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Abstract. Two-dimensional (2D), depth-averaged shallow water equation (SWE) models are routinely used to simulate flood-

ing in coastal areas — areas that often include vast networks of channels and flood-control topographic features/structures,

such as barrier islands and levees. Adequately resolving these features within the confines of a 2D model can be computa-

tionally expensive, which has led to coupling 2D simulation tools to less-expensive, one-dimensional (1D) models. Under

certain 1D/2D coupling approaches, this introduces internal constraints that must be considered in the generation of the 2D5

computational mesh used. In this paper, we further develop an existing automatic unstructured mesh generation tool for SWE

models, ADMESH+, to sequentially (i) identify 1D constraints from the raw input data used in the mesh generation process,

namely, the digital elevation model (DEM) and land/water delineation data, (ii) distribute grid points along these internal con-

straints according to feature curvature and user-prescribed minimum grid spacing, and (iii) integrate these internal constraints

into the 2D mesh-size-function and mesh-generation processes. The developed techniques, which include a novel approach for10

determining the so-called medial axis of a polygon, are described in detail and demonstrated on three test cases, including two

inland watersheds with vast networks of channels and a complex estuarian system on the Texas, US coast.

1 Introduction

Hydrodynamic models are routinely used as to simulate, analyze, and assess the effects of physical phenomenon that result

in coastal flooding, such as sea-level rise
:::::::
tsunamis

:
and hurricane storm surge

:::::
surges. Typically, the two-dimensional (2D),15

depth-averaged shallow water equations, equipped with a suitable wetting and drying algorithm, are used to model inunda-

tion within the coastal floodplain in the main (see, for example, Luettich and Westerink (1999); Bunya et al. (2009); Dawson

et al. (2011)). However, these coastal regions often include vast networks of small-scale channels that, while playing a sig-

nificant part in the conveyance of flood waters propagating into and through the floodplain, are often left under-resolved

in practice due to the computational expensive
:::::::
expense

:
of adequately resolving them within the confines of a strictly 2D20

modeling approach. Moreover, in many situations, flow in open-channels (and storm sewer systems in urban areas) can be

adequately described by simpler one-dimensional (1D), section-averaged flow equations
::
(as

::::::::::::
demonstrated

:::
in,

:::
for

::::::::
example,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Pramanik et al. (2010); Gichamo et al. (2012); Timbadiya et al. (2014); Bhuyian et al. (2015); Price (2018)). This situation has

led to the development of a number of coupled 1D/2D modeling approaches over the past decade (see references below) that
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aim to more accurately and efficiently simulate flooding events, and coastal hydrodynamics in general, than traditional 2D25

modeling approaches.

These types of coupled models have been applied in a number of different hydrodynamic scenarios but have been most

widely used to simulate river flooding problems in various settings (e.g., Liu et al. (2015); D’Alpaos and Defina (2007); Kuiry

et al. (2010); Martini et al. (2004); Marin and Monnier (2009); Gejadze and Monnier (2007); Timbadiya et al. (2015); Stelling

and Verwey (2006b); Li et al. (2021); Morales-Hernández et al. (2016)). Some recent investigations have focused on inundation30

in urban areas where storm sewer systems and channels, which are approximated in 1D, interact with a 2D flooding model

(Vojinovic and Tutulic (2009); Adeogun et al. (2012, 2015); Delelegn et al. (2011); Seyoum et al. (2012)). Other coupled

models have been developed and applied for coupled riverine-estuarine flows near coastal areas (Bakhtyar et al. (2020); Lin

et al. (2006)), river-lake flows (Chen et al. (2012); Pham Van et al. (2016)), supercritical flow in crossroads (Ghostine et al.

(2015)), overland-open-channel flows (West et al. (2017)), and river closure projects (Lin et al. (2020)). More examples of35

coupled models, including commercial models, are summarized in Néelz and Pender (2009); Teng et al. (2017); Woodhead

et al. (2007).

The coupled models are often categorized based on the types of interactions that occur between the 1D/2D flows, but here

we categorize them into three types based on the way the 1D and 2D domains are connected (see Fig. 1). The first type

is boundary-connected domains (e.g., Chen et al. (2012); Liu et al. (2015); Bakhtyar et al. (2020); Ghostine et al. (2015);40

Pham Van et al. (2016)). These types of domains are widely used for river-lake or river-estuary systems (Chen et al. (2012);

Bakhtyar et al. (2020); Pham Van et al. (2016); Ghostine et al. (2015)), where the longitudinal (or frontal) flows from 1D

domains enter the 2D domains as a boundary condition. However, in some cases, the interaction can be made by lateral

flow through breach between the 1D/2D domains (Liu et al. (2015)). The second type is internally-connected domains (e.g.,

West et al. (2017); Kuiry et al. (2010); D’Alpaos and Defina (2007); Martini et al. (2004); Marin and Monnier (2009); Gejadze and Monnier (2007); Stelling and Verwey (2006a); Timbadiya et al. (2015); Vojinovic and Tutulic (2009)45

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
West et al. (2017); Kuiry et al. (2010); D’Alpaos and Defina (2007); Martini et al. (2004); Marin and Monnier (2009); Gejadze and Monnier (2007); Stelling and Verwey (2006a); Timbadiya et al. (2015); Vojinovic and Tutulic (2009); Bunya et al. (2023)

). These types of domains are widely used for river-floodplain systems. The interaction is made along the whole 1D domain,

where the discharge from 2D domains can enter the 1D domains or the 1D channel flows exceeding bank level can enter the 2D

domain. The third type is vertically-connected domains (e.g., Vojinovic and Tutulic (2009); Fan et al. (2017); Adeogun et al.

(2012, 2015); Delelegn et al. (2011)). These types of domains are mostly used for urban inundation with storm sewer systems.50

The interaction is made at points where 1D/2D domains are connected vertically, where the surcharged overflow can enter the

2D domains.

Depending on the type of 1D/2D domain connections, the mesh generation can be straightforward or extremely complicated.

The simplest case is boundary-connected domains. In this case the 2D computational meshes can be generated with automatic

mesh generators that have been developed for 2D hydrodynamic models; see, for example, Persson and Strang (2004); Conroy55

et al. (2012); Koko (2015); Roberts et al. (2019); Engwirda (2017); Hagen et al. (2002); Bilgili et al. (2006); Candy and

Pietrzak (2018); Avdis et al. (2018); Remacle and Lambrechts (2018); Gorman et al. (2006). It would then remain to generate

1D meshes and to connect them to the 2D mesh at the boundary, which is straightforward once the 1D domain is generated.

For the vertically-connected domains, staggered 1D/2D computational meshes are widely used, i.e., 1D line elements are not
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constrained to be collocated with 2D mesh edges, given that the connections between the 1D and 2D domains are limited60

to points. For example, the meshes used in Delelegn et al. (2011); Adeogun et al. (2012, 2015) are generated with standard

two dimensional mesh generators, such as Gaja3D (Rath (2007)) and Triangle (Shewchuk (1996)), without consideration of

locations of links.

The most complicated case is the internally-connected domains. Unlike vertically-connected domains, collocated meshes,

which here means that 1D line elements are aligned with 2D mesh edges, are desirable. The difficulty of mesh generation for65

this type comes from the fact that the resolutions of the 1D/2D domains are obviously closely intertwined with each other,

however, the desired mesh resolutions for each domain may be quite different. Additionally, the 1D line elements must serve

as internal constraints in the mesh generation process, which must be carefully identified and pre-pocessed to avoid “over-

constraining” the 2D elements, leading to triangles of poor quality.

In this paper, we present an automatic mesh generator for internally-connected 1D/2D hydrodynamic models that is
::
an70

extension of an existing mesh generator for SWE models, ADMESH+ (Conroy et al. (2012)), which built upon the ideas and

methodology of Persson’s DistMesh program — a simple, open-source mesh generator implemented in Matlab (Persson and

Strang (2004)). The ADMESH+ mesh generation process can be briefly outlined as follows. First, a mesh- or element-size

function, h, is constructed that is used to prescribe element sizes h(x) throughout a given 2D domain. These element sizes

are based on a number of geometric factors, such as shoreline/boundary curvature and bathymetric/topographic gradients, as75

well as user-defined inputs, such as target maximum/minimum element sizes and mesh-grading specifications (i.e., the ratio

of neighboring elements should not exceed some specified factor). Given the element-size function, a Delaunay triangulation

of an initial set of mesh nodes with a density proportional to 1/h(x)2 is then generated and the nodes of this initial mesh are

re-positioned by solving for force equilibrium (iteratively) around each node, making use of a spring mechanics’ analogy; see

Conroy et al. (2012) for complete details.80

The primary improvements incorporated into ADMESH+ in this work are twofold. First, automatic identification of 1D

domains is developed. This requires as input to the mesh generation process a digital elevation model (DEM) and a so-called

land/water mask that identifies the (initially) “dry”/“wet” (respectively) portions of the domain. Using these input data sets,

separate methods of identification of “narrow” channels (i.e., those below a user-specified 2D minimum elements size) that

define 1D model domains over land and water are developed. These methods involve tightly integrating AMESH+ with a85

Matlab-based topographic toolbox, TopoToolbox (Schwanghart and Kuhn (2010)), and identifying the medial axis of the water

portion of the domain, for which a novel approach is developed. Second, from the extracted 1D model domains, target 1D mesh

node distributions are computed along smooth spline approximations of the 1D line segments according to channel curvature,

i.e., mesh node density is increased in areas of high curvature and relaxed in straight segments, as well as the underlying

2D mesh-size function computed during the standard mesh generation process. Similar to the 2D force-equilibrium approach90

mentioned above, the actual 1D mesh node distribution is then determined from the target mesh size through the use of a 1D

spring mechanics’ approach. The final internal constraints obtained are then used within the 2D mesh generation process to

obtain meshes suitable for coupled (specifically, internally-connected) 1D/2D hydrodynamic models.
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(A) (B) (C)

Figure 1. Schematic of three types of coupled 1D/2D models. (A) boundary-connected, (B) internally-connected, and (C) vertically-

connected types. Blue areas indicate 2D domains, black dashed lines indicate 1D domains, and red crosses/arrows/lines indicate links between

the models.

The rest of this paper is organized as follows. In the next Section
::::::
section, the framework of the proposed methodology

and the primary input data sets of the mesh generation are discussed. Details of the algorithms developed to identify internal95

constraints are then described in Section 3, with illustrative examples for simple and complex geometries. The 1D and 2D

mesh generation process with the identified internal constraints is then described in Section 4. Finally, application of the

methodologies developed are demonstrated in Section 5, and the paper is concluded by providing a brief summary of the work

and some possible future directions are identified.

2 Overview of coupled 1D/2D hydrodynamic domains100

Consider a hydrodynamic model domain Ω2D ⊂ R2 defined by a simple (i.e., not self-intersecting) polygon, possibly with

holes. A so-called mesh-size function h : Ω2D→ R that assigns a “target” element size ∆= h(x,y) to each point (x,y) ∈ Ω2D

plays a fundamental role in the construction of a triangulation Th of Ω2D. Here, the mesh-size function h is represented

as a bilinear interpolant constructed on a rectilinear “background” grid that consists of a set of points X defined such that

Ω2D ⊂ Conv(X), where Conv(X)
:::::::::::::
Conv(Ω2D)⊂X,

::::::
where

::::::::::
Conv(Ω2D)

:
denotes the convex hull of X

:::
Ω2D. In the existing105

ADMESH+ framework, several factors can be considered in the construction of the mesh-size function, including user-specified

minimum and maximum element sizes, boundary curvature, etc; see Conroy et al. (2012) for a complete description.

In our previous work
:::::::::::::::::
(Conroy et al. (2012)

:
), the polygonal domain Ω2D and the mesh-size function h (together with its

corresponding background grid) have served as the two primary inputs to the mesh generation process of ADMESH+. In

this work, the incorporation and construction of a third primary input is described that is fundamental to the generation of110

suitable meshes for coupled 1D/2D hydrodynamic models — namely, a set of internal constraints that consists of a set of line

segments interior to Ω2D along which edges in the 2D triangulation must be constrained. Three types of internal constraints
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are considered. The first type are line segments that represent centerlines of “narrow” channels, i.e., those channels that cannot

be accurately resolved under the user-specified minimum element size. These line segments make up the aforementioned

1D hydrodynamic domain. The second type are line segments that align with sub-grid scale topographic features/structures,115

such as “narrow” barrier islands, levees and weirs, along which certain internal boundary conditions are enforced in the 2D

hydrodynamic model; see, for example, Dawson et al. (2011). Finally, the third type of internal constraints are line segments

that represent the boundary between the land and water subdomains, i.e., the shorelines. Note that this type of internal constraint

is neither part of the 1D domain nor an internal boundary but is desired in order to provide a clear distinction between the land

and water subdomains by the generated 2D mesh.120

We note that the described internal constraints can be provided directly from relevant data sources — for example, channel

centerlines are available from the U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) (U.S. Geological

Survey (2016)) — but are more generally obtained based on two functions defined over Ω2D. One is a function f : Ω2D→ R

that assigns the (bare) earth surface elevation z = f(x,y) to a point (x,y) ∈ Ω2D. This is typically provided by a combination

of topographic and bathymetric (gridded) DEMs. A second is a so-called indicator function 1Ωw : Ω2D→{0,1} of a subset125

Ωw ⊂ Ω2D defined as

1Ωw(x,y) =

 1 if (x,y) ∈ Ωw

0 if (x,y) /∈ Ωw

,

which indicates whether a point (x,y) ∈ Ω2D is (initially) “wet” (1) or “dry” (0), i.e., a so-called land water mask. We refer

to Ωw as the water subdomain of Ω2D; see Fig. 2. This is typically provided by a data set of closed polygons whose interiors

indicate the water subdomain; see, for example, Wessel and Smith (1996). Below, we describe our methodology for identifying130

internal constraints from the data sets that inform these two functions.

3 Identification of internal constraints

In this section, we present our methodology for extracting the three types of internal constraints described above. The method-

ologies vary for the land and water portions of the domain. The key of the extraction of open-channels from the land portion of

the domain is drainage area computed using the gradient of the input DEM(s). In the water portion of the domain, central to the135

extraction of open-channels is the width measurement of relevant features of the domain. Note that this methodology is further

applied to identify internal boundaries (the second type of internal constraints) from the land portion of the domain. The third

type of internal constraint—namely
::::::::
constraint

::
—

:::::::
namely, the boundaries between the land and water domains — is obtained

as a by-product from this methodology. As two distinct methodologies are applied, they are described in separate subsections

below.140

3.1 Open-channels from the land subdomain

In the land subdomain, only the first type of internal constraint mentioned above, namely, channel centerlines, are identified.

From input DEM(s), internal constraints representing “dry” channels (flow paths) in the land subdomain are detected by
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Figure 2. Example of a DEM defining the bathymetry/topography elevations (left) and the corresponding land-water mask (right), where Ωw

is indicated by light blue.

integrating the esiting ADMESH+ code with TopoToolbox — a widely used, Matlab-based topographic toolbox (Schwanghart

and Kuhn (2010)).145

The channel detection algorithm in TopoToolbox is a flow accumulation
:::::::::::::::
flow-accumulation algorithm based on the gradient

of the DEM. At each grid point of the DEM, flow direction is computed for 8-connected neighbors to create a global flow

direction matrix M,
:::::
which

::
is
:::::::
defined

::
by

:

Mij =
max(zi− zj ,0)

dij
,

:::::::::::::::::::

(1)

:::::
where

::
zi::

is
::::::::
elevation

::
at
::::

cell
:
i
::::

and
:::
dij::

is
:::::::
distance

::::::::
between

::::
cells

::
i
:::
and

::
j. Starting with a uniform unit water depth on each150

grid point of the DEM, expressed as a vector w, the global flow direction matrix is multiplied with the water depth vector to

compute water depth at the next time step

wi+1k+1
:::

=Mwik, (2)

where wi
:::
wk is water depth vector at i

:
k-th iteration. This operation is repeated until water completely leaves the system. Then,

drainage area at each grid point is defined as the summation of water depth over all iterations:155

a=w0 +w1 + · · ·+wn, (3)

where a is drainage area vector. Finally, the channels are identified by a threshold of minimum drainage area. Note that while

the algorithm is developed based on an iteration method, in TopoToolbox, the drainage area is computed directly by using

geometric procession:

a=w0 +w1 + · · ·+wn + · · · (4)160
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= (I+M+M2 + · · ·+Mn + · · ·)w0 (5)

= (I−M)−1w0. (6)

::::
Note

:::
that

:::
the

::::::
quality

::
of
::::::::
extracted

::::::::::::
open-channels

:::::
using

:::
the

:::::::::::::::
flow-accumulation

:::::::::
algorithm

:::::::
depends

::
on

:::
the

::::::
quality

::
of

:::
the

::::::
DEM.

:::
For

:::::::
example,

::
if
:::::
there

::
is

:
a
::::
sink

::
in

:::
the

:::::
midst

::
of

::
an

::::::::::::
open-channel,

:::
the

:::::::::
numerical

::::
flow

::::::::
computed

:::::
using

:::
the

:::::
given

::::::::
algorithm

::::::
cannot

::::::::
propagate

::
at

:::
the

::::
sink,

:::::
which

::::::
results

::
in

::
an

::::::::
erroneous

:::::::
channel

:::::::
network.

::
In

:::::
order

::
to

:::::::
improve

:::
the

::::::
quality

::
of

:::::::::::
open-channel

:::::::::
extraction,165

::::
sinks

:::
are

:::::
filled

::
as

::::::::::
pre-process

::::
using

:::
the

::::::::::::
fillsinks

:::::::
function

:::::::
provided

::
in
::::::::::::
TopoToolbox.

:

As mentioned above, while other datasets of open-channel centerlines (for example, USGS NHD) can be used, in our

experience, open-channels extracted from TopoToolbox show better alignment with input DEMs.

3.2 Open-channels from the water subdomain and internal boundaries from the land subdomain

The water subdomain exhibits a wide range of scales from “large” open-water bodies to “narrow” channels and islands, the170

latter of which are represented as holes in the water mask. Towards the purpose of identifying narrow channels and small islands

in the water subdomain, we describe our methodolgy for performing a width-based decomposition of the water subdomain that

make use of a user-defined minimum width δw, i.e., features of width < δw are identified as “narrow.”

3.2.1 Width-based mask decomposition

We describe the step-by-step procedure for determining the width-based mask decomposition with the aid of the simple ex-175

ample shown in Fig. 3. For masks with more complex boundaries and/or holes, additional processes are required, which are

described in Section 3.2.2.

Step 1: For given polygon (Fig. 3 (a)), find the medial axis (Fig. 3 (b)).

180

The medial axis MA(P ), of any closed polygon P , is defined as the set of interior points that have equal distances to two

or more points on the boundary of P . Our computation of the medial axis is based on the vector distance transform (VDT)

originally proposed by Mullikin (1992). Given a polygon P with boundary ∂P , the value of the VDT, V (x,P ), at a point

x= (x,y) ∈ P is defined as

V(x,P ) = Φ(x,∂P )−x (7)185

where

Φ(x,∂P ) = arginf
y∈∂P

∥x−y∥ . (8)

Using the VDT, the medial axis of P can be obtained as (see Appendix A)

MA(P ) = {x ∈ P :∇ ·V(x,P )> 0}. (9)
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Figure 3. Process of mask decomposition into “narrow” and “wide” regions: (a) A given water mask. (b) The medial axis before/after

pruning (red/blue). (c) The distance function to the boundary. (d) the distance function to the medial axis. (e) The width function. (f) The

mask decomposition with level 1 (gray, “narrow” regions) and level 2 (white, “wide” regions).

Note that the VDT defined by (7) is not well-defined on the medial axis points as multiple arguments of the infimum are190

produced from (8). In numerical implementation, we arbitrarily choose one of the arguments of infimum of (8).

::::::
Finally,

::::
this

::::::::
algorithm

::::::::
produces

::::::
medial

::::
axis

::::::
points,

::
a
:::::
subset

:::
of

::::::::::
background

::::
grid

::::::
points

:::::
along

:::
the

::::::
medial

::::
axis.

:::::::::
However,

::
the

:::::::::
following

:::::::::::
methodology

::
is

:::::::::::
implemented

:::::
based

::
on

::::::
medial

::::
axis

::::::::
branches,

::::::
which

::::::
consists

:::
of

:::
line

:::::::::
segments.

:::
For

::::::
details

::
of

:::
the

::::::::::
construction

::
of

:::
the

::::::
medial

::::
axis

:::::::
branches

:::::
from

::::::
medial

:::
axis

::::::
points,

:::
see

:::::::::
Appendix

::
A.

195

Step 2. Prune the medial axis (Fig. 3 (b)).

After obtaining the medial axis, pruning near “sharp” corners is required to improve the quality of the width function, which is

described later. First, we construct a hierarchy of MA branches, i.e., branches with free-ends are order 1, branches connected

to order 1 are order 2, etc. Next, for each MA point p on order 1 branches, we define width and angle of MA as200

ℓ= max
i=1,··· ,4

∥(p+v)− (pi +vi)∥ (10)
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Case 1 Case 2

Figure 4. Schematic of computation of width and angle (dashed lines and gray circular sectors) of medial axis (gray solid line). White dots

are given medial axis point, black dots are neighboring background grid points, and solid arrows are VDTs from neighboring background

grid points. Two possible choices of VDT are marked with dotted arrows in Case 1 and 2.

and

θ = max
i=1,··· ,4

cos−1

(
v ·vi

∥v∥∥vi∥

)
, (11)

where pi (i= 1, · · · ,4) are four neighboring background grid points of p, and v and vi are VDTs corresponding to p and

pi, i.e., v =V(p,P ) and vi =V(pi,P ) (see Fig. 4). As mentioned in the previous step, the VDTs on the MA are arbitrarily205

chosen in numerical implementation. This may cause differences for lengths of the MA, but these differences are insignificant

(see Fig. 4). Note that inverse cosine function computed with acos function in MATLAB gives θi ∈ [0,π]. Finally, the MA

points near corners are identified and “pruned” based on the thresholds

θ < δθ and ℓ < δℓ, (12)

where δθ and δℓ are specified threshold values used for pruning. Based on our experiments, the values δθ = 0.9π and δℓ = 2δw210

provide reasonable results.

Step 3. Compute distance functions and define the width function (Fig. 3 (c), (d), and (e)).

Now we define two distance functions, one measures the closest distance from a point x to the boundary d(x,∂P ) and the other215

measures the closest distance from a point to the x medial axis d(x,MA(P )). The former can be measured using the VDT:

d(x,∂P ) = ∥V(x,P )∥ . (13)

Then, the width function is defined as twice the sum of the two distance functions (see Fig. 5), i.e.,

fw(x,P ) := 2(d(x,∂P )+ d(x,MA(P ))). (14)
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Medial Axis (MA(Ω))

d(x,MA(Ω))

d(x, ∂Ω)
fw(x) = 2 (d(x, ∂Ω) + d(x,MA(Ω)))

Boundary of domain (∂Ω)

Figure 5. Schematic of width function.

Note that, without pruning the medial axis, the width function results in fw(x)≈ 0 in the vicinity of every corner. This is be-220

cause both boundary lines and the (unpruned) medial axis exist at every corner of the polygon boundary, and thus d(x,∂P )≈ 0

and d(x,MA(P ))≈ 0. This results in the area around every corner being identified as “narrow,” even though they are corners

of large water bodies. This is the rational for pruning the medial axis around corners, which was presented in Step 2.

Step 4. Decompose the polygon with a user-defined minimum width δw (Fig. 3 (f)).225

With the width function Eq. 14, the given polygon P can be decomposed as:

P1 := {x ∈ P : fw(x,P )< δw}, (15)

and

P2 := {x ∈ P : fw(x,P )≥ δw}. (16)230

We call the masks P1 and P2 level 1 and 2 masks, respectively. Note that the level 1 and 2 masks can be used for 1D and

2D domains for simple cases, but additional processes are required for complex geometries. The level 1 and 2 masks are not

identical with 1D and 2D domain in that case, and thus we use the term “level” to avoid confusion.

3.2.2 Additional processes for complex geometries

The challenge in real applications comes from complex boundaries and the presence of small “narrow” islands within large235

water bodies. The complexities result in “noise” of the width function and do not provide a clear distinction between level 1 and

2 masks, and additional processes are applied to resolve the noise. In order to catch the narrow islands, the mask decomposition

needs to be applied to the land mask in a similar way as it is to the water mask decomposition. Applying the mask decomposi-

tion for both land and water masks also requires an additional process, which is described in this section. Hereinafter, the land
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Example of the step-by-step procedure for complex geometries applied to part of the Lower Neches Basin, TX: (a) Original

land/water masks from the input data set (brown/blue areas, respectively). (b) Land/water masks after removing “small” islands (Step 1).

(c,d) Decomposed land/water masks consisting of level 1 and 2 land masks (dark brown and light brown areas, respectively) and level 1 and

2 water masks (dark blue and light blue areas, respectively). (e,f) Updated land/water masks after filling (Step 2).
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(g) (h)

(i)

Figure 7. Example of the step-by-step procedure for complex geometries applied to part of the Lower Neches Basin, TX (continued): (g)

Regions of level 1 land mask surrounded by level 2 water mask (Step 3). (h) Updated land/water masks after transferring regions in (g) to

internal boundary constraints (brown lines) (Step 4). (i) Final land/water masks including open-channel constraints (blue lines) after applying

mask decomposition for new
::
the

:::::::
updated water mask (Step 5).

and water masks are denoted by ML and MW, respectively. These processes are described below in the context of an example240

(see Fig. 6 and 7).

Step 1. Remove “small” islands (Fig. 6 (a) and (b)).

Small islands, by which we mean islands with areas that are much smaller than the square of minimum element size, are245

removed at the first step for two reasons. First, it is expected that small islands will not have significant effects on the hydro-

dynamic models. Second, mask decomposition with small islands tends to result in “poor” internal constraints. Mask decom-

position converts small islands to internal constraints with length of their major axis, and therefore small islands tend to create

internal constraints shorter than the minimum element size. Note that short internal constraints can be identified and removed

after decomposing masks as well. In this example, islands with area less than 1,000 m2 are removed, where the minimum250

element size is set as 45 m (see Fig. 6 (a) and (b)).
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(a) (b) (c)

Figure 8. Example of the step-by-step process of filling level 2 mask: (a) Maximal disks (black dashed lines) whose centers (red cross marks)

are in level 2 water masks. (b) Level 1 and 2 water masks after filling. (c) Level 1 and 2 water masks after transferring level 1 regions without

any MA to level 2 masks. (Blue lines are the (pruned) medial axes, light blue areas are level 2 water masks, and dark blue areas are level 1

water masks.)

Step 2. Apply width-based decomposition with filling to land and water masks (Fig. 6 (e) and (f)).

While the mask decomposition gives a clear distinction between “narrow” and “wide” regions in the simple example (see Fig.255

3), more complex cases can result in noise in the width function, which can be removed through a so-called filling method.

The filling method is based on the idea of the maximal disk (see Fig. 8 (a)), which is defined as

D(x,P ) = {y ∈ P : ∥x−y∥ ≤ d(x,∂P )}. (17)

And the level 1 and 2 masks are updated with the maximal disks centered in level 2 masks

M ĩ2 := Mi2 ∪Di and M ĩ1 := Mi1 \Di, (18)260

where

Di = {D(xj ,Mi) for all xj ∈MA(Mi)∩Mi2} (19)

and Mi = ML and MW. Note that the maximal disks are sought on level 2 masks only. Also, there are some regions of M ĩ1 that

do not include any MA (see Fig. 8 (b)). These regions are redundant as they cannot be represented by the MA. Therefore, we

transfer such regions to level 2 masks and update the masks (see Fig. 8 (c)).265

M ī2←M ĩ1 ∪Ri

M ī1←M ĩ1 \Ri
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(a) (b)

(c) (d)

Figure 9. Example of the selection of level 1 land regions that will serve as internal constraints: (a,b) Example of buffers (black lines) of

level 1 land regions (dark brown areas) and (c,d) Selected level 1 land regions. Light brown areas are level 2 land masks, and dark blue and

light blue areas are level 1 and 2 water masks, respectively.

M ī2 := M ĩ1 ∪Ri and M ī1 := M ĩ1 \Ri
::::::::::::::::::::::::::::::::

(20)

where270

Ri = {P ∈M ĩ1 : P ∩MA(Mi) = ∅} (21)

Note that with these procedures the level 2 masks have a smoother boundary and provide a better representation of the large

water bodies; see panels (e) and (f) of figure 6, which are updated masks of panels (c) and (d), respectively, after filling.

Step 3. Find regions of level 1 land mask that are surrounded by level 2 water mask (Fig. 7 (g)).275

The purpose of this step is to identify regions of level 1 land mask that are retained as internal constraints in the 2D hydrody-

namic model. These “narrow” land regions are typically modeled as internal boundaries over which simple sub-grid scale flow

parameterizations are performed, using, for example, simple weir-based formula, see, for example, Dawson et al. (2011).
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First, the thinness of land regions is determined by the so-called isoperimetric ratio (IPR), which is defined as Perimter2/Area
::::::::::::
perimeter2/area.280

Note that the IPR is a dimensionless number, which is higher for thinner regions. Here, we set a threshold of 30. Second, in

order to identify if each region is surrounded by level 2 water mask, we first set a buffer for each region. The buffer size is set

as half of the length of the minor axis of the ellipse that has the same normalized second central moments as the region (see

Fig. 9 (a) and (b)). The minor axis length is computed using regionprops function in MATLAB. We then check the area of

the level 2 masks within the buffer. We define the land region to be surrounded by level 2 water mask if the area of level 2 water285

mask is greater than twice the area of level 1 land mask within the buffer (see Figure 9 (c) and (d), which show selected regions

of level 1 land mask shown in Figure 9 (a) and (b), respectively). Note that level 1 water masks will be internal constraints

(channel centerlines). This means that if a region of level 1 land mask is surrounded by level 1 water mask, then there are too

many internal constraints too close
::
to each other. Therefore, we only retain regions of level 1 land mask that are surrounded by

level 2 water mask, denoted by ML1W2, which can be expressed as290

ML1W2 = {P ∈ML̄1 : IPR(P )> 30 and
||MW̄2 ∩B(P )||
||ML̄2 ∩B(P )||

> 2}, (22)

where IPR(P ) is the isoperimetric ratio, B(P ) is the buffer of region P ∈ML̄1, and || · || denotes area.

Step 4. Transfer regions of level 1 land mask identified in Step 3 to the water mask (Fig. 7 (h)).

295

As described in Step 3, the narrow regions identified will now serve as internal constraints (specifically, internal boundaries

as described above) in the mesh generation process and no longer need to be in land mask. Therefore, these regions are

transferred into the water mask and “updated” land and water masks are defined as

M∗
LM̄L := ML \ML1W2 (23)

M∗
WM̄W := MW ∪ML1W2. (24)300

Note that the centerlines of narrow land regions are used as internal constraints (internal boundaries) for mesh generation:

s1 = MA(ML)∩ML1W2. (25)

Step 5. Apply the width-based mask decomposition to the new
:::::::
updated water mask (Fig. 7 (i)).305

The width-based decomposition of the water mask that now includes the narrow land regions described above will be

different from the width-based decomposition of the original input water mask. Therefore, the width-based decomposition

must be applied again. Note that, in this step, the decomposition for the land mask is not required. The centerlines of updated

level 1 water mask M∗
W1 ::::

M̄W1 form the domain of 1D hydrodynamic model, i.e.,310

Ω1D := MA(M∗
W)MA(M̄W)

:::::::
∩M∗

W1M̄W1. (26)
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Here, we have the second type of internal constraint (1D domain) for mesh generation

s2 =Ω1D. (27)

The domain of the 2D model is the entire domain except the domain of 1D model. Note that it includes the updated level 1

::::
water

:
mask as well as the updated level 2 water mask and land mask, i.e.,315

Ω2D := M∗
LM̄L ∪M∗

W2M̄W2 ∪ (M∗
W1M̄W1 \Ω1D). (28)

It is preferred that the mesh elements are aligned along boundaries between water bodies and land. This can be ensured by

passing the boundary of M∗
W2 :::

M̄W2:as internal constraints even though it is neither an open-channel or an internal boundary,

which is the third type of internal constraint for mesh generation:

s3 = ∂M∗
W2M̄W2. (29)320

Step 6. Construct mainstreams of 1D domain and internal boundaries.

The 1D domains and internal boundaries contain the centerlines of narrow regions of the water/land mask. These centerlines325

are obtained from the medial axis of the mask, which has been pruned and ordered into hierarchic medial axis branches. This

branch-wise ordering creates several “short” MA segments (see, for example, Figure 10), which is undesirable for computing

the internal constraints curvature that is used to help determine the size of the 1D elements, as described in the next section.

Therefore, a procedure to construct channel “mainstreams” is applied as follows. First, at each joint, the pair of segments, or

branches, that have minimum (absolute) curvature are merged together to form a new segment (the mainstream). If there are330

more than three branches at a joint, another pair of branches with minimum curvature, excluding the mainstream, are merged

and set as a sub-stream. The sub-streams are collected until there is no pair at a joint.

To conclude this section, the algorithm described generally provides good identification of “narrow” regions and the three

types of internal constraints. However, this identification is not perfect and can result in some “narrow” regions being falsely335

identified, or misclassified, as level 2 regions. There are two possible reasons for this misclassification. The first one is related to

the quality of the medial axis calculation. Recall that the medial axis is obtained by computing the divergence of the VDT and is

subsequently pruned based on specified tolerances. This approach can result in an inaccurate estimation of the width function,

especially within small regions. The second reason relates to the use of the dimensionless width parameter. Specifically, the

identification of level 1 land regions surrounded by level 2 water masks (as described in Step 3) depends on the IPR threshold340

and the ratio of the surrounding level 2 water/land mask. This can result in some level 1 land regions being omitted, which are

desired to be represented by their centerlines.
::::
Note

::::
that

:::::
higher

::::::
quality

::
of

::::::
medial

::::
axis

:::
can

::
be

::::::::
achieved

::
by

:::::
using

:::::
other

:::::::::
algorithms

::::
(see,

:::
for

::::::::
example,

:::::::::
Lee (1982)

:
)
::
or

:::::
using

:::::::
adaptive

::::::::::
background

::::
grid

:::::
such

::
as

::::::
Octree

:::::::::::::::::::::::
(Yerry and Shephard (1983)

:
).
:::
In

:
a
:::::::
simpler

16



Figure 10. Example of construction of mainstream for 1D domain. Channel network before and after mainstream construction (left and right,

respectively). The colors of lines indicate different segments.

::::
way,

:::::
higher

:::::::::
resolution

::
of

::::::::
(uniform

:::::::::
catersian)

::::::::::
background

:::
grid

::::
can

::
be

:::::::
utilized,

::::::
which

::::
will

:::::
cause

:::::::
memory

::::
and

::::::::::::
computational

:::::::::::
inefficiencies.

::
In

:::::
order

::
to

::::::
further

:::::::
enhance

:::
the

::::::
quality

::
of

::::::::::::
classification,

:
a
:::::::
complex

:::::::::
algorithm

::
of

::::::
criteria

::::::
choice

::::
may

::
be

::::::::
required,345

::::
such

::
as

:::::::
machine

::::::::
learning.

Additionally, there can be some internal constraints, even if they are correctly identified, that result in elements that are too

small or of poor quality. For example, there can be internal constraints that are too close to each other. Note that, by choosing

level 1 land regions surrounded by level 2 water mask (in Step 3), it is unlikely that internal boundaries are too close to

open-channels. However, there are some internal boundaries/open-channels which are too close to the third internal constraint,350

namely, boundaries between water bodies and land.

While these problems are related to identification of “narrow” and “wide” regions and internal constraints, it is easier to

resolve them during the mesh generation process itself. Therefore, treatment of the problems mentioned here will be described

in the next section (specifically, see Section 4.4).

4 Force equilibrium with internal constraints355

:::
The

::::::::::
ADMESH+

::
is

::::
built

::::
using

:::::
force

::::::::::
equilibrium

::::::::
algorithm,

::::::
which

:
is
::::::::
originally

::::::::
proposed

:::
by

::::::
Persson

:::
and

::::::
Strang

::::::::::::::::::::::
(Persson and Strang (2004)

:
).
::::
The

::::
basic

::::
idea

:::
of

::::
force

::::::::::
equilibrium

::::::::
algorithm

::
is
::
to

::::::
model

::::
each

:::::::
element

:::::
edges

::
as

::
a

::::::
spring.

:
It
:::::::
assigns

:::::::
repelling

:::::
force

:::
on

::::
each

::::::
element

::::::
edges,

:::
for

::::::::
example,

:
a
:::::

force
::
of

::::
the

::::
form

:::::::::::::
f = k(lh− li), :::::

where
::
k

::
is

:
a
::::::
spring

::::::::
constant,

::
li ::

is
:::
the

:::::
length

:::
of

:::
the

:::::::
element

::::
edge

::
in

:::
the

::::::
current

:::::::::::
triangulation

::
Ti,::::

and
::
lh ::

is
::
the

:::::::
desired

:::::
length

::::::::::
determined

::
by

:::
the

:::::
target

:::::
mesh

:::
size

::
h.

:::::
Total

::::::::
repelling

:::::
forces

:::
for
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Figure 11. Example of extracted channel centerlines with TopoToolbox (black solid line) and smoothed line (dashed blue line, with

RMSEdesired = 10 m).

::::
each

::::
node

:::
are

::::::::
computed

::::
and

::::::
applied

::
to

::::::::
reposition

::::::
nodes.

::::
The

::::::::
algorithm

::::::
iterates

:::
this

:::::::
process

:::
and

:::::
seeks

::
to

::::::::::
equilibrium

:::::
state.

:::
For360

:::::::
complete

:::::::
details,

:::
see

:::::::::::::::::::::
Persson and Strang (2004)

:
.

In this section, we introduce a methodology to generate 2D finite element meshes given the identified internal constraints.

The goal of mesh generation with internal constraints is to use efficient mesh resolution along the internal constraints so that

it preserves the geography of the study areas with reduced computational demand. This is achieved by assigning mesh size

inversely proportional to the curvature of internal constraints. Also, additional processes are applied to ensure robustness of the365

force-equilibrium algorithm with internal constraints.

4.1 Smoothing internal constraints

The internal constraints, which are given by user-input or extracted from a DEM, are often based on a structured grid. This can

produce, for example, a “choppy” set of channel centerlines (see Fig. 11) that do not provide a good basis for computing channel

curvature, which is used in the process of determining mesh node placement and element size. Therefore, in order to provide370

a smooth curve from which we can compute curvature, a cubic spline smoothing is applied based on the csaps function in

MATLAB. The csaps function returns a smooth spline interpolation fp to the N data points (ri,y(ri)), i= 1, · · · ,N that

minimizes

p

N∑
i=1

wi |yi− fp(ri)|2 +(1− p)

∫
λ(t)

∣∣D2fp(t)
∣∣2 dt (30)

where p is a smoothing parameter, D2fp is the second derivative of fp, and wi and λ denote error measure weights and a weight375

function, respectively (see the MATLAB csaps help documentation for more details). Note that internal constraints are two-

dimensional curves s= (xi,yi). Thus, for each internal constraint, we define a parametric curve as (x(ri),y(ri)), where ri = i

for i= 1, · · · ,N , and find smoothed curves x̃p and ỹp individually. Note that the parameter ri is a set of arbitrary values, and
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the csaps function depends not only on the smoothing parameter p but also on the parameter ri. In order to get standardized

smoothing, we find a smoothing parameter with root mean square error (RMSE) closest to user-defined RMSE:380

p∗ = argmin
p

∣∣∣∣∣∣
√√√√ N∑

i=1

(x(ri)− x̃p(ri))2 +(y(ri)− ỹp(ri))2

N
−RMSEdesired

∣∣∣∣∣∣ . (31)

Then a smoothed curve is defined as

s̃= (x̃p∗ , ỹp∗). (32)

Note that the user-defined RMSE (RMSEdesired) should be carefully selected. If it is too high, the smoothed curve is close to a

straight line. If it is too low, it does not give enough smoothing. In our numerical experiments, a smoothing with RMSEdesired385

between 1 and 10 meters is generally appropriate in representing the “overall” curvature of the 1D constraints (see Fig. 11).

:
It
::
is

::::::::::
noteworthy

:::
that

::::::::::
RMSEdesired::::

may
:::
be

:::::::::
determined

:::::
based

:::
on

:::
the

::::::::
resolution

::
of

:::
the

::::::
DEM.

4.2 Initial target mesh size and 2D gradient limiting

Given a smoothed internal constraint segment s̃i, initial target mesh sizes along the curve are computed by

h̃2D(si) :=
1

K |κ(s̃i(r))|
, i= 1, · · · ,N, (33)390

where K is the number of elements per radian (a user-defined parameter) and κ(s̃i(r)) is the curvature of smoothed internal

constraints s̃i(r).

It is often desired to ensure that the 2D element sizes grade properly in the final mesh. Common approaches to achieve this

are marching methods (e.g., Persson (2006); Roberts et al. (2019)) and gradient limiting (e.g., Conroy et al. (2012); Persson

(2006)). In this paper, we adopt the gradient limiting approach. Briefly, we find a steady-state solution to the so-called gradient395

limiting equation:

∂h

∂t
+ |∇h|=min(|∇h| ,g), (34)

where g is related to a user-defined parameter that controls the ratio of neighboring element sizes (see Conroy et al. (2012) for

details). The gradient limiting equation is solved with the initial condition

h(x, t= 0) = h0(x). (35)400

The gradient limiting is applied with the initial mesh size, h0(x), on internal constraints being defined by Eq. 33. . Note

that a one-dimensional gradient limiting equation could be solved for each internal constraint. However, this may result in

inappropriate target mesh sizes if internal constraints are close to each other (see Fig. 12).

4.3 Generation of 1D meshes on internal constraints

In order to generate collocated 1D elements and 2D edges, 1D meshes are first generated on internal constraints and then used405

as fixed points in the 2D mesh generation. The target element sizes of the 1D meshes on each internal constraint are defined by
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Figure 12. Example of 2D gradient limiting on internal constraints. Target mesh size without and with gradient limiting (left and center,

respectively), and the 2D mesh generated with given internal constraint (right).

projecting the gradient limited mesh size h2D, which is the solution of Eq. 34 with h̃2D as initial condition. i.e.,

hi
1D(r) = h2D(si(r)), i= 1, · · · ,N. (36)

Then, applying 1D force equilibrium with the target size on each internal constraints provides 1D nodes ri, i= 1, · · · ,N . Now,

fixed points of the 2D mesh generation are defined by410

xi = s(ri) = (x(ri),y(ri)), i= 1, · · · ,N. (37)

Note that the positioning of the fixed points is based on the original internal constraints s(r) instead of smoothed curves s̃(r),

because smoothing can result in deviations from the original set of points defining the internal constraints as described in

Section 4.1. Also, it is required to keep junctions of the curves so that the physical connections are not missed. This can simply

be ensured by using junction points as fixed points of the 1D force equilibrium.415

4.4 Post-processes for 1D mesh

As noted in Section 3.2.2, post-processes for the generated 1D meshes are applied to improve identification of internal con-

straint types and to improve 2D mesh quality.

Note that regions of the level 2 land mask ML2 and the updated level 2 water mask M∗
W2 ::::

M̄W2 represent “wide” regions that

will be represented with 2D elements. In order to represent such regions with
::::
Such

:::::::
regions

:::
are

:::::::
required

::
to

:::::::::
completely

:::::::
include420

:
at
:::::

least
:::
one

:
2D elements, there should be at least three 1D elements along the boundaries of the level 2 regions.

:::::::
element.

However, for the falsely identified,
::::::
regions

::::::
falsely

::::::::
identified as level 2, regions, their perimeter is not long enough to have three

or more 1D elements
::::
edges. This is likely to happen for regions with small areas that are round in shape. The IPR is lower for

these types of areas, which results in those regions not being selected with the IPR filter when level 1 land regions surrounded

by level 2 water mask are identified (see Eq. 22). Again, the boundaries of the level 2 regions are the third type of internal425

constraints. When 1D meshes are generated along the internal constraints corresponding to the falsely identified regions, there

is only one element per region and such 1D elements are transferred to the first or second type of internal constraints.

As also noted in Section 3.2.2, there can be some open-channels/internal boundaries, the first and second type of internal

constraints that are too close to boundaries between water bodies and land, the third type of internal constraints. This will
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result in 2D elements that are too small between such internal constraints. Therefore, if the all 1D mesh nodes on an internal430

constraint are closer than hmin/2 to any other 1D mesh on third type of internal constraint
::
—

:::
the

::::::::::
boundaries

:::::::
between

:::
the

::::
land

:::
and

:::::
water

:::::::
domains, then the 1D meshes

::
on

:::
the

:::::
other

:::
two

:::::
types

::
of

:::::::
internal

:::::::::
constraints

:
are removed.

As we fixed junction points to preserve physical connections, there can be 1D mesh node clusters, which are sets of 1D mesh

nodes located within hmin/4 each other. Since this will result in 2D elements that are too small, the 1D mesh nodes are merged

into the centroid of the cluster.435

Finally, note that the mesh size of 1D elements (the distance between the 1D nodes in Eq. 37) is not identical to the target

mesh size provided by Eq. 36. The mesh generated from the force equilibrium algorithm has mesh sizes “relative” to target mesh

sizes; see Persson and Strang (2004) for details. Due to the nature of force equilibrium algorithm, there can be 1D elements

whose length is shorter than hmin/2. In order to obtain high quality 2D elements, such 1D elements are removed
::::::
merged

::::
into

::::
their

::::::::::
neighboring

:::
1D

:::::::
elements.440

4.5 Generation of 2D meshes with fixed points

The 2D force equilibrium is applied after 1D meshs are generated, by adopting 1D mesh nodes as fixed points. Again, note that

the mesh size of the 1D mesh (the distance between the 1D nodes in Eq. 37) is not identical to the target mesh size Eq. 36. Due

to the discrepancy between the target mesh size (of the 2D mesh) and the actual mesh size (of the 1D mesh), there are some

“non-converging” nodes near internal constraints. Note that, in general, the displacement of nodes decreases during the force445

equilibrium iterations and nodes converge to their final node locations. However, the non-converging nodes keep moving back

and forth near internal constraints, and an additional treatment is applied to resolve the non-converging node situation.

This treatment consists of the following steps (see Fig. 13): 1) Find nodes near the internal constraints that are not fixed

points but have distances
:
to

:::
the

:::::::
internal

:::::::::
constraints

:
less than hmin/2. 2) Compute the length of the closest 1D element to this

node. 3) If the length of closest element is greater than 2hmin, then add the node to a new fixed point on the middle of the 1D450

element (Fig. 13 (a1) and (a2)). Otherwise, remove the node (Fig. 13 (b1) and (b2)).

This density control is applied while the 2D force equilibrium is being applied. However, note that there might be a number

of nodes near internal constraints, which are located within hmin/2 at early stages of the force equilibrium process. Therefore,

the density control is applied for later stages of the force equilibrium, which starts from 0.8×maximum iteration number.

5 Results455

The mesh generation algorithm presented in this paper is applied to three test cases. The first two test cases are for inland water-

sheds without water subdomains. The third test case is applied for a coastal basin to highlight the performance of identification

of 1D domains in water subdomains.

There are several measures used to assess the quality of a mesh (see Field (2000)). The measure used in this paper is twice

the ratio of inradius r and circumradius R of each triangular element, i.e.,460

q = 2
( r

R

)
=

(b+ c− a)(c+ a− b)(a+ b− c)

abc
(38)
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ℓ ≤ 2hmin

(b)

ℓ > 2hmin

(a)

Figure 13. Schematic of density control. Black squares are 1D mesh nodes (fixed points in 2D force equilibirum algorithm), black circles

are 2D mesh nodes, white circles are non-converging nodes, and dashed lines are triangulations. (a) If closest 1D mesh size is greater than

2hmin, non-converging node is added to 1D mesh node. (b) If closest 1D mesh size is shorter than 2hmin, the node is removed.

R

r

R

r

q = 1 q = 1
2

q = 0

Figure 14. Geometric depiction of the element quality measure used to assess mesh quality.

where a,b, and c are the edge lengths of the triangular element. Note that this measure gives q = 1 for an equilateral triangle

and q = 0 for a completely degenerate triangle (see Fig. 14)

::::
Since

::::::::::::
mathematical

::::
error

:::::::
bounds

:::
for

::::::::
numerical

::::::::
methods

:::
are

:::::::::
influenced

:::
by

:::::::
smallest

:::::
angle

::
in

:::
the

:::::
mesh,

::
it
::
is

:::::::
desired

:::
that

::
a

::::
mesh

:::::::
consists

::
of

::::::
nearly

:::::::::
equilateral

::::::::
triangles

:::::::::::
(Field (2000)

:
).
:::::::
Meshes

::::::
created

::::
with

::::::::::
ADMESH+

::::::::
typically

::::
have

::
a
:::::
mean

:::::::
element465

::::::
quality

:::::::
measure

::
of

:::::::
q ≥ 0.90

::::
and

:
a
:::::::::
minimum

:::::::
element

::::::
quality

:::::::
measure

::
of

::::::::
q > 0.30,

::::::
where

:::::::
q = 0.30

::::::::::
corresponds

::
to
:::
an

:::::::
element

::::
with

:
a
::::::::
minimum

:::::
angle

::
of

::::
20◦

:::::::::::::::::
(Conroy et al. (2012)

:
).
:

5.1 The Middle Bosque River Watershed

The Middle Bosque River watershed (MBRW), located in central Texas, has been the subject of numerous computational

hydrological studies; see, for example, Bailey et al. (2021); Park et al. (2019); Tefera and Ray (2023). Given this interest and470

the complex network of channels that must be represented for accurate model studies (see Figure 15), the MBRW presents an

ideal test case for the developed 1D/2D mesh generation process described.
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The MBRW covers an area of approximately 516 km2 within the much larger Brazos River Basin (≈ 119,174 km2) — the

second largest river basin by area within Texas. The boundary of the MBRW is obtained from USGS Watershed Boundary

Dataset (WBD) (U.S. Geological Survey (2014)), which provides the input (polygonal) domain Ω2D for the mesh generation475

process. In addition to this input, a DEM covering the MBRW is available from the USGS 3D Elevation Program (3DEP) (U.S.

Geological Survey (2017)), with the highest resolution available for the whole watershed being 1/3 arc second (approximately

10 meters). While channel centerlines are available for the MBRW from the aforementioned USGS National Hydrography

Dataset (NHD), in this test case, the channel centerlines, which constitute the 1D domain Ω1D, are extracted within our mesh

generator using TopoToolbox as describe in Section 3.1. The MBRW domain boundary, DEM, and extracted channels are480

shown in Figure 15.

Given the inputs described above, the mesh is automatically generated using the procedure outlined with the following user-

defined parameters: Minimum and maximum elements sizes are set to 30 m and 500 m, respectively, the number of elements

per radian K in Eq. 33 is set to 20, the grading limit g in Eq. 34 is set to 0.15, and the smoothing RMSE in Eq. 31 is set to

10 m. The resulting mesh is shown in Figures 16, 17, and 18, where several qualities of the mesh can be visually noted. First,485

the dashed blue lines of panels (a1) and (b1) of Figure 16 show close-ups of the smooth spline approximation of the channel

centerlines that have been extracted from the input DEM. The accompanying panels (a2) and (b2) of Figure 16 show the node

distribution of the 1D mesh that is generated along these channels, where it can be noted that smaller element sizes are present

in highly curved areas and where elements sizes are relaxed in straighter channel segments (this is also visible, perhaps more

so, in the zoom-ins of Figure 18). Given these 1D channel elements, the 2D mesh is then generated and post-processed as490

described — see Figures 17 and 18, where it can be noted that the 2D elements of the generated mesh are constrained along

the channel centerlines, grading out to larger 2D element sizes away from the channels, all while maintaining high quality.

Specifically, the generated 2D mesh has a mean element quality of q = 0.97, with approximately 99% of the 183,610 elements

of the mesh having a quality of q > 0.83 and only 18 elements (corresponding to 0.01% of the elements) having a quality of

q < 0.50, with the minimum element quality being q = 0.33.
:::::
While

:::
the

::::::::
minimum

::::
and

::::::::
maximum

:::::::
element

::::
sizes

:::
are

:::
set

::
to

:::
30

::
m495

:::
and

:::
500

:::
m,

:::
the

::::::::
minimum

::::
and

::::::::
maximum

:::::::
element

:::::
sizes

::
of

:::
the

:::::
mesh

:::
are

::
18

::
m

::::
and

:::
572

:::
m.

::::
Note

::::
that,

::::::
again,

:::
the

::::
mesh

:::::::::
generated

::::
from

:::
the

::::
force

::::::::::
equilibrium

:::::::::
algorithm

:::
has

::::
mesh

:::::
sizes

::::::::
“relative”

::
to

:::::
target

:::::
mesh

::::
size. The mesh was generated in 13.16 minutes.

5.2 The Walnut Gulch Experimental Watershed

The Walnut Gulch Experimental Watershed (WGEW), established in southeastern Arizona in the 1950s, operates as an outdoor

laboratory for studying hydrologic and erosion processes. Over the years, an extensive database of precipitation, runoff, and500

sediment records has been collected (Renard et al. (2008); Goodrich et al. (2008); Stone et al. (2008)), making it, like the

previous test case, the subject of numerous studies (see, for example, Meng et al. (2008); Goodrich et al. (2012); Yu and Duan

(2017)) and an ideal test case for the developed mesh generator.

The WGEW covers approximately 149 km2 in Cochise county in southeastern Arizona. As with the previous test case, the

boundary of the domain is obtained from USGS WBD (U.S. Geological Survey (2014)), which provides the input (polygonal)505

domain Ω2D for the mesh generation process. Additionally, for the WGEW, both fine scale (1-m) and coarse scale (1/3-arc
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(a)

(b)

Figure 15. Domain of Middle Bosque River watershed (boundary of domain (black solid line), open-channels extracted with TopoToolbox

(blue dashed lines), and zoom boxes (black dashed lines).

(a1) (a2)

(b1) (b2)

Figure 16. (a1,a2) Zoom-in figure on box (a) in Fig. 15 with open-channels (a1) and 1D mesh on open-channels (a2). (b1,b2) Zoom-in figure

on box (b) in Fig. 15 with open-channels (b1) and 1D mesh on open-channels (b2).

24



(a)

(b)

Figure 17. Generated mesh of the Middle Bosque River watershed, where the blue lines indicate the open channels that serve as internal

constraints. Dashed rectangles labeled (a) and (b) indicate the areas of zoom-in shown in Figure 18.

second) DEMs are available through the USGS 3DEP. The NHD dataset for channel centerlines is also available, but as with

the previous test case, TopoToolbox is used to extract open-channels. The top panel of Figure 19 shows the domain boundary,

the DEM, and the extracted channel networks of the WGEW.

Given these inputs, the mesh is generated with the following user-defined parameters: Minimum and maximum mesh sizes510

of 30 m and 500 m, respectively, the number of elements per radian K is 20, grading limit is 0.15, and the smoothing RMSE

is set to 10 m. The mesh that is generated is shown in Figures 19 and 20. Like the previous test case, the 2D elements of the

generated mesh are constrained along the channel centerlines, grading out to larger 2D element sizes away from the channels,

while maintaining high quality throughout the mesh. Again, as with the previous test case, the mesh has a mean element

quality of q = 0.97. Furthermore, out of 115,459 elements, only 1,155 elements (corresponding to 1 percentile) have quality515

lower than q = 0.83 and only 12 elements (corresponding to 0.01 percentile) have quality below q = 0.52, with the minimum

element quality being q = 0.29. The mesh
::::::::
minimum

:::
and

:::::::::
maximum

:::::::
element

::::
sizes

:::
of

:::
the

:::::
mesh

:::
are

::
20

::
m

::::
and

:::
283

:::
m,

::::
and

:::
the

::::
mesh

:
was generated in 9.61 minutes.

5.3 Tidal Neches River Watershed

The Neches River flows southeast for approximately 670 km entering into Sabine Lake and then into the Gulf of Mexico near520

Port Neches (see Texas Parks and Wildlife Department (1974)). This case study is focused on the Tidal Neches River segment,

which stretches approximately 45 km from the Salt Water Barrier to Sabine Lake and whose drainage area is approximately 545

km2 (Schramm and Jha (2020)). This area is routinely included in the computational domains used for storm surge simulations

in Texas and southwestern Louisiana (see, for example, Dawson et al. (2011); Bunya et al. (2010)) and includes rivers and
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(a)

(b)

Figure 18. Zoom-in figures on boxes (a) and (b) of Figure 17.

streams of widely varying scales. For example, the Neches river, which is the main channel of the study area, has a width of525

approximately 300 m, which has small tributaries with widths on the order of 10 to 30 m. The complex geometry in the study

area is not limited to the channels. Additionally, it includes a number of islands, whose areas range from 10 m2 to 300 km2.

For simplicity of presentation, a rectangular study area (see black line of Figure 21) is chosen as the domain boundary,

where the identification of internal constraints associated with land/water mask decomposition will be applied. The water mask

of the study area is obtained from shoreline data provided by the National Oceanic and Atmospheric Administration (NOAA)530

Continually Updated Shoreline Product (CUSP) (see National Oceanic and Atmospheric Administration (NOAA) (2011)). The

NOAA CUSP provides a set of line segments as polylines in shapefile format (see Fig. 21). Successive line segments, which are

connected to each other, are merged to construct the boundary of the water mask (see Fig. 22). The land mask is then obtained

by subtracting the water mask from the rectangular study area. As with the previous two test cases, a DEM for the domain is

obtained through the USGS 3DEP.535

First, the water mask is pre-processed following the steps described in Section 3.2.2, with “small” islands of area less than

2,000 m2 being filtered out and by using δw = 100 m. The mesh is then generated with the following user-defined parameters:
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(a)

(b)

(a)

(b)

Figure 19. Domain of Walnut Gulch Experimental Watershed (top, boundary of domain (black solid line), open-channels extracted with

TopoToolbox (blue dashed lines), and zoom boxes (black dashed lines) and 2D mesh on the study area (bottom).

Minimum mesh size of 100 m, maximum of 1,000 m, number of elements per radian K is 20, grading limit is 0.15, and

smoothing RMSE is 5 m.

The 2D mesh generated from the water mask (shoreline data) has three types of internal constraints: open-channels (1D do-540

main), internal boundaries, and boundaries between water bodies and land (see Figures 23 and 24). The algorithm automatically

identified 333 open-channels, 180 internal boundaries, and 68 boundaries between water bodies and land. This identification

allows the preservation of most of the channel networks (in particular, see panels (a) and (b) of Figure 24) and small-scale

islands (in particular, see panel (c) of Figure 24) in the water bodies without using extremely small elements and provides a

sharp delineation between land and water. It should be noted that there are a few “narrow” channels that were not identified545

as 1D domains. This occurs for open-channels with free-ends, which correspond to an order 1 MA branch, as a result of MA

pruning (see Step 2 in Section 3.2.1). Likewise, there are a few small-scale islands that are not identified as internal bound-

aries. However, overall, the algorithm does an exceptional job of automatically identifying the internal constraints based on the
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(a1) (a2)

(b1) (b2)

Figure 20. (a1,a2) Zoom-in figure on box (a) in Fig. 19 with open-channels (a1) and 2D mesh (a2). (b1,b2) Zoom-in figure on box (b) in Fig.

19 with open-channels (b1) and 2D mesh (b2).

specified width parameter, while maintaining elements of high quality. The 2D mesh has a mean element quality of q = 0.93,

with only 624 (out of 62,403) elements having element quality lower than q = 0.65 (corresponding to 1 percentile) and only550

6 elements (corresponding to 0.01 percentile) having element quality lower than q = 0.25. The minimum element quality in

this case is q = 0.16, which is lower than the previous two test cases. This is a result of internal constraints being close to one

another and is a trade-off for preserving geographic features .
::::
(see

:::::
Figure

::::
25).

::::::
While

:::
the

::::::::
minimum

::::
and

:::::::::
maximum

:::::::
element

::::
sizes

:::
are

::
set

::
to
::::
100

::
m

:::
and

:::::
1000

::
m,

:::
the

::::::::
minimum

::::
and

::::::::
maximum

:::::::
element

::::
sizes

:::
of

:::
the

::::
mesh

:::
are

:::
25

::
m

:::
and

::::
1384

:::
m.

:::
The

:::::::::
minimum

::::::
element

::::
size

::
is

:::::::::::
significantly

::::::
smaller

::::
than

:::::
target

:::::::::
minimum

:::::::
element

::::
size,

::::::
which

::
is

:::
also

:::::::
caused

::
by

:::::::
internal

:::::::::
constraints

:::::::
located555

::::
close

::
to

::::
one

::::::
another.

:

6 Conclusions

An automatic mesh generation algorithm with internal constraints, especially for coupled 1D/2D hydrodynamic models, is

presented in this paper. The main objectives of the proposed algorithm are to automatically identify internal constraints (mainly

channel centerlines) in the domain and to generate collocated meshes along the internal constraints with efficient sizing. The560

identification of internal constraints is developed for both land and water subdomains. TopoToolbox is used to extract channel

centerlines from land subdomains, and an additional smoothing is applied to estimate appropriate curvature of the lines. The

extraction of internal constraints from water subdomains is based on a width function and a user-defined threshold of thin

channels. This enables identification of three types of internal constraints if water mask is given. Several additional processes

are developed for complex water subdomains including representation of thin islands as internal boundaries. The meshes565

generated with the proposed algorithm have precise alignment along the given internal constraints with efficient sizing of high-
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Figure 21. Domain of Lower Neches Basin. Boundary of study area (black dashed lines) and shorelines provided by NOAA CUSP (black

solid lines).

Figure 22. Water mask of Lower Neches Basin obtained from shoreline data provided by NOAA CUSP (blue shaded areas). The land mask

is obtained by subtracting the water mask from the rectangular study area.
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(a)

(b)

(c)

(d)

Figure 23. 2D mesh on Lower Neches Basin with three types of internal constraints (channel centerlines (blue), internal boundaries (brown),

and shoreline (green)).

(d)(c)

(a) (b)

Figure 24. Zoom-in figures on corresponding boxes of Figure 23, where again channel centerlines are shown in blue, internal boundaries in

brown, and shorelines in green.
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(a) (b)

Figure 25.
:::::::
Zoom-in

:::::
figures

::
of

:::::
Figure

::
23

:::
for

:::::::
examples

::
of

::::
poor

:::::
quality

:::::::
elements

:::
due

::
to

:::
the

:::::
internal

:::::::::
constraints

::
too

:::::
close

:
to
::::

each
:::::
other.

quality 2D elements. This is obtained by assigning proper target mesh sizes to the 1D/2D force equilibrium algorithms and

applying post-processing of 1D elements and density control.

While the test cases presented in this paper have, in general, elements of high quality, there are still a few elements of poor

quality. This can occur when internal constraints are located too close to each other. For example, thin channels that are very570

close to each other or thin islands that are located very close to a shoreline. Note that these cases can be resolved by ignoring

the object or allowing very small element sizes if the element quality is of higher priority. However, the proposed algorithm

places a higher priority on keeping geographical features with relatively low resolution.
:::::::::::
Alternatively,

::::
poor

::::::
quality

::
of

::::::::
elements

:::
can

::
be

:::::::
resolved

::::
with

:::::::::::
post-process

::::::::
software.

:::
For

::::::::
example,

::::::::
MeshGUI

::::::::::::::::
(Blain et al. (2008)

:
)
:::::
offers

:::::::::
operations

:::::::
Smooth

:::::::::
Angles

::
to

::::::
reduce

:::::::
minimal

:::::
angle

::
of

::::::::
elements

::::
and

::::::::
Reduce

:::::::::::::::
Connectivity

:
to
:::::::

resolve
::::
high

:::::::
valance.

:::::::::
However,

::::
such

:::::::::::
post-process575

:::::::
software

::::::
should

::
be

::::::
applied

::::::::
carefully

::
as

:::
the

::::
poor

::::::
quality

::::::::
elements

:::
are

:::::
likely

::::::
created

::::
near

:::
the

:::::::
internal

:::::::::
constraints,

::::::
which

:::
are

:::
not

:::::::::
considered

::
in

:::
the

::::::::::
post-process

::::::::
software.

:

Future work may include the following two objectives. First, an efficient background grid such as an octree or unstructured

grid can be used to improve the computational efficiency, especially for the identification of internal constraints in water

subdomains. A key factor of the identification of “thin” regions is the computation of the width function, which requires that580

the background grid is fine enough to span thin regions. It is expected that use of an efficient background grid such as an octree

or unstructured grid can improve the computational efficiency. Second, an automatized algorithm to retrieve cross-sectional

profiles from channels would be beneficial. Note that channel cross-sectional representations, which are typically specified as

triangles, rectangles, or trapezoids, are required for most of coupled 1D/2D hydrodynamic models. While the cross-sections

of channels in land subdomains can be detected from the DEM, there is some ambiguity for the width of the channels. On585

the other hand, the width of channels in the water subdomain is relatively clear as it can be identified with the water mask.

However, the cross-sectional information would need to be provided by supplemental bathymetric survey data, as “standard”

DEMs do not contain bathymetric elevations.
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Appendix A: Computation of medial axis with vector distance transform

In this section, we provide details of the medial axis computation briefly described in Section 3.2.1 and Eq. 9. In particular,590

we demonstrate the fact that the divergence of the VDT has positive values only on the medial axis. This is based on Voronoi

polygons and their properties described in Lee (1982). A given polygon P can be partitioned into a set of Voronoi polygons,

with boundaries referred to as Voronoi edges (see Fig. A2 for example). Voronoi polygons can be categorized into two types.

One consists of Voronoi polygons whose boundaries include a segment of the external boundary ∂P . Another consists of

Voronoi polygons whose boundaries do not include any segments of the external boundary. We refer to these two types as595

lateral and wedge type, respectively (the white and gray polygons, respectively, in Fig. A2).

In the case of lateral type Voronoi polygons, the terminal points of the VDT are on the corresponding external boundary

segment (see Lemma 1 in Lee (1982) and Fig. A2). Note that by the definition of VDT, the VDT is perpendicular with the

corresponding external boundary segment. This VDT can be represented as, once the corresponding external boundary segment

is projected to y = 0 (see Fig. A1),600

V(x,P ) = (0,−y) where x= (x,y). (A1)

In the wedge type Voronoi polygons, the terminal points of the VDT are vertices of a given polygon (see Lemma 1 in Lee

(1982) and Fig. A2). This VDT can be represented as, once the corresponding vertex is projected to the origin (see Fig. A1),

V(x,P ) = (−x,−y), where x= (x,y). (A2)

Therefore, we have605

∇ ·V(x,P ) =

−1 in lateral type Voronoi polygons

−2 in wedge type Voronoi polygons
. (A3)

Now, ∇ ·V is computed on the Voronoi edges. From Corollary 3 in Lee (1982), the medial axis is a subset of the Voronoi

edges. Let us call the Voronoi edges that are not part of the medial axis as extra Voronoi edges. Note that, by Corollay 3 in

Lee (1982), the extra Voronoi edges are a subset of the boundaries between lateral and wedge type Voronoi polygons. With the

projection of external boundaries and vertices described above and Eq. A1 and A2, it can be shown that VDT is continuous but610

non-differentiable on extra Voronoi edges. Therefore, the divergence of VDT cannot be analytically defined on extra Voronoi

edges, but here we show that numerical divergence of VDT is between −1 and −2 on extra Voronoi edges. For simplicity, let

us assume that the extra Voronoi edge is projected to x= 0, which is the case shown in Fig. A1. Since the VDT is continuous

and differentiable on each lateral and wedge type Voronoi polygons, forward and backward difference schemes on x= (0,y)

give ∇ ·V(x,P ) =−2 and −1, respectively. A central difference scheme on x= (0,y) gives615

∇ ·V(x,P ) = lim
∆x→0

−∆x− 0

2∆x
+ lim

∆y→0

−(y+∆y)+ (y−∆y)

2∆y
(A4)

=−1

2
+
−2∆y

2∆y
(A5)
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V(x, P ) = (−x,−y)V(x, P ) = (0,−y)

∂P

Figure A1. Schematic of VDT in lateral and wedge type Voronoi polygons (white and gray polygons, respectively).

=−1.5. (A6)

Therefore, the numerical divergence from forward, backward, and central difference schemes is between −1 and −2 on ex-

tra Voronoi edges. Finally, on the medial axis, the VDT is discontinuous and the divergence cannot be computed explicitly.620

However, given the fact that the VDT diverges from the medial axis to external boundaries, the numerical divergence must be

positive. The ∇ ·V is numerically computed with divergence function in MATLAB
::::::::
MATLAB and shown in Fig. A3.

::::::::
However,

::::::::::
computation

::
of

:::::
∇ ·V

:::
on

::::::::::
background

::::
grid

:::::
results

:::::::
positive

:::::
values

:::
for

:::::::
multiple

::::
grid

::::::
points

:::
near

:::
the

::::::
medial

::::
axis

::::
(see

:::::
Figure

::::
A4).

:::
As

:::
the

::::::
medial

::::
axis

::::::::
branches

::::
play

:
a
::::

key
::::
role

::
in

:::
the

::::::::
proposed

:::::::::::
methodology,

::::::
medial

::::
axis

::::::::
branches

:::
are

::::::::::
constructed

::::
from

:::
the

:::::
cluster

:::
of

:::::
medial

::::
axis

::::::
points.

::::::::::::
Morphological

:::::::
operator

:::::::::
bwmorph

:
in

:::::::::
MATLAB

:
is
:::::::
utilized

:::
for

::
the

:::::::::::
construction

::
of

::::::
medial625

::::
axis.

:::
The

::::::
cluster

::
of

::::::
medial

::::
axis

:::::
points

:::
are

:::::::
thinned

::::
first,

:::
and

::::
end

:::::
points

::::
and

:::::
branch

::::::
points

:::
are

::::::::
identified.

:::::
Then,

:::::::
starting

::::
from

:::
an

:::
end

:::::
point

::
or

::::::
branch

:::::
point,

:::
all

:::::::::
traversable

:::::
points

:::::
based

:::
on

::::::::::::
8-connectivity

:::
are

::::::::
identified

::::
until

::
it
:::::::
reaches

::
to

::::::
another

::::
end

::::
point

:::
or

:::::
branch

::::::
point.

::::
After

::::::::
repeating

::::
this

:::::::
process,

::::::
medial

:::
axis

::::::::
branches

:::
are

::::::::::
constructed.

:

One advantage of this method is that it requires low additional computational cost. In our mesh generation algorithm, the

VDT is computed as part of computing the distance map (note that |d(x,∂P )|= ∥V(x,P )∥), which is as essential require-630

ment. Therefore, additional step is simply computing
:::
MA

:::
can

:::
be

:::::::
obtained

::::
with

::
a
::::::
simple

::::::::
additional

:::::
step:

:::
the

::::::::::
computation

:::
of

divergence of VDT. ,
::::::
which

:::::
incurs

:
a
:::::
small

::::::::::::
computational

:::::
cost. The MA can also be found with criteria based on the gradient

of the distance map d(x,∂P ) (see Koko (2015); Roberts et al. (2019)), .i.e.,

∥∇d(x,∂P )∥< ϵ < 1, (A7)

where ϵ is a user-specified parameter (typically taken to be 0.9); however, based on our experiments, the MA computed from635

Eq. 9 tends to be more accurate than the MA computed from Eq. A7.
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Figure A2. Voronoi polygons of a simple polygon, where boundaries of Voronoi polygons are shown as dashed lines (blue lines are the

medial axis (a subset of the Voronoi edges) and red dashed lines are Voronoi edges which are not part of the medial axis). The vector distance

transform is shown by black arrows (scaled for visualization purpose). White and gray polygons indicate lateral and wedge type Voronoi

polygons, respectively.
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Figure A3. Divergence of the vector distance transform of a simple polygon. Note that the divergence values are -1 and -2 for lateral and

wedge type Voronoi polygons and positive on the medial axis.
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Figure A4.
::::::
Zoom-in

:::::
figure

::
of

:::::
Figure

:::
A3.

::::
There

:::
are

:::::::
multiple

:::
grid

:::::
points

:::
with

::::::
positive

:::::::::
divergence

:::::
values

::::
along

:::::
medial

::::
axis.
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Code availability. The current version of ADMESH+, the mesh generator presented in this study, is available as Zenodo archive: https://zenodo.org/records/10009737

(Kang et al. (2023a))
:::::::::::::::::::::::::::
https://zenodo.org/records/10242565

::::::::::::::::
(Kang et al. (2023b)) . The ADMESH+ is under active development and the latest

version will be available upon request.
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