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Abstract 6 

Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide 7 
valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement 8 
from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing 9 
machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil 10 
movement prediction system. The dataset, comprising two years (2019-2021) of monitoring data from a landslide in 11 
Uttarakhand, was split into a 70:30 ratio for training and testing. To tackle the class imbalance problem, various 12 
oversampling techniques, including Synthetic Minority Oversampling Technique (SMOTE), K-Means SMOTE, Borderline 13 
SMOTE, and Adaptive SMOTE (ADASYN), were applied to the training dataset. Several ML models, namely Random 14 
Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Light GBM), Adaptive Boosting 15 
(AdaBoost), Category Boosting (CatBoost), Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), and 16 
dynamic ensemble models, were trained and compared for soil movement prediction. A 5-fold cross-validation method was 17 
applied to optimize the ML models on the training data, and the models were tested on the testing set. Among these ML 18 
models, the dynamic ensemble model with K-Means SMOTE performed the best in testing, with an accuracy, precision, 19 
and recall rate of 0.995, 0.995, and 0.995, respectively, and an F1 score of 0.995. Additionally, models without oversampling 20 
exhibited poor performance in training and testing, highlighting the importance of incorporating oversampling techniques 21 
to enhance predictive capabilities.  22 

Keywords: Soil Movement Prediction; Class Imbalance; Oversampling; Machine Learning; Landslide Prone Areas.  23 

1. Introduction 24 

Landslides pose a significant threat to infrastructure, resulting in numerous fatalities and substantial economic 25 

losses each year (Parkash, 2011). These destructive events occur globally, particularly in hilly and mountainous 26 

regions, driven by gravity and characterized by the movement of large rocks, debris, and soil (Crosta, 1998). 27 

Factors such as heavy rainfall, earthquakes, and the impacts of climate change contribute to the occurrence and 28 

severity of landslides (Crosta, 1998). 29 

Monitoring, predicting, and warning people about slope movements in landslide-prone areas are crucial for 30 

mitigating landslide risks. Advanced technologies like Global Positioning System (GPS), Light Detection and 31 

Ranging (LiDAR), Geographic Information System (GIS), and remote sensing have proven effective for 32 

assessing and analyzing slope failure hazards (Ray et al., 2020). However, their high cost and the need for 33 

specialized expertise limit their accessibility, especially in developing countries where cost-effective IoT 34 

technologies are necessary (Pathania et al., 2020). 35 

Machine learning (ML) models have been extensively studied for predicting soil movement in landslide-36 

prone areas (Kumar et al., 2021a; Kumar et al., 2021b, Kumar et al., 2023). This prediction problem could be 37 

divided into classification and regression tasks. The classification task aims to predict the degree of soil 38 

movement using various ML models. On the other hand, the regression task involves estimating the acceleration 39 

or displacement of soil under observation. 40 

One common challenge in landslide prediction is a class imbalance, where certain classes have significantly 41 

more data samples than others. This imbalance can adversely affect the performance of ML models. To address 42 

class imbalance issues, techniques such as Synthetic Minority Oversampling Technique (SMOTE), K-Means 43 

SMOTE, Borderline SMOTE, and Adaptive Synthetic Minority Oversampling Technique (ADASYN) are 44 

employed to balance the dataset (Chawla et al., 2002; Douzas et al., 2018; Han et al., 2005; He et al., 2008). 45 
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Several researchers have dedicated their efforts to addressing class imbalance problems in ML. Notably, 46 

Chawla et al. (2002) introduced the SMOTE, Douzas et al. (2018) devised the K-Means SMOTE, Han et al. 47 

(2005) proposed the Borderline SMOTE, and He et al. (2008) introduced the Adaptive Synthetic Minority 48 

Oversampling Technique (ADASYN). These techniques were developed to generate synthetic data and balance 49 

imbalanced datasets. 50 

The field of soil movement prediction requires further investigation, particularly considering the complexities 51 

associated with a class imbalance in the datasets. Despite extensive research on ML models' predictive abilities 52 

for soil movement in landslides, there still needs to be more understanding regarding how class imbalance affects 53 

the models' performance and accuracy. This study aims to bridge this knowledge gap by examining different 54 

approaches to tackle class imbalance and exploring diverse ML models to improve the prediction of soil 55 

movement. Various multivariate classification models, including Random Forest (RF), Adaptive Boosting 56 

(AdaBoost), Extreme Gradient Boosting (XGBoost), Light Gradient Boosted Machine (Light GBM), Category 57 

Boosting (CatBoost), Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), and an ensemble of 58 

RF, AdaBoost, XGBoost, Light GBM, and CatBoost are developed to predict soil movement when coupled with 59 

class imbalance techniques (Kumar et al., 2019; Semwal et al., 2022; Wu et al., 2020; Pathania et al., 2021; 60 

Zhang et al., 2022; Sahin, 2022; Kumar et al., 2020; Kumar et al., 2023). 61 

This study delves into the field of soil movement prediction, making significant advancements by developing 62 

specialized ML models and techniques tailored to this domain. A notable aspect that has received limited 63 

attention in the existing literature is the challenge of class imbalance in landslide datasets. While previous 64 

research has primarily focused on ML models for soil movement prediction, this work addresses the issue of 65 

imbalanced data head-on. Multiple variants of the SMOTE and other balancing strategies are introduced and 66 

implemented to enhance the efficacy and accuracy of the ML models.  67 

Additionally, this research explores using cost-effective Internet of Things (IoT) technologies in developing 68 

regions to improve the investigation and assessment of landslide hazards. The dataset used in this study spans 69 

two years, from June 2019 to June 2021, and was collected by an inexpensive IoT monitoring station in 70 

Uttarakhand, India. This real-world dataset captures the distinctive characteristics and patterns of soil 71 

movements prevalent in the landslide-prone area. By employing a comprehensive methodology, this work 72 

advances soil movement prediction and effectively addresses the challenge of class imbalance. It commences 73 

with a thorough overview of the collected data, emphasizing the measured weather and soil-related factors. 74 

Various SMOTE variants and other balancing techniques are employed to rectify the class imbalance, resulting 75 

in the generation of synthetic samples and ensuring a balanced representation of soil movement classes. The 76 

intricate correlations and patterns in the soil movement data are captured using a variety of ML models, 77 

including RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and a dynamic ensembling of RF, 78 

AdaBoost, XGBoost, and CatBoost. Overall, this study's findings show potential for accurately reducing 79 

landslide risks, increasing the accuracy of landslide prediction, and encouraging the use of cost-effective IoT 80 

technologies in landslide-prone locations. 81 

2. Background 82 

Several techniques have been proposed to address the challenge of learning from imbalanced datasets, where 83 

the classification categories are not evenly represented. For example, Chawla et al. (2002) proposed the SMOTE, 84 

which involves generating synthetic minority class examples to balance the dataset. SMOTE has been shown to 85 

improve model performance compared to only undersampling the majority class. Douzas et al. (2018) 86 

introduced K-Means SMOTE, a method that combines SMOTE with k-means clustering to effectively overcome 87 

imbalances between and within classes without generating unnecessary noise. Additionally, Han et al., (2005) 88 

developed a Borderline SMOTE method that focuses on oversampling only the minority examples near the class 89 

boundary. Experimental results indicate that Borderline SMOTE1 and Borderline SMOTE2 outperform 90 

SMOTE and random oversampling methods in terms of true positive rate and F-value. Lastly, He et al. (2008) 91 

developed the ADASYN, which addresses class imbalance by generating more synthetic data for minority class 92 

examples that are harder to learn. ADASYN reduces bias and adaptively shifts the classification decision 93 
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boundary toward challenging examples. Simulation analyses have demonstrated the effectiveness of ADASYN 94 

across various evaluation metrics. These techniques offer valuable approaches to mitigate the impact of 95 

imbalanced data in classification tasks. These class imbalance techniques have limited exploration and 96 

application for landslide datasets. Existing studies primarily focus on the general imbalanced dataset scenario 97 

but need to consider the unique characteristics and challenges associated with landslide datasets. Therefore, 98 

research is required for systematic studies that compare the performance and effectiveness of techniques such 99 

as SMOTE, K-Means SMOTE, Borderline SMOTE, and ADASYN in the specific context of soil movement 100 

prediction across various evaluation metrics. By bridging this literature gap, we can enhance the accuracy and 101 

reliability of models for predicting soil movement in landslide-prone areas and contribute to improved landslide 102 

risk mitigation strategies. 103 

Several researchers developed various ML models to predict soil movement and prediction problems in other 104 

fields (Kumar et al., 2019; Semwal et al., 2022; Wu et al., 2020; Pathania et al., 2021; Zhang et al., 2022; Sahin, 105 

2022; Kumar et al., 2020). For example, Kumar et al. (2019) developed an ensemble of ML models (RF, 106 

Bagging, Stacking, and Voting) for predicting soil movement at the Tangni landslide in Uttarakhand, India. 107 

These models were compared with Sequential Minimal Optimization (SMO) and Autoregression (AR). The 108 

results indicate that the ensemble models outperformed the SMO and AR models in predicting soil movement. 109 

Furthermore, Semwal et al. (2022) developed the SMOreg, Instance-based Learning (IBk), RF, Linear 110 

Regression (LR), MLP, as well as ensemble ML models to predict root tensile strength for different vegetation 111 

species. The results show that the MLP performed better than the other models, providing more accurate 112 

predictions of root tensile strength. Next, Wu et al. (2020) developed the decision tree (DT) with AdaBoost and 113 

bagging ensembles for mapping the susceptibility of landslides in Longxian County, Shaanxi Province, China. 114 

Researcher developed the technique with ensemble of Alternating Decision Tree (ADTree) with Bagging and 115 

AdaBoost to map landslide susceptibility. The results revealed that ensemble of ADTree and AdaBoost model 116 

performed better than the individual ADTree model and ensemble of ADTree and Bagging model. Similarly, 117 

Pathania et al. (2021) developed a novel ensemble gradient boosting model, called SVM-XGBoost, for soil 118 

movements warning at Gharpa landslide, Mandi, India. They compared the performance of SVM-XGBoost with 119 

other models such as individual SVMs, DTs, RF, XGBoost, Naïve Bayes (NB), and different variants of 120 

XGBoost. The results showed that the SVM-XGBoost model performed better than other models in soil 121 

movement prediction. In their research, Kumar et al. (2021b) directed their attention toward predicting soil 122 

movement, specifically at the Tangni landslide site in India. To enhance the accuracy of their predictions, they 123 

explored various variants of Long Short-Term Memory (LSTM) models. They introduced a novel ensemble 124 

approach called BS-LSTM, which combined bidirectional and stacked LSTM models. The findings of their 125 

study indicated that the BS-LSTM model outperformed the other LSTM variants in accurately predicting soil 126 

movement. Similarly, Zhang et al. (2022) conducted a study to assess the susceptibility of landslides using 127 

gradient-boosting ML techniques coupled with class-balancing methods. Their investigation specifically 128 

focused on the aftermath of the 2018 Hokkaido earthquake and employed diverse datasets and methodologies 129 

to predict the susceptibility of specific areas prone to landslides. Compared to well-established models such as 130 

XGBoost and Light GBM, the proposed model showcased superior performance in accurately assessing 131 

landslide susceptibility. Furthermore, Sahin (2022) developed multiple ML models, including XGBoost, 132 

CatBoost, Gradient Boosting Machine (GBM), and Light GBM, to model the susceptibility of landslides. By 133 

leveraging a comprehensive landslide inventory map and relevant conditioning factors stored in a geodatabase, 134 

the study employed feature selection techniques and compared the predictive capabilities of ensemble methods 135 

with the widely used RF model. The results highlighted that CatBoost exhibited the highest predictive capability, 136 

followed by XGBoost, Light GBM, and GBM, while RF demonstrated comparatively lower predictive 137 

capability. The study used a geodatabase with a landslide inventory map and conditioning factors. Feature 138 

selection techniques were applied, and the performance of XGBoost, CatBoost, GBM, and Light GBM was 139 

compared to RF. The results revealed that CatBoost had the highest prediction capability, followed by XGBoost, 140 

Light GBM, and GBM. The literature gap in the context of soil movement prediction is the limited exploration 141 

and evaluation of ML models in combination with synthetic data generated by SMOTE techniques. While 142 

various ML models, such as ensemble models (e.g., RF), neural networks models (MLP and LSTM), and 143 
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gradient boosting ML models (e.g., AdaBoost, XGBoost, Light GBM, CatBoost), have been developed and 144 

applied for soil movement prediction, their utilization in conjunction with synthetic data generated by SMOTE 145 

techniques has received less attention in the literature. Incorporating SMOTE-generated synthetic data into the 146 

training process of these models can address the issue of class imbalance in landslide datasets and improve their 147 

performance in predicting soil movement. Therefore, further research is needed to investigate the effectiveness 148 

of these ML models when combined with SMOTE techniques in the context of soil movement prediction, 149 

thereby filling the existing literature gap. 150 

The RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and an ensemble of RF, AdaBoost, 151 

XGBoost, Light GBM, and CatBoost models were chosen to predict soil movement based on their proven 152 

effectiveness in previous research. RF is excellent at capturing complex relationships and has outperformed 153 

non-ensemble models in predicting debris flow and landslide susceptibility. AdaBoost has successfully 154 

predicted soil movement alerts ahead of time. At the same time, XGBoost and Light GBM have demonstrated 155 

their ability to achieve balanced and precise predictions, especially in earthquake-induced landslide 156 

susceptibility assessments. Among gradient-boosting models, CatBoost stands out for its superior prediction 157 

capability, making it a well-suited option for modelling landslide susceptibility. On the other hand, when it 158 

comes to predicting root tensile strength, MLP has demonstrated higher accuracy in its predictions. Additionally, 159 

LSTM, a robust recurrent neural network architecture, is particularly effective in capturing temporal 160 

dependencies and long-term patterns in sequential data. Collectively, these models offer a diverse set of 161 

capabilities that prove valuable in the prediction of soil movement. 162 

3. Data Collection and Description 163 

The dataset for predicting soil movement was collected from an actual landslide site in Uttarakhand, India. The 164 

monitored landslides are characterized as shallow landslides with debris flow, occurring at elevations ranging 165 

from 1450 m to 1920 m. The slopes in the landslide zones in the upper parts are made up of weathered limestone 166 

and dolomitic limestone, whereas the lower slopes exhibit black carbonaceous slate. The slates are highly 167 

weathered and leached, adorned with white and yellow encrustation. These are covered with a thin veneer of 168 

debris, mainly consisting of pebble- and cobble-sized limestone, sandstone, and slate embedded in a sand–silt–169 

clay matrix. Additional context includes an annual rainfall of 4190 mm in the area, as reported by Gupta et al. 170 

(2015). Spanning a duration of two years, from June 2019 to June 2021, this dataset holds valuable insights into 171 

the behaviour of soil in response to various environmental factors. To gather this data, a cost-effective landslide 172 

monitoring station (LMS) was carefully deployed at the landslide. Equipped with a range of sensors, the LMS 173 

diligently recorded critical weather and soil-related parameters. Weather-wise, it diligently captured temperature 174 

readings in degrees Celsius, humidity levels as a percentage, rainfall measurements in inches per hour (in/hr), 175 

atmospheric pressure in millibars (mb), and even sunlight intensity in lux. These meticulous recordings shed 176 

light on the prevailing weather conditions experienced at the precise location of the landslide. The LMS relied 177 

on an accelerometer sensor to monitor the soil conditions with utmost precision. An advanced sensor was 178 

utilized to measure the acceleration of the soil in three directions: Ax, Ay, and Az (in m/s²). This provided 179 

valuable insights into the soil's movement and stability. Additionally, a gyroscope sensor was employed to 180 

capture the angular rotation of the soil along the Wx, Wy, and Wz axes (in degrees per second). This sensor 181 

enhanced the understanding of the soil's behaviour by accurately detecting its angular movements. Furthermore, 182 

the LMS was equipped with a capacitive soil moisture sensor, enabling it to measure the volumetric moisture 183 

content of the soil in percentage. The LMS transmitted all these twelve attributes, including weather parameters, 184 

soil g-force, angular rotation, and soil moisture content, to the cloud every ten minutes. The dataset obtained 185 

from the LMS consisted of approximately thirty-nine thousand data points, covering a wide range of 186 

environmental and soil-related attributes. Table 1 showcases the statistics for the recorded soil movement 187 

prediction parameters. For each attribute, the table provides the mean value, representing the average 188 

measurement, along with the standard deviation (stdev), indicating the variability of the data. The minimum and 189 

maximum values highlight the range of measurements observed, offering insights into the extreme values and 190 

overall data distribution. 191 
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Table 1. Summary statistics of recorded parameters for soil movement prediction dataset. 192 

Parameter Mean stdev Min Max 

Temperature (° 𝐶) 16.18 10.48 0.00 39.00 

Humidity (%) 66.69 35.46 0.00 99.00 

Rain (in/hr) 0.00 5.60 0.00 15.00 

Pressure (mb) 1040.96 27.96 921.61 1065.41 

Light (lux) 5025.35 10154.75 0.00 54612.00 

Ax (𝑚 𝑠2⁄ ) 0.02 1.23 -28.02 40.25 

Ay (𝑚 𝑠2⁄ ) 0.00 1.37 -100.08 100.08 

Az (𝑚 𝑠2⁄ ) 0.00 2.28 -149.61 315.61 

Wx (° 𝑠⁄ ) 0.00 15.86 -1994.51 1997.24 

Wy (° 𝑠⁄ ) 0.00 15.85 -1998.05 1998.73 

Wz (° 𝑠⁄ ) 0.00 6.95 -932.00 932.00 

Moisture (%) 80.00 20.30 40.00 100.00 

4. Methodology 193 

4.1. Data Pre-processing 194 

The sensors installed at the landslide locations experienced malfunctions, resulting in multiple missing values 195 

within the collected data. To address this issue, we employed a method to fill these gaps by replacing the missing 196 

values with the average values recorded at the corresponding timestamps during the previous week. By 197 

calculating the average values for parameters such as light intensity, humidity, temperature, and pressure from 198 

the same time periods in the preceding week, we obtained estimates to replace the skewed or missing data points. 199 

4.2. Class Labeling 200 

The dataset contained values for acceleration and angular rotation in three directions: x, y, and z. The changes 201 

in acceleration and angular rotation were calculated by subtracting the current values from the past values, 202 

allowing for the assessment of movement. Four categories were defined to classify the movement data: no 203 

movement, low movement, moderate movement, and high movement. These categories were determined based 204 

on standard deviation thresholds derived from the acceleration and angular rotation values. Specifically, values 205 

within ± 1 standard deviation from the mean were categorized as no movement, ± 2 standard deviations as low 206 

movement, ± 3 standard deviations as moderate movement, and values exceeding ± 3 standard deviations as 207 

high movement. This classification approach considered the variability in acceleration and angular rotation 208 

changes to determine the intensity of movement. 209 

During the analysis, each timestamp was assigned to a movement class based on the class associated with 210 

the highest standard deviation observed in any acceleration or angular rotation element. If an individual element 211 

had the highest standard deviation at a specific timestamp, that timestamp was assigned to the corresponding 212 

movement class with the maximum standard deviation. 213 

Table 2 presents the distribution of movement intensity within the dataset, which consisted of 38,900 data 214 

points. The table shows the percentage distribution of movement categories: high, moderate, low, and no 215 

movement. The majority of the dataset (97.8%) falls under the "No Movement" category, indicating a lack of 216 

significant movement. On the other hand, the high movement category represents only a small fraction (1.1%) 217 

of the dataset. Additionally, the moderate movement category comprises 0.7% of the samples, while the low 218 

movement category accounts for 0.4% of the dataset. This distribution highlights the class imbalance issue 219 

present in the dataset, which needs to be taken into account when developing a classification model for 220 

predicting soil movement. 221 
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Table 2. Class distribution of soil movement data points. 222 

Movement Class Number of Data Points Percentage 

High Movement 423 1.1% 

Moderate Movement 146 0.7% 

Low Movement 268 0.4% 

No Movement 38063 97.8% 

4.3. Sliding Window Packets 223 

The sliding window packets technique involves dividing a given dataset into fixed-length subsequences or 224 

packets and their corresponding labels. To achieve this, a sequence length parameter is used to determine the 225 

length of each subsequence. The sliding window approach is then employed, where a window starts at the 226 

beginning of the dataset and moves through the data with a step size of 1. A subsequence of the specified length 227 

is extracted from the dataset at each window position. The label for prediction is taken from the next position 228 

after the window. 229 

The sliding window packets technique aims to predict future values or events based on preceding 230 

subsequences. For instance, if the sequence length is set to five, the sliding window will select five consecutive 231 

values from the dataset as a subsequence at each step. The label for prediction will be the value at the sixth 232 

position. This process continues until the end of the dataset is reached, resulting in multiple subsequences and 233 

their respective labels. Once the packets are created, they are flattened to form a single feature vector. For 234 

instance, if the sequence length is five and the dataset has twelve features, each packet will contain sixty 235 

elements (5x12). This transformation allows the packets to be treated as individual samples with multiple 236 

features suitable for ML models. The primary purpose of creating these packets is to address prediction tasks 237 

involving sequences where the input data's order and dependencies are crucial. The model can effectively 238 

capture and learn patterns and relationships within the sequential data by utilizing the sliding window packets. 239 

The flattened packets generated using the sliding window technique are inputs in oversampling techniques. 240 

4.4. Oversampling 241 

In our analysis, we encountered a significant class imbalance issue in the labeled data. The "No Movement" 242 

class, which represents the majority of the data, had a large number of data points. All other classes, including 243 

"High Movement," "Moderate Movement," and "Low Movement," represent minority classes, each constituting 244 

only 1%, 0.7%, and 0.4% of the total data, respectively. This class imbalance posed a challenge for building an 245 

effective classification model, as the skewed data distribution made it difficult to classify the minority class 246 

accurately. 247 

To overcome the class imbalance challenge, we implemented several oversampling techniques, with a 248 

particular focus on SMOTE and its extensions (Chawla et al., 2002; Douzas et al., 2018; Han et al., 2005; He et 249 

al., 2008). SMOTE, which stands for Synthetic Minority Oversampling Technique, addresses the imbalance by 250 

generating synthetic data points for the minority class (Chawla et al., 2002). By utilizing the characteristics of 251 

existing samples from the minority classes, we created new data points, thereby increasing the representation of 252 

the "High Movement," "Moderate Movement," and "Low Movement" classes. In addition to the standard 253 

SMOTE, we also explored other variations such as K-Means SMOTE (Douzas et al., 2018), and Borderline 254 

SMOTE (Han et al., 2005) to further enhance the balance of class distribution. 255 

Furthermore, we utilized the ADASYN, an extension of SMOTE that explicitly addresses the classification 256 

boundary of the minority class (He et al., 2008). ADASYN assigns higher weights to the minority examples that 257 

are more challenging to classify, leading to the generation of additional artificial data points for these instances. 258 

By incorporating ADASYN into our oversampling strategy, we enhanced the balance of the class distribution 259 

further and improved the classification accuracy for all classes. 260 
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Figure 1 illustrates the application of the K-Mean SMOTE technique for addressing the class imbalance. The 261 

Fig. 1 depicts a scatter plot where the red crosses represent the minority class samples, while the black dots 262 

represent the majority class samples. The green crosses indicate the newly generated synthetic samples by the 263 

K-Mean SMOTE algorithm. The dashed line represents the decision boundary separating the two classes. K-264 

Mean SMOTE operates by following two simple steps iteratively (Douzas et al., 2018). Firstly, it assigns each 265 

observation to the nearest cluster centroid among the k available. Secondly, it updates the position of the 266 

centroids so that they are positioned at the centre between the assigned observations. The imbalance ratio (IR) 267 

shown in Fig. 1 helps K-Means SMOTE determine the appropriate amount of oversampling for the minority 268 

class, ensuring a balanced representation of the classes in synthetic samples. The parameter 'k' in all SMOTE 269 

techniques was varied from 2 to 5 in this experiment to observe how different numbers of nearest neighbors 270 

impact the diversity and quality of synthetic samples created, thereby affecting the performance of the model 271 

on imbalanced data. 272 

 

Figure 1: K-Means SMOTE effectively addresses within-class imbalance by oversampling safe areas (Douzas et 
al., 2018). 

4.5. Machine Learning Models 273 

Various models were employed to classify the soil movement. The specific models will be discussed in the 274 

following subsection. To evaluate the accuracy of these models, the dataset was divided into two groups: training 275 

data (70%) and testing data (30%). Random sampling was used to select 70% of the data points for training the 276 

classification models mentioned below, while the remaining 30% of the dataset was reserved for model 277 

evaluation. 278 
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4.5.1. AdaBoost  279 

AdaBoost enhances ML model performance by combining results from multiple weak learners, techniques 280 

slightly better than random guessing (Wu et al., 2020). In the AdaBoost model, the number of trees sets the 281 

maximum weak models, impacting performance and overfitting. The learning rate influences each model's 282 

contribution, with a higher rate giving more weight. The maximum depth parameter prevents weak models from 283 

becoming too complex. Table 3 details the AdaBoost model's parameter range. 284 

4.5.2. XGBoost 285 

XGBoost, a gradient-boosting ensemble ML model with decision trees (Chen and Guestrin, 2016), excels in 286 

structured data handling. The number of trees in XGBoost determines boosting rounds, impacting performance 287 

with a computational complexity trade-off. The learning rate influences convergence speed and generalization 288 

ability, and the maximum depth parameter prevents overfitting for enhanced interpretability. See Table 3 for the 289 

XGBoost model's parameter range. 290 

4.5.3. Light GBM 291 

Light GBM, a gradient-boosting framework for tasks like ranking and classification (Ke et al., 2017), stands out 292 

with its leaf-wise approach, reducing loss, improving accuracy, and ensuring efficient learning.  The number of 293 

trees in the model influences boosting rounds for potential performance enhancement. The learning rate 294 

parameter balances convergence speed and accuracy, while the maximum depth parameter controls complexity 295 

and prevents overfitting. See Table 3 for the Light GBM model's parameter range. 296 

4.5.4. CatBoost 297 

CatBoost, short for Category Boosting, is an ML model developed by Yandex and released as an open-source 298 

tool (Prokhorenkova et al., 2018). In the CatBoost model, the choice of the loss function significantly impacts 299 

performance. Loss functions like log, entropy, or hinge are tailored for specific classification problems, 300 

influencing results. Table 3 outlines the range of parameters for the CatBoost model for fine-tuning and 301 

optimizing CatBoost's performance on a given dataset. 302 

4.5.5. Random Forest 303 

RF, an ensemble learning method combining predictions from multiple decision trees (Breiman, 2001), 304 

constructs regression or classification models. Known for handling relationships and non-linearities without 305 

requiring variable independence assumptions, RF excels in various industries, including landslide prediction 306 

and site recognition. Optimizing RF performance involves adjusting parameters like the number of trees (DTs), 307 

splitting criteria (Gini or Entropy), and maximum tree depth, controlling robustness, accuracy, and complexity. 308 

Table 3 details parameter ranges for the RF model.  309 

4.5.6. Multilayer Perceptron 310 

The MLP, a neural network architecture introduced by Rosenblatt in 1961, features interconnected layers: input, 311 

hidden, and output (Rosenblatt et al., 1961). Neurons calculate weighted sums, passing through activation 312 

functions to capture intricate relationships. Dropout layers prevent overfitting by deactivating neurons randomly 313 

during training, enhancing generalization. Versatile for classification, the MLP's look-back period influences 314 

temporal dependency capture, while the number of layers and nodes per layer governs complexity. Table 3 315 

outlines parameter ranges for the MLP model.  316 
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4.5.7. LSTM 317 

The LSTM is a recurrent neural network that captures long-term dependencies in sequential data (Hochreiter 318 

and Schmidhuber, 1997). It excels in various applications, including natural language processing and time series 319 

forecasting. In our LSTM model, experiments explored different parameters: LSTM unit sizes (32, 64, 128, 320 

256), activation functions (sigmoid, tanh, ReLU), and a look-back period ranging from 3 to 10. We chose the 321 

categorical cross-entropy loss function for multi-class classification. Table 3 details the parameter range for the 322 

LSTM model. 323 

4.5.8. Dynamic Ensembling 324 

Dynamic ensembling is a highly effective technique in ML that takes advantage of the adaptability and ongoing 325 

improvement of predictive models (Ko et al., 2008). It involves creating a versatile and continuously evolving 326 

ensemble by harnessing the strengths of multiple models, including RF, CatBoost, XGBoost, Light GBM, and 327 

AdaBoost. Traditionally, ensembling methods like bagging and boosting have focused on fixed ensembles. 328 

However, dynamic ensembling goes beyond this by introducing the ability to add or remove models based on 329 

their performance dynamically. In the case of dynamic ensembling with the models, as mentioned earlier, the 330 

monitoring criterion used is accuracy. Accuracy as the monitoring criterion ensures that the dynamic ensemble 331 

maintains a high level of accuracy in its predictions. If a model falls below a predefined accuracy threshold, it 332 

is considered underperforming and may be replaced to enhance the ensemble's overall performance. 333 

Dynamic ensembling offers numerous advantages, including handling concept drift, where the underlying 334 

data distribution changes over time. By incorporating new models that capture updated patterns and relationships 335 

in the data, the dynamic ensemble can effectively adapt to concept drift and maintain accurate predictions. 336 

The dynamic ensembling model utilized base models such as RF, CatBoost, XGBoost, Light GBM, and 337 

AdaBoost. Each base model was trained individually with the same default parameter settings as their standalone 338 

counterparts. The range of parameters for the dynamic ensemble model is mentioned in Table 3. 339 

Table 3. The range of parameters varied in the models. 340 

Model Parameter Range of Parameter 

 

AdaBoost 

Number of Trees  [10, 100] in steps of 5 

Learning Rate  [0.1, 2] in steps of 0.1 

XGBoost 

Number of Trees  [10, 100] in steps of 5 

Learning Rate  [0.05, 0.55] in steps of 0.05 

Maximum Depth  [5, 50] in steps of 5 

Light GBM  

Number of Trees  [10, 100] in steps of 5 

Learning Rate [0.05, 0.55] in steps of 0.05 

Maximum Depth [5, 50] in steps of 5 

 

CatBoost 

Loss Function  Log, Entropy, Hinge 

Learning Rate [0.1, 2] in steps of 0.1 

Maximum Depth  [3, 33] in steps of 3 

 

RF 

Number of Trees [10, 100] in steps of 5 

Criteria  Gini, Entropy 

Maximum Depth [5, 50] in steps of 5 

 

MLP 

Look-back Period   3 to 10 

Layers  [1, 3]  

Nodes Per Layer [50, 250] in steps of 50 
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 Learning Rate [0.1, 0.9] in step of 0.1 

LSTM 

Look-back Period 3 to 10 

LSTM Units 32, 64, 128, 256 

Activation Function Sigmoid, tanh, ReLU 

 Learning Rate [0.1, 0.9] in step of 0.1 

5. Model Execution, Minimization, and Handling Class Imbalance 341 

A rigorous process was followed to develop an effective model for predicting the intensity of soil movement. 342 

The dataset was partitioned into a 70:30 ratio, with 70% allocated for training and 30% for testing. To tackle 343 

the class imbalance issue in the training data, oversampling techniques were applied exclusively to the training 344 

set, ensuring a balanced representation of all three classes. The oversampling methods were not extended to the 345 

testing data, preserving its original distribution. In this study, we developed two methods, referred to as method 346 

5 Training Datasets (5-TD) and method 5-fold cross-validation (5-CV). Method 5-TD was employed for 347 

parameter variation analysis across different datasets. On the other hand, method 5-CV was utilized for 348 

conducting 5-fold cross-validation to analyze the performance of the ML models. 349 

5.1. Method 5-TD 350 

For method 5-TD, the training dataset was split into five training datasets, each utilized for parameter variation 351 

analysis. This involved training and optimizing the ML model on each dataset independently using the grid 352 

search method. Since each dataset possessed different optimal parameters, we calculated the mean and stdev of 353 

the ML-optimized parameter values across all datasets to assess parameter variability. This enabled us to observe 354 

parameter variations across the ML models, providing insights into the sensitivity of the models to different 355 

dataset characteristics and parameter configurations. A lower stdev implied that the model maintained 356 

consistency across each dataset and demonstrated robust generalization capabilities. Conversely, a higher stdev 357 

suggested that the model encountered difficulties maintaining consistency across datasets, potentially hindering 358 

its ability to learn general patterns effectively. The evaluation primarily focused on F1 score metrics to determine 359 

how effectively the models predicted the intensity of soil movements in each of the 5 datasets. 360 

5.2. Method 5-CV 361 

For method 5-CV, a suite of ML models underwent training using a 5-fold cross-validation approach (Kumar et 362 

al., 2023). In the 5-CV method, the training data was split into 5 datasets, where each dataset was alternately 363 

used for validation while the others were used for training. The models were optimized by employing grid search 364 

methodology and optimized based on performance on the 5 validation sets, and a single set of best-performing 365 

parameters was selected for each model. Subsequently, the models with the best parameters found during 366 

training were tested on the independent testing data, and their performance metrics were reported as indicative 367 

of their predictive capabilities. The evaluation primarily focused on F1 score metrics to determine how 368 

effectively the models predicted the intensity of soil movement across the 5 validation sets and the test set. 369 

6. Results 370 

6.1. Parameter Analysis Result 371 

Upon scrutinizing the parameter analysis presented in Table 4 from method 5-TD, a discernible trend emerged: 372 

models trained with oversampling techniques exhibit notably smaller stdevs than their counterparts trained 373 

without oversampling. For instance, when examining the AdaBoost model, we observe that the stdev of the 374 
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number of trees parameter was 0 for the oversampling case. In contrast, it stood at 16.43 for the dataset without 375 

oversampling. This phenomenon underscores the stabilizing effect of oversampling on parameter estimates, 376 

mitigating the variability that may arise from imbalanced datasets. 377 

Similarly, in the case of the RF model, the stdev of the number of trees parameter was 0 with oversampling, 378 

indicating consistent parameter values across folds. Conversely, for the dataset without oversampling, the stdev 379 

increased to 21.21, suggesting greater variability in parameter estimates. This trend persisted across various 380 

models and parameters, highlighting the robustness imparted by oversampling techniques in stabilizing model 381 

performance. 382 

Overall, these examples underscore the importance of oversampling in reducing parameter variability and 383 

ensuring consistent model behaviour, particularly in scenarios involving imbalanced datasets. 384 

Table 4. The result of parameter variation analysis across five datasets from method 5-TD. 385 

Model Parameter With Oversampling Without Oversampling 
  

Mean stdev Mean stdev 

AdaBoost 
Number of Trees 80 0 62 16.43 

Learning Rate 0.66 0.22 0.9 0 

XGBoost 

Number of Trees 50 0 50 0 

Maximum Depth 20 0 10 0 

Learning Rate 0.5 0 0.68 0.16 

Light GBM 

Number of Trees 50 0 50 0 

Maximum Depth 20 0 20 0 

Learning Rate 0.5 0 0.6 0.12 

CatBoost 

Number of Trees 50 0 50 0 

Maximum Depth 20 0 20 0 

Learning Rate 0.8 0 0.66 0.13 

RF 
Number of Trees 80 0 50 21.21 

Maximum Depth 20 0 20 0 

MLP 

Look-back Period 2.8 0.44 3.6 1.34 

Layers 2 0 2 0 

Nodes in First Layer  130 67.08 130 67.08 

Nodes in Second Layer  200 0 60 54.77 

Learning Rate 0.78 0.16 0.64 0.28 

LSTM 

Look-back Period 4.6 0.89 4 1.41 

Layers 2 0 2 0 

Nodes in First Layer  90 22.36 70 27.39 

Nodes in Second Layer  160 54.77 100 61.24 

Learning Rate 0.84 0.08 0.86 0.05 

6.2. Optimized Parameters 386 

In method 5-CV, we optimized the parameters separately for the ML models using a 5-fold cross-validation 387 

process on the full training dataset. In analyzing various SMOTE techniques, the parameter 'k', representing the 388 

count of nearest neighbors for synthesizing new samples, was consistently optimized at a value of four. Table 5 389 

presents each model's optimized parameter values obtained through the grid search in 5-CV on the training 390 

dataset. These parameters were carefully fine-tuned to ensure the best fit for the given data. In the case of 391 
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AdaBoost, the optimized values included 80 trees and a learning rate of 0.6. The optimized values for the 392 

XGBoost model consisted of 50 trees, a learning rate of 0.3, and a maximum depth of 10. These settings were 393 

determined to enhance the model's performance in terms of both speed and accuracy. 394 

Similarly, the Light GBM model underwent parameter optimization, selecting 50 trees, a learning rate of 0.5, 395 

and a maximum depth of 20. Next, the CatBoost model was also optimized, leading to entropy selection as the 396 

loss function, a learning rate of 0.8, 50 trees, and a maximum depth of 20. In the RF model, the optimized values 397 

were 80 for the number of trees and 20 for the maximum depth, and the evaluation criteria were set to "Gini." 398 

Likewise, the MLP model optimized its parameters with a look-back period of 3, 2 layers, and 200 nodes per 399 

layer. Similarly, the LSTM model consists of two layers with 100 and 200 nodes in the first and second layers 400 

and utilizes a ReLU activation function. Lastly, the dynamic ensemble model in this study incorporated the 401 

optimized RF, CatBoost, XGBoost, Light GBM, and AdaBoost models to improve the accuracy of landslide 402 

analysis predictions. By leveraging the strengths of these individually optimized models, as mentioned above, 403 

the dynamic ensembling model aimed to improve the accuracy and reliability of landslide analysis predictions. 404 

Table 5. The best value of the parameters was calibrated from the training data using method 5-CV. 405 

Model Parameter Best Value of Parameter 

AdaBoost 
Number of Trees 80 

Learning Rate 0.6 

XGBoost 

Number of Trees  50 

Learning Rate  0.3 

Maximum Depth  10 

Light GBM  

Number of Trees  50 

Learning Rate 0.5 

Maximum Depth 20 

CatBoost 

Loss Function  Entropy 

Learning Rate 0.8 

Number of Trees 50 

Maximum Depth  20 

 

RF 

Number of Trees 80 

Criteria  Gini 

Maximum Depth 20 

 

MLP 

Look-back Period  3 

Layers  2 

Nodes Per Layer 200 in both layers 

Learning Rate 0.6 

LSTM 

Look-back Period 5 

LSTM Units 100 in first and 200 in second layer 

Activation Function ReLU 

Learning Rate 0.9 

6.2.1. Train-Test Results 406 

Table 6 presents the training results of different classification models evaluated using 5-fold cross-validation on 407 

the training dataset and various oversampling techniques for landslide prediction, utilizing method 5-CV. In 408 
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Table 6, C0, C1, C2, and C3 represent no movement, low movement, moderate movement, and high movement 409 

classes’ accuracies, respectively. These results provide valuable insights into the performance of each model 410 

when trained on the training dataset with and without oversampling. The XGBoost model with K-Mean SMOTE 411 

emerged as the best model in training, achieving outstanding accuracy, precision, recall, and F1 scores of 0.999, 412 

0.999, 0.999, and 0.999, respectively. The dynamic ensemble model with K-Mean SMOTE and Borderline 413 

SMOTE techniques also performed similarly with 0.998 F1 scores. It demonstrates remarkable predictive 414 

capability by achieving perfect accuracy in oversampling scenarios. When the XGBoost model was trained 415 

without oversampling, its accuracy, precision, recall, and F1 score were notably lower, with values of 0.999, 416 

0.999, 0.971, and 0.985, respectively. 417 

Table 7 presents the test results of various classification models combined with different oversampling 418 

techniques for landslide prediction (here models were trained using the method 5-CV). In Table 7, C0, C1, C2, 419 

and C3 represent no movement, low movement, moderate movement, and high movement classes’ accuracies, 420 

respectively. Among them, the dynamic ensemble model utilizing the K-Mean SMOTE technique demonstrated 421 

exceptional performance in accurately predicting landslides on unseen data. It achieves impressive accuracy, 422 

precision, and recall rates of 0.995, 0.995, and 0.995, respectively, along with an F1 score of 0.995. These 423 

outstanding results confirm the effectiveness of the dynamic ensemble approach when combined with K-Mean 424 

SMOTE for accurate soil movement prediction. Similarly, the Borderline SMOTE technique also showed 425 

similar performance with accuracy, precision, recall, and an F1 score of 0.995 for all. When the model is tested 426 

without oversampling, its accuracy, precision, recall, and F1 score are notably lower, with values of 0.981, 427 

0.646, 0.397, and 0.462, respectively. The best-performing model is highlighted in bold in Table 6 and Table 7. 428 

Moreover, it is noteworthy that K-Means SMOTE consistently outperformed other oversampling techniques 429 

across all models during the test performance evaluations, establishing itself as the optimal technique. Notably, 430 

it is crucial to highlight the impact of oversampling on the performance of the dynamic ensemble model. This 431 

underscores the discernible effectiveness of K-Means SMOTE in generating oversampling for the soil 432 

movement dataset. The success of K-Means SMOTE can be attributed to its ability to identify clusters within 433 

the minority class and select similar features for oversampling. The IR employed by K-Means SMOTE aids in 434 

determining the appropriate degree of oversampling for the minority class, ensuring a balanced representation 435 

of classes in synthetic samples. 436 

Moreover, the absence of oversampling techniques negatively impacted the models' performance in both 437 

training and testing. Without oversampling, the models exhibited lower accuracy, precision, recall, and F1 scores 438 

during training and testing, emphasizing the challenges posed by class imbalance. In the absence of balanced 439 

representation through oversampling, the models struggled to effectively learn and generalize from the 440 

imbalanced dataset. Consequently, this underscores the pivotal role of oversampling in mitigating class 441 

imbalance issues, leading to substantial enhancements in predictive accuracy and overall model robustness 442 

during training and testing evaluations. 443 

Models trained with oversampling techniques consistently demonstrate comparable performance across both 444 

training and testing datasets, indicating a lack of overfitting. Conversely, models trained without oversampling, 445 

notably RF, MLP, LSTM, and Dynamic Ensemble, exhibit signs of overfitting, as evidenced by significantly 446 

higher performance metrics on the training dataset relative to the testing dataset. This observation underscores 447 

the effectiveness of oversampling techniques in mitigating overfitting by enhancing the model's ability to 448 

generalize to unseen data. 449 

Comparing the dynamic ensemble model with other classification models, it becomes evident that the 450 

dynamic ensemble model with K-Mean SMOTE consistently outperformed the rest, highlighting their 451 

effectiveness in accurately predicting landslides. 452 

These findings underscore the importance of carefully selecting appropriate ML models and employing 453 

suitable oversampling techniques to address the class imbalance challenge in soil movement prediction. They 454 

provide valuable insights into the performance and suitability of these models and techniques for enhancing 455 

landslide prediction accuracy, ultimately enabling proactive measures to mitigate landslide risks. 456 

In Fig. 2, we juxtaposed the performance metrics obtained using K-Means SMOTE against those obtained 457 

without oversampling across various machine learning models. In Fig. 2, the blue bars represent the F1 score 458 
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achieved with K-Means SMOTE (oversampling), while the orange bars represent the F1 score without 459 

oversampling. Notably, when comparing the performance in the test dataset using the F1 score metric, the 460 

oversampling dataset generated with K-Means SMOTE consistently yielded superior results compared to the 461 

without oversampling approach. For instance, in the case of the AdaBoost model, K-Means SMOTE resulted in 462 

an F1 score of 0.412 for the without oversampling technique, whereas it achieved an F1 score of 0.445 for K-463 

Means SMOTE. Similarly, in the XGBoost model, the F1 score improved from 0.447 without oversampling to 464 

0.842 with K-Means SMOTE. This trend persisted across various other models such as Light GBM, CatBoost, 465 

RF, MLP, LSTM, and Dynamic Ensemble, where K-Means SMOTE consistently demonstrated superior 466 

performance in terms of F1 score compared to without oversampling. These results underscore the effectiveness 467 

of K-Means SMOTE in enhancing the predictive performance of ML models for soil movement prediction tasks. 468 

Figure 3 illustrates the confusion matrix depicting the performance of the Dynamic Ensemble model on both 469 

the training and testing datasets, utilizing the K-Mean SMOTE oversampling technique. The confusion matrix 470 

provides a comprehensive overview of the model's classification accuracy by presenting the true and predicted 471 

labels across different classes. The Dynamic Ensemble model demonstrates robust performance in the training 472 

dataset, as evidenced by the high counts along the diagonal, indicating a substantial number of correct 473 

predictions across all classes. Similarly, in the testing dataset, the model maintains its efficacy, with the majority 474 

of samples correctly classified across various classes.  475 

Table 6. Results of ML models obtained from the training dataset using 5-fold cross-validation in method 5-CV. 476 

Model 
Oversampling 

Technique 
Accuracy Precision Recall F1 Score 

  C0 C1 C2 C3 Overall    

AdaBoost 

SMOTE 0.942 0.562 0.640 0.817 0.747 0.748 0.747 0.747 

K-Means 

SMOTE 
0.948 0.760 0.675 0.855 0.807 0.809 0.807 0.806 

Borderline 

SMOTE 
0.919 0.565 0.667 0.815 0.740 0.741 0.740 0.740 

ADASYN 0.934 0.552 0.649 0.798 0.740 0.741 0.740 0.740 

Without 

Oversampling 
0.995 0.250 0.243 0.341 0.980 0.575 0.465 0.506 

XGBoost  

SMOTE 0.995 0.999 0.999 0.997 0.998 0.998 0.998 0.998 

K-Means 

SMOTE 
0.997 0.999 0.999 0.998 0.999 0.999 0.999 0.999 

Borderline 

SMOTE 
0.996 0.999 0.999 0.998 0.998 0.998 0.998 0.998 

ADASYN 0.994 0.999 0.999 0.997 0.998 0.998 0.998 0.998 

Without 

Oversampling 
1.000 0.995 0.953 0.906 0.999 0.999 0.971 0.985 

Light 

GBM 

SMOTE 0.984 0.994 0.999 0.988 0.991 0.991 0.991 0.991 

K-Means 

SMOTE 
0.991 0.998 0.998 0.996 0.996 0.996 0.996 0.996 

Borderline 

SMOTE 
0.985 0.999 0.999 0.995 0.995 0.995 0.995 0.995 

ADASYN 0.983 0.994 0.998 0.987 0.991 0.991 0.991 0.991 

Without 

Oversampling 
1.000 1.000 1.000 0.976 0.994 0.999 0.999 0.996 

CatBoost  

SMOTE 0.990 0.999 0.999 0.997 0.997 0.997 0.997 0.997 

K-Means 

SMOTE 
0.991 0.999 0.999 0.997 0.997 0.997 0.997 0.997 

Borderline 

SMOTE 
0.992 0.999 0.999 0.997 0.997 0.997 0.997 0.997 



  15 

 
ADASYN 0.991 0.999 0.999 0.997 0.996 0.996 0.996 0.996 

Without 

Oversampling 
0.999 0.924 0.916 0.735 0.997 0.997 0.903 0.946 

RF 

SMOTE 0.920 0.892 0.951 0.905 0.921 0.923 0.921 0.922 

K-Means 

SMOTE 
0.920 0.921 0.959 0.902 0.925 0.928 0.925 0.926 

Borderline 

SMOTE 
0.948 0.969 0.988 0.959 0.967 0.967 0.967 0.967 

ADASYN 0.921 0.898 0.945 0.899 0.915 0.917 0.915 0.915 

Without 

Oversampling 
1.000 0.701 0.682 0.537 0.992 0.995 0.742 0.841 

MLP 

SMOTE 0.959 0.976 0.997 0.952 0.961 0.961 0.961 0.961 

K-Means 

SMOTE 
0.940 0.996 0.984 0.957 0.974 0.974 0.974 0.974 

Borderline 

SMOTE 
0.968 0.974 0.989 0.913 0.964 0.964 0.964 0.964 

ADASYN 0.929 0.975 0.981 0.984 0.961 0.961 0.961 0.961 

Without 

Oversampling 
0.997 0.016 0.000 0.056 0.980 0.693 0.336 0.381 

LSTM 

SMOTE 0.882 0.841 0.881 0.896 0.875 0.884 0.875 0.877 

K-Means 

SMOTE 
0.980 0.996 0.992 0.968 0.984 0.984 0.984 0.984 

Borderline 

SMOTE 
0.946 0.954 0.997 0.965 0.966 0.966 0.966 0.966 

ADASYN 0.955 0.979 0.997 0.955 0.971 0.971 0.971 0.971 

Without 

Oversampling 
0.999 0.859 0.925 0.700 0.995 0.979 0.871 0.919 

Dynamic 

Ensemble 

SMOTE 0.992 0.999 0.999 0.999 0.997 0.997 0.997 0.997 

K-Means 

SMOTE 
0.994 0.999 0.999 0.999 0.998 0.998 0.998 0.998 

Borderline 

SMOTE 
0.997 0.999 0.999 0.998 0.998 0.998 0.998 0.998 

ADASYN 0.992 0.999 0.999 0.998 0.997 0.997 0.997 0.997 

Without 

Oversampling 
1.000 0.951 0.944 0.770 0.997 0.999 0.916 0.954 

Table 7. Results of ML models obtained from the testing dataset in method 5-CV. 477 

Model 
Oversampling 

Technique 
Accuracy Precision Recall F1 Score  

  C0 C1 C2 C3 Overall    

AdaBoost 

SMOTE 0.939 0.548 0.436 0.763 0.932 0.383 0.671 0.442 

K-Means 

SMOTE 
0.946 0.583 0.436 0.681 0.939 0.382 0.662 0.445 

Borderline 

SMOTE 
0.917 0.595 0.462 0.756 0.911 0.374 0.682 0.423 

ADASYN 0.995 0.226 0.205 0.230 0.978 0.514 0.414 0.447 

Without 

Oversampling 
0.931 0.524 0.436 0.681 0.924 0.360 0.643 0.412 

XGBoost  

SMOTE 0.991 0.976 0.974 0.837 0.989 0.774 0.945 0.846 

K-Means 

SMOTE 
0.993 0.952 0.949 0.785 0.990 0.787 0.920 0.842 
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Borderline 

SMOTE 
0.994 0.905 0.769 0.733 0.990 0.803 0.850 0.823 

ADASYN 0.990 0.988 0.974 0.830 0.988 0.761 0.946 0.837 

Without 

Oversampling 
0.996 0.250 0.026 0.333 0.980 0.553 0.401 0.447 

Light 

GBM 

SMOTE 0.983 0.905 0.974 0.748 0.980 0.656 0.903 0.750 

K-Means 

SMOTE 
0.984 0.917 0.872 0.704 0.980 0.654 0.869 0.737 

Borderline 

SMOTE 
0.990 0.738 0.667 0.637 0.983 0.695 0.758 0.720 

ADASYN 0.981 0.917 0.974 0.741 0.978 0.638 0.903 0.735 

Without 

Oversampling 
0.996 0.214 0.205 0.326 0.980 0.547 0.435 0.472 

CatBoost  

SMOTE 0.986 0.964 0.974 0.852 0.984 0.705 0.944 0.799 

K-Means 

SMOTE 
0.988 0.952 0.974 0.815 0.986 0.726 0.932 0.810 

Borderline 

SMOTE 
0.990 0.798 0.641 0.689 0.984 0.720 0.779 0.743 

ADASYN 0.987 0.988 0.974 0.859 0.985 0.722 0.952 0.814 

Without 

Oversampling 
0.997 0.226 0.179 0.311 0.981 0.611 0.428 0.487 

RF 

SMOTE 0.988 0.988 0.974 0.970 0.988 0.763 0.980 0.851 

K-Means 

SMOTE 
0.995 0.917 0.821 0.867 0.993 0.885 0.900 0.889 

Borderline 

SMOTE 
0.991 0.976 0.974 0.956 0.991 0.801 0.974 0.875 

ADASYN 0.989 0.988 0.974 0.978 0.988 0.757 0.982 0.848 

Without 

Oversampling 
0.998 0.190 0.051 0.289 0.980 0.676 0.382 0.440 

MLP 

SMOTE 0.958 1.000 1.000 0.948 0.958 0.554 0.977 0.671 

K-Means 

SMOTE 
0.965 0.988 0.974 0.830 0.964 0.578 0.939 0.689 

Borderline 

SMOTE 
0.937 0.750 0.641 0.659 0.932 0.444 0.747 0.518 

ADASYN 0.927 1.000 0.974 0.963 0.928 0.554 0.966 0.652 

Without 

Oversampling 
0.995 0.012 0.026 0.015 0.974 0.380 0.262 0.270 

LSTM 

SMOTE 0.878 0.774 0.897 0.815 0.877 0.451 0.841 0.522 

K-Means 

SMOTE 
0.981 0.869 0.923 0.763 0.977 0.693 0.884 0.766 

Borderline 

SMOTE 
0.948 0.917 1.000 0.919 0.948 0.527 0.946 0.636 

ADASYN 0.953 0.952 1.000 0.911 0.953 0.552 0.954 0.661 

Without 

Oversampling 
0.996 0.488 0.667 0.415 0.985 0.804 0.642 0.704 

Dynamic 

Ensemble 

SMOTE 0.978 0.999 0.999 0.997 0.994 0.994 0.994 0.994 

K-Means 

SMOTE 
0.999 1.000 0.979 1.000 0.995 0.995 0.995 0.995 

Borderline 

SMOTE 
0.982 0.999 0.999 0.997 0.995 0.995 0.995 0.995 

ADASYN 0.979 0.999 0.999 0.997 0.994 0.994 0.994 0.994 

Without 

Oversampling 
0.998 0.167 0.128 0.296 0.981 0.646 0.397 0.462 

 478 
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Figure 2: Comparison of F1 Score performance between K-Means SMOTE and without oversampling techniques 

across various ML models for soil movement prediction in testing. Blue bars represent F1 scores achieved with K-

Means SMOTE, while orange bars represent F1 scores obtained without oversampling. 

 479 

 
Figure 3: Confusion matrix depicting the performance of the Dynamic Ensemble model on the training and testing 

datasets using K-Mean SMOTE oversampling technique. 

 480 



18  

 

7. Discussion and Conclusions 481 

In summary, the threat posed by landslides requires the development of effective prediction frameworks, 482 

although modelling the chaotic nature of natural data remains challenging. The analyzed dataset exhibited a 483 

significant class imbalance, with the majority class dominating the samples. This distribution imbalance 484 

necessitated careful consideration and appropriate techniques to address the issue. 485 

Various oversampling techniques were employed to tackle the class imbalance, including SMOTE and its 486 

extensions (K-Means SMOTE, Borderline SMOTE, and ADASYN). ADASYN, which focuses on the minority 487 

class boundary, effectively generated synthetic data points and improved the class distribution balance. 488 

Multiple classification models, such as ADABoost, XGBoost, Light GBM, CatBoost, RF, MLP, LSTM, and 489 

a dynamic ensemble, were evaluated to predict soil movement. The grid search approach and 5-CV were 490 

employed to optimize the parameters of each model.  Within the 5-CV framework, the parameter analysis was 491 

conducted on each fold treated as an independent dataset, allowing for a comprehensive assessment of parameter 492 

variability across different dataset splits. This approach facilitated the identification of optimal parameter 493 

configurations that yielded consistent performance across diverse dataset distributions. By treating each fold as 494 

an independent dataset, the parameter analysis provided insights into the variability of parameter values, thereby 495 

enhancing our understanding of how the models generalize to unseen data. 496 

The ML models' training results highlight oversampling's significant impact on model performance. The 497 

dynamic ensemble model, particularly when coupled with K-Means SMOTE, emerges as the standout performer 498 

in the training phase. This model demonstrates superior predictive capabilities by achieving remarkable 499 

accuracy, precision, recall, and F1 scores of 0.998, 0.998, 0.998, and 0.998, respectively.  500 

Furthermore, these models were tested to assess their ability to generalize well to unseen data. The testing 501 

results showcased the dynamic ensemble model with K-Means SMOTE as the top performer, achieving an 502 

outstanding accuracy of 0.995, precision of 0.995, recall of 0.995, and an F1 score of 0.995. This confirms that 503 

the exceptional performance observed in training extends to the testing phase, emphasizing the robustness and 504 

reliability of the dynamic ensemble approach with K-Means SMOTE. Moreover, the dynamic ensemble model 505 

incorporating Borderline SMOTE emerges as the second-best model in the test phase, showcasing high 506 

accuracy, precision, and recall rates of 0.995, 0.995, and 0.995, respectively, along with an F1 score of 0.995. 507 

This result reinforces the reliability and robustness of the model in tackling landslide prediction tasks. 508 

The superior performance of the K-Means SMOTE technique can be attributed to its ability to identify 509 

clusters within the minority class and generate synthetic samples that maintain the underlying structure of the 510 

data. By considering the IR, K-Means SMOTE ensures a balanced representation of classes in the synthetic 511 

samples, contributing to improved model generalization and predictive accuracy. Furthermore, the lack of 512 

oversampling adversely affected both training and testing performances. The models faced challenges in 513 

learning and generalizing from the imbalanced dataset without a balanced representation. 514 

On the other hand, the success of the dynamic ensemble model, comprising AdaBoost, XGBoost, Light 515 

GBM, CatBoost, and RF, can be attributed to the complementary strengths of these diverse algorithms. 516 

Ensemble methods leverage the collective decision-making power of multiple models, each capturing different 517 

aspects of the underlying data patterns. The combination of boosting algorithms like AdaBoost, gradient 518 

boosting methods like XGBoost, tree-based models like Light GBM and CatBoost, and the robustness of RF 519 

creates a robust and versatile ensemble that excels in handling various aspects of the dataset, contributing to its 520 

overall superior performance. 521 

In summary, the findings underscore the critical role of oversampling techniques, especially K-Means 522 

SMOTE, in enhancing the predictive performance of landslide prediction models. The success of the dynamic 523 

ensemble model further highlights the importance of ensemble techniques in aggregating diverse model 524 

predictions for improved accuracy. 525 

The superior performance demonstrated by oversampling techniques compared to without oversampling can 526 

be attributed to several factors. Firstly, oversampling techniques address class imbalance by generating synthetic 527 

samples for minority classes, thus providing the model with more representative training data. This allows the 528 

ML model to learn the underlying patterns of the minority class more effectively, leading to improved 529 
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classification performance. Additionally, oversampling techniques help reduce the risk of overfitting by 530 

providing a more balanced representation of the dataset, enhancing the model's ability to generalize to unseen 531 

data. Moreover, by increasing the diversity of the training data, oversampling techniques enable the model to 532 

capture a wider range of variation within the dataset, resulting in better generalization performance. Overall, 533 

using oversampling techniques ensures that the ML model is better equipped to handle imbalanced datasets, 534 

leading to enhanced predictive performance in soil movement prediction tasks. 535 

Furthermore, the parameter analysis reveals that oversampling techniques add generalized information to the 536 

dataset, making it more consistent across different datasets. This reduced variability in the dataset allows ML 537 

models to learn these generalized patterns more effectively. As evident in the parameter analysis results, 538 

oversampling techniques lead to smaller stdev in parameter values across different models, indicating improved 539 

consistency and generalization. This further supports the notion that oversampling techniques help mitigate 540 

overfitting and enhance the overall performance of ML models in soil movement prediction tasks. 541 

Despite these achievements, it is crucial to acknowledge the study's limitations. The generalizability of the 542 

findings to different geological conditions or regions may be restricted due to the specificity of the dataset. 543 

While effective, the synthetic data points generated through oversampling may only capture part of the 544 

complexity inherent in real-world landslide occurrences. The choice of classification models and parameter 545 

settings introduces a level of bias, with alternative configurations potentially yielding different results. 546 

Additionally, relying on historical data may limit the model's ability to account for future changes or unforeseen 547 

events, such as changes in rainfall intensity, seismic activity, or human influences. 548 

In future work, the exploration of encoder-decoder or transformer models on the class-imbalanced movement 549 

dataset is planned. These models, known for their success in sequence-to-sequence tasks, may improve 550 

classification accuracy and address class imbalance challenges. This avenue of experimentation aims to provide 551 

valuable insights into the suitability of advanced models for analyzing and modelling imbalanced movement 552 

data. 553 

To sum up, the study contributes to understanding landslide risks and supports the development of effective 554 

preventive measures. The combination of robust oversampling techniques, ensemble modelling, and a 555 

systematic approach to parameter tuning yields a promising framework for accurate landslide prediction. The 556 

work presented lays the groundwork for future research to refine models and address the inherent challenges in 557 

landslide prediction tasks. 558 
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