0.08 ± 0.01 W m-2 and −0.26 ±12 

0.01 W m-2, respectively (95% CIs). Note that the contour values are one order of 13 

magnitude smaller than those in Fig. 2 of the main text.  14 
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Supplementary Fig. 2 Sensitivity test showing how the spatial average of 𝜕𝑅/𝜕 ln𝑁$ 17 

depends on the retrieval method for 𝑁$. The Z18, BR17, and G18 cases retrieve 𝑁$ 18 

using filtering methods recommended by Zhu et al. (2018), Bennartz and Rausch 19 

(2017), and Grosvenor et al. (2018), respectively. These filtering methods select 𝑁$ in 20 

different subsets of liquid-cloud pixels. The Z18 case is presented in the main text. 21 

Squares show mean values, and vertical lines show 95% CIs.  22 
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 24 

Supplementary Fig. 3 Validation of the 𝑅′ decomposition using synthetic-data test 25 

cases. (a) Locations of the 1° × 1° grid boxes used in the test cases. The center of the 26 

grid box is labeled on the map. (b) Joint histogram showing the kernel-based estimate 27 

of 𝑅%!
&  plotted as a function of the theoretical estimate of 𝑅%!

& . Each data point in the 28 

histogram represents one test case. (c) Similar to (b), but for 𝑅'()
& . (d) Joint histogram 29 

showing the magnitude of the residual of the decomposition, |𝑅!"#& |, plotted as function 30 

of the maximum of |𝑅%!
& | and |𝑅'()

& |. Values in (d) are computed using the kernel 31 

method. The color scale is logarithmic, and the bin spacing is 1 W m-2 in (b-c) and 0.5 W 32 

m-2 in (d).  33 
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 35 

Supplementary Table 1 List of GCMs used in the study. CMIP6 output is used to 36 

compute Δ ln 𝑠, and CMIP5 and AeroCom output is used to compute the GCM estimates 37 

of ERFaci in Fig. 5 of the main text. CMIP6 and CMIP5 models are listed according to 38 

their Source ID on the CMIP online archives (https://esgf-node.llnl.gov/projects/cmip6/; 39 

https://esgf-node.llnl.gov/projects/cmip5/), and AeroCom models are listed according to 40 

the naming convention of Gryspeerdt et al. (2020). 41 

 42 

CMIP6 Models  CMIP5 Models AeroCom Models 
BCC-ESM1 CanESM2 ECHAM6-HAM2.2 
CESM2 HadGEM2-A HadGEM3-UKCA 
CESM2-FV2 IPSL-CM5A-LR CAM5.3 
CESM2-WACCM MIROC5 CAM5.3-MG2 
CESM2-WACCM-FV2 MRI-CGCM3 CAM5.3-CLUBB 
CNRM-ESM2-1  CAM5.3-CLUBB-MG2 
EC-Earth3-AerChem  SPRINTARS 
GISS-E2-1-G  SPRINTARS-KK 
GISS-E2-1-H  UKESM1-A 
HadGEM3-GC31-LL   
IPSL-CM5A2-INCA   
IPSL-CM6A-LR-INCA   
KIOST-ESM   
MIROC6   
MIROC-ES2L   
MPI-ESM-1-2-HAM   
MRI-ESM2-0   
NorESM2-LM   
NorESM2-MM   
UKESM1-0-LL   

  43 



Supplementary Table 2 Parameters for estimating SW ERFaci from liquid clouds 44 

following the method of Bellouin et al. (2020; hereafter B20). The table includes the 45 

parameter, its notation in B20, the original 66% CI that B20 estimated for the global 46 

mean, and the revised 66% CI that we estimate for the mean over ocean between 55°S 47 

and 55°N. 48 

 49 

Parameter Notation in B20 Original 66% CI  Revised 66% CI  
present-day aerosol 

optical thickness 
𝜏" 0.13 to 0.17 0.11 to 0.15 

change in aerosol 
optical thickness 

between preindustrial 
and present day 

Δ𝜏" 0.02 to 0.04 0.015 to 0.031 

#$
# %&'!

 (W m-2) 𝑆' -27 to -26 -30 to -29 
#$

# %& ()*
 (W m-2) 𝑆ℒ,'* -56 to -54** -75 to -73** 

#$
#-"#"

 (W m-2) 𝑆-,'* -153 to -91** -184 to -111** 

𝜕 ln𝑁.
𝜕 ln 𝜏"

 𝛽%&'/%& 0 0.3 to 0.8 0.3 to 0.8 

𝑑 ln LWP
𝑑 ln𝑁.

 𝛽%& ℒ/%&' -0.36 to -0.011 -0.36 to -0.011 

𝑑𝐶121
𝑑 ln𝑁.

 𝛽-/%&' 0 to 0.1 0 to 0.1 

effective cloud fraction 
for Twomey effect 

𝑐' 0.19 to 0.29 0.20 to 0.29 

effective cloud fraction 
for LWP adjustment 

𝑐3 0.21 to 0.29 0.26 to 0.34 

effective cloud fraction 
for cloud-fraction 

adjustment 

𝑐- 0.59 to 1.07 0.61 to 0.96 

 50 

*These terms represent 𝑆ℒ,, and 𝑆-,, as defined in equations 19 and 21 of B20. 51 

**B20’s original assessment of 𝜕𝑅/𝜕 ln LWP and 𝜕𝑅/𝜕𝐶./. represents top-of-atmosphere 52 

net radiation. They assess the SW component of 𝜕𝑅/𝜕 ln LWP and 𝜕𝑅/𝜕𝐶./., then scale 53 

the values by 0.9 to account for an offsetting change in top-of-atmosphere longwave 54 

flux. In our analysis, we estimate the SW component of ERFaci, so we do not apply the 55 

scaling factor of 0.9.  56 
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 58 

Validation of 𝑅′ Decomposition 59 

 Our radiative decomposition method partitions 𝑅′ into components associated 60 

with cloud-amount anomalies, 𝑟0 anomalies, LWP anomalies, and a residual: 61 

 62 

𝑅′ = 𝑅12& + 𝑅%!
& + 𝑅'()

& + 𝑅!"#& .	 63 

 64 

We validate this decomposition using synthetic-data test cases performed with pixel 65 

data from the MODIS MYD06_L2 dataset collection 6.1 (Platnick et al., 2015). Each 66 

case uses pixels from a 1° × 1° ocean grid box from the entire month of June 2013. Let 67 

𝑟0,3, LWP3, and 𝜏3 represent the retrieved cloud properties for a pixel 𝑗 containing a liquid 68 

cloud. For the test cases, we define the original cloud population as the set of all liquid-69 

cloud pixels in the grid box with optical properties given by 𝑟0,3, LWP3, and 𝜏3. We then 70 

modify the cloud properties to create a second cloud population, denoted by �̃�0,3, LWPA3, 71 

and �̃�3, while holding the total number of liquid-cloud pixels constant. The difference in 72 

the monthly-mean grid-box-mean SW CRE between the two cloud populations, 𝑅′, is 73 

then computed. We decompose 𝑅′ separately using theoretical calculations and the 74 

radiative-kernel method, and we compare the estimates for validation. 75 

 The first step is to define the modified liquid-cloud population. We define the 76 

following relationships between the original and modified clouds: 77 

 78 

𝛿%!,3 ≡ �̃�0,3 − 𝑟0,3 = 𝜒%!𝑟0,3 , 79 

 80 

𝛿'(),3 ≡ LWPA4 − LWP3 = F
𝜒'(),5LWP3 , 𝑟0,3 < 14	𝜇m
𝜒'(),6LWP3 , 𝑟0,3 ≥ 14	𝜇m. 81 

 82 

where 𝛿 represents the difference between the original and modified cloud properties 83 

and 𝜒%!, 𝜒'(),5, and 𝜒'(),6 are prescribed constants. A piecewise relationship for 𝛿LWP3 84 

is chosen because precipitating and non-precipitating clouds can be approximately 85 

distinguished based on the clouds that have 𝑟0 ≥ 14	𝜇m and 𝑟0 < 14	𝜇m, respectively 86 

(Freud and Rosenfeld, 2012; Suzuki et al., 2010). We prescribe separate relationships 87 

for precipitating and non-precipitating clouds to mimic the fact that they can have 88 

distinct responses to CCN anomalies. Calculations are performed with 𝜒%!, 𝜒'(),5, and 89 

𝜒'(),6 ranging from -0.1 to 0.1 in increments of 0.005 at three grid boxes corresponding 90 

to typical midlatitude, stratocumulus, and trade-cumulus conditions (Supplementary Fig. 91 

3a). Each combination of 𝜒%!, 𝜒'(),5, 𝜒'(),6, and grid-box location is referred to as a 92 

test case. 93 

 We next estimate the difference in liquid-cloud SW CRE between the original and 94 

modified cloud populations for each test case under idealized conditions. Assuming that 95 

the ocean surface is black, that cloud droplets have a constant asymmetry factor of 𝑔 =96 

0.85, and neglecting SW absorption by clouds and atmospheric gases, the top-of-97 

atmosphere albedo above each liquid-cloud pixel, 𝛼3, can be estimated using the two-98 

stream radiative transfer approximation (Petty, 2006): 99 

 100 



𝛼3 =
(1 − 𝑔)𝜏3

1 + (1 − 𝑔)𝜏3
. 101 

 102 

Because 𝜏 ∝ LWP/𝑟0 for this cloud model, the albedo difference between the original 103 

and modified cloud populations can be expressed as 104 

 105 

𝛿𝛼3 ≡ 𝛼R3 − 𝛼3 = 𝛿𝛼'(),3 + 𝛿𝛼%!,3 106 

 107 

where 108 

 109 

𝛿𝛼'(),3 =
𝛿LWP3
LWP3

(1 − 𝑔)𝜏3
S1 + (1 − 𝑔)𝜏3T

6 110 

 111 

and 112 

 113 

𝛿𝛼%!,3 = −
𝛿𝑟0,3
𝑟0,3

(1 − 𝑔)𝜏3
S1 + (1 − 𝑔)𝜏3T

6. 114 

 115 

Here, 𝛿𝛼'(),3 and 𝛿𝛼%!,3 are the components of	𝛿𝛼3 that are caused by 𝛿LWP3 and 𝛿𝑟0,3, 116 

respectively. We next average over all liquid-cloud pixels to determine the components 117 

of 𝑅′ at the monthly-mean grid-box-mean scale: 118 

 119 

𝑅'()
& = SW↓𝑓89:

1
𝑁W𝛿𝛼'(),3 ,

,

3;5

 120 

 121 

𝑅%!
& = SW↓𝑓89:

1
𝑁W𝛿𝛼%!,3

,

3;5

, 122 

 123 

where SW↓ is the monthly-mean insolation; 𝑁 is the number of liquid-cloud pixels in the 124 

grid box; and 𝑓89: ≡ 𝑁/𝑁<=<, where 𝑁<=< is the total number of pixels in the grid box. The 125 

liquid-cloud fraction is held constant in the test cases, so 𝑅12& = 0. 126 

 We next decompose 𝑅′ using the radiative kernel method. For consistency with 127 

the theoretical calculations, the kernel for this analysis is computed with a surface 128 

albedo of zero and with no SW absorption by water vapor or ozone. We then bin the 129 

liquid-cloud pixels into joint histograms partitioned by 𝑟0 and LWP. Let 𝐶%> and 𝐶X%> 130 

represent the joint histograms of the original and modified cloud populations, 131 

respectively. We define the cloud-fraction anomalies as 𝐶%>& = 𝐶X%> − 𝐶%>, and we estimate 132 

𝑅%!
& , 𝑅'()

& , and 𝑅!"#&  with the kernel method. 133 

 This set of calculations produces estimates of 𝑅%!
&  for 𝑅'()

&  from two independent 134 

methods for each of the ~2 × 10? test cases. The theoretical and kernel-based 135 

estimates approximately agree across all test cases, and the residual of the kernel 136 

decomposition is almost always one order of magnitude smaller than 𝑅%!
&  and 𝑅'()

&  137 



(Supplementary Fig. 3). This verifies that the kernel method accurately decomposes 𝑅′ 138 

into 𝑟0-driven and LWP-driven components with a relatively small residual. 139 

 140 

Assumptions about Cloud Vertical Structure 141 

 Cloud visible optical thickness 𝜏 and LWP can be expressed as 142 

 143 

𝜏 = Z
3𝑄0𝑞>(𝑧)
4𝜌>𝑟0(𝑧)

𝑑𝑧
@

A
 144 

and 145 

 146 

LWP = Z 𝑞>(𝑧)𝑑𝑧
@

B;A
, 147 

 148 

where 𝑧 is height above cloud base, ℎ is cloud geometric thickness, 𝑞>(𝑧) is the vertical 149 

profile of liquid water content, 𝑟0(𝑧) is the vertical profile of cloud droplet effective radius, 150 

𝜌> is liquid-water density, and 𝑄0 ≈ 2 is the extinction efficiency at visible wavelengths. 151 

The MODIS observations can be used to directly infer 𝜏 and 𝑟0 near cloud top, but they 152 

do not constrain the other parameters in these equations. Thus, MODIS infers LWP 153 

indirectly by assuming vertical profiles of 𝑞>(𝑧) and 𝑟0(𝑧). Because 𝜏 is proportional to 154 

the integral of 𝑞>(𝑧)/𝑟0(𝑧), different profiles of 𝑞>(𝑧) and 𝑟0(𝑧) can be consistent with the 155 

observed value of 𝜏. This means that the true LWP can differ from the MODIS estimate 156 

if the true profiles of 𝑞>(𝑧) and 𝑟0(𝑧) differ from the assumed profiles. This LWP bias can 157 

occur despite the fact that 𝜏 is well constrained by the observations. 158 

 We investigate the implications of assumptions about cloud vertical structure by 159 

considering three idealized cloud profiles. First, case VU assumes that 𝑞>(𝑧) and 𝑟0(𝑧) 160 

are vertically uniform inside the cloud. This assumption is made in the operational 161 

MODIS retrieval algorithm. Second, case AD assumes that 𝑞>(𝑧) and 𝑟0(𝑧) vary 162 

vertically according to the adiabatic cloud model (Brenguier et al., 2000). In this case, 163 

cloud droplet number concentration is constant and 𝑞>(𝑧) increases linearly with height. 164 

Third, case 2L assumes that the cloud has two vertically uniform layers following the 165 

assumptions in the radiative kernel calculations. The top layer has optical thickness 𝜏5 =166 

3, LWP denoted by LWP1, and effective radius 𝑟0,5 = 𝑟0,./C, where 𝑟0,./C is the cloud 167 

droplet effective radius at cloud top. The bottom layer has optical thickness of 𝜏6 = 𝜏 −168 

𝜏5, LWP denoted by LWP2, and effective radius 𝑟0,6 = 𝑚𝑟0,./C + 𝑏, where 𝜏 is the total 169 

cloud optical thickness and 𝑚 and 𝑏 are constants. 170 

 For all three cases, 𝜏, LWP, and 𝑟0,./C can be related to one another with analytic 171 

expressions. The VU and AD cases satisfy the following relations: 172 

 173 

VU case: 𝜏 = DE!'()45
FG6%!,789

 174 

 175 

AD case: 𝜏 = HE!'():;
5AG6%!,789

 176 

 177 



where LWPVU and LWPAD are the LWP values inferred from the VU and AD 178 

assumptions, respectively (Wood and Hartmann, 2006). The 2L case is represented by 179 

two cloud layers that each satisfy the VU relation: 180 

 181 

2L case: 𝜏 = DE!
FG6

e'()<
%!,<

+ '()=
%!,=

f 182 

 183 

For a given 𝜏 and 𝑟0,./C, the LWP inferred from these assumptions differ from one 184 

another by 17% or less. 185 

 We next examine how the assumptions about cloud vertical structure affect 186 

estimates of the 𝑅′ components. Consider two liquid-cloud pixels in which 𝜏 and 𝑟0,./C 187 

are known from MODIS observations. Differentiating the above equations leads to the 188 

following relations: 189 

 190 

VU case: 𝛿 ln 𝜏 ≈ 𝛿 ln LWPIJ − 𝛿 ln 𝑟0,./C 191 

 192 

AD case: 𝛿 ln 𝜏 ≈ 𝛿 ln LWPKL − 𝛿 ln 𝑟0,./C 193 

 194 

2L case: 𝛿 ln 𝜏 ≈ g M<
M<NM=

𝛿 ln LWP5 +
M=

M<NM=
𝛿 ln LWP6h − g

M<
M<NM=

𝛿 ln 𝑟0,5 +
M=

M<NM=
𝛿 ln 𝑟0,6h 195 

 196 

where 𝛿 represents the difference between the two pixels. The first and second terms 197 

on the right side of these equations represent the 𝛿LWP-driven and 𝛿𝑟0,./C-driven 198 

components of 𝛿 ln 𝜏, respectively. These components are identical for the VU and AD 199 

cases because LWPVU is directly proportional to LWPAD. The components of 𝛿 ln 𝜏 from 200 

the VU and AD cases are also similar to those from the 2L case. For instance, if typical 201 

values of 𝜏 = 10 and 𝑟0,./C = 14	𝜇m are assumed and 𝛿 ln 𝜏 and 𝛿 ln 𝑟0,./C are varied 202 

between 0 and 1, then the 𝛿LWP-driven and 𝛿𝑟0,./C-driven components of 𝛿 ln 𝜏 differ by 203 

2% or less between the three cases. This means that different common assumptions 204 

about cloud vertical structure will lead to similar estimates of 𝑅%!
&  and 𝑅'()

& . 205 

 206 

Estimating ERFaci from the Method of Bellouin et al. (2020) 207 

We compare our estimates of SW ERFaci from liquid clouds with estimates from 208 

the assessment of the WCRP reported by Bellouin et al. (2020; hereafter B20). B20 209 

assess the components of ERFaci according to 210 

 211 

 IRFOP9 =
𝜕𝑅

𝜕 ln𝑁$
𝜕 ln𝑁$
𝜕 ln 𝜏Q

Δ𝜏Q
𝜏Q,)L

𝑐, , 

 

 

 
 A'() =

𝜕𝑅
𝜕 ln LWP

𝑑 ln LWP
𝑑 ln𝑁$

𝜕 ln𝑁$
𝜕 ln 𝜏Q

Δ𝜏Q
𝜏Q,)L

𝑐', 
 

 212 

and 213 

 214 



 
A12 =

𝜕𝑅
𝜕𝐶./.

𝑑𝐶./.
𝑑 ln𝑁$

𝜕 ln𝑁$
𝜕 ln 𝜏Q

Δ𝜏Q
𝜏Q,)L

𝑐1, 

 

 

where 𝜏Q is aerosol optical depth, “PD” represents present day, and Δ represents the 215 

difference between present day and preindustrial conditions. All terms in these 216 

equations are global averages, and 𝑐,, 𝑐', and 𝑐1 are effective cloud fractions that 217 

account for spatial correlations between the other variables. We estimate the 218 

components of ERFaci following the method of B20, but we modify the values so that 219 

they represent averages over our study domain rather than the entire globe. 𝑐,, 𝑐', 𝑐1, 220 

𝜕𝑅/𝜕 ln𝑁$, and 𝜕𝑅/𝜕 ln LWP are computed following B20’s method but restricting the 221 

calculation to ocean grid boxes between 55°S and 55°N. We use B20’s estimates of 222 

𝜕𝑅/𝜕𝐶./., 𝜕 ln𝑁$/𝜕 ln 𝜏Q, 𝑑 ln LWP/𝑑 ln𝑁$, and 𝑑𝐶././𝑑 ln𝑁$ because they are 223 

assessed from studies that mostly investigate clouds in oceanic and coastal 224 

environments. One exception is the upper bound of 𝑑𝐶././𝑑 ln𝑁$, which is assessed 225 

over the entire globe using GCM output. Finally, we scale B20’s estimate of 𝜏Q,)L by a 226 

factor of 〈𝜏Q,)L〉/P"OR/〈𝜏Q,)L〉S8/TO8, where 〈𝜏Q,)L〉/P"OR is the average of 𝜏Q,)L over ocean 227 

between 55°S and 55°N and 〈𝜏Q,)L〉S8/TO8 is the average of 𝜏Q,)L over the entire globe. 228 

Similarly, we scale B20’s estimate of Δ𝜏Q by 〈Δ𝜏Q〉/P"OR/〈Δ𝜏Q〉S8/TO8. These scaling factors 229 

are calculated with data from the Monitoring Atmospheric Composition and Climate 230 

Reanalysis (Benedetti et al., 2009) for consistency with B20. The original and modified 231 

values of all parameters are listed in Supplementary Table 2. 232 
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