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 We thank the reviewers for their constructive comments, which greatly improved 
the manuscript. Reviewer comments are written in black italic text below, and our 
responses are written in blue text. 
 
 
Comments from Ying Chen (Reviewer 1) 
Aerosol-cloud interactions (ACI) continuously consist one of the largest uncertainties in 
climate radiative forcing and projections. This study combines a large ensemble of 
satellite observations and a statistical relation-regression method to estimate radiative 
forcing associated with key ACI elements, including Twomey effect, liquid water path 
(LWP) adjustment and cloud fraction adjustment. They found cloud fraction adjustment 
could be much more important than commonly believed and larger than Twomey effect 
in ACI cooling; while, LWP adjustment leads to slightly warming globally. The scope fit 
well with ACP. The manuscript is well written, the results are scientific interesting and 
politically meaningful supported by sound methodology. I am happy to recommend for 
publication after a few minor revisions. 
 
Minor concerns: 
1) Authors find the LWP adjustment leads to warming almost everywhere globally (Fig. 
2); however, recent studies, which also use a large ensemble of satellite observations, 
reported that LWP adjustment leads to SW cooling on a large-scale (Manshausen et al., 
2022;Rosenfeld et al., 2019). Could you please add some more discussion about this 
discrepancy?  

Thank you for suggesting this. We agree that comparing our results to other 
studies adds value to the paper. We added some discussion that compares our results 
to the findings of Diamond et al. (2020), Gryspeerdt et al. (2019), and Manshausen et 
al. (2022) (line 203). Regarding the Rosenfeld et al. (2019) study, there are two factors 
that complicate comparisons with their estimates. First, the strong SW cooling from 
LWP adjustments originally reported in that paper happened as a result of a coding 
error. When this error was corrected, they found a weak SW warming effect from the 
LWP adjustment, which is qualitatively consistent with our results. The coding error and 
updated results are described in the erratum of that paper 
(https://www.science.org/doi/10.1126/science.aay4194). Second, the corrected 
Rosenfeld et al. (2019) estimates of LWP adjustments are not reported in units of W m-2 
or fraction of the Twomey effect, so it is difficult to quantitatively compare them with our 
estimates. For these reasons, we chose to compare with the other three studies 
mentioned above. 
 



2) Page-3 bottom equation. Here, authors describe radiation anomaly as a function of 
cloud fraction (C), and the partial dependency: dR/dCrl, where C is partitioned by 
effective radius (r) and LWP (l). I wonder that are ‘r’ and ‘l’ the most important 
controlling-factors for C, or is there also other factors would largely impact ‘C’ and the 
partial dependency relationship (dR/dC)? 

The SW radiative effects of liquid clouds can be accurately predicted with Mie 
theory and knowledge of 𝑟!, LWP, and cloud fraction, as demonstrated by the 
comparison between the histogram/kernel predictions and the CERES observations in 
Fig. A1. Variations in cloud-top pressure can affect liquid-cloud radiative effects by 
changing the amount of SW radiation that is absorbed by atmospheric gases and 
aerosols above the cloud top, but this effect is small relative to the radiative anomalies 
associated with typical variations in 𝑟!, LWP, and cloud fraction. For ice clouds, 
variations in particle shape and surface roughness can change SW cloud radiative 
effects by modifying the scattering phase function and single-scattering albedo, but 
these factors are not relevant to liquid clouds. 
 
3) Some more clarification about the method would help audience better understand it. 
A) line-100 (and after), what does ‘anomaly’ here refer to, do you mean anomaly to the 
climatological value (temporal averaged, or also spatial averaged)? B) line-120: some 
description about how do you remove the climatological seasonal cycle and linear trend. 
C) line-125: explain 46-49% variance – how do you measure variance and lead to this 
conclusion? 

(A) We compute the climatological seasonal cycle separately at each latitude-
longitude grid-box by averaging the data over all of the January data points, averaging 
the data over all of the February data points, and so on. We changed the text to 
emphasize that we compute the climatological seasonal cycle at each grid box rather 
than computing the spatially averaged climatological seasonal cycle (line 100, 133, and 
371). 

(B) We changed “linear trend” to “least-squares linear trend” to clarify how it is 
calculated (line 133). 

(C) To determine the goodness of fit of the regression model, we compute the 
fraction of 𝑅′ variance that it explains in each latitude-longitude grid-box from the 
standard coefficient of determination, then spatially average the results over the 
domain. We added a sentence that states this (line 137). 
 
4) Fig. 1. Joint histogram. I do not quite understand this figure. Does the color indicate 
the values of cloud fraction (a) and SW kernel (b)? If yes, then this is not a joint 
histogram, it is a heatmap plot. A histogram should show the probability density function 
(or counts) of data. 
Moreover, Fig. 1b. the kernel dR/dC should be depended on latitude/longitude/day-of-
the-year/surface-albedo. Does all of these factors are controlled, e.g., fixed to an 
average value, and only allow re and LWP to vary? 

The standard MODIS joint histograms are formatted in units of pixel counts. We 
normalize the pixel counts by the number of all valid pixels in the grid box and then 
multiply by 100 to convert the units to cloud fraction. We modified the text to clarify this 
(line 57). We prefer to use the terminology “joint histogram” because this is standard 



practice in the cloud-feedback literature from which our method was adapted (Zelinka et 
al., 2012), and we want to streamline comparisons between our work and that body of 
literature. 

Regarding the kernel, it is a function of latitude, longitude, calendar month, LWP, 
and 𝑟! (line 356). Fig. 1b shows the kernel averaged over the latitude, longitude, and 
time dimensions. We changed the caption of Fig. 1 to clarify this. 
 
5) Data open-access. SW kernel data is a key factor use in this study and generated in 
this study. I feel that making the global distribution of this dataset open-access would 
largely improve the reproducibility of this study, and also enhance its contribution to the 
community.   

We posted the cloud radiative kernel for public access on GitHub and added the 
website link to the Data Availability section. 

 
 

Comments from Jianhao Zhang (Reviewer 2) 
This study quantifies SW flux perturbation arising from aerosol-cloud interactions and 
decomposes the flux perturbations into three components, namely the Twomey effect, 
LWP adjustment and CF adjustment, for global marine liquid clouds, using a 
combination of satellite observations, reanalysis and a radiative transfer model (RTM). 
These sensitivity estimates are then used to constrain ERFaci using GCMs’ estimates 
of PI to PD aerosol changes. Their assessment framework is adopted from a previous 
study by the lead author (Wall et al. 2022), where TOA SW flux anomalies due to 
changes in marine liquid cloud properties are regressed against 7 cloud controlling 
factors (CCFs), including 6 key large-scale meteorological factors and one aerosol 
indicator, to assess the SW flux sensitivity to aerosol perturbations while controlling 
confounding meteorology. The innovative aspects of the current study are: i) a 
decomposing technique adapted from cloud-feedback literature that uses joint 
histograms of LWP-re, instead of COT-CTP as in Wall et al. (2022), to estimate SW flux 
anomalies and individual components, although an RTM is required to enable the 
decomposition, ii) the use of Nd as an aerosol indicator, in addition to sulfate aerosol. 
They found that radiative forcing associated with cloud adjustments is stronger than 
previously believed and provided a stringent constrain on ERFaci, compared to recent 
assessments.  
 
This study is no doubt publishable with profound impact and significant contributions to 
the ACI and ERFaci communities. The manuscript is well written and easy to follow, and 
the detailed documentation of methodology, framework validation, and uncertainty 
quantification is greatly appreciated. That said, I do have a few points that I would like 
the authors to consider and address first before publication. 
 
Key questions/concerns:  
1. Regarding the multilinear regression (MLR) method, it seems a bit concerning to 
learn that MLR was only able to explain less than half of the variance in R’. To me, this 
points to several possibilities, i) non-linear contributions from the predictors, very likely 
to be associated with the aerosol indicators, ii) co-linearity among CCFs, a recent work 



by H. Andersen et al. (2023, ACPD, the lead author of this study is a co-author) 
addresses this issue, iii) dependence of R’ on CCFs of a larger scale, i.e. larger than 
5ox5o . In other words, cloud properties may have a memory of the upstream conditions 
(e.g. Lewis et al. 2023 JClimate). The statistical learning framework used in Ceppi and 
Nowack (2021, PNAS) addressed this concern. I wonder if the authors have taken these 
possibilities and methodologies into consideration, and if yes, what’s the rationale to 
stick with the MLR framework?  

Wall et al. (2022; hereafter W22) showed that the MLR model used in this study 
can accurately predict the regional cloud response in several cases with known 
variations in aerosol sources, including decadal cloud trends downwind of major 
emission sources in North America, decadal cloud trends downwind of major emission 
sources in Asia, and the cloud response to effusive eruptions of Kilauea Volcano in 
Hawaii. We believe that these findings justify the use of the MLR model for estimating 
ERFaci. Of course, it is possible that a more complex statistical model that includes non-
local or non-linear relationships between clouds and their controlling factors could 
explain more of the 𝑅′ variance and thus provide more precise predictions of aerosol 
indirect effects. We modified the conclusion to state that investigating non-linear and 
non-local relationships between clouds and their controlling factors could be a way to 
improve upon our results (line 306). 
 Regarding collinearity between predictor variables, the standard MLR model 
used in this study accounts for collinearity when quantifying regression-coefficient 
uncertainty (O’Brien, 2007). In general, it is possible for collinearity to cause the 
regression coefficients to be too uncertain to obtain useful statistical results, but the 
existence of collinearity does not invalidate the MLR model because collinearity is 
accounted for when quantifying regression-coefficient uncertainty. 
 
2. The last condition (viii) implemented for Nd selection is a bit concerning, to me at 
least, which essentially uses the Nd from convective core regions to represent the Nd of 
the entire cloud. This will no doubt boost the representativeness of Nd on CCN, but not 
necessarily providing the true characterization of the Nd of these clouds, as the 
entrainment process that also affects Nd will be biasedly accounted if only convective 
cores are selected. I wonder how sensitive is your partial()/partial(Nd) sensitivities to the 
implementation of this last condition? If the goal is to use Nd to represent CCN as much 
as possible without worrying about the Nd characterization of the entire cloud, I think the 
reader will appreciate if this is clearly indicated in the main text.  

Indeed, the goal is to use the 𝑁" in cloud elements with the largest 10% optical 
thickness (convective-core 𝑁") as an indicator of cloud-base CCN concentration rather 
than to characterize 𝑁" in the entire cloud. We added a sentence to emphasize this (line 
76), and we now refer to the filtered cloud-droplet number concentration as 𝑁%" to 
distinguish it from the cloud-droplet number concentration in the entire cloud (line 78). 
The caption of Fig. 2 also states the filtering condition to remind the reader. 
Supplementary Fig. 2 shows that the results are qualitatively consistent when filtering 
methods for 𝑁" recommended by Grosvenor et al. (2018) and Bennartz and Rausch 
(2017) are used instead of the largest 10% cloud optical thickness values (line 211). 
 



3. I agree with the authors on the statement around lines 139-140 that, to date, no 
global observational studies have simultaneously estimated the three components 
individually. That said, there are a few that estimated intrinsic (Twomey + LWP 
adjustment, essentially albedo adjustment) and extrinsic sensitivities/forcings, e.g. Chen 
et al. (2014) and Christensen et al. (2016, 2017). More recently, Zhang & Feingold 
(2023, ACP) provided a bottom-up observational assessment on the temporally 
resolved intrinsic sensitivity (albedo susceptibility) that also controls for confounding 
meteorology. Since the individual components in this study is easily additive, I wonder if 
the authors could provide the intrinsic and extrinsic sensitivity and forcing estimates so 
that they can be easily compared with existing estimates?  

W22 computed terms that closely approximate the “intrinsic” and “extrinsic” 
components of aerosol indirect effects for low-level clouds, although they did not use 
that terminology. Unfortunately, they could not reach strong conclusions from these 
terms because they depend substantially on whether partly cloudy pixels are filtered out 
or included in the cloud histograms – as documented for some other terms in the 
current study as well. Discussing the “intrinsic” component would be very similar to what 
W22 did, so we prefer to focus the discussion on what is new in the current paper 
instead. The “extrinsic” component is equivalent to the estimated cloud-fraction 
adjustment in the present study, which is discussed in the current paper. For these 
reasons, we prefer not to discuss “intrinsic” and “extrinsic” components of aerosol 
indirect effects in the main text. 

That said, the reviewer makes an excellent point that stating the values for the 
components of aerosol indirect effects, and different combinations of the components, 
would help to facilitate comparisons with other studies and support efforts to reproduce 
our results. We therefore added a table to the Supplementary Information that lists 
estimates of all of the components of aerosol indirect effects and ERFaci, including the 
“intrinsic” and “extrinsic” components (Supplementary Table 3). This table is referenced 
in the Data Availability section. 
 
4. Since Wall et al. (2022) is a recently published high impact study that uses a very 
similar assessment framework, I think it would be necessary to discuss the 
improvement/advantage or confidence gained by using this updated framework and 
reconcile the results from the previous study with that of the current study, especially 
the apparent stronger cloud fraction adjustment which leads to an overall more negative 
ERFaci (by ~0.7 W/m2 ) in the current study. 

There are three main factors that cause the difference in the estimated ERFaci 
between the current study and W22. First, the current study estimates ERFaci for all 
liquid-topped clouds, while W22 estimate ERFaci for low-level clouds, defined as clouds 
with tops between the surface and 680 hPa. The current study thus includes a larger 
subset of the overall cloud population. We applied the method of W22 to estimate the 
SW ERFaci for all liquid-topped clouds, and we found that the result is about 26% larger 
in magnitude than the estimate of SW ERFaci from low-level clouds. Second, the current 
study estimates SW ERFaci, while W22 estimate net ERFaci. Thus, their estimate 
includes an additional ERFaci component from changes in longwave radiation, which 
offsets about 14% of the SW component (Appendix B). Third, the current study 
estimates ERFaci with MODIS data and radiative kernels, while W22 estimate ERFaci 



with CERES data for their main result. The MODIS data and kernels in the current study 
overestimate the magnitude of SW cloud radiative effects relative to CERES 
observations by about 4.6% (Fig. A1). These three factors cause the estimates in the 
current study to have a larger magnitude than those reported by W22. Considering 
these factors and the uncertainties in the ERFaci estimates of both studies, our 
estimates are consistent with those of W22. 

We added a paragraph that explains all of these methodological differences, and 
we moved the information to the section on historical aerosol forcing so that it is easier 
for the reader to remember when the ERFaci values are presented (line 236). 
 
Other comments:  
▪ Lines 33-34, These cloud macrophysical adjustments have been documented in 
literature, please provide appropriate references.  
We added four key citations: Albrecht (1989), Pincus and Baker (1994), Rosenfeld et al. 
(2006), and Bretherton et al. (2007). 
 
▪ Line 43, it would be nice to briefly summarize what have been done along this path 
(i.e. existing studies/efforts on constraining ERFaci using satellite observations), one 
example is the lead author’s recent study (Wall et al. 2022). What is the motivation to 
update the framework with this re-LWP histogram (other than enabling decomposition) 
and the impact of trading CERES observations with a RTM, as this is the key novelty of 
the current study.  
The main novelty of the current study is that it develops a single, self-consistent 
framework to simultaneously estimate the Twomey effect, LWP adjustment, and cloud-
fraction adjustment at a near-global scale. We changed the text to emphasize this (line 
46). 
 
▪ Line 154, reference?  
We originally wrote this introductory sentence without a reference because we wanted 
to provide more specific details and relevant references in the following sentences of 
the paragraph. We added a reference to Zhang et al. (2022) since it concisely shows 
observational support for regime-dependent cloud adjustments. 
 
▪ Lines 165-167, a bit surprising to see no indication of precip-suppression induced LWP 
increase, perhaps due to the cld vs cld+pcl filtering, I think the reader will appreciate 
some discussion along this line.  
We added some discussion about relationships between aerosols, precipitation 
occurrence, and LWP adjustments (line 181). 
 
▪ Lines 176-177, to aggregate to global scale, don’t you have to weight the regression 
coefficient by the frequency of occurrence of liquid cloud at each gird/location?  
The regression coefficients for 𝜕𝑅/𝜕 ln 𝑠 and 𝜕𝑅/𝜕 ln𝑁%" (and their components) have 
units of W m-2 averaged over the entire grid box, so it is appropriate to weight them by 
grid-box area when aggregating to the global scale. If one were to examine variables 
that are averaged over the liquid-cloud-covered area inside grid boxes instead, then it 
would be appropriate to weight them by liquid-cloud area when aggregating to the 



global scale. The current study does not examine any variables that are averaged over 
the liquid-cloud-covered area inside grid boxes, so the second case does not apply to 
our analysis. 
 
▪ Line 202, to be accurate, this assessment uses observations, reanalysis and a 
radiative transfer model.  
We changed this sentence to state that our method uses “observations, reanalysis, and 
radiative transfer modeling” (line 226). 
 
▪ Line 267, I believe there is some sampling bias towards higher Nd, when regressing 
against Nd.  
We found qualitatively consistent results for the relative importance of the Twomey 
effect and cloud adjustments when using 𝑁%" and sulfate concentration as the indicator 
for cloud-base CCN concentration (Fig. 2, 3). This shows that the main results are 
robust between these two independent CCN indicators. Thus, we agree that sampling 
biases are possible for 𝑁", but this potential limitation does not affect the main 
interpretation. 
 
▪ Lines 327-328, Shouldn’t this overestimation be taken into account when constraining 
ERFaci? Could you propagate this bias into your final ERFaci estimates, or, is there a 
reasoning for the final ERFaci estimates not being affect by this bias?  
We use CERES observations as “ground truth” for quantifying bias of the MODIS/kernel 
estimates of cloud radiative effects. Because of the formatting of the CERES data, we 
can compute the bias of the MODIS/kernel estimates of 𝑅′, but we cannot compute the 
bias of the estimates of 𝑅#!

$ , 𝑅%&'
$ , or 𝑅()$ . Thus, it is possible to bias-correct the overall 

ERFaci, but not the Twomey effect or adjustment components. We think it would be too 
confusing to bias-correct the overall ERFaci but not the other components since the 
components would no longer add up to the overall ERFaci. We believe that this is 
justified because the bias of 𝑅′ (+4.6%) is much smaller than the uncertainty range for 
the overall ERFaci (±33%). However, we want to make sure that this limitation is clear to 
the reader, so we now state the bias of MODIS/kernel estimates of 𝑅′ in the main text to 
make this information more visible (line 114 and line 243).  
 
▪ Fig. 2-3, the unit labeling should reflect the fact that these are sensitivities values, not 
actual flux perturbations, i.e. unit in W m-2 per unit increase in ln(s) or ln(Nd) (or W m-2 
ln(s/Nd)-1 ).  
Anomalies of 𝑅 have units of W m-2, and anomalies of ln 𝑠 and ln𝑁" are unitless 
because they represent fractional changes in 𝑠 and 𝑁": 

ln(𝑠 + Δ𝑠) 	− ln(𝑠) = ln 8
𝑠 + Δ𝑠
𝑠 9 = ln 81 +

Δ𝑠
𝑠 9 ≈

Δ𝑠
𝑠  

and similarly for 𝑁". Thus, the units of the regression coefficients representing 𝜕𝑅/𝜕 ln 𝑠 
and 𝜕𝑅/ ln𝑁" are W m-2. 
 
▪ Please correct the year of Feingold et al. (2021, ACP) to 2022. 
Thank you for catching this! We corrected it. 
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