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Abstract 6 

Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide 7 
valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement 8 
from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing 9 
machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil 10 
movement prediction system. The dataset, comprising two years (2019-2021) of monitoring data from a landslide in 11 
Uttarakhand, was split into a 70:30 ratio for training and testing. To tackle the class imbalance problem, various 12 
oversampling techniques, including Synthetic Minority Oversampling Technique (SMOTE), K-Means SMOTE, Borderline 13 
SMOTE, Support Vector Machine SMOTE, and Adaptive SMOTE (ADASYN), were applied to the dataset. Several ML 14 
models, namely Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Light 15 
GBM), Adaptive Boosting (AdaBoost), Category Boosting (CatBoost), Long Short-Term Memory (LSTM), Multilayer 16 
Perceptron (MLP), and dynamic ensemble models, were trained and compared for soil movement prediction. Among these 17 
models, the dynamic ensemble model with K-Means SMOTE performed the best in testing, with an accuracy, precision, 18 
and recall rate of 99.68% each and an F1-score of 0.9968. The RF model with K-Means SMOTE stood out as the second-19 
best performer, achieving an impressive accuracy, precision, and recall rate of 99.64% each and an F1-score of 0.9964. 20 
These results show that ML models with class imbalance techniques have the potential to significantly improve soil 21 
movement predictions in landslide-prone areas. 22 

Keywords: Soil Movement Prediction; Class Imbalance; Oversampling; Machine Learning; Landslide Prone Areas.  23 

1. Introduction 24 

Landslides pose a significant threat to infrastructure, resulting in numerous fatalities and substantial 25 

economic losses each year (Parkash, 2011). These destructive events occur globally, particularly in hilly and 26 

mountainous regions, driven by gravity and characterized by the movement of large rocks, debris, and soil 27 

(Crosta, 1998). Factors such as heavy rainfall, earthquakes, and the impacts of climate change contribute to the 28 

occurrence and severity of landslides (Crosta, 1998). 29 

Monitoring, predicting, and warning people about slope movements in landslide-prone areas are crucial for 30 

mitigating landslide risks. Advanced technologies like GPS, LIDAR, GIS, and remote sensing have proven 31 

effective for assessing and analyzing slope failure hazards (Ray et al., 2020). However, their high cost and the 32 

need for specialized expertise limit their accessibility, especially in developing countries where cost-effective 33 

IoT technologies are necessary (Pathania et al., 2020). 34 

Machine learning (ML) models have been extensively studied for predicting soil movement in landslide-35 

prone areas (Kumar et al., 2021a; Kumar et al., 2021b). This prediction problem could be divided into 36 

classification and regression tasks. The classification task aims to predict the degree of soil movement using 37 

various ML models. On the other hand, the regression task involves estimating the acceleration or displacement 38 

of soil under observation. 39 

One common challenge in landslide prediction is a class imbalance, where certain classes have significantly 40 

more data samples than others. This imbalance can adversely affect the performance of ML models. To address 41 

class imbalance issues, techniques such as Synthetic Minority Oversampling Technique (SMOTE), K-Means 42 

SMOTE, Support Vector Machine SMOTE (SVM-SMOTE), Borderline SMOTE, and Adaptive Synthetic 43 

Minority Oversampling Technique (ADASYN) are employed to balance the dataset (Chawla et al., 2002; 44 

Douzas et al., 2018; Tang et al., 2008; Han et al., 2005; He et al., 2008). 45 

https://doi.org/10.5194/egusphere-2023-1417
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



2  

 

Several researchers have dedicated their efforts to addressing class imbalance problems in ML. Notably, 46 

Chawla et al. (2002) introduced the SMOTE, Douzas et al. (2018) devised the K-Means SMOTE, Tang et al. 47 

(2008) developed the SVM-SMOTE, Han et al. (2005) proposed the Borderline SMOTE, and He et al. (2008) 48 

introduced the Adaptive Synthetic Minority Oversampling Technique (ADASYN). These techniques were 49 

developed to generate synthetic data and balance imbalanced datasets. 50 

The field of soil movement prediction requires further investigation, particularly considering the complexities 51 

associated with a class imbalance in the datasets. Despite extensive research on ML models' predictive abilities 52 

for soil movement in landslides, there still needs to be more understanding regarding how class imbalance affects 53 

the models' performance and accuracy. This study aims to bridge this knowledge gap by examining different 54 

approaches to tackle class imbalance and exploring diverse ML models to improve the prediction of soil 55 

movement. Various multivariate classification models, including Random Forest (RF), Adaptive Boosting 56 

(AdaBoost), Extreme Gradient Boosting (XGBoost), Light Gradient Boosted Machine (Light GBM), Category 57 

Boosting (CatBoost), Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), and an ensemble of 58 

RF, AdaBoost, XGBoost, Light GBM, and CatBoost are developed to predict soil movement when coupled with 59 

class imbalance techniques (Kumar et al., 2019; Semwal et al., 2022; Wu et al., 2020; Pathania et al., 2021; 60 

Zhang et al., 2022; Sahin, 2022; Kumar et al., 2020). 61 

This study delves into the field of soil movement prediction, making significant advancements by developing 62 

specialized ML models and techniques tailored to this domain. A notable aspect that has received limited 63 

attention in the existing literature is the challenge of class imbalance in landslide datasets. While previous 64 

research has primarily focused on ML models for soil movement prediction, this work addresses the issue of 65 

imbalanced data head-on. Multiple variants of the SMOTE and other balancing strategies are introduced and 66 

implemented to enhance the efficacy and accuracy of the ML models.  67 

Additionally, this research explores using cost-effective Internet of Things (IoT) technologies in developing 68 

regions to improve the investigation and assessment of landslide hazards. The dataset used in this study spans 69 

two years, from June 2019 to June 2021, and was collected by an inexpensive IoT monitoring station in 70 

Uttarakhand, India. This real-world dataset captures the distinctive characteristics and patterns of soil 71 

movements prevalent in the landslide-prone area. By employing a comprehensive methodology, this work 72 

advances soil movement prediction and effectively addresses the challenge of class imbalance. It commences 73 

with a thorough overview of the collected data, emphasizing the measured weather and soil-related factors. 74 

Various SMOTE variants and other balancing techniques are employed to rectify the class imbalance, resulting 75 

in the generation of synthetic samples and ensuring a balanced representation of soil movement classes. The 76 

intricate correlations and patterns in the soil movement data are captured using a variety of ML models, 77 

including RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and a dynamic ensembling of RF, 78 

AdaBoost, XGBoost, and CatBoost. Overall, this study's findings show potential for accurately reducing 79 

landslide risks, increasing the accuracy of landslide prediction, and encouraging the use of cost-effective IoT 80 

technologies in landslide-prone locations. 81 

2. Background 82 

Several techniques have been proposed to address the challenge of learning from imbalanced datasets, where 83 

the classification categories are not evenly represented. For example, Chawla et al. (2002) proposed the SMOTE, 84 

which involves generating synthetic minority class examples to balance the dataset. SMOTE has been shown to 85 

improve model performance compared to only undersampling the majority class. Douzas et al. (2018) 86 

introduced K-Means SMOTE, a method that combines SMOTE with k-means clustering to effectively overcome 87 

imbalances between and within classes without generating unnecessary noise. Tang et al. (2008) modified SVMs 88 

by incorporating different rebalancing heuristics, such as cost-sensitive learning, over-sampling, and 89 

undersampling. Among the variations of SVM, the granular SVMs-repetitive undersampling model (GSVM-90 

RU) has been found to be the most effective and efficient. Additionally, Han et al., (2005) developed a 91 

Borderline SMOTE method that focuses on oversampling only the minority examples near the class boundary. 92 

Experimental results indicate that Borderline SMOTE1 and Borderline SMOTE2 outperform SMOTE and 93 

https://doi.org/10.5194/egusphere-2023-1417
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



  3 

 

random oversampling methods in terms of true positive rate and F-value. Lastly, He et al. (2008) developed the 94 

ADASYN, which addresses class imbalance by generating more synthetic data for minority class examples that 95 

are harder to learn. ADASYN reduces bias and adaptively shifts the classification decision boundary toward 96 

challenging examples. Simulation analyses have demonstrated the effectiveness of ADASYN across various 97 

evaluation metrics. These techniques offer valuable approaches to mitigate the impact of imbalanced data in 98 

classification tasks. These class imbalance techniques have limited exploration and application for landslide 99 

datasets. Existing studies primarily focus on the general imbalanced dataset scenario but need to consider the 100 

unique characteristics and challenges associated with landslide datasets. Therefore, research is required for 101 

systematic studies that compare the performance and effectiveness of techniques such as SMOTE, K-Means 102 

SMOTE, Borderline SMOTE, and ADASYN in the specific context of soil movement prediction across various 103 

evaluation metrics. By bridging this literature gap, we can enhance the accuracy and reliability of models for 104 

predicting soil movement in landslide-prone areas and contribute to improved landslide risk mitigation 105 

strategies. 106 

Several researchers developed the various ML models to predict soil movement and prediction problems in 107 

other fields (Kumar et al., 2019; Semwal et al., 2022; Wu et al., 2020; Pathania et al., 2021; Zhang et al., 2022; 108 

Sahin, 2022; Kumar et al., 2020). For example, Kumar et al. (2019) developed the ensemble of ML models (RF, 109 

Bagging, Stacking, and Voting) for predicting soil movement at the Tangni landslide in Uttarakhand, India. 110 

These models were compared with Sequential Minimal Optimization (SMO) and Autoregression (AR). The 111 

results indicate that the ensemble models outperformed the SMO and AR models in predicting soil movement. 112 

Furthermore, Semwal et al. (2022) developed the SMOreg, Instance-based Learning (IBk), RF, Linear 113 

Regression (LR), MLP, as well as ensemble ML models to predict root tensile strength for different vegetation 114 

species. The results show that the MLP performed better than the other models, providing more accurate 115 

predictions of root tensile strength. Next, Wu et al. (2020) developed the decision tree (DT) with AdaBoost and 116 

bagging ensembles for mapping the susceptibility of landslides in Longxian County, Shaanxi Province, China. 117 

Researcher developed the technique with ensemble of Alternating Decision Tree (ADTree) with Bagging and 118 

AdaBoost to map landslide susceptibility. The results revealed that ensemble of ADTree and AdaBoost model 119 

performed better than the individual ADTree model and ensemble of ADTree and Bagging model. Similarly, 120 

Pathania et al. (2021) developed a novel ensemble gradient boosting model, called SVM-XGBoost, for soil 121 

movements warning at Gharpa landslide, Mandi, India. They compared the performance of SVM-XGBoost with 122 

other models such as individual SVMs, DTs, RF, XGBoost, Naïve Bayes (NB), and different variants of 123 

XGBoost. The results showed that the SVM-XGBoost model performed better than other models in soil 124 

movement prediction. In their research, Kumar et al. (2021b) directed their attention toward predicting soil 125 

movement, specifically at the Tangni landslide site in India. To enhance the accuracy of their predictions, they 126 

explored various variants of Long Short-Term Memory (LSTM) models. They introduced a novel ensemble 127 

approach called BS-LSTM, which combined bidirectional and stacked LSTM models. The findings of their 128 

study indicated that the BS-LSTM model outperformed the other LSTM variants in accurately predicting soil 129 

movement. Similarly, Zhang et al. (2022) conducted a study to assess the susceptibility of landslides using 130 

gradient-boosting ML techniques coupled with class-balancing methods. Their investigation specifically 131 

focused on the aftermath of the 2018 Hokkaido earthquake and employed diverse datasets and methodologies 132 

to predict the susceptibility of specific areas prone to landslides. Compared to well-established models such as 133 

XGBoost and Light GBM, the proposed model showcased superior performance in accurately assessing 134 

landslide susceptibility. Furthermore, Sahin (2022) developed multiple ML models, including XGBoost, 135 

CatBoost, Gradient Boosting Machine (GBM), and Light GBM, to model the susceptibility of landslides. By 136 

leveraging a comprehensive landslide inventory map and relevant conditioning factors stored in a geodatabase, 137 

the study employed feature selection techniques and compared the predictive capabilities of ensemble methods 138 

with the widely used RF model. The results highlighted that CatBoost exhibited the highest predictive capability, 139 

followed by XGBoost, Light GBM, and GBM, while RF demonstrated comparatively lower predictive 140 

capability. The study used a geodatabase with a landslide inventory map and conditioning factors. Feature 141 

selection techniques were applied, and the performance of XGBoost, CatBoost, GBM, and Light GBM was 142 

compared to RF. The results revealed that CatBoost had the highest prediction capability, followed by XGBoost, 143 
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Light GBM, and GBM. The literature gap in the context of soil movement prediction is the limited exploration 144 

and evaluation of ML models in combination with synthetic data generated by SMOTE techniques. While 145 

various ML models, such as ensemble models (e.g., RF), neural networks models (MLP and LSTM), and 146 

gradient boosting ML models (e.g., AdaBoost, XGBoost, Light GBM, CatBoost), have been developed and 147 

applied for soil movement prediction, their utilization in conjunction with synthetic data generated by SMOTE 148 

techniques has received less attention in the literature. Incorporating SMOTE-generated synthetic data into the 149 

training process of these models can address the issue of class imbalance in landslide datasets and improve their 150 

performance in predicting soil movement. Therefore, further research is needed to investigate the effectiveness 151 

of these ML models when combined with SMOTE techniques in the context of soil movement prediction, 152 

thereby filling the existing literature gap. 153 

The RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and an ensemble of RF, AdaBoost, 154 

XGBoost, Light GBM, and CatBoost models were chosen to predict soil movement based on their proven 155 

effectiveness in previous research. RF is excellent at capturing complex relationships and has outperformed 156 

non-ensemble models in predicting debris flow and landslide susceptibility. AdaBoost has successfully 157 

predicted soil movement alerts ahead of time. At the same time, XGBoost and Light GBM have demonstrated 158 

their ability to achieve balanced and precise predictions, especially in earthquake-induced landslide 159 

susceptibility assessments. Among gradient-boosting models, CatBoost stands out for its superior prediction 160 

capability, making it a well-suited option for modelling landslide susceptibility. On the other hand, when it 161 

comes to predicting root tensile strength, MLP has demonstrated higher accuracy in its predictions. Additionally, 162 

LSTM, a robust recurrent neural network architecture, is particularly effective in capturing temporal 163 

dependencies and long-term patterns in sequential data. Collectively, these models offer a diverse set of 164 

capabilities that prove valuable in the prediction of soil movement. 165 

3. Data Collection and Description 166 

The dataset for predicting soil movement was collected from an actual landslide site in Uttarakhand, India. 167 

Spanning a duration of two years, from June 2019 to June 2021, this dataset holds valuable insights into the 168 

behaviour of soil in response to various environmental factors. To gather this data, a cost-effective landslide 169 

monitoring station (LMS) was carefully deployed at landslide. Equipped with a range of sensors, the LMS 170 

diligently recorded critical weather and soil-related parameters. Weather-wise, it diligently captured temperature 171 

readings in degrees Celsius, humidity levels as a percentage, rainfall measurements in inches per hour (in/hr), 172 

atmospheric pressure in millibars (mb), and even sunlight intensity in lux. These meticulous recordings shed 173 

light on the prevailing weather conditions experienced at the precise location of the landslide. In order to monitor 174 

the soil conditions with utmost precision, the LMS relied on an accelerometer sensor. An advanced sensor was 175 

utilized to measure the acceleration of the soil in three directions: Ax, Ay, and Az (in m/s²). This provided 176 

valuable insights into the soil's movement and stability. Additionally, a gyroscope sensor was employed to 177 

capture the angular rotation of the soil along the Wx, Wy, and Wz axes (in degrees per second). This sensor 178 

enhanced the understanding of the soil's behaviour by accurately detecting its angular movements. Furthermore, 179 

the LMS was equipped with a capacitive soil moisture sensor, enabling it to measure the volumetric moisture 180 

content of the soil in percentage. The LMS transmitted all these twelve attributes, including weather parameters, 181 

soil g-force, angular rotation, and soil moisture content, to the cloud every ten minutes. The dataset obtained 182 

from the LMS consisted of approximately thirty-nine thousand data points, covering a wide range of 183 

environmental and soil-related attributes. Table 1 is showcasing the statistics for the recorded soil movement 184 

prediction parameters. For each attribute, the table provides the mean value, representing the average 185 

measurement, along with the standard deviation (Std. Dev.), indicating the variability of the data. The minimum 186 

and maximum values highlight the range of measurements observed, offering insights into the extreme values 187 

and overall data distribution. 188 
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Table 1. Summary statistics of recorded parameters for soil movement prediction dataset. 189 

Parameter Mean Std. Dev. Min Max 

Temperature (° 𝐶) 16.18 10.48 0.00 39.00 

Humidity (%) 66.69 35.46 0.00 99.00 

Rain (in/hr) 0.00 5.60 0.00 15.00 

Pressure (mb) 1040.96 27.96 921.61 1065.41 

Light (lux) 5025.35 10154.75 0.00 54612.00 

Ax (𝑚 𝑠2⁄ ) 0.02 1.23 -28.02 40.25 

Ay (𝑚 𝑠2⁄ ) 0.00 1.37 -100.08 100.08 

Az (𝑚 𝑠2⁄ ) 0.00 2.28 -149.61 315.61 

Wx (° 𝑠⁄ ) 0.00 15.86 -1994.51 1997.24 

Wy (° 𝑠⁄ ) 0.00 15.85 -1998.05 1998.73 

Wz (° 𝑠⁄ ) 0.00 6.95 -932.00 932.00 

Moisture (%) 80.00 20.30 40.00 100.00 

 190 

4. Methodology 191 

4.1. Data Pre-processing 192 

The sensors installed at the landslide locations experienced malfunctions, resulting in multiple missing values 193 

within the collected data. To address this issue, we employed a method to fill these gaps by replacing the missing 194 

values with the average values recorded at the corresponding timestamps during the previous week. By 195 

calculating the average values for parameters such as light intensity, humidity, temperature, and pressure from 196 

the same time periods in the preceding week, we obtained estimates to replace the skewed or missing data points. 197 

4.2. Class Labeling 198 

The dataset contained values for acceleration and angular rotation in three directions: x, y, and z. The changes 199 

in acceleration and angular rotation were calculated by subtracting the current values from the past values, 200 

allowing for the assessment of movement. To classify the movement data, four categories were defined: no 201 

movement, low movement, moderate movement, and high movement. These categories were determined based 202 

on standard deviation thresholds derived from the acceleration and angular rotation values. Specifically, values 203 

within ± 1 standard deviation from the mean were categorized as no movement, ± 2 standard deviations as low 204 

movement, ± 3 standard deviations as moderate movement, and values exceeding ± 3 standard deviations as 205 

high movement. This classification approach considered the variability in acceleration and angular rotation 206 

changes to determine the intensity of movement. 207 

During the analysis, each timestamp was assigned to a movement class based on the class associated with 208 

the highest standard deviation observed in any acceleration or angular rotation element. If an individual element 209 

had the highest standard deviation at a specific timestamp, that timestamp was assigned to the corresponding 210 

movement class with the maximum standard deviation. 211 

Table 2 presents the distribution of movement intensity within the dataset, which consisted of 38,900 data 212 

points. The table shows the percentage distribution of movement categories: high, moderate, low, and no 213 

movement. The majority of the dataset (97.8%) falls under the "No Movement" category, indicating a lack of 214 

significant movement. On the other hand, the high movement category represents only a small fraction (1.1%) 215 

of the dataset. This distribution highlights the class imbalance issue present in the dataset, which needs to be 216 

taken into account when developing a classification model for predicting soil movement. 217 
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Table 2. Class distribution of soil movement data points. 218 

Movement Class Number of Data Points Percentage 

High Movement 423 1.1% 

Moderate Movement 146 0.7% 

Low Movement 268 0.4% 

No Movement 38063 97.8% 

4.3. Sliding Window Packets 219 

The sliding window packets technique involves dividing a given dataset into fixed-length subsequences or 220 

packets and their corresponding labels. To achieve this, a sequence length parameter is used to determine the 221 

length of each subsequence. The sliding window approach is then employed, where a window starts at the 222 

beginning of the dataset and moves through the data with a step size of 1. A subsequence of the specified length 223 

is extracted from the dataset at each window position. The label for prediction is taken from the next position 224 

after the window. 225 

The sliding window packets technique aims to predict future values or events based on preceding 226 

subsequences. For instance, if the sequence length is set to five, the sliding window will select five consecutive 227 

values from the dataset as a subsequence at each step. The label for prediction will be the value at the sixth 228 

position. This process continues until the end of the dataset is reached, resulting in multiple subsequences and 229 

their respective labels. Once the packets are created, they are flattened to form a single feature vector. For 230 

instance, if the sequence length is five and the dataset has twelve features, each packet will contain sixty 231 

elements (5x12). This transformation allows the packets to be treated as individual samples with multiple 232 

features suitable for ML models. The primary purpose of creating these packets is to address prediction tasks 233 

involving sequences where the input data's order and dependencies are crucial. The model can effectively 234 

capture and learn patterns and relationships within the sequential data by utilizing the sliding window packets. 235 

The flattened packets generated using the sliding window technique are inputs in oversampling techniques. 236 

4.4. Oversampling 237 

In our analysis, we encountered a significant class imbalance issue in the labelled data. The "No Movement" 238 

class, which represents the majority of the data, had a large number of data points. On the other hand, the "High 239 

Movement" class, which represents the minority class, had only a minimal representation with just 1% of the 240 

total data. This class imbalance posed a challenge for building an effective classification model, as the skewed 241 

data distribution made it difficult to classify the minority class accurately. 242 

To overcome the class imbalance challenge, we implemented several oversampling techniques, with a 243 

particular focus on SMOTE and its extensions (Chawla et al., 2002; Douzas et al., 2018; Tang et al., 2008; Han 244 

et al., 2005; He et al., 2008). SMOTE, which stands for Synthetic Minority Oversampling Technique, addresses 245 

the imbalance by generating synthetic data points for the minority class (Chawla et al., 2002). By utilizing the 246 

characteristics of existing samples from the minority class, we created new data points, thereby increasing the 247 

representation of the "High Movement" class. In addition to the standard SMOTE, we also explored other 248 

variations such as K-Means SMOTE (Douzas et al., 2018), SVM-SMOTE (Tang et al., 2008), and Borderline 249 

SMOTE (Han et al., 2005) to further enhance the balance of class distribution. 250 

Furthermore, we utilized the ADASYN, an extension of SMOTE that explicitly addresses the classification 251 

boundary of the minority class (He et al., 2008). ADASYN assigns higher weights to the minority examples that 252 

are more challenging to classify, leading to the generation of additional artificial data points for these instances. 253 

By incorporating ADASYN into our oversampling strategy, we enhanced the balance of the class distribution 254 

further and improved the classification accuracy for all classes. 255 
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Fig. 1. illustrates the application of the K-Mean SMOTE technique for addressing the class imbalance. The 256 

figure depicts a scatter plot where the red crosses represent the minority class samples, while the black dots 257 

represent the majority class samples. The green crosses indicate the newly generated synthetic samples by the 258 

K-Mean SMOTE algorithm. The dashed line represents the decision boundary separating the two classes. K-259 

Mean SMOTE operates by following two simple steps iteratively [8]. Firstly, it assigns each observation to the 260 

nearest cluster centroid among the k available. Secondly, it updates the position of the centroids so that they are 261 

positioned at the centre between the assigned observations. The information ratio (IR) shown in Fig. 1 helps K-262 

Means SMOTE determine the appropriate amount of oversampling for the minority class, ensuring a balanced 263 

representation of the classes in synthetic samples. The value of k was selected 4 in this experiment. 264 

 

Figure 1. K-Means SMOTE effectively addresses within-class imbalance by oversampling safe areas (Douzas et al., 2018). 

4.5. Machine Learning Models 265 

Various models were employed to classify the soil movement. The specific models will be discussed in the 266 

following subsection. To evaluate the accuracy of these models, the dataset was divided into two groups: training 267 

data (70%) and testing data (30%). Random sampling was used to select 70% of the data points for training the 268 

classification models mentioned below, while the remaining 30% of the dataset was reserved for model 269 

evaluation. 270 

4.5.1. AdaBoost  271 

AdaBoost, also known as Adaptive Boosting, is a probabilistic classification meta-model designed to enhance 272 

the performance of ML models (Wu et al., 2020). It achieves this by combining the results of multiple weak 273 

learners, which are learning techniques with slightly better than random guessing capabilities. Through an 274 

adaptive process, AdaBoost adjusts subsequent weak models to focus on the cases that were misclassified by 275 

earlier models. This adaptive nature helps improve the overall accuracy of the model and reduces the risk of 276 

overfitting in certain situations. Although individual weak learners may not perform well on their own, their 277 

collective strength allows the final model to converge as a powerful learner capable of making more accurate 278 

predictions. 279 

For the AdaBoost model, the number of trees determines the maximum number of weak models to be 280 

combined. Increasing the number of trees can improve the performance of the AdaBoost but may also increase 281 

the risk of overfitting. The learning rate controls the contribution of each weak model, with a higher learning 282 

rate giving more weight to each model. The maximum depth parameter limits the depth of individual weak 283 
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models, preventing them from becoming too complex and overfitting the data. Table 3 shows the range of 284 

hyperparameters for the AdaBoost model. 285 

4.5.2. XGBoost 286 

XGBoost is an ensemble ML model based on gradient boosting and uses decision trees (Chen and Guestrin, 287 

2016). While deep neural networks excel in predicting unstructured data such as images and text, decision tree-288 

based methods are considered superior for dealing with structured data. Decision trees are particularly effective 289 

when the data has a well-defined structure or specific features, making them a preferred choice for certain 290 

prediction problems involving structured information. 291 

In the XGBoost model, the number of trees determines the number of boosting rounds or iterations. 292 

Increasing the number of trees can improve the performance  of XGBoost but also increases computational 293 

complexity. The learning rate controls the step size during the boosting process and affects the model's 294 

convergence speed and generalization ability. The maximum depth parameter restricts the depth of the decision 295 

trees in the ensemble, preventing overfitting and promoting interpretability. Table 3 shows the range of 296 

hyperparameters for the XGBoost model. 297 

4.5.3. Light GBM 298 

Light GBM is a gradient-boosting framework that utilizes a decision-branching technique for various ML 299 

tasks such as ranking and classification (Ke et al., 2017). Unlike other boosting methods that divide the tree 300 

lengthwise or layerwise, Light GBM employs a leaf-wise approach, where the tree is divided leaf by leaf, 301 

selecting the best split at each step. The leaf-wise strategy employed in Light GBM offers advantages over 302 

traditional boosting techniques by reducing loss and improving accuracy. This strategy focuses on growing the 303 

tree leaf-wise rather than level-wise, resulting in a more effective learning process. Light GBM's efficient 304 

implementation is reflected in its speedy execution, earning it the moniker "Light" due to its fast performance. 305 

In the Light GBM model, the number of trees determines the number of boosting rounds, and increasing this 306 

number has the potential to enhance the model's performance. The learning rate parameter influences the step 307 

size taken during the boosting process, striking a balance between convergence speed and model accuracy. To 308 

control the complexity of the model and mitigate the risk of overfitting, the maximum depth parameter limits 309 

the depth of the decision trees employed by Light GBM. 310 

Table 3 provides an overview of the hyperparameters range for the Light GBM model, allowing for fine-311 

tuning and customization to optimize its performance according to the specific dataset and problem at hand. 312 

4.5.4. CatBoost 313 

CatBoost, which stands for Category Boosting, is an ML model developed by Yandex and recently released 314 

as an open-source tool (Prokhorenkova et al., 2018). Its integration capabilities with popular frameworks like 315 

TensorFlow and Core ML make it highly adaptable across different platforms. CatBoost excels in handling 316 

diverse datasets, making it a valuable tool for addressing various industry problems. This model's exceptional 317 

performance and predictive accuracy contribute to its reputation as a leading choice in the field. 318 

The loss function selection is important in the CatBoost model, as it can significantly impact its performance. 319 

Different loss functions, such as log, entropy, or hinge, are tailored to handle specific classification problems, 320 

and their selection can lead to varying results. To fine-tune the CatBoost model and optimize its performance 321 

for a given dataset, Table 3 presents the range of hyperparameters that can be adjusted according to the specific 322 

problem and data characteristics. 323 

4.5.5. Random Forest 324 

The RF technique, an ensemble learning method combining predictions from multiple decision trees 325 

(Breiman, 2001), was used to construct the regression or classification model. RF offers advantages such as 326 

handling relationships and non-linearities without requiring variable independence assumptions or dummy 327 

variables. It has shown exceptional performance in various industries and applications, including landslide 328 

prediction and site recognition. 329 
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The RF model's performance is optimized by adjusting parameters such as the number of trees (DTs), the 330 

splitting criteria (Gini or Entropy), and the maximum depth of the trees. These parameters control the model's 331 

robustness, accuracy, and complexity. Table 3 outlines the hyperparameter ranges for the RF model.  332 

4.5.6. Multilayer Perceptron 333 

The MLP (Multilayer Perceptron) is a well-known neural network architecture (Rosenblatt, 1961). It 334 

comprises interconnected layers, including input, hidden, and output layers. Neurons in the MLP calculate a 335 

weighted sum of inputs and pass it through an activation function to capture intricate relationships. The hidden 336 

layers extract valuable features from the input data. Dropout layers are employed to prevent overfitting by 337 

randomly deactivating neurons during training, enhancing the MLP's ability to generalize and reducing reliance 338 

on specific patterns. The MLP is a versatile and powerful approach for tackling classification problems. 339 

In the MLP model, the look-back period determines the number of preceding time steps considered for 340 

prediction, influencing the model's capacity to capture temporal dependencies. The number of layers and nodes 341 

per layer govern the complexity of the network and its ability to learn intricate representations from the data. 342 

Table 3 provides an overview of the hyperparameter ranges for the MLP model.  343 

4.5.7. LSTM 344 

The LSTM is a recurrent neural network architecture (Hochreiter and Schmidhuber, 1997). It addresses the 345 

vanishing gradient problem and analyses sequential data by capturing long-term dependencies. The key strength 346 

of LSTM lies in its ability to process and predict sequences of varying lengths. LSTM networks selectively 347 

retain or forget information over time by utilizing memory cells and gating mechanisms. As a result, they have 348 

proven effective in various domains, including natural language processing, speech recognition, and time series 349 

forecasting. 350 

In our LSTM model, we conducted experiments to examine the impact of different parameters on its 351 

performance. We investigated the influence of various LSTM unit sizes (32, 64, 128, and 256) to understand 352 

how the complexity of the model affects its capacity to capture patterns in the data. Additionally, we explored 353 

different activation functions (sigmoid, tanh, and ReLU) to assess their effect on the model's ability to learn 354 

complex relationships within the dataset. We selected the categorical cross-entropy loss function for multi-class 355 

classification tasks due to its suitability. Furthermore, we varied the look-back period from 3 to 10 to evaluate 356 

how it influences the model's ability to capture temporal dependencies. The range of hyperparameters for the 357 

LSTM model is presented in Table 3. 358 

4.5.8. Dynamic Ensembling 359 

Dynamic ensembling is a highly effective technique in ML that takes advantage of the adaptability and 360 

ongoing improvement of predictive models (Ko et al., 2008). It involves creating a versatile and continuously 361 

evolving ensemble by harnessing the strengths of multiple models, including RF, CatBoost, XGBoost, Light 362 

GBM, and AdaBoost. Traditionally, ensembling methods like bagging and boosting have focused on fixed 363 

ensembles. However, dynamic ensembling goes beyond this by introducing the ability to add or remove models 364 

based on their performance dynamically. In the case of dynamic ensembling with the models, as mentioned 365 

earlier, the monitoring criterion used is accuracy. Accuracy as the monitoring criterion ensures that the dynamic 366 

ensemble maintains a high level of accuracy in its predictions. If a model falls below a predefined accuracy 367 

threshold, it is considered underperforming and may be replaced to enhance the ensemble's overall performance. 368 

Dynamic ensembling offers numerous advantages, including handling concept drift, where the underlying 369 

data distribution changes over time. By incorporating new models that capture updated patterns and relationships 370 

in the data, the dynamic ensemble can effectively adapt to concept drift and maintain accurate predictions. 371 

The dynamic ensembling model utilized base models such as RF, CatBoost, XGBoost, Light GBM, and 372 

AdaBoost. Each base model was trained individually with the same default parameter settings as their standalone 373 

counterparts. The parameter values for each model were mentioned in Table 3. 374 

https://doi.org/10.5194/egusphere-2023-1417
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



10  

 

Table 3. The range of hyperparameters varied in the models. 375 

Model Hyperparameter Range of Hyperparameter 

 

AdaBoost 

Number of Trees  [15, 200] in steps of 10 

Learning Rate  [0.1, 2] in steps of 0.1 

Maximum Depth [3, 33] in steps of 3 

XGBoost 

Number of Trees  [50, 1100] in steps of 50 

Learning Rate  [0.05, 0.55] in steps of 0.05 

Maximum Depth  [3, 33] in steps of 3 

Light GBM  

Number of Trees  [20, 400] in steps of 20 

Learning Rate [0.05, 0.55] in steps of 0.05 

Max Depth [3, 33] in steps of 3 

 

CatBoost 

Loss Function  Log, Entropy, Hinge 

Learning Rate [0.1, 2] in steps of 0.1 

Max Depth  [3, 33] in steps of 3 

 

RF 

Number of Trees [1, 100] in steps of 5 

Criteria  Gini, Entropy 

Maximum Depth [1, 100] in steps of 5 

 

MLP 

Look-back Period   3 to 10 

Layers  [1, 3]  

Nodes Per Layer [50, 250] in steps of 50 

LSTM 

Look-back Period 3 to 10 

LSTM Units 32, 64, 128, 256 

Activation Function Sigmoid, tanh, ReLU 

5. Model Execution, Minimization, and Handling Class Imbalance 376 

A rigorous process was followed to develop an effective model for predicting the intensity of soil movement. 377 

The model was trained using grid search techniques, which systematically explored different combinations of 378 

hyperparameters to optimize its performance. The training phase utilized the labelled training data, split into a 379 

70:30 ratio for training and testing purposes. One challenge encountered during the training process was the 380 

class imbalance issue. The number of samples available for the minority class was insufficient compared to the 381 

majority class. To address this, oversampling techniques were employed. By generating synthetic data points 382 

for the minority class, we were able to balance the dataset and mitigate the bias toward the majority class. Once 383 

the dataset was balanced, multiple ML models were trained using the training data. The primary objective was 384 

to optimize the models' parameters for improved performance. Each model underwent a grid search to identify 385 

the best configurations, a systematic approach that explores various parameter combinations. The models were 386 

then trained using the optimized parameters and evaluated on independent test data to assess their predictive 387 

performance. The evaluation primarily focused on accuracy metrics to determine how effectively the models 388 

predicted the intensity of soil movement. 389 

6. Results 390 

Table 3 presents the optimized hyperparameter values obtained through the grid search method for each 391 

model. These hyperparameters were carefully fine-tuned to ensure the best fit for the given data. In the case of 392 

XGBoost, the optimized values included 800 trees, a learning rate of 0.3, and a maximum depth of 9. After a 393 
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thorough evaluation, these parameter settings were selected to improve the model's generalization capability 394 

and ability to capture intricate patterns within the data. The optimized values for the Light GBM model consisted 395 

of 220 trees, a hidden layer size of 0.25, and a maximum depth of 12. These settings were determined to enhance 396 

the model's performance in terms of both speed and accuracy. 397 

Similarly, the AdaBoost model underwent hyperparameter optimization, selecting 25 trees, a learning rate of 398 

1.7, and a maximum depth of 20. These parameter values were chosen to improve the model's adaptability and 399 

accuracy for classification tasks. The CatBoost model also went through optimization, leading to entropy 400 

selection as the loss function, a learning rate of 0.9, and a maximum depth of 20. These settings were explicitly 401 

chosen to maximize the model's accuracy and robustness. Likewise, the MLP model optimized its 402 

hyperparameters with a look-back period of 3, 2 layers, and 200 nodes per layer. These settings were selected 403 

to enhance the model's ability to capture complex relationships and improve classification accuracy. Similarly, 404 

LSTM has 128 units and tanh activation function. In the RF model, the optimized values were 45 for the number 405 

of trees, 25 for the maximum depth, and the evaluation criteria were set to "entropy." These values were chosen 406 

to maximize the model's accuracy and predictive power performance. Lastly, the dynamic ensembling model in 407 

this study incorporated the optimized RF, CatBoost, XGBoost, Light GBM, and AdaBoost models to improve 408 

the accuracy of landslide analysis predictions. By leveraging the strengths of these individually optimized 409 

models, as mentioned above, the dynamic ensembling model aimed to improve the accuracy and reliability of 410 

landslide analysis predictions. 411 

Table 4. The best value of the hyperparameters calibrated from the training data. 412 

Model Hyperparameter Best Value of Hyperparameter 

 

AdaBoost 

Number of Trees 25 

Learning Rate 1.7 

Maximum Depth 20 

XGBoost 

Number of Trees  800 

Learning Rate  0.3 

Maximum Depth  9 

Light GBM  

Number of Trees  220 

Learning Rate 0.25 

Maximum Depth 12 

 

CatBoost 

Loss Function  Entropy 

Learning Rate 0.9 

Maximum Depth  20 

 

RF 

Number of Trees 45  

Criteria  Entropy 

Maximum Depth 25 

 

MLP 

Look-back Period  3 

Layers  2 

Nodes Per Layer 200 

LSTM 

Look-back Period 5 

LSTM Units 128 

Activation Function tanh 

 413 
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Table 5 presents the training results of different classification models combined with various oversampling 414 

techniques for landslide prediction. These results provide valuable insights into the performance of each model 415 

when trained on the dataset with oversampling. The RF model with K-Mean SMOTE emerges as the best model 416 

in training, achieving outstanding accuracy, precision, recall, and F1-score of 100% and 1, respectively. It 417 

demonstrates remarkable predictive capability by achieving perfect accuracy in both oversampling and non-418 

oversampling scenarios. 419 

Table 6 presents the test results of various classification models combined with different oversampling 420 

techniques for landslide prediction. Among them, the dynamic ensemble model utilizing the K-Mean SMOTE 421 

technique demonstrates exceptional performance in accurately predicting landslides on unseen data. It achieves 422 

impressive accuracy, precision, and recall rates of 99.68%, along with an F1-score of 0.9968. These outstanding 423 

results confirm the effectiveness of the dynamic ensemble approach when combined with K-Mean SMOTE for 424 

accurate landslide prediction. The best-performing model is highlighted in bold in Table 6. 425 

Additionally, the RF model incorporating K-Mean SMOTE emerges as the second-best model in the test 426 

phase, showcasing high accuracy, precision, and recall rates of 99.64%, along with an F1-score of 0.9964. This 427 

result emphasizes the reliability and robustness of the RF model in tackling landslide prediction tasks. 428 

Comparing the dynamic ensemble and RF models with other classification models and oversampling 429 

techniques, it becomes evident that the dynamic ensemble model with K-Mean SMOTE and the RF model with 430 

K-Mean SMOTE consistently outperform the rest, highlighting their effectiveness in accurately predicting 431 

landslides. 432 

These findings underscore the importance of carefully selecting appropriate ML models and employing 433 

suitable oversampling techniques to address the class imbalance challenge in landslide prediction. They provide 434 

valuable insights into the performance and suitability of these models and techniques for enhancing landslide 435 

prediction accuracy, ultimately enabling proactive measures to mitigate landslide risks. 436 

Table 5. The results of the ML models from training dataset. 437 

Model Oversampling Technique Accuracy (in %) Precision (in %) Recall (in %) F1-Score  

AdaBoost 

SMOTE 71.45 71.41 71.45 0.7142 

K-Means SMOTE 71.13 71.07 71.13 0.7105 

Borderline SMOTE 77.54 77.48 77.54 0.7748 

ADASYN 72.97 72.91 72.97 0.7276 

Without Oversampling 97.87 97.73 97.87 0.9779 

CatBoost 

SMOTE 99.85 99.85 99.85 0.9985 

K-Means SMOTE 99.86 99.86 99.86 0.9986 

Borderline SMOTE 99.78 99.78 99.78 0.9978 

ADASYN 99.85 99.85 99.85 0.9985 

Without Oversampling 99.72 99.72 99.72 0.9971 

XGBoost 

SMOTE 99.97 99.97 99.97 0.9997 

K-Means SMOTE 99.98 99.98 99.98 0.9998 

Borderline SMOTE 99.98 99.98 99.98 0.9998 

ADASYN 99.97 99.97 99.97 0.9997 

Without Oversampling 99.99 99.99 99.99 0.9999 

Light GBM 

SMOTE 99.87 99.87 99.87 0.9987 

K-Means SMOTE 99.91 99.91 99.91 0.9991 

Borderline SMOTE 99.97 99.97 99.97 0.9997 

ADASYN 99.88 99.88 99.88 0.9988 

Without Oversampling 99.87 99.87 99.87 0.9987 

RF 

SMOTE 100 100 100 1 

K-Means SMOTE 100 100 100 1 

Borderline SMOTE 100 100 100 1 
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ADASYN 100 100 100 1 

Without Oversampling 100 100 100 1 

MLP 

SMOTE 90.32 90.49 90.32 0.9028 

K-Means SMOTE 60.16 73.24 60.16 0.5785 

Borderline SMOTE 95.66 95.72 95.66 0.9566 

ADASYN 88.54 88.81 88.54 0.8854 

Without Oversampling 97.81 96.43 97.81 0.9694 

LSTM 

SMOTE 68.73 68.81 68.73 0.6799 

K-Means SMOTE 79.51 79.89 79.51 0.7959 

Borderline SMOTE 86.40 86.66 86.40 0.8627 

ADASYN 77.47 77.72 77.47 0.7736 

Without Oversampling 97.88 95.80 97.87 0.9683 

Ensemble 

SMOTE 99.94 99.94 99.94 0.9994 

K-Means SMOTE 99.96 99.96 99.96 0.9996 

Borderline SMOTE 99.97 99.97 99.97 0.9997 

ADASYN 99.93 99.93 99.93 0.9993 

Without Oversampling 99.99 99.99 99.99 0.9999 

Table 6. The results of the ML models from test dataset. 438 

Model Oversampling Technique Accuracy (in %) Precision (in %) Recall (in %) F1-Score  

AdaBoost 

SMOTE 71.57 71.54 71.57 0.7155 

K-Means SMOTE 71.03 70.89 71.03 0.7091 

Borderline SMOTE 77.65 77.57 77.65 0.7757 

ADASYN 72.83 72.77 72.83 0.7263 

Without Oversampling 97.59 97.41 97.59 0.9749 

CatBoost 

SMOTE 99.56 99.56 99.56 0.9956 

K-Means SMOTE 99.57 99.57 99.57 0.9957 

Borderline SMOTE 99.50 99.50 99.50 0.9950 

ADASYN 99.58 99.58 99.58 0.9957 

Without Oversampling 98.11 97.85 98.11 0.9787 

XGBoost 

SMOTE 99.63 99.63 99.63 0.9963 

K-Means SMOTE 99.62 99.62 99.62 0.9962 

Borderline SMOTE 99.57 99.57 99.57 0.9957 

ADASYN 99.64 99.64 99.64 0.9964 

Without Oversampling 98.09 97.63 98.09 0.9775 

Light GBM 

SMOTE 99.55 99.55 99.55 0.9955 

K-Means SMOTE 99.60 99.60 99.60 0.9960 

Borderline SMOTE 99.54 99.54 99.54 0.9954 

ADASYN 99.58 99.58 99.58 0.9958 

Without Oversampling 98.00 97.59 98.00 0.9770 

RF 

SMOTE 99.52 99.53 99.52 0.9952 

K-Means SMOTE 99.64 99.64 99.64 0.9964 

Borderline SMOTE 99.58 99.58 99.58 0.9958 

ADASYN 99.54 99.54 99.54 0.9953 

Without Oversampling 98.09 97.67 98.09 0.9763 

MLP 

SMOTE 89.89 90.07 89.89 0.8985 

K-Means SMOTE 59.84 73.31 59.84 0.5754 

Borderline SMOTE 95.44 95.53 95.44 0.9545 

ADASYN 88.19 88.44 88.19 0.8818 

Without Oversampling 97.61 96.00 97.61 0.9670 

LSTM SMOTE 69.02 69.09 69.01 0.6829 
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K-Means SMOTE 78.56 78.98 78.55 0.7864 

Borderline SMOTE 86.23 86.52 86.22 0.8609 

ADASYN 76.78 77.06 76.77 0.7664 

Without Oversampling 97.79 95.63 97.78 0.9669 

Dynamic 

Ensemble 

SMOTE 99.58 99.58 99.58 0.9958 

K-Means SMOTE 99.68 99.68 99.68 0.9968 

Borderline SMOTE 99.55 99.55 99.55 0.9955 

ADASYN 99.58 99.58 99.58 0.9958 

Without Oversampling 98.20 97.83 98.20 0.9783 

7. Discussion and Conclusions 439 

In summary, the threat posed by landslides requires the development of effective prediction frameworks, 440 

although modelling the chaotic nature of natural data remains challenging. The analysed dataset exhibited a 441 

significant class imbalance, with the majority class dominating the samples. This distribution imbalance 442 

necessitated careful consideration and appropriate techniques to address the issue. 443 

Various oversampling techniques, including SMOTE and its extensions (K-Means SMOTE, Borderline 444 

SMOTE, and SVM-SMOTE), were employed to tackle the class imbalance. ADASYN, which focuses on the 445 

minority class boundary, effectively generated synthetic data points, and improved the class distribution balance. 446 

Multiple classification models, such as ADABoost, XGBoost, Light GBM, CatBoost, RF, MLP, LSTM, and 447 

a dynamic ensemble, were evaluated for predicting soil movement. The hyperparameters of each model were 448 

optimized using a grid search approach. The dynamic ensemble with K-Mean SMOTE and RF with K-Mean 449 

SMOTE emerged as the top-performing models, with the dynamic ensemble achieving slightly higher accuracy. 450 

Combining K-Means SMOTE oversampling with the dynamic ensemble model yielded exceptional results, 451 

with high accuracy, precision, recall, and F1-score predicting soil movement. These outcomes demonstrate the 452 

effectiveness of oversampling techniques and the dynamic ensemble model in addressing class imbalance and 453 

improving landslide prediction accuracy. 454 

This study emphasizes the importance of pre-processing, class labelling, addressing the class imbalance, and 455 

selecting suitable classification models for accurate soil movement prediction. The findings contribute to a better 456 

understanding of landslide risks and support the development of effective preventive measures. 457 

However, there are several limitations to consider. The generalizability of the findings to other regions or 458 

geological conditions may be limited due to the specific dataset used. The synthetic data points generated 459 

through oversampling may only partially capture the complexity of real-world landslide occurrences. The choice 460 

of classification models and hyperparameter settings could introduce bias, and alternative configurations may 461 

yield different results. The study relied on historical data, potentially limiting its ability to account for future 462 

changes. Factors such as rainfall intensity, seismic activity, and human influences were not fully accounted for, 463 

suggesting the need for further research to enhance landslide prediction accuracy. 464 

In future work, we plan to evaluate the performance of encoder-decoder models or transformer models on 465 

the class-imbalanced movement dataset. These models have demonstrated success in sequence-to-sequence 466 

tasks and could potentially improve classification accuracy and address class imbalance challenges. This 467 

experimentation will provide valuable insights into their suitability for analyzing and modeling imbalanced 468 

movement data. 469 

Acknowledgements 470 

We would like to acknowledge and express our sincere gratitude to the DST, India, and the DDMA Kangra 471 

(IITM/DDMA-Kan/KVU/357), Kinnaur (IITM/DDMA-Kinn/VD/345), and Mandi (IITM/DDMA-M/VD/325 472 

and IITM/DDMA-M/VD/358) for their invaluable financial support towards this research project. We are also 473 

immensely grateful to the IIT Mandi for generously facilitating us with the necessary infrastructure, including 474 

https://doi.org/10.5194/egusphere-2023-1417
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



  15 

 

research facilities and computational resources, that have been instrumental in the successful execution of this 475 

study. 476 

References 477 

Breiman, L.: Random forests. Machine learning, 45, 5-32, 2001. 478 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P.: SMOTE: synthetic minority over-sampling 479 

technique. Journal of artificial intelligence research, 16, 321-357, 2002. 480 

Chen, T., & Guestrin, C.: Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international 481 

conference on knowledge discovery and data mining, pp. 785-794, 2016. 482 

Crosta, G.: Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2), 131-483 

145, 1998. 484 

Douzas, G., Bacao, F., & Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-485 

means and SMOTE. Information Sciences, 465, 1-20. 486 

Han, H., Wang, W. Y., & Mao, B. H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. 487 

In Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005, Hefei, China, 488 

August 23-26, 2005, Proceedings, Part I 1, pp. 878-887, 2005. 489 

He, H., Bai, Y., Garcia, E. A., & Li, S.: ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 490 

IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), pp. 491 

1322-1328, 2008. 492 

Hochreiter, S., & Schmidhuber, J.: Long short-term memory. Neural computation, 9(8), 1735-1780, 1997. 493 

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y.: Lightgbm: A highly efficient gradient boosting 494 

decision tree. Advances in neural information processing systems, 30, 2017. 495 

Ko, A. H., Sabourin, R., & Britto Jr, A. S.: From dynamic classifier selection to dynamic ensemble selection. Pattern 496 

recognition, 41(5), 1718-1731, 2008. 497 

Kumar, P., Sihag, P., Sharma, A., Pathania, A., Singh, R., Chaturvedi, P., & Dutt, V.: Prediction of Real-World Slope 498 

Movements via Recurrent and Non-recurrent Neural Network Algorithms: A Case Study of the Tangni 499 

Landslide. Indian Geotechnical Journal, 51(4), 788-810 (2021a). 500 

Kumar, P., Sihag, P., Chaturvedi, P., Uday, K. V., & Dutt, V.: BS-LSTM: an ensemble recurrent approach to forecasting soil 501 

movements in the real world. Frontiers in Earth Science, 9, 696-792 (2021b). 502 

Kumar, P., Sihag, P., Pathania, A., Agarwal, S., Mali, N. C. P., Singh, R., ... & Dutt, V.: Landslide debris-flow prediction 503 

using ensemble and non-ensemble machine-learning methods. In International Conference on Time Series and 504 

Forecasting (Vol. 1), 2019. 505 

Kumar, P., Priyanka, Pathania, A., Agarwal, S., Mali, N., Singh, R., ... & Dutt, V.: Predictions of weekly slope movements 506 

using moving-average and neural network methods: a case study in Chamoli, India. In Soft Computing for Problem 507 

Solving 2019: Proceedings of SocProS 2019, Volume 2, pp. 67-81, 2020. 508 

Parkash, S.: Historical records of socio-economically significant landslides in India. Journal of South Asia Disaster Studies, 509 

4(2), 177-204, 2011. 510 

Pathania, A., Kumar, P., Priyanka, P., Maurya, A., Uday, K. V., & Dutt, V.: Development of an Ensemble Gradient Boosting 511 

Algorithm for Generating Alerts About Impending Soil Movements. In Machine Learning, Deep Learning and 512 

Computational Intelligence for Wireless Communication: Proceedings of MDCWC 2020, pp. 365-379, 2021. 513 

Pathania, A., Kumar, P., Sihag, P., Chaturvedi, P., Singh, R., Uday, K. V., & Dutt, V.: A low-cost, sub-surface IoT framework 514 

for landslide monitoring, warning, and prediction. In Proceedings of 2020 International conference on advances in 515 

computing, communication, embedded and secure systems, 2020. 516 

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A.: CatBoost: unbiased boosting with categorical 517 

features. Advances in neural information processing systems, 31, 2018. 518 

Ray, R. L., Lazzari, M., & Olutimehin, T.: Remote sensing approaches and related techniques to map and study 519 

landslides. Landslides Investig. Monit., 2020. 520 

https://doi.org/10.5194/egusphere-2023-1417
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.



16  

 

Rosenblatt, F.: Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Cornell Aeronautical Lab Inc 521 

Buffalo NY, 1961. 522 

Sahin, E. K.: Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto 523 

International, 37(9), 2441-2465, 2022. 524 

Semwal, T., Priyanka, P., Kumar, P., Dutt, V., & Uday, K. V.: Predictions of Root Tensile Strength for Different Vegetation 525 

Species Using Individual and Ensemble Machine Learning Models. In Trends on Construction in the Digital Era: 526 

Proceedings of ISIC 2022, pp. 87-100, 2022. 527 

Tang, Y., Zhang, Y. Q., Chawla, N. V., & Krasser, S.: SVMs modeling for highly imbalanced classification. IEEE 528 

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(1), 281-288, 2008. 529 

Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H., & Hong, H.: Application of alternating decision tree with AdaBoost and 530 

bagging ensembles for landslide susceptibility mapping. Catena, 187, 104396, 2020. 531 

Zhang, S., Wang, Y., & Wu, G.: Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on 532 

Gradient Boosting Machine Learning and Class Balancing Methods. Remote Sensing, 14(23), 5945, 2022. 533 

https://doi.org/10.5194/egusphere-2023-1417
Preprint. Discussion started: 10 August 2023
c© Author(s) 2023. CC BY 4.0 License.


