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Abstract 11 

Systematic tile drainage is used extensively in poorly drained agricultural lands to remove excess 12 

water and improve crop growth; however, tiles can also transfer nutrients from farmlands to 13 

downstream surface water bodies, leading to water quality problems. Thus, there is a need to 14 

simulate the hydrological behaviour of tile drains to understand the impacts of climate or land 15 

management change on agricultural surface and subsurface runoff. The Cold Regions 16 

Hydrological Model (CRHM) is a physically based, modular modeling system developed for cold 17 

regions. Here, a tile drainage module is developed for CRHM. A multi-variable, multi-criteria 18 

model performance evaluation strategy was deployed to examine the ability of the module to 19 

capture tile discharge under both winter and summer conditions (NSE>0.29, RSR<0.84 and PBias 20 

<20 for tile flow and saturated storage simulations). Initial model simulations run at a 15-min 21 
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interval did not satisfactorily represent tile discharge; however, model simulations improved when 22 

the time step was lengthened to hourly but also with the explicit representation of capillary rise for 23 

moisture interactions between the rooting zone and groundwater, demonstrating the significance 24 

of capillary rise above the saturated storage layer in the hydrology of tile drains in loam soils. 25 

Novel aspects of this module include the sub-daily time step, which is shorter than most existing 26 

models, and the use of field capacity and its corresponding pressure head to provide estimates of 27 

drainable water and the thickness of the capillary fringe, rather than using detailed soil retention 28 

curves that may not always be available. An additional novel aspect is the demonstration that flows 29 

in some tile drain systems can be better represented and simulated when related to shallow 30 

saturated storage dynamics.  31 
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1. Introduction 37 

 38 

Harmful algal blooms and eutrophication in large freshwater lakes surrounded by agricultural 39 

lands are major environmental challenges in Canada and globally. The transport of nutrients, 40 

particularly phosphorus, in runoff from agricultural fields into surface water is an important 41 

contributor to the increased frequency of algal blooms being experienced in North America and 42 

elsewhere (Sharpley et al., 1995; Correll, 1998; Filippelli, 2002; Ruttenberg, 2005; Schindler, 43 

2006; Quinton et al., 2010; Costa et al., 2022). Although nutrient transport from agricultural fields 44 
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can occur via both surface runoff and tile drainage (Radcliffe et al., 2015), recent increases in the 45 

frequency and magnitude of algal blooms in Lake Erie in North America have been attributed to 46 

tile drainage (King et al., 2015; Jarvie et al., 2017). Tile drain systems lower seasonally high-water 47 

tables in poorly drained fields, reduce the retention time of soil water, lessening waterlogging in 48 

fields and improving both crop growth and field trafficability for farmers (Cordeiro and Ranjan, 49 

2012; Kokulan et al., 2019a). However, they are also important pathways for dissolved nutrients 50 

and particulate material (Kladivko et al., 1999; Tomer et al., 2003). In Alberta, tile drains have 51 

also been used to address salinity issues (Broughton and Jutras, 2013). It has been estimated that 52 

14% of farmlands in Canada (ICID, 2018) and 45% of fields in Southern Ontario, Canada (ICID, 53 

2018; Kokulan, 2019) are drained by tile systems.  Given their importance in hydrological budgets 54 

and biogeochemical transport, there is a need to understand the controlling mechanisms of water 55 

and nutrient export from tile systems as an integral part of the broader, modified hydrological 56 

system.  57 

There are several models that can represent tile drainage, controlled tile drainage and 58 

surface runoff in different soil types at the small basin scale, which typically calculate the amount 59 

of gravitational drainage from the soil, such as HYPE (Lindstrom et al., 2010; Arheimer et al., 60 

2015), DRAINMOD (Skaggs, 1978, 1980a; Skaggs et al., 2012), MIKE SHE (Refsgaard and 61 

Storm, 1995) and SWAT (Arnold et al., 1998; Koch et al., 2013; Du et al., 2005; Du et al., 2006; 62 

Green et al., 2006; Kiesel et al., 2010).  These models include conceptual components for many 63 

key hydrological processes, and  have been primarily designed and tested for temperate regions 64 

(Costa et al., 2020a).  In Canada and other cold regions, some unique hydrological processes such 65 

as snowmelt, rain on snow, and runoff over and infiltration into frozen or partially-frozen soils 66 

may also be important (Rahman et al., 2014; Cordeiro et al., 2017; Pomeroy et al., 1998, 2007; 67 
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Fang et al., 2010, 2013). Many hydrological processes, such as the sublimation of snow, energy 68 

balance snowmelt, and infiltration into frozen soils, are strongly affected by temperature and the 69 

phase changes of water, which make many existing models developed for warm regions less 70 

appropriate for regions with cold seasons (Pomeroy et al., 2007, 2013, 2016; Fang et al., 2010, 71 

2013). Even for temperate regions, the representation of cold season processes is often 72 

underrepresented in models (Costa et al., 2020a).  73 

Since the use of tile drainage is increasing in many cold regions (Kokulan et al., 2019a; 74 

OMAFRA, 2023), it has become important to integrate such human-induced processes in the 75 

specialized hydrological modelling tools that have been developed for these regions, such as the 76 

Cold Regions Hydrological Modelling platform (CRHM, Pomeroy et al., 2007; 2013; 2022). 77 

CRHM was initially developed in 1998 to assemble and explore the hydrological understanding 78 

developed from a series of research basins spanning Canada and elsewhere into a flexible, modular, 79 

object-oriented, multiphysics platform for simulating hydrological processes and basin response 80 

in cold regions (Pomeroy et al., 2007; 2022).  The modular CRHM platform allows for multiple 81 

representations of forcing data interpolation and extrapolation, hydrological model spatial and 82 

physical process structure and parameter values.    83 

Many existing models typically operate at default daily or monthly time intervals, which 84 

is inadequate for the prediction of many short-duration “flashy” hydraulic events observed in tiles 85 

(Pluer et al., 2020; Vivekananthan, 2019; Vivekananthan et al., 2019; Lam et al., 2016a, 2016b; 86 

Macrae et al., 2019). Indeed, the ability to simulate shorter time intervals (e.g., hourly) facilitates 87 

the ability to capture both the rising and falling limbs of tile flow hydrographs, as well as the 88 

magnitude of peak flows, both of which are important to tile drain chemistry and export 89 

(Rozemeijer et al., 2016; Williams et al., 2015, 2016; Macrae et al., 2019).  90 
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 The amount of water transported by tiles depends on soil moisture dynamics, hydraulic 91 

gradients and the positioning of the saturated storage layer, which are in turn affected by many 92 

factors, including soil type, surface topography and morphology, as well as the local climate and 93 

the hydrological characteristics of the field (Frey et al. 2016; Klaiber et al., 2020; Coelho et al., 94 

2012; King et al., 2015). Thus, to provide reliable estimations of water loss from farmland via 95 

surface runoff and tile flow, models must be able to predict soil moisture and saturated layer 96 

storage (Brockley, 1976; Rozemeijer et al., 2016; Javani-Jouni et al., 2018).  Early studies have 97 

shown that in some soil types, including silty loam and clay loam soils, the drainable water is less 98 

than expected based on the effective porosity (e.g., Skaggs et al., 1978; Raats and Gardner, 1974).  99 

Raats and Gardner (1974) have argued that the calculation of drainable porosity requires 100 

knowledge of water table elevation and the distribution of soil moisture above the saturated storage 101 

layer. Skaggs et al. (1978) added that the calculation of drainable porosity should consider “the 102 

unsaturated zone drained to equilibrium with the water table”. However, because the soil column 103 

is often composed of different soil layers with varying physical characteristics, drainable porosity 104 

varies with evapotranspiration rate, soil water dynamics and the depth of saturated water (Logsdon 105 

et al., 2010; Moriasi et al., 2013). In a sandy loam soil, Lam et al. (2016a, 2016b) demonstrated 106 

that tile drainage was not initiated until soil was at or above field capacity. Williams et al. (2019) 107 

observed in the American Midwest that tile drainage was not initiated until the field storage 108 

capacity had been exceeded. It has also been shown that despite the presence of tile drains, the soil 109 

above the tile did not always drain all the gravitational water following a rainfall/snowmelt event 110 

and the soil may remain at or above field capacity (Skaggs et al., 1978; Lam et al., 2016a). This 111 

means that the soil drainable water content may be considerably smaller than the storage capacity. 112 

This is related to matric potential within the vadose zone, which is driven by the soil characteristics 113 
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but can also be due to the development of a capillary fringe that reduces the rate of vertical 114 

percolation through the unsaturated zone, reducing tile flow (Youngs, 2012). Despite this 115 

evidence, some saturated flow models that simulate tile flow overlook the effect of capillary rise 116 

and over-estimate the soil drainable water. Other models that represent unsaturated flow (i.e., 117 

HYDRUS 3D, Simunek et al., 2011) using Richard’s Equation (Richards, 1931) capture the effect 118 

of capillary rise and saturation-pressure variation within the soil profile and assess the soil 119 

drainable water more accurately. Although the effect of capillary rise is considered in 120 

DRAINMOD through the concept of drainable porosity (represented as a “water yield”) (Skaggs, 121 

1980b), and is calculated for layered soil profiles (Badr,1978), it requires detailed information 122 

surrounding the soil water characteristic curve (Skaggs, 1980b). Although it is indeed optimal to 123 

use soil-specific water characteristic curves, Twarakavi et al. (2009) found that it is possible to 124 

employ average representative values from the soil water characteristic curve to represent soil 125 

drainable water where soil-specific curves are not available, with some reduction in model 126 

performance. 127 

In this study, a new Tile Drainage Module (TDM) was developed and incorporated within 128 

the physically based, modular Cold Regions Hydrological Modelling (CRHM) platform (Pomeroy 129 

et al., 2022) to enable hydrological simulations in tile-drained farm fields in cold agricultural 130 

regions. As a first iteration, the new module was developed for a field with sloping ground and 131 

loam soil with imperfect drainage. Such landscapes are common in the Great Lakes Region (e.g., 132 

Michigan and Vermont, USA and Ontario, Canada) and tile drainage in such landscapes has not 133 

been as widely studied as it has been in clay-dominated soil.  In this module, considerations were 134 

explicitly included for the effects of capillary rise and annual fluctuations in saturated storage on 135 

drainable soil water storage. The use of field capacity and groundwater/soil saturated storage 136 
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(Twarakavi et al., 2009) to modulate soil drainable water across the soil profile, including the 137 

capillary fringe region, is an innovative aspect of the model that has been demonstrated to 138 

circumvent the need for water characteristic curves. The development of this physically based 139 

module provides insight into hydrological processes in tile drainage from sloping landscapes with 140 

imperfect drainage, which are increasingly being artificially drained (Cordeiro and Ranjan, 2012; 141 

Kokulan et al., 2019a; OMAFRA, 2023). 142 

 143 

2. Materials and Methods 144 

2.1 Study area 145 

The study site is a ~10 ha farm field located near Londesborough, Ontario at UTM 17T 466689m 146 

E, 4832203m N, shown as LON in Fig. 1a. Mean annual precipitation recorded in this region is 147 

1247 mm (ECCC, 2020). Mean air temperature is 7.2 oC, with annual maxima in July (25.9 oC) 148 

and minima in January (-10.2 oC), (ECCC, 2020). Soil type has been identified as Perth clay loam 149 

(Gr. Br. Luvisolic), with a slope between 0.2 and 3.5%. The field is systematically drained with a 150 

tile depth of 0.9 m and a spacing of 14 m (laterals). The tile network collects infiltrated water from 151 

about 75% of the field (~ 7.6 ha) but may also receive lateral groundwater flow from neighbouring 152 

fields. Water yields from the tile drain laterals (10 cm diameter) are discharged via a common tile 153 

outlet (main, 15 cm diameter) below ground. Surface runoff from the field is directed toward a 154 

common outlet on the surface using plywood berms installed along the field edge (see van 155 

Esbroeck et al., 2016). The tile and surface runoff outlets do not join into a common outlet and are 156 

fully separated from one another, even during surface ponding events. The field is a corn-soy-157 

winter wheat rotation with cover drops and rotational conservation till (shallow vertical tillage 158 

every three years). Additional details related to farming practices are provided in Plach et al. 159 
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(2019), soil characteristics are provided in Plach et al. (2018a) and Plach et al. (2018b) and 160 

equipment and monitoring are provided in van Esbroeck et al., (2016). The outlets for both surface 161 

and tile flow are located at the edge of the field and drain into an adjacent field (Fig. 1b). Water 162 

tends to accumulate in a topographic low in the field, in front of the field outlet during snowmelt 163 

or high-intensity rainfall events, presumably due to either surface runoff or return flow (see ponded 164 

area, Fig. 1b). However, surface water or elevated soil moisture conditions are not observed in this 165 

topographic low during smaller events or dry periods of the year, suggesting that this saturated 166 

ponding is not in a perennial groundwater discharge zone. Although surface ponding is observed 167 

in the topographic depression within the field, water discharges freely at the opposite end of the 168 

culvert, facilitating the measurement of flow. 169 

 170 

 171 

a)                                                                                        b) 172 

b) Figure 1. (a) Location of the study area in South of Ontario and the (b) Londesborough (LON) farm with its tile network. 173 



 9 

 174 

 175 

2.2 CRHM: The modelling platform 176 

CRHM is a modular hydrological process modelling platform that allows users to select relevant 177 

process modules and apply them as needed to their study. For example,  the CRHM platform 178 

includes options for empirical and physically based calculations of precipitation phase, snow 179 

redistribution by wind, snow interception, sublimation, sub-canopy radiation, snowmelt, 180 

infiltration into frozen and unfrozen soils, hillslope water movement, actual evapotranspiration, 181 

wetland fill and spill, soil water movement, groundwater flow and streamflow (Pomeroy et al., 182 

2007; 2022).  Where appropriate, it is able to calculate runoff from rainfall and snowmelt as 183 

generated by infiltration excess and/or saturated overland flow, flow over partially frozen soils, 184 

detention flow, shallow subsurface flow, preferential flow through macropores and groundwater 185 

flow (Pomeroy et al., 2007; 2022). Modules of a CRHM model can be customized to basin setup, 186 

such as delineating and discretizing the basin, conditioning observations for extrapolation and 187 

interpolation in the basin, or are process-support algorithms such as for estimating longwave 188 

radiation, complex terrain wind flow, or albedo dynamics, but most modules address hydrological 189 

processes such as evapotranspiration, infiltration, snowmelt, and streamflow discharge. CRHM 190 

discretizes basins into hydrological response units (HRU) for mass and energy balance 191 

calculations, each with unique process representations, parameters, and position along flow 192 

pathways in the basin.  HRU are connected by blowing snow, surface, subsurface and groundwater 193 

flow and together generate streamflow which is routed to the basin outlet.  The size of HRUs is 194 

flexible and can be as small as the size of a single tile pipe (e.g., 1 m) times the pipe spacing (which 195 

was 14 m in our case study region), and as large as entire tile networks within a given farm or 196 

study area. CRHM does not require a stream within a modelled basin. The feature allows CRHM 197 
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to model the hydrology of cold regions dominated by storage and episodic runoff, such as 198 

agricultural fields.   199 

 Although CRHM has the capability to represent many hydrological and thermodynamic 200 

processes, not all processes need/must be represented in all situations. The modular design of the 201 

CRHM platform enables the user to activate or inactivate specific processes to optimize the model 202 

for a particular situation. This is a modelling approach that enables testing different modelling 203 

hypotheses and has been pioneered by CRHM and other models, which has inspired a range of 204 

hydrological (e.g., SUMMA, Clark et al., 2015a, 2015b), hydrodynamic (e.g., mizuRoute, 205 

Mizukami et al., 2016) and biogeochemical (e.g., OpenWQ, Costa et al., 2023) modelling tools. 206 

For example, in the current study, blowing snow was not employed in CRHM as it does not appear 207 

to be significant at the study site (periodic snow surveys showed relatively uniform snow cover). 208 

Similarly, preferential flow into tile drains was not included in the current simulation. Although it 209 

can be a key process in some clay loam soils, previous studies at the study site have shown that it 210 

is not the case here, which is a combination of clay-loam and silt-loam soils (Pluer et al., 2020; 211 

Macrae et al., 2019). Hydrograph analysis (Macrae et al., 2019) and conservative tracer (electrical 212 

conductivity and major ions, as well as temperature) over multiple years (Pluer et al., 2020) showed 213 

that preferential flow was minimal at this site as well as other similar sites. Freeze-thaw of soil can 214 

occur in the study region, leading to partially frozen soils. However, the extent of freezing varies 215 

with snowpack development, winter temperatures and radiation. Data collected over an 8-year 216 

period at this site found soil freezing was restricted to brief periods and such freezing never 217 

extended below 10 cm depth (Macrae, unpublished data) which is insufficient for soils to behave 218 

as frozen ground for infiltration calculations. Consequently, freeze-thaw processes were not 219 

deployed in the CRHM model of this site. 220 
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                                                                                     221 

2.3 Observations and input data for the model 222 

Tile flow, water table elevation (saturated storage elevation head) and surface flow were measured 223 

at the site between Oct. 2011 and Sept. 2018 at 15-minute intervals. It was not possible to install 224 

more than one measuring station for water table elevation and soil moisture at the site due to 225 

farming activity; consequently, water table elevation head and soil moisture were measured at the 226 

approximate midpoint of the field at the edge-of-field. Both tile flow rates and surface runoff were 227 

determined using simultaneous measurements of flow velocity and water depths in each of the 228 

pipes at the edge-of-field using Hach Flo-tote sensors and an FL900 data logger (Onset Ltd.) (Table 229 

A1, Appendix A). Continuous measurements of velocity were included due to the potential for 230 

impeded drainage under very wet conditions or caused by the accumulation of snow and ice around 231 

the surface culvert in winter. An additional barometrically-corrected pressure transducer (U20, 232 

Onset Ltd.) (Table A1) was also used for periods when the flow sensors did not function using a 233 

rating curve developed from the depth-velocity sensors; however, it should be noted that these 234 

were for brief periods and the depth-velocity sensor functioned for the majority of the study. The 235 

water table elevation was measured using a barometric pressure-corrected pressure transducer 236 

(U20, Onset Ltd.).  237 

Air temperature, wind speed, air relative humidity, incoming solar irradiance and rainfall 238 

were also measured at the site at 15-minute intervals and were implemented in the model. Variable 239 

names and their symbols in CRHM are listed in Appendix B. The air temperature, wind speed and 240 

incoming solar radiance measurements were collected 1 m above ground using a Temperature 241 

Smart Sensor S-THB-M002, Wind Smart Sensor Set S-WSET-M002 and a Solar Radiation Sensor 242 

(Table A1). Rainfall and relative humidity were measured via a tipping bucket rain gauge (Table 243 
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A1) and an RH Smart Sensor (Table A1). These observations were continuously recorded 244 

throughout the study period, except for brief periods of instrument failure and maintenance, when 245 

data from nearby stations (Table T1, Supplementary Material) was substituted using the double 246 

mass analysis method (Searcy and Hardison, 1960).  247 

Although rainfall was recorded continuously at the field site, snowfall data was not. 248 

Snowfall data was obtained from nearby stations (Wroxeter-Davis and Wroxeter, Environment 249 

Canada, 2020), located 31.7 km from the field site. Periodic snow surveys done at the site 250 

throughout the study period found that data from the nearby stations was a close approximation of 251 

snow at the field site (Plach et al., 2019). Hourly snowfall observations from Wroxeter-Geonor 252 

were used for the period between 2015 and 2018, whereas daily data from the Wroxeter-Geonor 253 

were used for the 2011 to 2014 period, reconstructed to hourly snowfall time series based on the 254 

method presented by Waichler and Wigmosta (2003). 255 

 256 

2.4 Development of the new tile module 257 

A Tile Drainage Module (TDM) was developed within CRHM (Figures 2, 3) with the goal of 258 

adding the ability to simulate tile flow and the resulting saturated storage at an hourly time step. 259 

CRHM was forced with hourly precipitation, air temperature, solar radiation, wind speed and 260 

relative humidity to calculate hydrological states and fluxes in HRUs and the basin. The model 261 

requires parameterizations that specify the hydraulic and hydrological properties of the soil, 262 

including its thickness, saturated hydraulic conductivity (K), and surface cover. CRHM calculates 263 

water storage and fluxes between HRUs, as well as vertical fluxes amongst different hydrological 264 

compartments (within each HRU) that include snow, depressional storage, different soil layers, 265 

and groundwater. 266 
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Using the simulation of soil moisture (including both saturated and unsaturated soil 267 

moisture) performed by the original CRHM “Soil” module, TDM calculates the dynamic tile flow 268 

rate that, in turn, feeds back to soil moisture at each time step. The presence of a capillary fringe 269 

(sometimes referred to as the tension-saturated zone within the soil profile) and its effects are 270 

considered by limiting the amount of drainable soil water. TDM uses site-specific information 271 

regarding the tile network, such as tile depth, diameter and spacing. Information regarding site-272 

specific details regarding tile depth, diameter and spacing may be obtained directly from 273 

landowners or can be estimated based on standard design and installation guidelines for the region. 274 

This information was used to set up the model together with parameterization to translate the 275 

hydrological effects of the soil capillary fringe (CF), if present, through two variables, CF 276 

thickness and CF drainable water (discussed in Section 2.5, Figures 2, 3). These two variables are 277 

used to limit the fraction of the soil moisture that can freely drain to the tiles.  278 

 279 

2.4.1 Soil moisture and saturated storage 280 

The TDM uses the water quality soil module or soil module (WQ_soil or Soil), which divides the 281 

soil column into three layers: a recharge layer where evapotranspiration and root uptake generally 282 

take place, a deeper layer that connects to the groundwater system and a deeper groundwater layer 283 

that is always saturated. CRHM’s state variable for soil moisture in the upper two layers is soil 284 

water storage volume (Fig. 2), the model results were converted into water table elevation above 285 

the semi-permeable layer (Table B1, Appendix B; Fig. 2b) for comparison with water table 286 

observations, by dividing volumetric soil moisture content (Table B1) by soil porosity (Table B1) 287 

for the cases with no capillary fringe above the water table. Additional steps were taken for periods 288 

when a capillary fringe developed (discussed below).  289 



 14 

 290 

2.4.2 Capillary fringe and drainable water 291 

Soil moisture in the capillary fringe is equal to the average volumetric water content at capillary 292 

fringe (𝜃𝐶) which is usually greater than the field capacity (𝜃𝑓𝑐) (Bleam, 2017, Sect. 2.4). 293 

Therefore, while the positioning of the capillary fringe responds dynamically to the matric 294 

potential, the saturation profile within the capillary fringe remains constant, as well as its thickness 295 

because it only depends on the pressure head (capillary forces) that are related to the grain size 296 

distribution and field capacity (ℎ𝑓𝑐) as introduced by Twarakavi et al. (2009). Therefore, the 297 

drainable water in the capillary fringe becomes the difference between saturation (𝜃𝑠), computed 298 

dynamically in CRHM, and 𝜃𝐶 , which corresponds to the water held by capillary forces at the 299 

capillary fringe moisture content (Fig. 2). Accordingly, Fig. 2 shows the schematic soil 300 

characteristic curve for the three water level conditions contemplated in the model. 301 

1. Condition 1 is when the water table is at the surface and the soil is completely saturated 302 

(matric potential = 0);  303 

2. Condition 2 is when the water table drops but the upper boundary of the capillary fringe 304 

is at the soil surface; and  305 

3. Condition 3 is when the water table drops further, and the upper boundary of the capillary 306 

fringe drops beneath the surface.  307 

In essence, the soil is completely saturated (𝜃𝑠) in Condition 1. Between Conditions 1 and 2, the 308 

capillary fringe occupies the entire soil column above the water level; thus, it can only release the 309 

volume of water corresponding to 𝜃𝑠-𝜃𝐶  or 𝜑𝑐 (dimensionless). Between Conditions 2 and 3, two 310 

layers with distinct hydraulic characteristics develop: (1) the top one at 𝜃𝑓𝑐 that releases water up 311 
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to 𝜃𝐶-𝜃𝑓𝑐, and (2) the lower one that corresponds to the capillary fringe and can release up to the 312 

volume of water corresponding to 𝜃𝑠-𝜃𝐶  or 𝜑𝑐. 313 

 314 

Figure 2. Schematic representation of the capillary fringe above the water table assuming a 1-m thickness (for demonstration 315 

purposes). The soil characteristic curves are shown for the three water level conditions considered: water level at the (1) surface, 316 

(2) intermediate depth, and (3) deeper depth. Two transitional drops can be seen in the characteristic curves, one from saturation 317 

(𝜃𝑠) to capillary fringe water content (𝜃𝐶) (between Conditions 1 and 2) and one from 𝜃𝐶  to field capacity (𝜃𝑓𝑐) (between Conditions 318 

2 and 3). The coloured areas (green and blue) of the right panel correspond to the amount of water that can be released between 319 

Conditions 1 and 2 (blue) and between Conditions 2 and 3 (green). 320 

 321 

 322 

2.4.3 Tile flow calculation 323 

A modified version of the Hooghoudt equation was used to calculate tile flow in the TDM 324 

(Smedema et al., 2004).  This presumes no surface ponding, an assumption that generally holds at 325 
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the study site (Eq. 1), where water ponds only during very wet periods and on a small portion of 326 

the study site (see Fig. 1b). Hooghoudt’s equation (Hooghoudt, 1940) is a steady state, physically 327 

based equation for saturated flow toward the tile drain. Flow estimates are provided based on the 328 

hydraulic conductivity of the soil and water table elevation above the tile pipe.  It allows different 329 

saturated hydraulic conductivities for the layers above (AL) and below (BL) the tile (Fig. S1). At 330 

the study site, soil surveys have reported almost the same soil type (Loam) down to the depth of 331 

90 cm (e.g., Van Esbroeck et al., 2016; Plach et al., 2018b), which was parameterized in the model 332 

set up as, 333 

 334 

𝑞 =
8×𝐾2×𝑑×ℎ

𝐿2
+
4×𝐾1×ℎ

2

𝐿2
 ,                                                                               (1) 335 

 336 

where 𝐾1and 𝐾2 are respectively the saturated hydraulic conductivity in the upper and lower layers 337 

in mm h-1; 𝐿 is the tile spacing in mm; ℎ is the water table elevation above the tile in mm, 𝑑 is the 338 

lower layer thickness in mm (Fig. S1), and 𝑞 is the predicted tile flow in mm h-1. The only variable 339 

that is dynamically updated by CRHM is ℎ. Equation (1) was used to estimate tile flow rates in 340 

TDM, using saturated storage to estimate h. 341 

 342 

2.4.4 Calculation of the effect of tile flow on soil moisture and water levels 343 

The simulated tile flows (see Sect. 2.3.3) were subtracted from the soil moisture. To calculate 344 

saturated storage (water table or groundwater elevation head level) from soil moisture calculated 345 

by the model, a threshold soil moisture content (𝑠𝑚𝑡) is defined, which consists of drainable water 346 

in the soil (𝜑𝑐) when the upper boundary of the capillary fringe is at the surface (Condition 2, Fig.  347 

2) and was calculated as:  348 
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 349 

 𝑠𝑚𝑡 = 𝑠𝑚𝑚𝑎𝑥 − (𝐶𝑡 × 𝜑𝑐) ,       (2) 350 

 351 

where 𝑠𝑚𝑚𝑎𝑥 is the maximum soil moisture and 𝐶𝑡is the capillary fringe thickness in mm. 352 

However, since the hydrological conditions of the soil are markedly different between the two 353 

transitional situations described in Sect. 2.3.2 and Fig. 2 (Condition 1 to 2 and Condition 2 to 3), 354 

a step function was deployed for determination of saturated storage : 355 

 356 

𝑆𝑆 =

{
 
 

 
 𝑠𝑚𝑡−(𝐶𝑡×((𝜑𝑠−𝜑𝑐)+𝜃𝑓𝑐))

𝜑𝑠+𝜃𝑓𝑐
+
𝑠𝑚−𝑠𝑚𝑡

𝜑𝑐
  , 𝑖𝑓 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 1 𝑎𝑛𝑑 2

𝑠𝑚𝑚𝑎𝑥

𝜑𝑠+𝜃𝑓𝑐
− ((

𝑠𝑚𝑡−𝑠𝑚

𝜑𝑠
) + 𝐶𝑡)             , 𝑖𝑓 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 2 𝑎𝑛𝑑 3

,                    (3) 357 

 358 

where SS is saturated storage in mm from the bottom of the soil, and 𝑠𝑚 is soil moisture (both 359 

saturated and unsaturated storage) in the given time step in mm. Water table observations were 360 

used to estimate SS from the field. Equation (3) is determined based on soil moisture curves in 361 

Fig. 2 and water level Conditions 1-3 discussed in Sect. 2.3.2. In Fig. 2, the first and second parts 362 

of Eq. (3), which refer to Conditions 1 to 2 and 2 to 3, respectively, correspond to the volumes of 363 

soil water highlighted in “blue” and “green.”  364 

 365 

2.4.5 Lower semi-permeable soil layer and periodicity in annual groundwater levels  366 

This model application focused on the study site field without including other adjacent areas. This 367 

was possible because years of field monitoring at this site have demonstrated that there is no 368 

observable surface flow into the site from adjacent fields. The tile network is restricted to the field 369 
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and is not connected to tile drains or surface inlets in adjacent fields. However, field soil water 370 

table observations show evidence of annual groundwater level periodicity/fluctuation (Rust et al., 371 

2019) that are sinusoidal in nature and cannot be neglected. Some studies predict the annual 372 

groundwater oscillations or the annual responses of groundwater to precipitation by using sine and 373 

cosine functions (De Ridder et al., 1974; Malzone et al., 2016; Qi et al., 2018). De Ridder et al. 374 

(1974) studied the design of the drainage systems and described the seasonal groundwater 375 

fluctuations observed in wells using sinusoidal curves. Malzone et al. (2016) used a sine function 376 

to predict annual groundwater fluctuations in the hyporheic zone. Qi et al. (2018) and Rust et al 377 

(2019) used a cross-wavelet transform, consisting of the superposition of sine and cosine curves, 378 

to predict shallow groundwater response to precipitation at the basin scale. This approach, using 379 

the sine function, was used in this application to simulate annual fluctuations in saturated storage, 380 

in Eq. (4), over a period of 1 year, with minimums around the middle of the growing season (mid-381 

July), and maximums in the cold season (early February). This translates into the greater matric 382 

potential, with soil moisture depletion, during the growing season, and lower matric potential, with 383 

soil moisture increases, during the non-growing season, consistent with field observations. Thus, 384 

a sine function representing the annual fluctuations in percolation rate from soil to groundwater 385 

(𝐺𝑦,𝑖) layers in CRHM, through the lower soil semi-permeable layer (in mm hr-1) is defined as: 386 

 387 

𝐺𝑦,𝑖 = [𝐴 × 𝑠𝑖𝑛 (
(𝑇𝑠−𝐷𝑑×24)×360

24×365.25
) − 𝐵] × 𝑓𝑦,𝑖      (4) 388 

 389 

where 𝑇𝑠 is the time step number, 𝐷𝑑 is a time delay in days, 𝐴 is the amplitude of the saturated 390 

storage (SS) fluctuation, and 𝐵 is an intercept factor. 𝑓𝑦,𝑖 is a seasonal factor. The sine function 391 

coefficient (𝐷𝑑, 𝐴, and 𝐵) and seasonal factor were adjusted for the whole period and for each year 392 
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through model verification and shown in Table 1. Appendix C provides more details on the 393 

implementation of Eq. (4). Although this is a simplification of the entire groundwater system 394 

dynamics, it was needed here to provide a more controlled basis for testing the new module at the 395 

field scale before expanding it to larger areas in future work.  396 

 397 

2.5 Model application and multi-variable, multi-metric validation 398 

The study site is a relatively small field, and 2 HRUs were sufficient to capture its hydrological 399 

dynamics in CRHM. The HRUs represent (1) the area immediately upstream of the outlet where 400 

surface ponding occurs (depression storage); and (2) the remaining field (Fig. 3). The maximum 401 

ponding capacity of HRU 1 was estimated using the spatially distributed hydrodynamic model 402 

FLUXOS-OVERFLOW (Costa et al., 2016, 2020b). The CRHM model with its new TDM module 403 

was set up using the information described in Table 1. Soil textures at the LON site measured in a 404 

25 m grid across three soil depths (0-25 cm, 25-50 cm, and 50-100 cm) averaged 29% sand, 48% 405 

silt, and 23% clay (Ontario Ministry of Agriculture, Food and Rural Affairs Soil Team, 406 

unpublished data). This soil grain size distribution corresponds with a soil-saturated hydraulic 407 

conductivity of ~ 0.56 cm h-1 (~10−2.5) (Garcia-Gutierrez et al., 2018), which was implemented 408 

in CRHM (0.5 cm h-1), corresponding to a field capacity of 0.04 (volumetric water content) and 409 

ℎ𝑓𝑐  of ~0.8 m (Twarskavi et al., 2009, based on a drainage flux of 0.1 cm d-1).  410 

 411 

A robust multi-variable, multi-metric model evaluation strategy was deployed to verify the 412 

capacity of the model to predict tile flow and its impact on the local hydrology. The outflows 413 

examined were tile flow, surface flow, and saturated storage. The multi-metric approach 414 

contemplated five different methods, namely the Nash-Sutcliffe efficiency (𝑁𝑆𝐸), Root-Mean-415 
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Square Error (RMSE), Model Bias (Bias), Percentage Bias (Pbias), and RMSE-observation 416 

standard deviation ratio (RSR). These methods were used to assess model accuracy. See Appendix 417 

C for more details about the methodology used. It is generally assumed that 𝑁𝑆𝐸>0.50, 𝑅𝑆𝑅 ≤ 418 

0.70, and 𝑃𝐵𝑖𝑎𝑠 in the range of ±25% are satisfactory for hydrological applications (Moriasi et 419 

al., 2007). Five different metrics were used to evaluate model accuracy in order to describe 420 

different aspects of the discrepancies between simulated and observed values. For example, Bias 421 

reveals the positive or negative general deviations of simulated values from the observed values, 422 

while RMSE shows the average absolute differences between them (Moriasi et al., 2007). Hourly 423 

values were used in these calculations, which departs from the daily and monthly analyses typically 424 

reported for these types of models. Although the hourly timestep is challenging for this sort of 425 

simulation, it is an important advance forward toward more detailed, accurate, and advanced 426 

models for tile-drained agricultural fields. For example, Costa et al., (2021) noted that the 427 

successful extension of hydrological models to water quality studies relies on their ability to 428 

operate at small time scales in order to capture intense, short-duration storms that may have a 429 

disproportional impact on the runoff transport of some chemical species such as phosphorus – in 430 

essence, to capture hot spots and hot moments for flux generation.  431 

 432 

Table 1. Key model parameters in CRHM for representation of the LON site. 433 

Model Parameter Value Unit  Adjusted/Calibrated Comment 

Soil depth or Soil thickness, 𝑇𝑆𝐿 2 m  No Assumed 

Semipermeable layer depth 3 m  No Assumed  

Tile depth 0.9 m  No Farmer/Blueprints 

of the field 

Corn root depth 0.5 m  No Online sources 
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Soil recharge zone thickness 0.5 m  No Based on the root 

depth 

Tile spacing 14 m  No Farmer/Blueprints 

of the field 

Soil porosity (soil drainable water) 

𝜑𝑠  

0.045   Yes Adjusted 

Saturated Hydraulic conductivity, 𝐾𝑠 

in lower soil layer 

5 mm h-1  Yes Adjusted 

𝐾𝑠 in upper soil layer 5 mm h-1  Yes Adjusted 

Capillary fringe thickness, 𝑇𝐶𝐹 0.8 m  Yes Adjusted 

Capillary fringe drainable water, 𝜑𝑐  0.03   Yes Adjusted 

Surface depression close to farm 

surface flow outlet (HRU2) 

35 mm  Yes Calculated  

Surface depression in rest of the field 

(HRU1) 

0 mm  No Calculated 

Surface area of HRU1 79000 m2  No Field observations 

and DEM 

Surface area of HRU2 1000 m2  No Field observation 

and DEM 

Soil module name in CRHM WQ_soil   No  

Infiltration module name in CRHM GreenAmpt   No  

Soil type in GreenAmpt module 5   Yes Adjusted 

Saturated K in GreenAmpt module  6 mm h-1  Yes Adjusted 

Soil wilting point 0.025   Yes Adjusted 

A, in sine function 0.025 mm h-1  Yes Adjusted 

B, in sine function -0.005 mm h-1  Yes Adjusted 

Dd, in sine function 15 d  Yes Adjusted 

f2012,2 (Seasonal factor, sine function) 2.0   Yes Adjusted 

f2015,2 (Seasonal factor, sine function) 1.8   Yes Adjusted 

f2016,2 (Seasonal factor, sine function) 2   Yes Adjusted 
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f2017,2 (Seasonal factor, sine function) 1.4   Yes Adjusted 

𝑓𝑦,𝑖   1   No By default for 𝑦 =

2012 𝑡𝑜 2017  

and  𝑖 = 1, 2 

 434 

  435 

 436 

 437 

Figure 3.  a) Schematic conceptual view of the CRHM model configuration, including soil layers, saturated storage (SS), 438 

groundwater, and tile flow.; and b) soil profile, including the capillary fringe and its location relative to the soil and tile. 439 

 440 

3. Results  441 

A multi-variable, multi-metric model evaluation approach was deployed to verify the capacity of 442 

the model to predict not only tile flow but also the effects it has on the local hydrology, from 443 

surface to sub-surface processes. The outflows examined were tile flow (Section 3.1), saturated 444 

storage (Section 3.2), and surface flow (Section 3.3). The multi-metric approach contemplated five 445 
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different methods, namely the Nash-Sutcliffe efficiency (NSE), Root-Mean-Square Error (RMSE), 446 

Model Bias (Bias), Percentage Bias (Pbias), and RMSE-observation standard deviation ratio 447 

(RSR).  448 

3.1 Tile flow 449 

The model was able to capture most tile flow events, both in terms of the timing and magnitude of 450 

peak flows and the most important seasonal patterns (Fig. 4). For example, the near absence of 451 

flow during the growing season (May to September) was captured. The simulated flow peaks 452 

generally had a good agreement with observations, as well as the low flow or base flows during 453 

cold periods (December-March). The ascending and descending limbs of the response signal were 454 

also adequately predicted. 455 

 456 

Results show that tile flows generally occurred during snowmelt events, as indicated by the 457 

synchrony between snow water equivalent (SWE) depletion and tile flow. The maximum 458 

snowpacks (or snow water equivalent, SWE) were markedly smaller during the winters of 2016 459 

and 2017 when compared with those of 2013 to 2015. However, this did not necessarily translate 460 

into lower tile flows as precipitation also occurred as rain during these seasons.  Although peak 461 

tile drainage flow was not always predicted accurately, the model was able to capture the annual 462 

trends of both an absence of tile flow during the summer months (growing season) and the 463 

ascending and descending limbs of the tile hydrograph during events (Figure 4).  464 
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 465 

a) 466 

 467 

b) 468 

Figure 4. Comparison between observed and simulated tile flows, simulated SWE (snow water equivalent), and observed air 469 

temperature in the LON site, between October 2011 to January 2018 (a) and between November 2014 to April 2016 (b). 470 

 471 

3.2 Soil saturated storage 472 

Simulated and observed soil saturated storage are compared in Fig. 5, alongside air temperature 473 

and precipitation observations. Despite the gaps in the observational record during two periodic 474 

equipment failures, the model agrees well with observations. Above tile drains, fluctuations in 475 

saturated storage were controlled by infiltration/recharge, tile flow, groundwater flow, and matric 476 

potential that affect the drainable water from the capillary fringe. This caused flashier storage 477 
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responses above the tile that were captured well by the model.  In contrast, tiles did not withdraw 478 

water from the soil layer below the tile pipe and thus did not control fluctuations in saturated 479 

storage when levels were below the drain pipe, and tile drains did not flow during such periods.  480 

During the growing season, both the observed and simulated saturated storage dropped abruptly 481 

because of the seasonal lowering of the regional groundwater water table. In the growing seasons 482 

of 2012, 2015 and 2016, which were dry years, large declines in saturated storage were observed, 483 

whereas in wetter years such as 2013 and 2014, seasonal saturated storage declines were smaller. 484 

The seasonal declines in saturated storage during the growing season led to a cessation in tile flow 485 

in most years (Fig. 4, 5), even following rainfall events. For example, there was a large 486 

precipitation event (~35 mm) in the growing season of 2016 that did not produce tile flow (apparent 487 

in both model and observations).    488 

 489 

Figure 5. Time series of the simulated and observed saturated storage in the soil or groundwater layers of the model along with the 490 

observed temperature and precipitation.  491 

 492 

3.3 Surface flow and total flow 493 

The model was not always able to capture the observed surface flow as satisfactorily as it captured 494 

tile drainage (Fig. 6a). Some possible reasons are uncertainties in the measurements of surface 495 

flow due to ponding in surface depressions on the field, which impeded the drainage of some of 496 
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the surface runoff prior to exiting the field through the culvert (see Fig. 1), or uncertainty in field 497 

estimates of SWE. However, the model performance improved considerably when both runoff and 498 

tile flow were combined (referred to as total flow, Fig. 6b). Indeed, most of the flow from the field 499 

was through tile drains (80% in 5-year average) rather than surface runoff (20% in 5-year average, 500 

Plach et al., 2019). The underestimation of both cumulative total and surface flows during 2017 501 

and 2018 is possibly due to the removal of the blockage in the tile pipe in early 2017, which may 502 

have affected both surface and tile flow. The differences in timing of the simulated and observed 503 

surface flow for many of the main events (Figure 6) shows that there remain systematic issues in 504 

simulation of surface flow by CRHM which should be addressed in future research. 505 

 

(a) 

 

(b) 

Figure 6. Observed and simulated cumulative surface flow (a) and total flow (b). 506 

 507 

3.4 Overall model performance 508 

The model performance was calculated based on hourly data for various model outputs (Table 2). 509 

To compare the performance of the model in different seasons we calculated the coefficient for 510 

entire year as well as separately for the growing and non-growing seasons. The results confirm 511 

that the model is robust over an annual cycle in the sense that it can capture the main patterns of 512 

tile flow, surface flow, and saturated storage. The Pbias values are below 25% for most of the 513 
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fluxes and cumulative fluxes. The RSR values are also generally below 1.0. The NSE values are 514 

positive and above 0.3 for most fluxes, except for surface flow, where the model exhibited some 515 

difficulties. The weaker performance of the model in the simulation of surface flow, which is 516 

illustrated by the NSE coefficient, can be partly related to difficulties in measurement of surface 517 

flow during flooding, ponding, and freeze-thaw on the surface. The performance coefficients were 518 

calculated for the growing season, May-September (Table 2b) and non-growing season, October-519 

April (Table 2c). The results shows that surface flow biases are significantly larger and negative 520 

in May-September and are smaller and positive during October-April. For tile flow the biases are 521 

slightly higher in May-September whereas for saturated storage and total flow the biases are 522 

slightly lower in May-September. The NSEs are more acceptable in October to April for surface 523 

flow, tile flow and total flow, but the NSE for SS is more acceptable in May-September. The 524 

overall performance of the model for both tile and surface flow is more reliable in the non-growing 525 

season, when the regional water table was above the tile and saturated storage fluctuations were 526 

mainly controlled by tile flow rather than regional groundwater oscillations. 527 

 528 

Table 2. Performance coefficients for surface flow, tile flow and saturated storage (SS), as well as total (tile + surface) flow, for 529 

the simulation period of October 2011 to January 2018. The coefficients were calculated for both hourly and daily flow rates, for 530 

the whole year (a) for May to September (b) and for October to April (c). (Green and red color show the seasonal coefficients 531 

improved and worsened, respectively, compared to their seasonal values).  532 

a) Coefficients for whole year 533 

Performance 

coefficients 

Surface 

flow  

Tile flow  SS Total  

flow  

 

NSE* -2.29 0.31 0.49 -1.38 C
o
efficien

ts 

calcu
lated

 
fo

r 

h
o
u

rly
 

flo
w

 
rates 

(m
m

 h
-1) 

RMSE^ 0.27 0.08 0.26 0.30 

Bias# 0.54 0.24 0.14 0.28 

Pbias$ 21.77 17.91 10.46 18.63 
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RSR& 1.82 0.83 0.71 1.54 

NSE -0.73 0.29 0.50 0.01 C
o
efficien

ts 
calcu

lated
 

fo
r d

aily
 flo

w
 rates  

(m
m

 d
-1) 

RMSE 2.04 1.72 0.24 2.92 

Bias 0.35 0.20 0.09 0.22 

Pbias 35.11 19.63 9.33 21.73 

RSR 1.31 0.84 0.70 0.99 
 534 

 535 

b) coefficients for May to September 536 
Performance 

coefficients 
Surface 

flow  
Tile flow  SS Total  

flow  
 

NSE* -18.98 0.19 0.40 -11.76 C
o
efficien

ts 
calcu

lated
 

fo
r 

h
o

u
rly

 
flo

w
 

rates 

(m
m

 h
-1) 

RMSE^ 0.26 0.03 0.12 0.26 

Bias# -1.43 0.49 0.03 0.11 

Pbias$ -142.79 48.88 3.44 10.96 

RSR& 2.85 0.57 0.39 2.27 

NSE -3.89 0.21 0.41 -1.08 C
o
efficien

ts 
calcu

lated
 

fo
r d

aily
 flo

w
 rates  

(m
m

 d
-1) 

RMSE 1.39 0.73 0.11 1.66 

Bias -1.43 0.49 0.02 0.11 

Pbias -142.79 48.88 2.07 10.96 

RSR 1.41 0.56 0.39 0.92 

 537 

c) coefficients for October to April 538 
Performance 

coefficients 

Surface 

flow  

Tile flow  SS Total  

flow  

 

NSE* -0.37 0.24 0.20 -0.04 C
o
efficien

ts 
calcu

lated
 

fo
r 

h
o

u
rly

 
flo

w
 

rates 

(m
m

 h
-1) 

RMSE^ 0.11 0.07 0.21 0.14 

Bias# 0.87 0.14 0.11 0.24 

Pbias$ 86.59 13.56 11.00 24.11 

RSR& 0.90 0.67 0.77 0.79 

NSE -0.11 0.26 0.24 0.18 C
o
efficien

ts 

calcu
lated

 
fo

r 

d
aily

 flo
w

 rates  

(m
m

 d
-1) 

RMSE 1.50 1.56 0.21 2.40 

Bias 0.87 0.14 0.11 0.24 

Pbias 86.59 13.56 10.58 24.11 



 29 

RSR 0.81 0.67 0.75 0.70 

 539 

 540 

 541 

 542 

* Nash-Sutcliffe efficiency, ^Root-Mean-Square Error, #Model Bias, $Percentage Bias, &RMSE-observation standard deviation ratio 543 

 544 

3.5 Presence of capillary fringe: effects and hypotheses 545 

Results show that the thickness and vertical positioning of the capillary fringe had a strong impact 546 

on the amount of drainable soil water that flowed into the tiles. To investigate this effect further, 547 

the response of tile flow and soil moisture to changes in the capillary fringe was examined. It 548 

should be noted that although this thickness may change slightly depending on the soil type and 549 

water retention curves (Skaggs et al., 1978), the model assumed a constant value given the field-550 

scale nature of the simulations and myriad of processes contemplated. However, despite the 551 

simplification, the vertical positioning of the capillary fringe was still calculated and enabled a 552 

dynamic (time-dependent) calculation of the drainable soil water that was available for tile 553 

drainage over time.  554 

 555 

Effect of capillary fringe on tile flow 556 

Figure 7a relates the simulated normalized total cumulative tile flow (𝑄𝑡𝑅 , total tile flow divided 557 

by the total tile flow when there is no influence of capillary fringe) to capillary fringe drainable 558 

water (𝜑𝑐𝑅 = 𝜑𝑐/𝜑𝑠 ) for two different 𝜑𝑠 values (0.045 and 0.125). The values were normalized 559 

(0 – 1 scale) for comparison purposes. As expected, the model indicates that tile flow increases 560 

with drainable water, but the relationship is non-linear, likely because as tile carrying capacity is 561 
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exceeded more frequently, there is more opportunity for groundwater seepage and 562 

evapotranspiration. The direct effect of 𝜑𝑠 (comparing the solid and dashed lines) on tile flow is 563 

small because the amount of water that can effectively drain to the tile is controlled by the capillary 564 

fringe and the associated drainable soil water. Figure 7b looks at the impact of the capillary fringe 565 

thickness on tile flow. Here, the values are also normalized. Results show that 𝑄𝑡𝑅 decreases with 566 

increasing normalized thickness of the capillary fringe, 𝑇𝐶𝐹𝑅 (
𝑇𝐶𝐹

𝐷𝑡
 , capillary fringe thickness 567 

divided by tile depth), but only while the 𝑇𝐶𝐹𝑅 is less than 1 that is when the capillary fringe 568 

position is above the tile but has not reached the soil surface. Beyond this point, increments in the 569 

capillary fringe thickness have no impact on tile flow because Condition 1 has been reached (see 570 

Fig. 2), which essentially means that the capillary fringe has reached the soil surface. The match 571 

between the curves for two different 𝜑𝑠 values shows that the changes in 𝜑𝑠 does not influence the 572 

effect of normalized capillary fringe thickness and drainable water on normalized tile flow. In 573 

Appendix D the sensitivity of cumulative tile flow and mean saturated storage to different 574 

parameters are shown along with general approaches for evaluation of the model parameters for 575 

new sites, the site with no tile flow and water table observations. 576 

 

a) 

 

b) 

Figure 7. Comparison between normalized tile flow (𝑄𝑡𝑅) and (a) normalized drainable soil water (𝜑𝑐/𝜑𝑠) and (b) capillary fringe 577 

thickness (𝑇𝐶𝐹𝑅) for different maximum soil saturation values (𝜑𝑠), by drawing the model prediction lines. 578 
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 579 

Effect of capillary fringe on soil moisture 580 

Observations and simulations of saturated storage reveal a bimodal frequency distribution (Fig.  8 581 

and 9, respectively) with peaks at 0.85 m and 1.25 m depth, with the former corresponding to the 582 

influence of the tile pipe and the second peak reflecting that from the capillary fringe. I simulated 583 

soil saturated storage frequency distributions (Fig. 9), show a first peak that highlights the 584 

efficiency of the tile in removing soil moisture. In contrast, the second peak indicates a strong 585 

model response to differences in the capillary fringe thickness. It shows that when there is near-586 

constant percolation from the bottom of the soil layer, the matric potential varies the greatest while 587 

it remains between the tile depth and the soil surface. While the saturated storage fluctuates faster 588 

and is more unstable within this range, it also remains there for shorter periods. This bimodal 589 

response tends to push the saturated storage layer  below the tile. In Figure 9, the first peak happens 590 

at 0.9 m depth where the tile pipe is located, and the second peak happens at the depth equal to 591 

capillary fringe thickness. In Figure 9 the second peak is clearer for the capillary fringe thickness 592 

of more than 1000 mm. The first peak in the observed saturated storage frequency plot (Figure 8) 593 

happened around 0.8 m which almost matches with the tile depth. And the second peak happened 594 

at the depth of ~1.2 m which shows that the capillary fringe thickness should be around 1.2 m. 595 

But, to have a more reliable estimate for the capillary fringe, based on Figure 8, data is needed at 596 

depths greater than 1.5 m. 597 

 598 

The bimodal behaviour of the observed  and simulated saturated storage  demonstrated here 599 

provides the opportunity to quantify the thickness of the capillary fringe using continuously 600 

monitored saturated storage. The capillary fringe thickness determined using this method can then 601 

be used as an input to the TDM module.     602 
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 603 

Figure 8. Histogram of the observed saturated storage distribution for the period pf 2011 to 2018 in LON (Londesborough). 604 

 605 
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 606 

Figure 9. Histograms of the simulated soil saturated storages versus saturated storage depth  for the capillary fringe thicknesses of 607 

0 (a,b), 400 (c,d), 800 (e,f), 1000 (g,h) and 1400 (I, j) mm and for the 𝜑𝑠 and 𝜑𝑐 of 0.125 and 0.025 (left column)as well as 0.045 608 

and 0.009 (right column). 609 

 610 
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4. Discussion 611 

 612 

4.1 Insights into key control mechanisms of tile flow for model simulations 613 

The model suggests that tile flow may not be accurately predicted exclusively based on the soil’s 614 

saturated storage and saturated hydraulic conductivity as suggested by the steady-state flow 615 

assumptions of the Hooghoudt’s equation (Hooghoudt, 1940). These results indicate two 616 

additional controls: (1) the amount of drainable soil water in the soil, which has also been identified 617 

in some field studies (e.g., Skaggs et al., 1978; Moriasi et al., 2013) and (2) fluctuations in saturated 618 

storage are important to account for in simulations. However, the relationship between drainable 619 

water and tile flow rates is non-linear, as demonstrated in Fig. 7a. This is because the residence 620 

time for groundwater seepage and evapotranspiration increases when the hydraulic tile carrying 621 

capacity is exceeded. Comparatively, the effect of soil drainable water, 𝜑𝑠 (see also Fig. 7a) on tile 622 

flow is small because the capillary fringe and associated drainable soil water control the amount 623 

of water that can effectively flow to the tile. 624 

 625 

The verification of the model also indicated that the slopes of the rising and falling limbs of tile 626 

flow hydrographs and saturated storage  were very sensitive to (1) the ratio between 𝐾𝑠 and 627 

drainable soil water; and (2) the net outflow in the soil through tile flow and fluctuations in 628 

saturated storage.  This is supported by previous studies showing rapid responses of tile flow to 629 

precipitation events (Gentry et al., 2007; Smith et al., 2015) and others that have related rapid 630 

responses in tile discharge to antecedent moisture conditions (Macrae et al., 2007; Vidon and 631 

Cuadra, 2010; Lam et al., 2016a; Macrae et al., 2019), which can be affected by the development 632 

of a capillary fringe and its non-drainable water. 633 
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 634 

Results show that large fluctuations in saturated storage and tile flow during the cold season, when 635 

the water table tends to be above the tile, are primarily triggered by the development of a capillary 636 

fringe that reduces the amount of drainable soil water. Model sensitivity tests showed that a small 637 

amount of drainable soil water produces steeper rising and falling responses (and with larger 638 

fluctuation amplitudes) in both the saturated storage and the tile flow. Indeed, this pattern can be 639 

observed by exploring differences in tile drain responses in clay loam soils with larger field 640 

capacities (and correspondingly smaller drainable water) and smaller hydraulic conductivity which 641 

are more likely to experience pronounced oscillations (e.g., steeper rising and falling response 642 

curves) compared to tile drain responses of sandy soil, which is characterized by reduced capillary 643 

forces, lower field capacities (but correspondingly larger drainable water) and higher hydraulic 644 

conductivity. Notably, both model and observations of saturated storage reveal a bimodal (i.e., two 645 

peaks) frequency distribution when examined in relation to the tile depth and capillary fringe 646 

thickness (Fig.  8 and 9, respectively). The two peaks (i.e. most frequently observed saturated 647 

storage correspond with the (1) depth of the tile pipe (0.75 m), which demonstrates the efficacy of 648 

the tile at rapidly removing excess soil water, and the (2) the capillary fringe thickness (for the 649 

depths of 1.0 and 1.4 m, Figs. G, h, I and j) beyond which the amount of drainable water above the 650 

water table significantly increases. 651 

 652 

These findings align well with studies such as Lam et al. (2016a) that recorded soil moisture near 653 

saturation after tile flow had ceased, suggesting the development of a capillary fringe. Combined 654 

experimental and modeling works, such as in Moriasi et al. (2013) and Logsdon et al. (2010), also 655 

discuss the impact of drainable soil water (“drainable porosity” or “specific water yield”) on tile 656 
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flow and note that the drainable water is, in turn, dependent on the soil type, soil-water dynamic 657 

and water table depth. However, these studies did not explore the dynamic nature of the capillary 658 

fringe and its thickness relative to the soil column above in determining the transient amount of 659 

drainage soil water that will impact the saturated storage frequency  distribution and tile flow 660 

differently over time (Conditions 1 to 3, see Fig. 2). Herein, while a capillary fringe with a fixed 661 

thickness that is generally related to the soil properties was assumed, its vertical positioning was 662 

simulated dynamically, which allowed determining the drainable soil water based on the evolution 663 

of pressure head corresponding to field capacity.  Thus, the development of the TDM has provided 664 

a step forward in the modeling of tile drainage and suggests that in loam soils such as those at the 665 

study site, the effects of a capillary fringe on tile flow should be included. Soil moisture (soil 666 

unsaturated storage) measurements from the study site by Van Esbroeck et al., (2017) between 667 

November 2011 and May 2014 from depths of 10, 30, and 50 cm (using EC-5 Soil Moisture Smart 668 

Sensor) showed that almost 90% of the gravitational soil moisture drains out with 0.5 to 2.5 h. 669 

This suggests that the saturated storage and capillary fringe can reach an equilibrium condition 670 

within one hour at this field site, enabling the use of a steady state equation (Hooghoudt, 1940) to 671 

predict the dynamic behaviour of the water table fluctuations.  672 

 673 

4.2 Importance of capturing seasonal patterns in saturated storage to improve tile flow 674 

predictions 675 

The saturated storage changed dramatically between seasons affecting soil moisture (both 676 

saturated and unsaturated storage in the soil) and tile flow patterns. Both observations and model 677 

results show that low precipitation and higher evapotranspiration rates tend to produce little tile 678 

flow during the growing season. These seasonal patterns in precipitation and evapotranspiration 679 
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are accompanied by a reduction in soil moisture (both unsaturated and saturated) that leads to a 680 

substantial storage capacity in fields. Even following moderate and high-intensity storms during 681 

the growing season, rapid soil moisture increases were observed (both saturated and unsaturated 682 

soil storage); however, tile flow rarely developed due to higher evapotranspiration and a seasonal 683 

decrease in the saturated storage , suggesting that the soil is able to hold the water (Lam et al., 684 

2016a; Van Esbroeck et al., 2016). In contrast, tile flow was often observed during the cold season, 685 

with significantly smaller evapotranspiration fluxes, even during smaller rainfall-runoff and 686 

snowmelt events because of reduced soil storage but also a seasonal increase in regional 687 

groundwater table (Lam et al., 2016a; Macrae et al., 2007, 2019; Van Esbroeck et al., 2016). This 688 

concurs with several studies throughout the Great Lakes and St. Lawrence region that have 689 

reported stronger tile responses during the non-growing season, with the summer months often 690 

showing little to no tile flow (Lam et al., 2016a, 2016b; Jamieson et al., 2003; Macrae et al., 2007; 691 

Hirt et al., 2011; King et al., 2016; Van Esbroeck et al., 2016; Plach et al., 2019). 692 

These results (the controlling effect of soil drainable water and saturated storage 693 

fluctuations on tile flow) suggest that while soil moisture (both saturated and unsaturated storage) 694 

is largely controlled by tile flow rather than saturated storage in the cold season, this reverses in 695 

the growing season (i.e., soil moisture controls tile flow), with soil moisture (both saturated and 696 

unsaturated storage) being also impacted by evapotranspiration. The controlling effect of 697 

groundwater fluctuations in the growing season has also been studied by Hansen et al., (2019). 698 

The model indicated that the rapid drops in observed saturated storage during the growing season 699 

could not be explained by evapotranspiration alone, thus pointing to the role of saturated storage.  700 

Johnsen et al. (1995) and Akis (2016) also showed that the effect of groundwater accretion was 701 

more effective on tile flows than surface runoff. Also, Vaughan et al. (1999) found that tile drain 702 
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flows in their study site in San Joaquin Valley of California were better explained and related to 703 

nonlocal groundwater appearance than to local variations in irrigation amount, evapotranspiration, 704 

variation in water storage or tile drain blockage. Thus, it was determined that in addition to soil 705 

saturated hydraulic conductivity and soil thickness, the seasonal fluctuations in saturated storage 706 

and capillary fringe drainable water are other important controlling factors on tile flow rates.  707 

 708 

5. Conclusions 709 

A new tile drain module within the modular Cold Regions Hydrological Modelling (CRHM) 710 

platform has been created and tested at the field scale to support the management of agricultural 711 

basins with seasonal snow covers. The model was tested and validated for a small working farm 712 

in southern Ontario, Canada, and presents a step forward in the dynamic simulation of tile flow 713 

and its effects on the hydrological cycle in cold climates. Observations and model results showed 714 

that the dynamic prediction of tile flow and soil moisture at catchment scales needs to account for 715 

(1) the amount of drainable soil water that can be affected by the development of a capillary fringe 716 

and (2) fluctuations in saturated storage, in addition to (3) the typical saturated storage near the tile 717 

pipe depth,   and (4) the soil saturated hydraulic conductivity considered by the steady-state flow 718 

Hooghoudt’s equation. The saturated storage and matric potential changed dramatically between 719 

seasons, affecting patterns of overall soil moisture and tile flow. Observations and model results 720 

showed that low precipitation and higher evapotranspiration rates caused minimal tile flows during 721 

the crop-growing season. Conversely, tile flow was often observed during the cold season, even 722 

during small rainfall-runoff and snowmelt events, due to a seasonal increase in soil-saturated 723 

storage.  724 
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Model sensitivity tests showed that the capillary fringe strongly affected the amount of drainable 725 

soil water flowing into the tile. Tile flow increased with drainable water, but the relationship is 726 

highly non-linear likely because, as the tile carrying capacity is exceeded more frequently, there is 727 

more opportunity time for groundwater seepage and evapotranspiration. Finally, observations and 728 

model results reveal a bimodal saturated storage response in the presence of tiles, which is 729 

controlled by the relative positioning of the capillary fringe in relation to the soil surface and the 730 

depth of tile drains below the soil surface. Capturing these dynamics is a critical advance enabling 731 

the accurate prediction of the swift hydrological changes caused by the presence of tiles in models. 732 

The TDM was developed as a first approximation from a single field site with the goal of providing 733 

insight into control mechanisms of tile flow. Given this limitation, it is not yet widely applicable 734 

across multiple field sites and for larger areas. Yet, the development of this module provides 735 

critical insights into its potential and performance for hourly time-step simulations, as well as the 736 

importance of saturated storage fluctuations and simplifying the capillary fringe parameters within 737 

models in some landscape type. Future work should build on the current model adapting it to 738 

different soil textures, such as those in clay loam soils, where preferential flow can have a strong 739 

impact on -saturated storage and tile flow. Also, explicit representation of unsaturated flow may 740 

be needed to enable the use of the model in regions where groundwater is disconnected from 741 

surface water, as commonly happens in arid and semi-arid regions. Subsequent steps should 742 

include also the integration of the new TDM model with CRHM’s frozen soil and water quality 743 

modules. 744 

 745 

Code/Data availability 746 
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The tile flow and soil water table data are not publicly available and will be provided upon request 747 

to the data owner, Merrin Macrae. TDM code is not completely implemented in the main version 748 

of the Cold Regions Hydrological Model platform and is provided upon request to the 749 

corresponding author. 750 
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(Silicon Pyranometer)-S-LIB-M003 Solar radiation sensor 

Tipping bucketrain gauge, 0.2 mm Rainfall 

Smart Sensor – SRGB-M002 

Rainfall measurement 

RH Smart Sensor(S-THB-M002) Relative Humidity measurement 
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Appendix B 1210 

Table B1. Parameter names and their symbols in CRHM platform 1211 

Parameter symbol Parameter name 

Tair Air temperature 

Wspeed Wind speed 

RH Relative Humidity 

Qsi Incoming solar irradiance 

R Rainfall 

WQ_soil Water Quality soil module 

WT Water table elevation above the semipermeable layer 

SS Soil saturated storage or the saturated part of the soil moisture 

soil_moist Soil moisture 

Poro_soil Soil porosity 

AL Above layer 

BL Below layer 

𝐾𝑠 Saturated hydraulic conductivity 
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 1212 

 1213 

 1214 

Appendix C 1215 

 1216 

Here, it was shown how seasonal factors (𝑓𝑦,𝑖) is assessed for different years. Equation (4) can be 1217 

written as: 1218 

 1219 

𝐺𝑦,𝑖 = 𝐺 × 𝑓𝑦,𝑖         (C1) 1220 

 1221 

For each year (𝑦), 𝑓𝑦,𝑖 for the first (𝑓𝑦,1) and second (𝑓𝑦,2) part of the sine function (𝐺) were 1222 

assessed individually. It should be note that in first and second part of the sine function for each 1223 

year  G is larger than zero (𝐺 ≥ 0) and smaller than zero (𝐺 < 0),  respectively. 𝐺 can be defined 1224 

for the two parts as: 1225 

 1226 

{
𝑖𝑓 𝐺 ≥ 0  [𝑖 = 1 ]𝑡ℎ𝑒𝑛 𝑓𝑦,1 = 𝑥

𝑖𝑓 𝐺 < 0  [𝑖 = 2 ]𝑡ℎ𝑒𝑛 𝑓𝑦,2 = 𝑦
      (C-2) 1227 

 1228 

𝐺 is the sine function representing the annual fluctuations in saturated storage (SS) or it can be 1229 

simply defined as the percolation rate (in  mm hr-1) of soil water to groundwater through lower 1230 

semi-permeable layer. So, for 𝑛 years there are 𝑛 × 2 𝑓𝑦,𝑖 values. The default values for 𝑓𝑦,𝑖 are 1 1231 

and the default values can be changed for each year and for first and second parts in each year 1232 

independently. Calculated 𝐺𝑦,𝑖 in each time step add or subtracted to or from the total soil moisture 1233 
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depend on its sign. The 𝑓𝑦,𝑖 values for the sine function parameters are presented in Fig. C1. The 1234 

verified sine function time series along with time series of temperature, precipitation and 1235 

calculated evapotranspiration are shown in Fig. C1. In this figure it is obvious that in years 2012 1236 

and 2015 to 2017 the warm season amplitudes are larger. The ET values are happened more in the 1237 

warm seasons (growing seasons). Also, the seasonal oscillation in sine function is very similar to 1238 

the temperature general oscillations.  1239 

 1240 

Figure C1. Time series of the adjustable sine function along with the time serioes of calculated evapotranspiration, temperature and 1241 

precipitation during the study period from Oct 2011 to Sept 2018. 1242 

 1243 

 1244 

Appendix D 1245 

A sensitivity analysis was conducted for the cumulative tile flow (𝑄𝑡𝑐), mean soil saturated storage 1246 

(𝑆𝑆) (it is equal to water table elevation, 𝑊𝑇 ,  as it is mentioned in Eq. 3) and cumulative outflow 1247 

rate from the semi-permeable layer at the bottom of the soil to groundwater (𝐺𝑐) (see section 2.4.5, 1248 

Eq. 4) with respect to six module parameters. Additionally, an approach for assessing model 1249 

parameters at a new sites, potentially lacking water table elevation and tile flow observations is 1250 

proposed.  1251 
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 1252 

D.1 Sensitivity analysis 1253 

In this section, the sensitivity of 𝑄𝑡𝑐, 𝑆𝑆 and 𝐺𝑐 to six distinct module parameters, namely capillary 1254 

fringe thickness (𝑇𝐶𝐹), capillary fringe drainable water (𝜑𝑐), soil saturated hydraulic conductivity 1255 

(𝐾), soil thickness (𝑇𝑆𝐿), sine function amplitude (𝐴) and sine function (𝐵) was examined. 𝑄𝑡𝑐, 𝐺𝑐 1256 

and 𝑆𝑆 were computed over the entire simulation period, expressed in units of mm, mm and m, 1257 

respectively. Figures D-1a to f illustrate these sensitivities, with each parameter’s impact discussed 1258 

in dedicated sections. 1259 

 1260 

a)                                                                             b) 1261 

 1262 

c)                                                                                    d) 1263 
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 1264 

                                e)                                                                                   f) 1265 

Figure D-1 Sensitivity of cumulative tile flow, 𝑄𝑡𝑐, cumulative soil to groundwater percolation rate, 𝐺𝑐, and mean soil saturated 1266 

storage elevation, 𝑆𝑆, to capillary fringe thickness, 𝑇𝐶𝐹 (a) capillary fringe drainable water, 𝜑𝑐 (b), soil hydraulic conductivity, 1267 

𝐾 (c), soil thickness, 𝑇𝑆𝐿 (d), sine function amplitude, 𝐴 (e )  and sine function intercept, 𝐵 (f). 1268 

 1269 

D.1.1 Sensitivity to capillary fringe thickness 1270 

To gauge sensitivity to capillary fringe thickness 𝑇𝐶𝐹, flow rates and the 𝑆𝑆 were analyzed for 𝑇𝐶𝐹 1271 

ranging 0 to 1600 mm. Figure D-1a indicates that as 𝑇𝐶𝐹 increases, both cumulative tile flow (𝑄𝑡𝑐) 1272 

and mean soil saturated storage (𝑆𝑆) decline. The 𝑆𝑆 drop is sharper for 𝑇𝐶𝐹 beyond 900 mm. 1273 

Beyond this thickness, 𝑄𝑡𝑐 stabilizes at a minimal value. A negative 𝑆𝑆 indicates its position below 1274 

the tile pipe. 𝐺𝑐 remains consistent despite 𝑇𝐶𝐹 variations.   1275 

 1276 

D.1.2 Sensitivity to capillary fringe drainable water 1277 

With rising 𝜑𝑐 both 𝑄𝑡𝑐 and 𝑆𝑆 surge (Figure D-1b). As 𝜑𝑐 ascends from 0.005 to 0.45, 𝑄𝑡𝑐 jumps 1278 

from 1300 mm to 1900 mm and 𝑆𝑆 from -0.45 m to -0.25 m (Figure D-1b). 𝐺𝑐 stays constant, 1279 

irrespective of 𝜑𝑐 fluctuations.  1280 

 1281 

D.1.3 Sensitivity to soil hydraulic conductivity 1282 
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Increasing soil hydraulic conductivity (𝐾) from 0 to 10 mm hr-1leads to a surge in 𝑄𝑡𝑐 and a drop 1283 

in 𝑆𝑆 (Figure D-1c). However, adjusting 𝐾 from 10 to 50 mm hr-1 results in leveling off slopes for 1284 

𝑄𝑡𝑐 and 𝑆𝑆, especially when 𝐾> 20mm hr-1. Both metrics are acutely responsive to 𝐾 when 𝐾 is 1285 

below 10 mm hr-1 but become non-responsive beyond 20mm hr-1. 𝐺𝑐’s response to 𝐾 remains 1286 

neutral.   1287 

 1288 

D.1.4 Sensitivity to soil thickness 1289 

Similar to 𝐾, a rise in 𝑇𝑆𝐿 from 1500mm to 15000 mm cause 𝑄𝑡𝑐 to rise and 𝑆𝑆 to decline (Figure 1290 

D-1d). The most significant rate of change for both metrics occurs between 1500 to 5000 mm 𝑇𝑆𝐿. 1291 

Beyond 5000 mm, changes flatten. 𝐺𝑐 shows no response to 𝑇𝑆𝐿variations. 1292 

 1293 

D.1.5 Sensitivity to sine function amplitude 1294 

Increasing the sine function amplitude, 𝐴, from -0.03 to 0 mm hr-1 pushes both 𝑄𝑡𝑐 and 𝑆𝑆 increase 1295 

and reach to their maximum at 𝐴=0 (Figure D-1e). But as 𝐴 rises from 0 to 0.06 mm hr-1, they both 1296 

decline. In contrast, 𝐺𝑐 descends to its lowest (400 mm) when 𝐴 shifts from -0.03 to 0 and then 1297 

increases to 900 mm as 𝐴 hits 0.063.  1298 

 1299 

D.1.6 Sensitivity to sine function intercept 1300 

Both 𝑄𝑡𝑐 and 𝑆𝑆 ascend with the growth in sine function’s intercept, 𝐵. Increasing 𝐵 from -0.015 1301 

to 0.005 mm hr-1sees 𝐺𝑐 descend. During this 𝐵 increase, 𝑄𝑡𝑐 expands from 1100 to 2400 mm, 1302 

while 𝐺𝑐 shrinks from 1400 to 0 mm. It seems the sum of 𝑄𝑡𝑐 and 𝐺𝑐 might be constant. This 1303 

suggests that water either drains through the tile pipe or percolates through the soil bottom. 1304 

𝑄𝑡𝑐, and 𝑆𝑆 appear sensitive to all six module parameters, but 𝐺𝑐 only to 𝐴 and 𝐵.  1305 
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  1306 

D.2 Module parameter evaluation for new sites 1307 

As discussed in section 2.5, initial values for 𝐾, 𝑇𝐶𝐹 and 𝜑𝑐 can be determined by soil grain-size 1308 

distribution. Parameters less explored in past research for new sites include the sine function’s 1309 

amplitude (𝐴), intercept (𝐵), and time delay (𝐷𝑑).  1310 

 1311 

D.2.1 Evaluating sine function’s A and B  1312 

If no percolation exists from the soil’s bottom to groundwater and 𝐺𝑦,𝑖 is zero, both 𝐴 and 𝐵 should 1313 

be zero. However, if percolation or interactions between soil and groundwater occurs, 𝐴 and 𝐵 1314 

need calibration assessment. Before this, reasonable initial values and bounds must be set. 1315 

From this study’s findings, 𝐴 and 𝐵 should fall between the mean hourly difference of infiltration 1316 

and observed tile flow rates. For instance, observed hourly rates for infiltration and tile flow at our 1317 

site are 0.07 and 0.03 mm hr-1. Thus, 𝐴’s and 𝐵’s initial values should range from -0.04 to 0.04 1318 

mm hr-1. Negative 𝐴 and 𝐵 values indicate outflow from soil to groundwater and vice versa. Initial 1319 

values were set at 10% of the range limits: -0.004 for 𝐵 and 0.004 for 𝐴. Eventually, 𝐵 and 𝐴 were 1320 

adjusted to -0.005 and 0.025 mm hr-1. 1321 

 1322 

D.2.2 Assessment of sine function’s time delay 1323 

The sine function begins on the first Julian day. If its peak occurs around 91st Julian day ( three 1324 

months later), its minimum should be on the 274th day. If the peak comes later, say the 111th day, 1325 

a 20-day delay is present. This delay should mirror in both function’s minima and maxima. In this 1326 

case the minimum would be on day 294. This delay aligns with the soil water table’s peak annual 1327 

fluctuations. When no observed fluctuations exist, the delay can be calibrated. A sensible initial 1328 
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delay can be ascertained by examining the study site’s water table elevations, fitting a sine 1329 

function, and noting the peak’s Julian day annually.  1330 


