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Abstract

Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide
valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement
from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing
machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil
movement prediction system. The dataset, comprising two years (2019-2021) of monitoring data from a landslide in
Uttarakhand, was split into a 70:30 ratio for training and testing. To tackle the class imbalance problem, various
oversampling techniques, including Synthetic Minority Oversampling Technique (SMOTE), K-Means SMOTE, Borderline
SMOTE, Suppert-Veetor Machine SMOTE-and Adaptive SMOTE (ADASYN), were applied to the training dataset. Sever*l
ML models, namely Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Light
GBM), Adaptive Boosting (AdaBoost), Category Boosting (CatBoost), Multiayer PereeptronMER)-Long Short-Ter)
Memory (LSTM), Multilayer Perceptron (MLP). and dynamic ensemble models, were trained and compared for so|
movement prediction. A 5-fold cross-validation method was applied to optimize the ML models on the training data, ar
the models were tested on the testing set. Among these ML models, the dynamic ensemble model with K-Means SMOT
performed the best in testing, with an accuracy, precision, and recall rate of Q%Mq:—h—aﬁd—aﬂ—H-%efeﬂﬁOJ)%S—'Fr
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respectively, and an F1 score of 0.995. /\ddllmna]l\ models without oversampling exhibited poor performance in trainin
and testing, highlighting the importance of incorporating oversampling techniques to enhance predictive capabilities.
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1. Introduction

Landslides pose a significant threat to infrastructure, resulting in numerous fatalities and substantial economic
losses each year (Parkash, 2011). These destructive events occur globally, particularly in hilly and mountainous
regions, driven by gravity and characterized by the movement of large rocks, debris, and soil (Crosta, 1998).
Factors such as heavy rainfall, earthquakes, and the impacts of climate change contribute to the occurrence and
severity of landslides (Crosta, 1998).

Monitoring, predicting, and warning people about slope movements in landslide-prone areas are crucial for
mitigating landslide risks. Advanced technologies like Global Positioning System (GPS;EHAR-). Light
Detection and Ranging (LiDAR), Geographic Information System (GIS;). and remote sensing have provgn
effective for assessing and analyzing slope failure hazards (Ray et al., 2020). However, their high cost and the
need for specialized expertise limit their accessibility, especially in developing countries where lew-cost-
effective loT technologies are necessary (Pathania et al., 2020).

Machine learning (ML) models have been extensively studied for predicting soil movement in landslide-
prone areas (Kumar et al., 2021a; Kumar et al., 2021b)., Kumar et al., 2023). This prediction problem could He
divided into classification and regression tasks. The classification task aims to predict the degree of soil
movement using various ML models. On the other hand, the regression task involves estimating the acceleration
or displacement of soil under observation.

One common challenge in landslide prediction is a class imbalance, where certain classes have significantly
more data samples than others. This imbalance can adversely affect the performance of ML models. To address
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class imbalance issues, techniques such as Synthetic Minority Oversampling Technique (SMOTE), K-Means
SMOTE, Suppert—eetorMachine- SMOTEASVM-SMOTE),-Borderline SMOTE, and Adaptive Synthetic
Minority Oversampling Technique (ADASYN) are employed to balance the dataset (Chawla et al., 2002;
Douzas et al., 2018; Fang-et-al2008:Han et al., 2005; He et al., 2008).

One-erueial-iterature—gap-Several researchers have dedicated their efforts to addressing class imbalance
problems in landslide-ML. Notably, Chawla et al. (2002) introduced the SMOTE, Douzas et al. (2018) devised
the K-Means SMOTE, Han et al. (2005) proposed the Borderline SMOTE, and He et al. (2008) introduced the
Adaptive Synthetic Minority Oversampling Technique (ADASYN). These techniques were developed to
generate synthetic data and balance imbalanced datasets.

The field of soil movement prediction i i

requires further investigation, particularly cons1dermg the complexmes ass0c1ated w1th a class 1mbalance in
landslidethe datasets. Althoeugh—machinelearning—medels—havebeen—extensively—studiedDespite extensive
research on ML models' predictive abilities for predieting-soil movement in landshdes the-impaet-ofthere still
needs to be more understanding regarding how class imbalance en-theiraffects the models' performance and
accuracy-has-reeeived-ess-attention—n-this-paper;-we-explore-the-development. This study aims to bridge this
knowledge gap by examining dlfferent approaches to tackle class imbalance and explormg d1verse ML models
to lmprove the pred1ct1on of d - - 5

el-atasml movement Vanous multlvarlate class1ﬁcat1on models 1nclud1ng Random Forest (RF), Adaptlve
Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Light Gradient Boosted Machine (Light GBM),
Category Boosting (CatBoost), Multilayer Pereeptron{MEPR)-Long Short-Term Memory (LSTM), Multilayer
Perceptron (MLP), and an ensemble of RF, AdaBoost, XGBoost, Light GBM, and CatBoost are developed to
predict soil movement when coupled with class imbalance techniques (Kumar et al., 2019; Semwal et al., 2022;
Wu et al., 2020; Pathama et al 2021 Zhang et al. 2022 Sahin, 2022 Kumar etal. 2020 Kumar et al 2023)

pred-}eHﬁgLThls studv dclvcs into thc l1cld of so1l movement i

addressingprediction, making significant advancements by developing specialized ML models and techniques
tailored to this domain. A notable aspect that has received limited attention in the existing literature is the
challenge of class imbalance in landslide datasets—w%eh—haweeewed—hmﬁed—aﬁe&ﬁeﬂ—m—the—hteﬂmre%e

SMOTE 1 d-otherbs

paper-introd and-applics various SM artants and-other balancing techniques t T . While
previous research has primarily focused on ML models for soil movement prediction, this work addresses the
issue of imbalanced data;—impreving-the-performanee_head-on. Multiple variants of the SMOTE and other
balancing strategies are introduced and implemented to enhance the eff' icacy and accuracy of the ML models
Addltlonally, h h m :

fatalits aused—byv—th

losses-and-preventfatalities by-thes
aan v w-research explores using cost--effective Internet

of Thmgs 1IoT) technolog1es in developlng untries-ean-enha the-regions to improve the investigation and

assessment and—aﬂa-l—yﬁs—of landslide hazards, king-them-mor ible-and-efficient—In-thisstudy,—w

. o att aning. The dataset used in this

tudy spans two years, from June 2019 to June 20214h&sr€latasek ancl was used—te%ﬂﬂh&M—Emedels—By

leveraging-thisreal-world-data,—we-aimed-to-capture-the-speeifiecollected by an inexpensive IoT monitoring

station in Uttarakhand. India. This real-world dataset captures the distinctive characteristics and patterns of soil
movements prevalent in the landslide-prone area. By employing a comprehensive methodology. this work
advances soil movement prediction and effectively addresses the challenge of class imbalance. It commences
with a thorough overview of the collected data, emphasizing the measured weather and soil-related factors.




Various SMOTE variants and other balancing techniques are employed to rectify the class imbalance, resulting
in the generation of synthetic samples and ensuring a balanced representation of soil movement classes. Tt
intricate correlations and patterns in the soil movement data are captured using a variety of ML modelp,
including RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and a dynamic ensembling of RF
AdaBoost, XGBoost, and CatBoost. Overall, this study's findings show potential for accurately reducing
landslide risks, increasing the accuracy of landslide prediction, and encouraging the use of cost-effective o]l
technologies in landslide-prone locations.
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2. Background

Several techniques have been proposed to address the challenge of learning from imbalanced datasets, Whe*e
the classification categories are not evenly represented. For example, Chawla et al. (2002) proposed the SMOTE,
which involves generating synthetic minority class examples to balance the dataset. SMOTE has been shown to
improve model performance compared to only undersampling the majority class. Douzas et al. (2018)
introduced K-Means SMOTE, a method that combines SMOTE with k-means clustering to effectively overcome
1mbalances between and within classes without generatmg unnecessary n01se i&ﬁge&ai—(—%@g—)meémed—s%ﬂ

as 5 Add1t1ona11y, Han et al (2005) developed
Borderlme SMOTE method that focuses on oversamphng only the minority examples near the class boundary.
Experimental results indicate that Borderline SMOTE1 and Borderline SMOTE2 outperform SMOTE and
random oversampling methods in terms of true positive rate and F-value. Lastly, He et al. (2008) developed the
ADASYN, which addresses class imbalance by generating more synthetic data for minority class examples that
are harder to learn. ADASYN reduces bias and adaptively shifts the classification decision boundary toward
challenging examples. Simulation analyses have demonstrated the effectiveness of ADASYN across various
evaluation metrics. These techniques offer valuable approaches to mitigate the impact of imbalanced data in
classification tasks. These class imbalance techniques have limited exploration and application for landslide
datasets. Existing studies primarily focus on the general imbalanced dataset scenario but need to consider the
unique characteristics and challenges associated with landslide datasets. Therefore, research is required for
systematic studies that compare the performance and effectiveness of techniques such as SMOTE, K-Means
SMOTE, Borderline SMOTE, and ADASYN in the specific context of soil movement prediction across various
evaluation metrics. By bridging this literature gap, we can enhance the accuracy and reliability of models for
predicting soil movement in landslide-prone areas and contribute to improved landslide risk mitigation
strategies.

Several researchers have—werked-on-developing-differentdeveloped various ML models to predict s111
movement and-selve prediction problems in other fields (Kumar et al., 2019; Semwal et al., 2022; Wu et al
2020; Pathania et al., 2021; Zhang et al., 2022; Sahin, 2022; Kumar et al., 2020). For example, Kumar et al.
(2019) p&é&ed—ﬂqe—laﬂdﬁhdedebfh—ﬂwuﬂ-ﬂg developed an ensemble aﬂd—neﬂ—eﬂﬁembleof ML models

)



on(RF, Bagging, Stacking, and Votmg) for predicting debris-flowsoil movement at the Tangm landslide in
Uttarakhand, India. Fh dy—comp ensemble-M od REBag Stae dVeoting)-These
models were compared w1th neﬂ—ensemblHedel—(Sequentlal Mlmmal Optlmlzatlon (SMO) and
Autoregression_(AR). The results indicate that the ensemble models;-speeifically Bagging-Stacking-and RE;
performed-betterthan-the-nen-ensemble outperformed the SMO and AR models in predicting weeldy-debris-
#flow-soil movement. Furthermore, Semwal et al. (2022) developed the Sequential-Minimal-Optimization
Regression(SMOreg);, Instance-based Learning (IBk), RF, Linear Regression (LR), Multi-layer Pereeptron
(MLP}, as Well as ensemble ML models to predlct root tensﬂe strength for different vegetatlon spe01es Fhe
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Vege&aﬁepﬁThe results show that the ensembl%MLP eutpeFfemed—aleerformed better than the other
individual models, providing more accurate predictions of root tensile strength. Next, Wu et al. (2020) developed
the decision tree (DT) with AdaBoost and bagging ensembles for landslidemapping the susceptibility mapping
of landslides in Longxian County, Shaanxi Province, China. They-usedResearcher developed the technique with

ensemble of Alternating De01s10n Tree (ADTree) ale&g%thﬂhembl&teehmques—sueh—aswlth Baggmg and

~The results

shewedrevealed that theensemble of ADTree— and AdaBoost model

had—tlﬂteJﬂghesHueees%&aﬂei—preé&eﬂeﬂ
rate;—outperforming—theperformed better than the individual ADTree model and ensemble of ADTree-_and
Bagging model. Similarly, Pathania et al. (2021) developed a novel ensemble gradient boosting model, called
SVM-XGBoost, for generating—speeifie—warnings—about—impending—soil movements warning at aGharpa
landslide-site-in-Gharpa—Hill, Mandi, India. They compared the performance of SVM-XGBoost with other
models such as individual SVMs. DTs, RF, XGBoost, Naive Bayes (NB), decision-trees{DTs) RE-SVMs;
XGBeest-and different variants of XGBoost. The results showed that the SVM-XGBoost model eutperformed
theperformed better than other models in soil movement predlctlon In their resedrch Kumdr et al. (2021b)
directed their attention toward predlctmg s011 movement-¢ ¢
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Fesea?e#te—p?ediekseihﬂevemem spccmcallx at the Tangm landsllde site in Indla qih&resuhsﬁemeﬁsmﬁed
To enhance the accuracy of their predictions, they explored various variants of Long Short-Term Memory

(LSTM) models. They introduced a novel ensemble approach called BS-LSTM, which combined bidirectional
and stacked LSTM models. The findings of their study indicated that the BS-LSTM model outperformed the
other LSTM variants forin accurately predicting soil movement-prediction—Furthermeore;-. Similarly, Zhang et
al. (2022) conducted a study en-earthguake-induced-tandstideto assess the susceptibility assessmentof landslides
using a-nevel-model-based-en-gradient-boosting ML and-techniques coupled with class--balancing methods.
Fhe-researehTheir investigation specifically focused on the aftermath of the 2018 Hokkaido earthquake and
used-differentemployed diverse datasets and metheds-methodologies to predict the susceptibility of specific
parts-ofareas prone to landslides. The-results-demeonstrated-thatCompared to well-established models such as
XGBoost and Light GBM, the proposed model with-the-dice-eross—entropy(DEE)loss—funetion—and-either
NGBoost-or-Eight- GBM-achicved-more balanced-and preciseshowcased superlor performance in accurately
assessing landslide susceptibility nents-compared-to-existing-medels-Next-. Furthermore, Sahin (2022)
eempa#eéteuﬁeee%gmdaen%beesﬂﬂgdeveloped multlple ML models, mcludmg XGBoost CatBoost Gradient
Boosting Machine (GBM), Categoriea 0

Light GBM, for-medeling-landslideto model the susceptlblhty ofldndslldes By leverdgmg a comprehenswe
landslide inventory map and relevant conditioning factors stored in a geodatabase, the study employed feature
selection techniques and compared the predictive capabilities of ensemble methods with the widely used RF
model. The results highlighted that CatBoost exhibited the highest predictive capability, followed by XGBoost.
8 Light GBM, and GBM, while RF demonstrated comparatively lower predictive capability. The study used a
9  geodatabase with a landslide inventory map and conditioning factors. Feature selection techniques were applied,
and the predietion-performance of ensemble-methedsXGBoost, CatBoost, GBM, and Light GBM was compared
1 to RF. The results showedrevealed that CatBoost had the highest prediction capability, followed by XGBoost,

Light GBM, and GBM.-RE-had-thelowest-predietion—eapability- The literature gap in the context of soil




movement prediction is the limited exploration and evaluation of ML models in combination with synthetic data
generated by SMOTE techniques. While various ML models, such as ensemble models (e.g., RF), neural
networks models (MLP and LSTM), and gradient boosting ML models (e.g., AdaBoost, XGBoost, Light GBM,
CatBoost), have been developed and applied for soil movement prediction, their utilization in conjunction with
synthetic data generated by SMOTE techniques has received less attention in the literature. Incorporating
SMOTE-generated synthetic data into the training process of these models can address the issue of class
imbalance in landslide datasets and improve their performance in predicting soil movement. Therefore, further
research is needed to investigate the effectiveness of these ML models when combined with SMOTE techniques
in the context of soil movement prediction, thereby filling the existing literature gap.

The RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and an ensemble of RF, AdaBoost,
XGBoost, Light GBM, and CatBoost models were chosen to predict soil movement based on their proven
effectiveness in previous research. RF is excellent at capturing complex relationships and has outperformed
non-ensemble models in predicting debris flow and landslide susceptibility. AdaBoost has successfully
predicted soil movement alerts ahead of time. At the same time, XGBoost and Light GBM have demonstrated
their ability to achieve balanced and precise predictions, especially in earthquake-induced landslide
susceptibility assessments. Among gradient-boosting models, CatBoost has-the higheststands out for its superi¢r
prediction capability-ameng—gradient-boosting—medels;—, making it a suitable—choicewell-suited option for
meodelingmodelling landslide susceptibility. MEP-as-the-base-model-has-provided-more-aceurate-predictions
ofOn the other hand, when it comes to predicting root tensile strength-—Finaly, MLP has demonstrated high¢r
accuracy in its predictions. Additionally, LSTM-is, a robust recurrent neural network architecture-that-eapturep,
is_particularly effective in capturing temporal dependencies and long-term patterns in sequential datj.
TFheseCollectively, these models eoHectively-offer a rangediverse set of capabilities;-making-them that pro
valuable teelsfor-in the prediction of soil movement-predietion.

]

3. Data Collection and Description

The data-useddataset for predicting soil movement prediction-was collected from a-real-werldan actual landslid
loeationsite in Uttarakhand, India;-ever. The monitored landslides are characterized as shallow landslides wi
debris flow, occurring at elevations ranging from 1450 m to 1920 m. The slopes in the landslide zones in t
upper parts are made up of weathered limestone and dolomitic limestone, whereas the lower slopes exhibit blad
carbonaceous slate. The slates are highly weathered and leached, adorned with white and yellow encrustatio:
These are covered with a thin veneer of debris, mainly consisting of pebble- and cobble-sized limeston
sandstone, and slate embedded in a periedsand—silt—clay matrix. Additional context includes an annual rainf
of 4190 mm in the area, as reported by Gupta et al. (2015). Spanning a duration of two years, from June 201
to June 202 1-Fhemonitoring wasperformedusingatow-, this dataset holds valuable insights into the behavio
of soil in response to various environmental factors. To gather this data, a costteT-based-effective landslid
monitoring station (LMS) specifieally—installedwas carefully deployed at the site—The—EMS—wA
equippedlandslide. Equipped with varieusa range of sensors-te-measure-different, the LMS diligently recordd
critical weather and soil-related parameters. Ta-terms-of-weather-parameters;-the EMS-recorded-the-Weathe]
wise, it diligently captured temperature readings in degrees Celsius, humidity inlevels as a percentage, rainfa
Raimymeasurements in mches per hour (m/hr), atmospherlc pressure in mllllbars (mb), and even sunligl
(Eight)intensity in lux. A These meticulous recordings
shed light on the prevailing weather condmons experienced at the precise location of the landslide-toeation—1|
rmonitor—theseoil-conditions;—the. The LMS employedrelied on an accelerometer sensor to measure—the—seit
monitor thg soil conditions with utmost precision. An advanced sensor was utilized to measure the acceleratiqn
2)of the soil in three directions: Ax, Ay, and Az (in m/s?). This provided valuable insights into the soils
movement and stability. Additionally, a gyroscope sensor was utitizedemployed to capture the angular rotatign
of the soil dlong the Wx Wy. and Wz axes (in degrees per second—mﬁfeﬁemed—by—\%(—Wy—md—WMe&e
's). This sens¢r
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enhanced the understanding of the soil's behaviour by accurately detecting its angular movements. Furthermore,
the LMS was equipped with a capacitive soil moisture sensor-reasures, enabling it to measure the seil's
volumetric moisture content (Mes)of the soil in pereentpercentage. The LMS transmitted all these twelve
attributes, including weather parameters, soil g-force, angular rotation, and soil moisture content, to the cloud
every ten minutes. The dataset obtained from the LMS consisted of approximately thirty-nine thousand data
points, covering a wide range of environmental and soil-related attributes. Table 1 is-sheweasingshowcases the
statistics for the recorded soil movement prediction parameters. For each attribute, the table provides the mean
value, representing the average measurement, along with the standard deviation (Std—Bev-);stdev), indicating
the variability of the data. The minimum and maximum values highlight the range of measurements observed,
offering insights into the extreme values and overall data distribution.

Table 1. Summary statistics of recorded parameters for soil movement prediction dataset.

Parameter Mean Stk Min Max
Bev-stdev
Temperature (° C) 16.18 10.48 0.00 39.00
Humidity (%) 66.69 35.46 0.00 99.00
Rain (in/hr) 0.00 5.60 0.00 15.00
Pressure (mb) 1040.96 27.96 921.61 1065.41
Light (lux) 5025.35 10154.75 0.00 54612.00
AX (mys?) 0.02 1.23 -28.02 40.25
Ay (m/s?) 0.00 137 -100.08 100.08
Az (m/sz) 0.00 228 -149.61 315.61
Wx (°/s) 0.00 15.86 -1994.51 1997.24
Wy (°/s) 0.00 15.85 -1998.05 1998.73
Wz (°/s) 0.00 6.95 -932.00 932.00
Moisture (%) 80.00 20.30 40.00 100.00

4. Methodology
4.1. Data Pre-processing

The sensors installed at the landslide locations experienced malfunctions, resulting in multiple missing values
within the collected data. To address this issue, we employed a method to fill these gaps by replacing the missing
values with the average values recorded at the corresponding timestamps during the previous week. By
calculating the average values for parameters such as light intensity, humidity, temperature, and pressure from
the same time periods in the preceding week, we obtained estimates to replace the skewed or missing data points.

4.2. Class Labeling

The dataset inehuded-three-contained values for acceleration
values—for-and angular rotation in degree—per—second—in—thethree directions: X, y, and z—direetions. The
ehangechanges in acceleration and angular rotation was—derived-by-ealeulating—the-difference-betweenwere
calculated by subtracting the current and-values from the past values—Fhe-, dll(mmg for the assessment of
movement. Four categories were defined to classify the movement data-were-categorized-into-four-elasses<{: no
movement, smatlow movement, moderate movement, and targehigh movement)-using. These categories were
determined based on standard deviation thresholds ealewlated-for-derived from the acceleration and angular
rotation_values. Specifically, values within £ 1 standard deviation from the mean ef leration-and-angular
rotation-were-classified-were categorized as no movement, + 2 standard deviations as smatlow movement +3
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standard deviations as moderate movement, and values exceeding + 3 standard deviations as largel Lg{l_l
movement. This classification approach enabled-the-determination-of meovement-intensity-based-en-considerdd
the variability efin acceleration and angular rotation changes to determine the ehange-in-aceeleration-and-anguljs
rotation—tn-eur-intensity of movement.

During the analysis, we-eategerized-each timestamp was assigned to a movement class based on the cla:
that-eorresponds-toassociated with the maximumhighest standard deviation efobserved in any acceleranon
veleeityangular rotation element. Fhis-means-that-if-anylf an individual element ameng-th leration—ar
veloeity-measurements-had the highest standard deviation at a partientarspecific timestamp, we-assigned-th;
timestamp was assigned to the corresponding movement class asseeiated-with thatthe maximum standai
deviation.

Table 2 previdespresents the distribution of movement intensity within the dataset—Fhe-dataset-consists-of|
tetal, which consisted of 38,900 data points. The table shows the percentage distribution of differentmovemen
categories;-ineluding: high-intensity, medium-intensity, moderate, low-intensity, and no movement. MestTH
majority of the dataset (97.8%) falls under the "No Movement" category, while—the-indicating a lack
significant movement. On the other hand, the high movement category represents only a small fraction (1.1%
Fhe-%) of the dataset. Additionally, the moderate movement category comprises 0.7% of the samples, while t
low movement category accounts for 0.4% of the dataset. This distribution ef-mevement-highlights the cla:
imbalance issue present in the dataset, which needs to be addressedtaken into account when buildingdevelopi
a classification model for predicting soil movement.
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Table 2. Class distribution of soil movement data points.

Movement Class Number of Data Points Percentage
High Movement 423 1.1%
Moderate Movement 146 0.7%

Low Movement 268 0.4%

No Movement 38063 97.8%

4.3. Sliding Window Packets

The sliding window packets technique involves ereatingdividing a given dataset into fixed-length
subsequences or packets from-a-given-dataset-and their corresponding labels. Fhe-To achieve this, a sequende

length parameter determinesis used to determine the length of each subsequence.
To-generate-these subsequences;-the- The sliding window approach is applied—Fheshidingthen employed, whe
a window starts at the beginning of the dataset and moves aeressthrough the data with a step size of 1. At-eaq
pesition-of-the-windew;-aA subsequence of the specified length is extracted from the dataset;-and-the at ead

R (b\r:b“\nz

wmdow posmon The label for predlctlon is taken from the next posmon after the w1nd0w %ﬁ—ﬁ&eﬂﬂﬁ—ﬂi&t—ﬁ

The sliding window packets technique aims to predict future values or events based on precedir
subsequences. For instance, if the sequence length is set to five, the sliding window will select five consecutiy
values from the dataset as a subsequence at each step. The label for prediction will be the value at the 6thsix|
position. This process continues until the end of the dataset is reached, resulting in multiple subsequences an
their eorrespendingrespective labels.

Adfter—ereating_Once the packets are created, they are flattened to form a single feature vector. F
exampleinstance, if the sequence length is five and the dataset has twelve features, each packet will contain six
featureselements (5x12). This transformation allows the packets to be treated as individual samples wi
multiple features suitable for ML models.
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_The primary ebjeetivepurpose of creating these packets is to address sequence-based-prediction tasks;
involving sequences where the input data's order and dependencies ef-the-input-data-play-aare crucial-+ete. The
model can_cffectively capture and learn patterns and relationships within the sequential data by utilizing the
sliding window packets. The flattened packets generated threughusing the sliding window technique were-tused
asare inputs in oversampling techniques.

4.4. Oversampling

In our analysis, we encountered a significant class imbalance issue in the labeled data. The "No Movement"
class, which represents the majority of the data, had a large number of data points. On-theAll other hand;
theclasses, including "High Movement'—elass;—which—represents—the," ”Moderate Movement and "Low
Movement," represent minority elass;-hadclasses, each constituting only a-minimal-representation-withjust-1%,
0.7%, and 0.4% of the total data, respectively. This class imbalance posed a challenge for building an effective
classification model, as the skewed data distribution made it difficult to classify the minority class accurately.

We-employed-variousTo overcome the class imbalance challenge, we implemented several oversampling
techniques-to-address-this-issue;foeusing-on-the, with a particular focus on SMOTE and its extensions (Chawla
et al., 2002; Douzas et al., 2018; Fansetal2008:Han et al., 2005; He et al., 2008). SMOTE-ereates-, which
stands for Synthetic Minority Oversampling Technique, addresses the imbalance by generating synthetic data
points for the minority class to-balanee-itsrepresentation-(Chawla et al., 2002). By generatingnew-data-peints
astagutilizing the characteristics of existing mmmﬂyehﬁsamplesmed%ﬂamba—ef—mﬁaﬂeerm
from the "High-Mevement"elass—Additionallyminority classes, we created new data points, thereby increasing
the representation of the "High Movement," "Moderate Movement," and "Low Movement" classes. In addition
to the standard SMOTE, we also explored other variations ef¥-SMOTE—ineladingKMeanssuch as K-Means
SMOTE (Douzas et al., 2018), SVM-SMOTE(Tang-et-al;-2008);-and Borderline SMOTE (Han et al., 2005) to
further anpfewenhcmce the balance of the-class distribution.

Furthermore, we utilized the ADASYN, an extension of SMOTE that explicitly addresses the classification
boundary of the minority class (He et al., 2008). ADASYN assigns higher weights to the minority examples that
are more challenging to classify, leading to the generation of additional artificial data points for these instances.
By incorporating ADASYN into our oversampling strategy, we enhanced the balance of the class distribution
further and improved the classification accuracy for all classes.

Fig-Figure 1- illustrates the application of the K-Mean SMOTE technique for addressing the class imbalance.
The figureFig. 1 depicts a scatter plot where the red crosses represent the minority class samples, while the black
dots represent the majority class samples. The green crosses indicate the newly generated synthetic samples by
the K-Mean SMOTE algorithm. The dashed line represents the decision boundary separating the two classes.
K-Mean SMOTE operates by following two simple steps iteratively {8}:(Douzas et al.. 2018). Firstly, it assigns
each observation to the nearest cluster centroid among the k available. Secondly, it updates the position of the
centroids so that they are positioned at the eentercentre between the assigned observations. The
informationimbalance ratio (IR) shown in Fig. 1 helps K-Means SMOTE determine the appropriate amount of
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oversampling for the minority class, ensuring a balanced representation of the classes in synthetic samples.
leeted-4varied from 2 to 5 in this experiment {o

vatue-of kThe parameter 'k' in all SMOTE techniques was +

observe how different numbers of nearest neighbors impact the diversity and quality of synthetic sampl¢s
created, thereby affecting the performance of the model on imbalanced data.
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Use SMOTE to oversample clusters with IR > 1,
‘generating more samples in sparse clusters

£ (D tal—2018)
t & o

Ei KM MOTE effectivel



—

Input data Find k = 3 clusters and computc imbalance ratio (IR)

B x

X Minority Sample
® Majority Sample
Decision Boundary —~—

+  Generated Sample

Use SMOTE to oversample clusters with [R > 1,

Oversampled data rectifies decision boundary generating more samples in sparse clusters
. —
x
T x . |
NN . (

Figure 1: K-Means SMOTE effectively addresses within-class imbalance by oversampling safe areas (Douzas et

al., 2018).

4.5. Machine Learning Models

Various models were employed to classify the soil movement. The specific models will be discussed in the
following subsection. To evaluate the accuracy of these models, the dataset was divided into two groups: training
data (70%) and testing data (30%). Random sampling was used to select 70% of the data points for training the
classification models mentioned below, while the remaining 30% of the dataset was reserved for model
evaluation.

4.5.1. AdaBoost

as-Adapti S S abilis a-_enhances ML model
desagned—te—eﬂhaﬂee—the—perfonnance %M&mde&%%&%%@%@%{t—m%by combining the-results
effrom multlple weak learners, whiehafeleammgtechmques wthsllghtly better than random guessing g u et

Heeti £ hall 5 al el -+ a1

N M H o

apablc of more accurate pr 18,
Feorln the AdaBoost model, the number of estimnators-determinestrees sets the maximum numberof weak-medels
to-be combined. Increasing the number-of estimatorscan-improve the -modelsweak models, impacting
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performance but-may-also-inerease-therisk-oefand overfitting. The learning rate eentrols-the-influences eadh
model's contribution-ef-each-weak-medel, with a higher learning rate giving more weight-te-each-meodek. The
maximum depth parameter Hnits-the depth-efindividualprevents weak models; preventing-them from becoming
too complex-and-everfitting—the—data:, Table 3 shows—thedetails the AdaBoost model's parameter range
B e

4.5.2. XGBoost

XGBoost-is-an-, a gradient-boosting ensemble ML model based-on-gradientboosting-and-uses-with decisiqn
trees (Chen and Guestrin, 2016)—\&%-}e-deep—neuﬁ-]-net-wefkﬁ—e*eel} excels in predicting unstructured-datasudh

st ahd—text—d tree-based—methods—are—considered—superior—tor—dealin w.th tructured data:

M&XG—Beest—medel—th% hand]mg The number of esmna&efsftrees in XGBoost determmes the-number(

boosting rounds—er—iterations—lnereasing—the—number—of-estimators—can—improve—the—medel's—, impactir
performance but-alse-inereases-with a computatlonal complexity trade-off. The learning rate eentrols-—the-std

..":b(lc-é-',

'

s-influences convergence speed and generalization abilit]
Fhe, and the maximum depth parameter restricts —the —depth—of the —decision trees —in—the —cnsemblf
preventingprevents overfitting and-premetingfor enhanced interpretability. Sce Table 3 shows-the—range|
hyperparameters-for the XGBoost medelmodel's parameter range.

A

4.5.3. Light GBM

Light GBM-is, a gradient-boosting framework that-utilizes-a-decision-branching-techniquefor-variousM|
for tasks sueh-aslike ranking and classification (Ke et al., 2017

y-Unlike-other-boesting-methods-that-divideH
&Fe%lengthw%eeﬁkaye}w%}gh%ﬂpleyﬁ—& , stands out with 1t§ leaf ~wise approach, where-the-tree-|

R h o 0

ach-—step—Thisteaf-wise-strategy—red educing loss—m=

ig ima - 38 improving accuracy, and ensurirlg
efficient learmng The number of trees_in the model mﬂuences boostmg rounds;—with—a—hicher numbgr
potentially-improving-the-medel's for potential performance_enhancement. The learning rate eontrols-the-stgp
size—during—beesting—andaffects—the—trade-off betweenparameter balances convergence speed and medt
accuracy-Fhe, while the maximum depth parameter Hnits-the depth-of the-deeision trees;controlling the- meodel
controls complexity and the-risk-efprevents overfitting. See Table 3 shows-thefor the Light GBM mode

parameter range-ef-hyperparameters-for-the Light GBM-medel.

4.5.4. CatBoost

& =

2

CatBoost, short for Category Boosting, is aan ML model developed by Yandex and reeently—mad
availablercleased as an open source tool (Prokhorenkova etal., 2018) %&r&deﬁgned%&aeeas%m%egm%ed—w%

‘:lT‘(b

predietiveacetraey:
In the CatBoost model, the choice of the loss function ean-significantly impaet-the-medel'simpacts performanc
Different-lossLoss functions;—sueh—as_like log, entropy, or hinge;-handle—various_are tailored for specif]

classification problems-and-may—yield-different, influencing results. Table 3 shewsoutlines the range

»—o,\o b
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hyperparametersparameters for the CatBoost model for fine-tuning and optimizing CatBoost's performance on
a given dataset.

4.5.5. Random Forest

TFhe regression-or-classification-model was-construeted-using-the RF-technique, an ensemble learning method
comblnlng predlctlons from multlple demswn trees (Brelman ZOOIHhi&appmaelwﬂers%evemkadvaﬂ&age&

th £ hl d d n—thedata—distributt Usins—a Y’ £ 1eal-and

X uoaulllyll o —vartaot ...u, REeh H—the—aata—aistrroutton—osthg—a momhation—ot tea—ana

numerical-variables; RE-ean—aeeount), constructs regression or classification models. Known for handling
relationships and non-linearities without the-need-for-dummy-variables—The RE-medel-has-been-widely-used
aeress-requiring variable independence assumptions, RF excels in various industries-and-has-demenstrated
exeeptional-performanee—lt-has—alse-shown premise—in, including landslide prediction and site recognition
apphications.
FheRE-technique-utilizes-several. Optimizing RF performance involves adiusting parameters to-optimize-its
peffeﬂmﬂee—'Fhe—ﬁﬁt—pafame&eH«hke thenumber of stimators-which-determines-the-numberof deciston-trees
2 gDTs), sphttmg ﬂedesmtend (Gll’ll andor Entropy}—m

éema%w%ﬂeEﬁ&epyﬂewﬁ%ﬂﬂ%fm&%&gm%e%ﬂspH&ﬂh&éﬁaﬁ&m%&h& . and maximum tree
depth-ef-the-deeision-trees—Ht-limits-the-number-of levels-a-tree-ean-grow-, controlling robustness, accuracy, and

complexity. Table 3 shows-the-range-of hyperparametersdetails parameter ranges for the RF model.

4.5.6. Multilayer Perceptron

The MLP-is, a popularneural network architecture for-elassifieation-(introduced by Rosenblatt; in 1961)-+¢
consists—of—, features interconnected layers;—inechiding—an: input—ayer, hidden—ayers, and an—output
layer-(Rosenblatt et al., 1961). Neurons inthe MEP-compute-acalculate weighted sum-of inputs-and-pass-itsums,
passing through an-activation funetionfunctions to learn-eomplexcapture intricate relationships. Hiddenlayers
extract-informative-featuresfrom-the-input-data—Dropout layers are-used-to-prevent overfitting by randemlby
deactivating neurons randomly durmg tralnlng%ﬁegul—aﬁ%&e}%hmqu&ﬁﬂpmeﬁh%% cnhancmg
generalization-a Ad-re a a a
Versatile for selvmgclasmﬁcaﬂonmblem%

In, the M-l:llmedel—theMLP s look back perlod detefmiﬂes—thﬁmmber—e{lpfeweuﬁ—ﬁme—ﬁeps—eeﬂﬁdefed—fef

3 eeting influences temporal
decndcncy capluru while the numbcr of layers and nodes per layer eeﬂ&el—%heﬂe&weﬂesgovums complexity
and-—capacity —to—learn—complex—representations—{rom—the —data..  Table 3 shows —the —range —of
hyperparametersoutlines parameter ranges for the MLP model.

4.5.7. LSTM

The LSTM is a recurrent neural network arehi%ee&w%desigﬂed—te—aﬁa@z%that captures long-term
dependencies in sequentlal data (Hochrelter and Schmldhuber 1997) reomes—th S radient
pfeblem—dﬂdlt excels seq 5 works s veellsd

sequeﬁetsa#—varymg—leng&hs#hey—hawbeeﬁ%ueees&fuﬂfapphedﬂn various demams pphcauons 1ncludmg
natural language processing;-speechrecognition; and time series forecasting.
_In our LSTM model, we-conducted-experiments

to-analyze-the effeets-of variousparameters-on-sperformanee:
W&mvee&ga%ed—thmpaemﬁd*%emaplored dlfferent parameter% LSTM unit 51zes (32 64 128 aﬂé256)

e*plered—di&ereﬂ%l,_acnvatlon functlons (s1gm01d tanh aﬂeLReLU)—te—assess—ﬂaeﬂ*—mpaet—eﬂ—the—medelrs
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),and a look back perlod lcl[l}.,lll” from 3 to 1¢).
chos ; 101 multl clags

We chose the categoncal Cross- entropy loss functlon
classification-tas

medel—&ab%m%v&&umr&l—dependew Table 3 showsdetails the parameter range e#hweﬁamm%&es
for the LSTM model.

4.5.8. Dynamic Ensembling

Dynamic ensembling is a pewerfuthighly effective technique in ML that leverages-takes adv: mtage of t e
adaptability and eentinueusongoing improvement of predictive models (Ko et al., 2008). Dys:
ereates|t involves creating a flexibleversatile and continuously evolving ensemble by eembﬂﬂﬁghalnesung the
strengths of multiple models, sueh—asincluding RF, CatBoost, XGBoost, Light GBM, and AdaBoost.
Traditionally, ensembling methods like bagging and boosting have focused on fixed ensembles. However,
dynamic ensembling goes beyond this by introducing the ability to add or remove models based on their
performance dynamically. In the case of dynamic ensembling with the models, as mentioned earlier, the
monitoring criterion used is accuracy. Accuracy as the monitoring criterion ensures that the dynamic ensemble
maintains a high level of accuracy in its predictions. If a model falls below a predefined accuracy threshold, it
is considered underperforming and may be replaced to enhance the ensemble's overall performance.

Dynamic ensembling offers numerous advantages, including handling concept drift, where the underlying
data distribution changes over time. By incorporating new models that capture updated patterns and relationships
in the data, the dynamic ensemble can effectively adapt to concept drift and maintain accurate predictions.

The dynamic ensembling model utilized base models such as RF, CatBoost, XGBoost, Light GBM, and
AdaBoost. Each base model was trained individually with the same default parameter settings as their standalone
counterparts. The parametervatsesrange of parameters for eachthe dynamic ensemble model wereis mentiondd
in Table 3.

Table 3. The range of hyperparametersparameters varied in the models.

Model HyperparameterParameter
Number of EstimatersTrees

Learning Rate

Range of HyperparameterParameter
[+5:26010. 100] in steps of +05

[0.1, 2] in steps of 0.1

AdaBoost . K
Number of EstimatorsTrees [50-4+0610, 100] in steps of 505
XGBoost Learning Rate [0.05, 0.55] in steps of 0.05
Maximum Depth [3:335. 50] in steps of 25
Number of EstimatersTrees [20-406010, 100] in steps of 205
Light GBM Learning Rate [0.05, 0.55] in steps of 0.05
MaxMaximum Depth [3:335. 50] in steps of 25 I
Loss Function Log, Entropy, Hinge !
CatBoost Learning Rate [0.1, 2] in steps of 0.1
MaxMaximum Depth [3,33] in steps of 3 |
Number of EstimatersTrees [+10, 100] in steps of 5 |
RF Criteria Gini, Entropy
Maximum Depth [4-4605. 50] in steps of 5 |
Look-back Period 3to 10
MLP Layers [1,3]



Nodes Per Layer [50, 250] in steps of 50
Learning Rate [0.1.0.9] in step of 0.1
Look-back Period 3t0 10

LSTM LSTM Units 32, 64, 128,256
Activation Function Sigmoid, tanh, ReLU
Learning Rate 0.1, 0.9] in step of 0.1

5. Model Execution, Minimization, and Handling Class Imbalance

A rigorous process was followed to develop an effect]ve model for pred]ct]ng the 1ntens1ty of soil movement

The dataqet was partitioned into a 70 30 ratlo with 70% allocated for training and 30% for testmg—puﬂaeses—

Qﬂe—ehallenge—eﬂeeuﬂ{efed%ufmg—me—tmmmg—preeemww To tackle the class 1mbalance 1ssue—T—he—nambef
the trammg data, oversamplmg techmques were pphed excluswely to the trammg set, ensuring a balanced
representation of all three classes. The oversampling methods were not extended to the testing data, preserving
its original distribution. In this study, we developed two methods, referred to as method S Training Datasets (5-
TD) and method 5-fold cross-validation (5-CV). Method 5-TD was employed—By—geﬂei%&ng—syﬂi-heﬁc—éa&a

lag ahbl hals ha d d 1t ha his 1 +1, 14
potnts for the-minority-elasswe-were-able-to-balanece-th and-mitigate the biastoward-the majority class.

Onee-the-parameter variation analysis across different datasets. On the other hand, method 5-CV was utilized
for conducting 5-fold cross-validation to analyze the performance of the ML models.

5.1. Method 5-TD

For method 5-TD, the training dataset was
Th L' 41 + th. dels! £ l’ d £ Eaech del

Fhe primary vewas-to-optimize- the models™ paramcters for-improved performance. Each-modebwa
subjeeted%e%hegﬁd»seafelﬁeehmqﬂe—systemaﬂeaﬂye*plefmg plit into five training datasets, each utilized for
parameter variation analysis. This involved training and optimizing the ML model on each dataset independently
using the grid search method. Since each dataset possessed different parameter—combinations—to-identify—the
optimal settings—After-trainingparameters, we calculated the medels-withmean and stdev of the ML-optimized
pﬂmﬂeteﬁ—thethefe—teﬁed—efﬁepaﬁﬁe—tea—dﬁapammeter values across all datasets to assess theirpredietive

ssparameter variability. This enabled us to observe parameter variations across
the ML models providing insights into the sensitivity of the models to different dataset characteristics and
parameter configurations. A lower stdev implied that the model maintained consistency across each dataset and
demonstrated robust generalization capabilities. Conversely, a higher stdev suggested that the model
encountered difficulties maintaining consistency across datasets, potentially hindering its ability to learn general
patterns effectively. The evaluation primarily focused on measuring-aceuracylF 1 score metrics to determine the
models-effectivenessin-predietinghow effectively the models predicted the intensity of soil movements in each
of the 5 datasets.

5.2. Method 5-CV

For method 5-CV, a suite of ML models underwent training using a 5-fold cross-validation approach (Kumar et
al., 2023). In the 5-CV method, the training data was split into 5 datasets, where each dataset was alternately
used for validation while the others were used for training. The models were optimized by employing grid search
methodology and optimized based on performance on the 5 validation sets, and a single set of best-performing
parameters was selected for each model. Subsequently, the models with the best parameters found during




training were tested on the independent testing data, and their performance metrics were reported as indicati

of their predictive capabilities. The evaluation primarily focused on F1 score metrics to determine how
effectively the models predicted the intensity of soil movement across the 5 validation sets and the test set.

4]

6. Results

6.1. Parameter Analysis Result

Upon scrutinizing the parameter analysis presented in Table 3-showeases-the-4 from method 5-TD, a discernible
trend emerged: models trained with oversampling techniques exhibit notably smaller stdevs than thejr
counterparts trained without oversampling. For instance, when examining the AdaBoost model, we observe that
the stdev of the number of trees parameter was 0 for the oversampling case. In contrast, it stood at 16.43 for the
dataset without oversampling. This phenomenon underscores the stabilizing effect of oversampling dn
parameter estimates, mitigating the variability that may arise from imbalanced datasets.

Similarly, in the case of the RF model, the stdev of the number of trees parameter was 0 with oversampling.
indicating consistent parameter values across folds. Conversely, for the dataset without oversampling, the stdjv
increased to 21.21, suggesting greater variability in parameter estimates. This trend persisted across varioys
models and parameters, highlighting the robustness imparted by oversampling techniques in stabilizing modgl
performance.

Overall, these examples underscore the importance of oversampling in reducing parameter variability ar
ensuring consistent model behaviour, particularly in scenarios involving imbalanced datasets.

e

Table 4. The result of parameter variation analysis across five datasets from method 5-TD.

Model Parameter With Oversampling Without Oversampling
Mean stdev Mean stdev
Number of Trees 80 0 62 16.43
AdaBoost -
Learning Rate 0.66 0.22 0.9 (
Number of Trees 50 0 50 (
XGBoost Maximum Depth 20 0 10 [
Learning Rate 0.5 0 0.68 0.1¢
Number of Trees 50 0 50 [
Light GBM Maximum Depth 20 0 20 (
Learning Rate 0.5 0 0.6 0.1]
Number of Trees 50 0 50 (
CatBoost Maximum Depth 20 0 20 [l
Learning Rate 0.8 0 0.66 0.13
RE Number of Trees 80 0 50 21.2]
T Maximum Depth 20 0 20 (
Look-back Period 2.8 0.44 3.6 1.34
Layers 2 0 2 {
MLP Nodes in First Layer 130 67.08 130 67.04
Nodes in Second Layer 200 0 60 54.7]
Learning Rate 0.78 0.16 0.64 0.24
LSTM Look-back Period 4.6 0.89 4 1.4
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6.2. Optimized Parameters

In method 5-CV, we optimized hyperparametervalues-determined-through-the parameters separately for the ML

models using a 5-fold cross-validation process on the full training dataset. In analyzing various SMOTE
techniques, the parameter 'k', representing the count of nearest neighbors for synthesizing new samples, was
consistently optimized at a value of four. Table 5 presents each model's optimized parameter values obtained
through the grid search methed:in 5-CV on the training dataset. These hyperparametersparameters were
carefully fine-tuned to findensure the best fit for the given data. In the XGBeestcase of AdaBoost, the optimized
values included 866-for-the-numberof estimnators;-0-3-for-the-80 trees and a learning rate;-and-9-for-the- of 0.6.
The optimized values for the XGBoost model consisted of 50 trees, a learning rate of 0.3, and a maximum depth

of 10. These paFameterettmgs were seleefed&ﬁeFea?ef&l—e\#alua&eﬁdetennmed to enhance the model's abﬂﬁy

semﬂg&w&&d&eﬁmﬂeéw—mpfeve—me—mk&p&fefmﬂ%ﬁmem&eﬁperformame in terms of both speed
and accuracy.

Similarly, the AdaBeestLight GBM model had—its—hyperparametersunderwent parameter optimization
selecting 50 trees, a learning rate of 0.5, and a maximum depth of 20. Next, the CatBoost model was also

optimized, ?e%ulﬁﬂg—m%heleadmg to entropy selection ef—Zé—feF@h%nambeFeﬁeeﬂma&eﬁ—]—?—FeHheleammg

at 1 20 for-th lanth—Thes al 1 4 Jh o th, :| !' {antal

rate;ana tor-th depth—Hhese-parameter-values—-were-chosen-to-enhanee-the-mod £

tasks—The CatB. del als 1 1t ats 114 th. leets

i S| ifieati
and-accuracy-H-etassteattontasks—H tHmodetraiso-unaerwent yuuu attof; resttng -t

ofentropy-as the loss function, 6-9-as-thea learning rate of 0.8, 50 trees, and 20-as-thea maximum depthél:hese
settings of 20. In the RF model, the optimized values were ehosen-to-maximize80 for the medel's-performance
in-terms-of-aceuracynumber of trees and rebustaess—Similarky20 for the maximum depth, and the evaluation
criteria were set to "Gini." Likewise, the MLP model had—ﬁshypeﬂameter%optlmlzed its parameters with a
look back perlod 0f3 2 layers and 200 nodes per layer Fhese-settings-wer ted-to-enhance the model's
sifieation-aceuraey-Similarly, ESTM-has128-unitsthe
LSTM model consists of two layers with 100 and tah200 nodes in the first and second layers and utilizes a

ReLU actlvatlon function. M%Medd—%epﬁm%ed%wﬁw%mmﬁm%ﬁmm—%—%r

th%meéeksaeeumeymad—pfeéeﬁvepeweﬁpeﬁ%maﬂe%Lastly, the dynamlc eﬁsembhﬁgensemble rnodel in this
study incorporated the optimized RF, CatBoost, XGBoost, Light GBM, and AdaBoost models to improve the
accuracy of landslide analysis predictions. By leveraging the strengths of these individually optimized models,
as mentioned above, the dynamic ensembling model aimed to improve the accuracy and reliability of landslide

analysis predictions.

Table 45. The best value of the hypery parameters was calibrated from the training data using method 5-CV.
Model HyperparameterParameter Best Value of HyperparameterParameter
Number of EstimatersTrees 2580
AdaBoost Learning Rate +70.6
Mercimtra-Popih 20
Number of EstimatorsTrees 86650
XGBoost

Learning Rate 0.3
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Maximum Depth 910
Number of EstimatersTrees 22050
Light GBM Learning Rate 0.255
MaxMaximum Depth 1220
Loss Function Entropy
Learning Rate 0.98
CatBoost Number of Trees 50
MaxMaximum Depth 20
Number of EstimatorsTrees 45-80
RF Criteria EntrepyGini
Maximum Depth 2520
Look-back Period 3
Layers 2
MLP Nodes Per Layer 200_in both layers
Learning Rate 0.6
Look-back Period 5
LSTM Units 428100 in first and 200 in second layer
LSTM Activation Function tanhReLU
Learning Rate 0.9

6.2.1. Train-Test Results

Table 56 presents the training results of different classification models eembined-with-evaluated using 5-fold
cross-validation on the training dataset and various oversampling techniques for landslide prediction-, utilizirg
method 5-CV. In Table 6, C0, C1, C2, and C3 represent no movement, low movement, moderate movemernt
and high movement classes’ accuracies, respectively. These results provide valuable insights into the
performance of each model when trained on the training dataset with_and without oversampling. The
REXGBoost model with K-Mean SMOTE emergesemerged as the best model in training, achieving outstanding
accuracy, precision, recall, and F1-seore-of100%-and-1-+espeetively— scores 0f 0.999, 0.999, 0.999, and 0.99
respectively. The dynamic ensemble model with K-Mean SMOTE and Borderline SMOTE techniques als
performed similarly with 0.998 F1 scores. It demonstrates remarkable predictive capability by achieving perfeft
accuracy in beth-eversamphingandnon-oversampling scenarios. When the XGBoost model was trained withopit
oversampling, its accuracy, precision, recall, and F1 score were notably lower, with values of 0.999, 0.99
0.971, and 0.985, respectively.

Table 6-sheweases] presents the test results of various classification models combined with different
oversampling techniques for landslide prediction-Fhe-dynamic-ensemble-modelwith- (here models were traingd
using the method 5-CV). In Table 7, C0, C1, C2, and C3 represent no movement, low movement, moderate
movement, and high movement classes’ accuracies, respectively. Among them, the dynamic ensemble moah
utilizing the K-Mean SMOTE technique exhibitsdemonstrated exceptional performance in accurately predictiﬂg
landslides on unseen data. It achieves impressive accuracy, precision, and recall raterates of 99-68%-each(0.99p,
0.995, and 0.995, respectively, along with an F1- score of 0.9968995. These outstanding results reatfirmconfir
the effectiveness of the dynamic ensemble approach in-ecombinationwhen combined with K-Mean SMOTE f{
accurate landslidesoil movement prediction. Fhe-best-performed-Similarly, the Borderline SMOTE techniqy
also showed similar performance with accuracy, precision, recall, and an F1 score of 0.995 for all. When t

O

o =
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model is shewatested without oversampling, its accuracy, precision, recall, and F1 score are notably lower, with
values 0f 0.981, 0.646, 0.397, and 0.462, respectively. The best-performing model is highlighted in bold in Table
6_and Table 7.

Moreover, it is noteworthy that K-Means SMOTE consistently outperformed other oversampling techniques
across all models during the test performance evaluations, establishing itself as the optimal technique. Notably.
it is crucial to highlight the impact of oversampling on the performance of the dynamic ensemble model. This
underscores the discernible effectiveness of K-Means SMOTE in generating oversampling for the soil
movement dataset. The success of K-Means SMOTE can be attributed to its ability to identify clusters within
the minority class and select similar features for oversampling. The IR employed by K-Means SMOTE aids in
determining the appropriate degree of oversampling for the minority class, ensuring a balanced representation
of classes in synthetic samples.

Moreover, the absence of oversampling techniques negatively impacted the models' performance in both
training and testing. Without oversampling, the models exhibited lower accuracy, precision, recall, and F1 scores
during training and testing, emphasizing the challenges posed by class imbalance. In the absence of balanced
representation through oversampling, the models struggled to effectively learn and generalize from the
imbalanced dataset. Consequently, this underscores the pivotal role of oversampling in mitigating class
imbalance issues, leading to substantial enhancements in predictive accuracy and overall model robustness
during training and testing evaluations.

Models trained with oversampling techniques consistently demonstrate comparable performance across both
training and testing datasets, indicating a lack of overfitting. Conversely, models trained without oversampling,
notably RF, MLP, LSTM, and Dynamic Ensemble, exhibit signs of overfitting, as evidenced by significantly
higher performance metrics on the training dataset relative to the testing dataset. This observation underscores
the effectiveness of oversampling techniques in mitigating overfitting by enhancing the model's ability to
generalize to unseen data.

Comparing the dynamic ensemble and—RF-medelsmodel with—the other classification models—ané
eversamphing-techniques, it becomes evident that the dynamic ensemble model with K-Mean SMOTE and-the
RE-medel-with ,K-Mean-SMOTE-consistently eutperformoutperformed the rest, showeasinghighlighting their
effectiveness in aceurate-landslidepredietionaccurately predicting landslides.

These findings underscore the significaneeimportance of carefully selecting appropriate ML models and
employing suitable oversampling techniques to address the class imbalance challenge in landslidesoil movement
prediction. They provide valuable insights into the performance and suitability of these models and techniques
for enhancing landslide prediction accuracy, therebyultimately enabling proactive measures to mitigate
landslide risks.

TFable 5-The results-of the MELmodelsfrom training dataset

In Fig. 2, we juxtaposed the performance metrics obtained using K-Means SMOTE against those obtained
without oversampling across various machine learning models. In Fig. 2, the blue bars represent the F1 score
achieved with K-Means SMOTE (oversampling), while the orange bars represent the F1 score without
oversampling. Notably, when comparing the performance in the test dataset using the F1 score metric, the
oversampling dataset generated with K-Means SMOTE consistently yielded superior results compared to the
without oversampling approach. For instance, in the case of the AdaBoost model, K-Means SMOTE resulted in
an F1 score of 0.412 for the without oversampling technique, whereas it achieved an F1 score of 0.445 for K-
Means SMOTE. Similarly, in the XGBoost model, the F1 score improved from 0.447 without oversampling to
0.842 with K-Means SMOTE. This trend persisted across various other models such as Light GBM, CatBoost
RF, MLP, LSTM, and Dynamic Ensemble, where K-Means SMOTE consistently demonstrated superior
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performance in terms of F1 score compared to without oversampling. These results underscore the effectivene_*_s

of K-Means SMOTE in enhancing the predictive performance of ML models for soil movement prediction task|

Figure 3 illustrates the confusion matrix depicting the performance of the Dynamic Ensemble model on bo!

the training and testing datasets, utilizing the K-Mean SMOTE oversampling technique. The confusion matri

provides a comprehensive overview of the model's classification accuracy by presenting the true and predictq

labels across different classes. The Dynamic Ensemble model demonstrates robust performance in the trainin

dataset, as evidenced by the high counts along the diagonal, indicating a substantial number of corre

predictions across all classes. Similarly, in the testing dataset, the model maintains its efficacy, with the majori

of samples correctly classified across various classes.

Table 6. Results of ML models obtained from the training dataset using 5-fold cross-validation in method 5-CV.
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F1 Score by Model and Dataset

1.0 = K-Means SMOTE 0.995
I without Oversampling

0.842

F1 Score

AdaBoost XGBoost Light GBM CatBoost LSTM  Dynamic Ensemble
Model

Figure 2: Comparison of F1 Score performance between K-Means SMOTE and without oversampling techniques
across various ML, models for soil movement prediction in testing. Blue bars represent F1 scores achieved with K-
Means SMOTE, while orange bars represent F1 scores obtained without oversampling.
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Figure 3: Confusion matrix depicting the performance of the Dynamic Ensemble model on the training and testin;

datasets using K-Mean SMOTE oversampling technique.

7. Discussion and Conclusions

In eenelusion;summary, the threat posed by landslides pese—significant—threats—to—tives—and—propertie]
Heees%&emﬂg egmres the development of effective l—aﬂd@hé%predlctlon frameworksAMh#HeT—éeweeﬁ—hal

s v ntial-a e, although modelling the chaot
nature of natural data remains a—eh-a!-}eﬂge hallengmg The analyzed dataset used-in-the-analysis-deseribed-abey
shewsexhibited a significant class imbalance, with the minerity-elassesrepresenting-onty2%-of the-data-whi
the-majority class aceountsfor-98%-dominating the samples. This substantial-disparity-in-sample-distributiq

ean—pose—challenges—in—analysis—and-—medeling—requiringimbalance necessitated careful consideration ar|
appropnate techmques to address the elass-imbalaneeissue.

imbalance, muludmg SMOTE and its extensions (KMeansK-Means SMOTE, Borderline SMOTE, and SV
SMOTE)were-employed:ADASYN). ADASYN, which focuses on the efassifieation-minority class boundar
of the-minerity-elass-was-partieularly-effeetive-in-generating, effectively generated synthetic data points ar|

improvingthe balanee-ofimproved the class distribution_balance.
VarieusMultiple classification models—were-evaluated—forpredieting-soil-mevement—ineluding-, such

ADABoost, XGBoost, Light GBM, CatBoost, RF, MLP, LSTM, and a dynamic ensemble-of-ADABseq
XGBoostLight GBM;-CatBoost;and RE:, were evaluated to predict soil movement. The hyperparameters—
c—ael%medehvef&ep%meéusmg&gnd search approach#hvdyﬂam*&eﬂsembk—w&hm%ﬁ—ar
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and 5- CV were employed to addfes%ehs%ﬁ%ﬂfwe—&he—syﬂﬂw&&dﬁﬂ—peﬁﬁs—mﬂy—ﬂ%ﬁuﬂy—eﬂp&fe—the

hype mete ss-ma e a A a e opnmlze the parameters
of cach modcl Wlthm the 5-CV framcwork the paramctcr analv51s was conductcd on each fold treated as an
mdependem dataset allowmg for a comprehenswe assessment of parameter Varlablllg across different fesults

need-torfurtherresearchto-enhancetandshide predicton—acetra ,dataset spllts Thls approach famlltated the
identification of optimal parameter configurations that yielded consistent performance across diverse dataset
distributions. By treating each fold as an independent dataset, the parameter analysis provided insights into the
variability of parameter values, thereby enhancing our understanding of how the models generalize to unseen
data.

In-fature-workweplan-to-evaluate-theThe ML models' training results highlight oversampling's significant
impact on model performance. The dynamic ensemble model, particularly when coupled with K-Means
SMOTE, emerges as the standout performer in the training phase. This model demonstrates superior predictive
capabilities by achieving remarkable accuracy, precision, recall, and F1 scores 0f 0.998, 0.998, 0.998. and 0.998,
respectively.

Furthermore, these models were tested to assess their ability to generalize well to unseen data. The testing
results showcased the dynamic ensemble model with K-Means SMOTE as the top performer, achieving an
outstanding accuracy of 0.995, precision of 0.995, recall of 0.995, and an F1 score of 0.995. This confirms that
the exceptional performance observed in training extends to the testing phase, emphasizing the robustness and
reliability of the dynamic ensemble approach with K-Means SMOTE. Moreover, the dynamic ensemble model
incorporating Borderline SMOTE emerges as the second-best model in the test phase, showcasing high
accuracy, precision, and recall rates of 0.995, 0.995, and 0.995, respectively, along with an F1 score of 0.995.
This result reinforces the reliability and robustness of the model in tackling landslide prediction tasks.

The superior performance of encoder-decoder-the K-Means SMOTE technique can be attributed to its ability
to identify clusters within the minority class and generate synthetic samples that maintain the underlying
structure of the data. By considering the IR, K-Means SMOTE ensures a balanced representation of classes in
the synthetic samples, contributing to improved model generalization and predictive accuracy. Furthermore, the
lack of oversampling adversely affected both training and testing performances. The models faced challenges
in learning and generalizing from the imbalanced dataset without a balanced representation.

On the other hand, the success of the dynamic ensemble model, comprising AdaBoost, XGBoost, Light
GBM, CatBoost, and RF, can be attributed to the complementary strengths of these diverse algorithms.
Ensemble methods leverage the collective decision-making power of multiple models-, each capturing different
aspects of the underlying data patterns. The combination of boosting algorithms like AdaBoost, gradient
boosting methods like XGBoost, tree-based models like Light GBM and CatBoost, and the robustness of RF
creates a robust and versatile ensemble that excels in handling various aspects of the dataset, contributing to its
overall superior performance.

In summary, the findings underscore the critical role of oversampling techniques, especially K-Means
SMOTE, in enhancing the predictive performance of landslide prediction models. The success of the dynamic
ensemble model further highlights the importance of ensemble techniques in aggregating diverse model
predictions for improved accuracy.

The superior performance demonstrated by oversampling techniques compared to without oversampling can
be attributed to several factors. Firstly, oversampling techniques address class imbalance by generating synthetic
samples for minority classes, thus providing the model with more representative training data. This allows the
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ML model to learn the underlying patterns of the minority class more effectively, leading to improvgd
classification performance. Additionally, oversampling techniques help reduce the risk of overfitting Hy
n
o
|

providing a more balanced representation of the dataset, enhancing the model's ability to generalize to unsed
data. Moreover, by increasing the diversity of the training data, oversampling techniques enable the model

capture a wider range of variation within the dataset, resulting in better generalization performance. Overal
using oversampling techniques ensures that the ML model is better equipped to handle imbalanced datasetp,
leading to enhanced predictive performance in soil movement prediction tasks.

Furthermore, the parameter analysis reveals that oversampling techniques add generalized information to the
dataset, making it more consistent across different datasets. This reduced variability in the dataset allows M[L
models to learn these generalized patterns more effectively. As evident in the parameter analysis resulf|
oversampling techniques lead to smaller stdev in parameter values across different models, indicating improvii1
consistency and generalization. This further supports the notion that oversampling techniques hel, iti
overfitting and enhance the overall performance of ML models in soil movement prediction tasks.

Despite these achievements, it is crucial to acknowledge the study's limitations. The generalizability of the
findings to different geological conditions or regions may be restricted due to the specificity of the datasd
While effective, the synthetic data points generated through oversampling may only capture part of t
complexity inherent in real-world landslide occurrences. The choice of classification models and paramet
settings introduces a level of bias, with alternative configurations potentially yielding different results.
Additionally, relying on historical data may limit the model's ability to account for future changes or unforeseq
events, such as changes in rainfall intensity, seismic activity, or human influences.

In future work, the exploration of encoder-decoder or transformer models on the class-imbalanced movemes
dataset is planned. These models-have-demenstrated, known for their success in sequence-to-sequence tasks-a#
eould-petentially, may improve classification accuracy and address class imbalance challenges. This avenue
experimentation witlaims to provide valuable insights into theirthe suitability of advanced models for analyzir
and medelingmodelling imbalanced movement data.

To sum up, the study contributes to understanding landslide risks and supports the development of effecti
preventive measures. The combination of robust oversampling techniques, ensemble modelling, and
systematic approach to parameter tuning yields a promising framework for accurate landslide prediction. T!
work presented lays the groundwork for future research to refine models and address the inherent challenges
landslide prediction tasks.

= o I

=

=

[~

[E)

ERCRERE]

Acknowledgements

>

We are-grateful-to-the-want to acknowledge and express our sincere gratitude to the DST, India, and the DDM
Mandi;:Kangra (IITM/DDMA-Kan/KVU/357), Kinnaur;-and-Kangra-for providing-the-fand-for (IITM/DDMA
Kinn/VD/345), and Mandi (IITM/DDMA-M/VD/325 and IITM/DDMA-M/VD/358) for their invaluab
financial support towards this research grantproject. We are also thankflimmensely grateful to the IIT Manq
for previding-the-space-and-computing-generously facilitating us with the necessary infrastructure, includir
research facilities ferand computational resources, that have been instrumental in the successful execution
this researeh-werkstudy.

=lo T

IEYE]

References

Breiman, L.: Random forests. Machine learning, 45, 5-32, 2001.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P.. SMOTE: synthetic minority over-sampling
technique. Journal of artificial intelligence research, 16, 321-357, 2002.



65
66
67
68
69

26

Chen, T., & Guestrin, C.: Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, pp. 785-794, 2016.

Crosta, G.: Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2), 131-
145, 1998.

Douzas, G., Bacao, F., & Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-
means and SMOTE. Information Sciences, 465, 1-20, 2018.

Gupta, V., Bhasin, R. K., Kaynia, A. M., Tandon, R. S., & Venkateshwarlu, B.: Landslide hazard in the Nainital township,

/a, India: the case of September 2014 Balia Nala landslide. Natural Hazards. 80, 863-877, 2016

Han, H., Wang, W. Y., & Mao, B. H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning.
In Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005, Hefei, China,
August 23-26, 2005, Proceedings, Part I 1, pp. 878-887, 2005.

He, H., Bai, Y., Garcia, E. A., & Li, S.: ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008
1EEE international joint conference on neural networks (IEEE world congress on computational intelligence), pp.
1322-1328, 2008.

Hochreiter, S., & Schmidhuber, J.: Long short-term memory. Neural computation, 9(8), 1735-1780, 1997.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y.: Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems, 30, 2017.

Ko, A. H., Sabourin, R., & Britto Jr, A. S.: From dynamic classifier selection to dynamic ensemble selection. Pattern
recognition, 41(5), 1718-1731, 2008.

Kumar, P., Sihag, P, Sharma, A., Pathania, A., Singh, R., Chaturvedi, P., & Dutt, V.: Prediction of Real-World Slope
Movements via Recurrent and Non-recurrent Neural Network Algorithms: A Case Study of the Tangni
Landslide. Indian Geotechnical Journal, 51(4), 788-810 (2021a).

Kumar, P, Sihag, P., Chaturvedi, P., Uday, K. V., & Dutt, V.: BS-LSTM: an ensemble recurrent approach to forecasting soil
movements in the real world. Frontiers in Earth Science, 9, 696-792 (2021b).

Kumar, P, Sihag, P., Pathania, A., Agarwal, S., Mali, N. C. P,, Singh, R., ... & Dutt, V.: Landslide debris-flow prediction
using ensemble and non-ensemble machine-learning methods. In Infernational Conference on Time Series and
Forecasting (Vol. 1), 2019.

Kumar, P., Priyanka, Pathania, A., Agarwal, S., Mali, N., Singh, R., ... & Dutt, V.: Predictions of weekly slope movements
using moving-average and neural network methods: a case study in Chamoli, India. In Soft Computing for Problem
Solving 2019: Proceedings of SocProS 2019, Volume 2, pp. 67-81, 2020.

Kumar, P., Privanka, P., Dhanya, J., Uday, K. V., & Dutt, V.: Analyzing the Performance of Univariate and Multivariate
Machine Learning Models in Soil Movement Prediction: A Comparative Study. /EEE Access, 11, 6236862381, 2023

Parkash, S.: Historical records of socio-economically significant landslides in India. Journal of South Asia Disaster Studies,
4(2), 177-204, 2011.

Pathania, A., Kumar, P., Priyanka, P., Maurya, A., Uday, K. V., & Dutt, V.: Development of an Ensemble Gradient Boosting
Algorithm for Generating Alerts About Impending Soil Movements. In Machine Learning, Deep Learning and
Computational Intelligence for Wireless Communication: Proceedings of MDCWC 2020, pp. 365-379, 2021.

Pathania, A., Kumar, P., Sihag, P., Chaturvedi, P., Singh, R., Uday, K. V., & Dutt, V.: A low-cost, sub-surface [oT framework
for landslide monitoring, warning, and prediction. In Proceedings of 2020 International conference on advances in
computing, ¢ ication, embedded and secure systems, 2020.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A.: CatBoost: unbiased boosting with categorical
features. Advances in neural information processing systems, 31, 2018.

Kumaun Himala:

Ray, R. L., Lazzari, M., & Olutimehin, T.: Remote sensing approaches and related techniques to map and study
landslides. Landslides Investig. Monit., 2020.

Rosenblatt, F.: Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Cornell Aeronautical Lab Inc
Buffalo NY, 1961.

Sahin, E. K.: Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto
International, 37(9), 2441-2465, 2022.



27

Semwal, T., Priyanka, P., Kumar, P., Dutt, V., & Uday, K. V.: Predictions of Root Tensile Strength for Different Vegetation
Species Using Individual and Ensemble Machine Learning Models. In Trends on Construction in the Digital Era:
Proceedings of ISIC 2022, pp. 87-100, 2022.

Tan —Zhan O ChawlaN—\_& Kragser

S SVMs deting—forhighly—imbalanced—classificati edE

T i < A 1 Crv:her jec Doyt B ()0 i

1 s on Svsiems, Mean, and Cvbernetics, Purt B(Crbernetic:

Wu, Y., Ke, Y., Chen, Z., Liang, S., Zhao, H., & Hong, H.: Application of alternating decision tree with AdaBoost and
bagging ensembles for landslide susceptibility mapping. Catena, 187, 104396, 2020.

Zhang, S., Wang, Y., & Wu, G.: Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on

Gradient Boosting Machine Learning and Class Balancing Methods. Remote Sensing, 14(23), 5945, 2022.

)} 39(1)-281-288 200,
DEEATy g g



