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Abstract 6 

Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide 7 
valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement 8 
from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing 9 
machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil 10 
movement prediction system. The dataset, comprising two years (2019-2021) of monitoring data from a landslide in 11 
Uttarakhand, was split into a 70:30 ratio for training and testing. To tackle the class imbalance problem, various 12 
oversampling techniques, including Synthetic Minority Oversampling Technique (SMOTE), K-Means SMOTE, Borderline 13 
SMOTE, Support Vector Machine SMOTE, and Adaptive SMOTE (ADASYN), were applied to the training dataset. Several 14 
ML models, namely Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (Light 15 
GBM), Adaptive Boosting (AdaBoost), Category Boosting (CatBoost), Multilayer Perceptron (MLP), Long Short-Term 16 
Memory (LSTM), Multilayer Perceptron (MLP), and dynamic ensemble models, were trained and compared for soil 17 
movement prediction. A 5-fold cross-validation method was applied to optimize the ML models on the training data, and 18 
the models were tested on the testing set. Among these ML models, the dynamic ensemble model with K-Means SMOTE 19 
performed the best in testing, with an accuracy, precision, and recall rate of 99.68% each and an F1-score of 0.9968. The 20 
RF model with K-Means SMOTE stood out as the second-best performer, achieving an impressive accuracy, precision, and 21 
recall rate of 99.64% each and an F1-score of 0.9964. These results show that ML models with class imbalance techniques 22 
have the potential to significantly improve soil movement predictions in landslide-prone areas.0.995, 0.995, and 0.995, 23 
respectively, and an F1 score of 0.995. Additionally, models without oversampling exhibited poor performance in training 24 
and testing, highlighting the importance of incorporating oversampling techniques to enhance predictive capabilities.  25 
Keywords: Soil Movement Prediction; Class Imbalance; Oversampling; Machine Learning; Landslide Prone Areas.  26 

1. Introduction 27 

Landslides pose a significant threat to infrastructure, resulting in numerous fatalities and substantial economic 28 
losses each year (Parkash, 2011). These destructive events occur globally, particularly in hilly and mountainous 29 
regions, driven by gravity and characterized by the movement of large rocks, debris, and soil (Crosta, 1998). 30 
Factors such as heavy rainfall, earthquakes, and the impacts of climate change contribute to the occurrence and 31 
severity of landslides (Crosta, 1998). 32 

Monitoring, predicting, and warning people about slope movements in landslide-prone areas are crucial for 33 
mitigating landslide risks. Advanced technologies like Global Positioning System (GPS, LIDAR, ), Light 34 
Detection and Ranging (LiDAR), Geographic Information System (GIS,), and remote sensing have proven 35 
effective for assessing and analyzing slope failure hazards (Ray et al., 2020). However, their high cost and the 36 
need for specialized expertise limit their accessibility, especially in developing countries where low-cost-37 
effective IoT technologies are necessary (Pathania et al., 2020). 38 

Machine learning (ML) models have been extensively studied for predicting soil movement in landslide-39 
prone areas (Kumar et al., 2021a; Kumar et al., 2021b)., Kumar et al., 2023). This prediction problem could be 40 
divided into classification and regression tasks. The classification task aims to predict the degree of soil 41 
movement using various ML models. On the other hand, the regression task involves estimating the acceleration 42 
or displacement of soil under observation. 43 

One common challenge in landslide prediction is a class imbalance, where certain classes have significantly 44 
more data samples than others. This imbalance can adversely affect the performance of ML models. To address 45 
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class imbalance issues, techniques such as Synthetic Minority Oversampling Technique (SMOTE), K-Means 46 
SMOTE, Support Vector Machine SMOTE (SVM SMOTE), Borderline SMOTE, and Adaptive Synthetic 47 
Minority Oversampling Technique (ADASYN) are employed to balance the dataset (Chawla et al., 2002; 48 
Douzas et al., 2018; Tang et al., 2008; Han et al., 2005; He et al., 2008). 49 

One crucial literature gap Several researchers have dedicated their efforts to addressing class imbalance 50 
problems in landslide ML. Notably, Chawla et al. (2002) introduced the SMOTE, Douzas et al. (2018) devised 51 
the K-Means SMOTE, Han et al. (2005) proposed the Borderline SMOTE, and He et al. (2008) introduced the 52 
Adaptive Synthetic Minority Oversampling Technique (ADASYN). These techniques were developed to 53 
generate synthetic data and balance imbalanced datasets. 54 

The field of soil movement prediction is the need for more focus on addressing the challenges posed by 55 
requires further investigation, particularly considering the complexities associated with a class imbalance in 56 
landslidethe datasets. Although machine learning models have been extensively studiedDespite extensive 57 
research on ML models' predictive abilities for predicting soil movement in landslides, the impact ofthere still 58 
needs to be more understanding regarding how class imbalance on theiraffects the models' performance and 59 
accuracy has received less attention. In this paper, we explore the development. This study aims to bridge this 60 
knowledge gap by examining different approaches to tackle class imbalance and exploring diverse ML models 61 
to improve the prediction of different ML models and class imbalance techniques to predict landslides. By 62 
developing SMOTE variants and other balancing techniques, we aim to overcome the challenge of imbalanced 63 
datasoil movement. Various multivariate classification models, including Random Forest (RF), Adaptive 64 
Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), Light Gradient Boosted Machine (Light GBM), 65 
Category Boosting (CatBoost), Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM), Multilayer 66 
Perceptron (MLP), and an ensemble of RF, AdaBoost, XGBoost, Light GBM, and CatBoost are developed to 67 
predict soil movement when coupled with class imbalance techniques (Kumar et al., 2019; Semwal et al., 2022; 68 
Wu et al., 2020; Pathania et al., 2021; Zhang et al., 2022; Sahin, 2022; Kumar et al., 2020; Kumar et al., 2023). 69 

The novelty of this paper lies in its exploration and development of different ML models and class imbalance 70 
techniques designed explicitly for landslide prediction. While previous research has studied ML models for 71 
predicting This study delves into the field of soil movement in landslides, this paper focuses on 72 
addressingprediction, making significant advancements by developing specialized ML models and techniques 73 
tailored to this domain. A notable aspect that has received limited attention in the existing literature is the 74 
challenge of class imbalance in landslide datasets, which has received limited attention in the literature. The 75 
paper introduces and applies various SMOTE variants and other balancing techniques to overcome. While 76 
previous research has primarily focused on ML models for soil movement prediction, this work addresses the 77 
issue of imbalanced data, improving the performance head-on. Multiple variants of the SMOTE and other 78 
balancing strategies are introduced and implemented to enhance the efficacy and accuracy of the ML models.  79 

Additionally, the paper presents the development of a range of multivariate classification models, including 80 
RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and an ensemble of RF, AdaBoost, XGBoost, 81 
Light GBM, and CatBoost, showcasing the comprehensive and innovative approach taken to predict soil 82 
movement in landslide-prone areas. The findings of this study have significant implications for mitigating 83 
landslide risks and improving the prediction of soil movements in landslide-prone areas. By effectively 84 
predicting landslides, it becomes possible to reduce economic losses and prevent fatalities caused by these 85 
destructive events. Furthermore, developing and deploying low-research explores using cost -effective Internet 86 
of Things (IoT) technologies in developing countries can enhance the regions to improve the investigation and 87 
assessment and analysis of landslide hazards, making them more accessible and efficient. In this study, we 88 
utilized data from a low-cost IoT monitoring station located in Uttarakhand, spanning. The dataset used in this 89 
study spans two years, from June 2019 to June 2021. This dataset , and was used to train the ML models. By 90 
leveraging this real-world data, we aimed to capture the specificcollected by an inexpensive IoT monitoring 91 
station in Uttarakhand, India. This real-world dataset captures the distinctive characteristics and patterns of soil 92 
movements prevalent in the landslide-prone area. By employing a comprehensive methodology, this work 93 
advances soil movement prediction and effectively addresses the challenge of class imbalance. It commences 94 
with a thorough overview of the collected data, emphasizing the measured weather and soil-related factors. 95 
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Various SMOTE variants and other balancing techniques are employed to rectify the class imbalance, resulting 96 
in the generation of synthetic samples and ensuring a balanced representation of soil movement classes. The 97 
intricate correlations and patterns in the soil movement data are captured using a variety of ML models, 98 
including RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and a dynamic ensembling of RF, 99 
AdaBoost, XGBoost, and CatBoost. Overall, this study's findings show potential for accurately reducing 100 
landslide risks, increasing the accuracy of landslide prediction, and encouraging the use of cost-effective IoT 101 
technologies in landslide-prone locations. 102 

In what follows, we discuss the methodology employed in this study to address the class imbalance challenge 103 
and improve landslide prediction. First, we provide an overview of the dataset collected from the monitoring 104 
station in Uttarakhand, India, highlighting the weather and soil-related parameters measured over two years. 105 
Next, we describe the application of class imbalance techniques, including SMOTE variants and other balancing 106 
methods, to overcome the imbalanced nature of the dataset. We explain how these techniques help generate 107 
synthetic samples and balance the representation of different landslide classes. Then, we present the 108 
development and implementation of various ML models, including RF, AdaBoost, XGBoost, Light GBM, 109 
CatBoost, MLP, LSTM, and an ensemble of RF, AdaBoost, XGBoost, Light GBM, and CatBoost. We highlight 110 
each model's unique features and advantages in capturing the complex relationships and patterns in the landslide 111 
data. Finally, we discuss the implications of our findings for mitigating landslide risks, improving landslide 112 
prediction accuracy, and the potential for deploying low-cost IoT technologies in landslide-prone areas. 113 

2. Background 114 

Several techniques have been proposed to address the challenge of learning from imbalanced datasets, where 115 
the classification categories are not evenly represented. For example, Chawla et al. (2002) proposed the SMOTE, 116 
which involves generating synthetic minority class examples to balance the dataset. SMOTE has been shown to 117 
improve model performance compared to only undersampling the majority class. Douzas et al. (2018) 118 
introduced K-Means SMOTE, a method that combines SMOTE with k-means clustering to effectively overcome 119 
imbalances between and within classes without generating unnecessary noise. Tang et al. (2008) modified SVMs 120 
by incorporating different rebalancing heuristics, such as cost-sensitive learning, over-sampling, and 121 
undersampling. Among the variations of SVM, the granular SVMs-repetitive undersampling model (GSVM-122 
RU) has been found to be the most effective and efficient. Additionally, Han et al., (2005) developed a 123 
Borderline SMOTE method that focuses on oversampling only the minority examples near the class boundary. 124 
Experimental results indicate that Borderline SMOTE1 and Borderline SMOTE2 outperform SMOTE and 125 
random oversampling methods in terms of true positive rate and F-value. Lastly, He et al. (2008) developed the 126 
ADASYN, which addresses class imbalance by generating more synthetic data for minority class examples that 127 
are harder to learn. ADASYN reduces bias and adaptively shifts the classification decision boundary toward 128 
challenging examples. Simulation analyses have demonstrated the effectiveness of ADASYN across various 129 
evaluation metrics. These techniques offer valuable approaches to mitigate the impact of imbalanced data in 130 
classification tasks. These class imbalance techniques have limited exploration and application for landslide 131 
datasets. Existing studies primarily focus on the general imbalanced dataset scenario but need to consider the 132 
unique characteristics and challenges associated with landslide datasets. Therefore, research is required for 133 
systematic studies that compare the performance and effectiveness of techniques such as SMOTE, K-Means 134 
SMOTE, Borderline SMOTE, and ADASYN in the specific context of soil movement prediction across various 135 
evaluation metrics. By bridging this literature gap, we can enhance the accuracy and reliability of models for 136 
predicting soil movement in landslide-prone areas and contribute to improved landslide risk mitigation 137 
strategies. 138 

Several researchers have worked on developing differentdeveloped various ML models to predict soil 139 
movement and solve prediction problems in other fields (Kumar et al., 2019; Semwal et al., 2022; Wu et al., 140 
2020; Pathania et al., 2021; Zhang et al., 2022; Sahin, 2022; Kumar et al., 2020). For example, Kumar et al. 141 
(2019) predicted the landslide debris-flow usingdeveloped an ensemble and non-ensembleof ML models focuses 142 
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on(RF, Bagging, Stacking, and Voting) for predicting debris-flowsoil movement at the Tangni landslide in 143 
Uttarakhand, India. The study compares ensemble ML models (RF, Bagging, Stacking, and Voting) These 144 
models were compared with non-ensemble model (Sequential Minimal Optimization (SMO) and 145 
Autoregression (AR). The results indicate that the ensemble models, specifically Bagging, Stacking, and RF, 146 
performed better than the non-ensemble outperformed the SMO and AR models in predicting weekly debris-147 
flow.soil movement. Furthermore, Semwal et al. (2022) developed the Sequential Minimal Optimization 148 
Regression (SMOreg),, Instance-based Learning (IBk), RF, Linear Regression (LR), Multi-layer Perceptron 149 
(MLP),, as well as ensemble ML models to predict root tensile strength for different vegetation species. The 150 
researchers investigate the relationship between root tensile strength and root and shoot characteristics of 151 
vegetation. The results show that the ensemble via MLP outperformed all performed better than the other 152 
individual models, providing more accurate predictions of root tensile strength. Next, Wu et al. (2020) developed 153 
the decision tree (DT) with AdaBoost and bagging ensembles for landslidemapping the susceptibility mapping 154 
of landslides in Longxian County, Shaanxi Province, China. They usedResearcher developed the technique with 155 
ensemble of Alternating Decision Tree (ADTree) along with ensemble techniques such aswith Bagging and 156 
AdaBoost to map landslide susceptibility. The performance of the models was evaluated using receiver 157 
operating characteristic (ROC) curve, area under the ROC curve (AUC), and statistical measures. The results 158 
showedrevealed that theensemble of ADTree- and AdaBoost model had the highest success rate and prediction 159 
rate, outperforming theperformed better than the individual ADTree model and ensemble of ADTree- and 160 
Bagging model. Similarly, Pathania et al. (2021) developed a novel ensemble gradient boosting model, called 161 
SVM-XGBoost, for generating specific warnings about impending soil movements warning at aGharpa 162 
landslide site in Gharpa Hill, Mandi, India. They compared the performance of SVM-XGBoost with other 163 
models such as individual SVMs, DTs, RF, XGBoost, Naïve Bayes (NB), decision trees (DTs), RF, SVMs, 164 
XGBoost, and different variants of XGBoost. The results showed that the SVM-XGBoost model outperformed 165 
theperformed better than other models in soil movement prediction. In their research, Kumar et al. (2021b) 166 
directed their attention toward predicting soil movement alerts 10 minutes ahead of time. Similarly, Kumar et 167 
al. (2021b) developed different variants of LSTM and an ensemble of LSTM models named BS-LSTM in their 168 
research to predict soil movement, specifically at the Tangni landslide site in India. The results demonstrated 169 
To enhance the accuracy of their predictions, they explored various variants of Long Short-Term Memory 170 
(LSTM) models. They introduced a novel ensemble approach called BS-LSTM, which combined bidirectional 171 
and stacked LSTM models. The findings of their study indicated that the BS-LSTM model outperformed the 172 
other LSTM variants forin accurately predicting soil movement prediction. Furthermore, . Similarly, Zhang et 173 
al. (2022) conducted a study on earthquake-induced landslideto assess the susceptibility assessmentof landslides 174 
using a novel model based on gradient -boosting ML and techniques coupled with class -balancing methods. 175 
The researchTheir investigation specifically focused on the aftermath of the 2018 Hokkaido earthquake and 176 
used differentemployed diverse datasets and methods methodologies to predict the susceptibility of specific 177 
parts ofareas prone to landslides. The results demonstrated thatCompared to well-established models such as 178 
XGBoost and Light GBM, the proposed model with the dice-cross entropy (DCE) loss function and either 179 
XGBoost or Light GBM achieved more balanced and preciseshowcased superior performance in accurately 180 
assessing landslide susceptibility assessments compared to existing models. Next, . Furthermore, Sahin (2022) 181 
compared four recent gradient boostingdeveloped multiple ML models, including XGBoost, CatBoost, Gradient 182 
Boosting Machine (GBM), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and and 183 
Light GBM, for modeling landslideto model the susceptibility. of landslides. By leveraging a comprehensive 184 
landslide inventory map and relevant conditioning factors stored in a geodatabase, the study employed feature 185 
selection techniques and compared the predictive capabilities of ensemble methods with the widely used RF 186 
model. The results highlighted that CatBoost exhibited the highest predictive capability, followed by XGBoost, 187 
Light GBM, and GBM, while RF demonstrated comparatively lower predictive capability. The study used a 188 
geodatabase with a landslide inventory map and conditioning factors. Feature selection techniques were applied, 189 
and the prediction performance of ensemble methodsXGBoost, CatBoost, GBM, and Light GBM was compared 190 
to RF. The results showedrevealed that CatBoost had the highest prediction capability, followed by XGBoost, 191 
Light GBM, and GBM. RF had the lowest prediction capability. The literature gap in the context of soil 192 
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movement prediction is the limited exploration and evaluation of ML models in combination with synthetic data 193 
generated by SMOTE techniques. While various ML models, such as ensemble models (e.g., RF), neural 194 
networks models (MLP and LSTM), and gradient boosting ML models (e.g., AdaBoost, XGBoost, Light GBM, 195 
CatBoost), have been developed and applied for soil movement prediction, their utilization in conjunction with 196 
synthetic data generated by SMOTE techniques has received less attention in the literature. Incorporating 197 
SMOTE-generated synthetic data into the training process of these models can address the issue of class 198 
imbalance in landslide datasets and improve their performance in predicting soil movement. Therefore, further 199 
research is needed to investigate the effectiveness of these ML models when combined with SMOTE techniques 200 
in the context of soil movement prediction, thereby filling the existing literature gap. 201 

The RF, AdaBoost, XGBoost, Light GBM, CatBoost, MLP, LSTM, and an ensemble of RF, AdaBoost, 202 
XGBoost, Light GBM, and CatBoost models were chosen to predict soil movement based on their proven 203 
effectiveness in previous research. RF is excellent at capturing complex relationships and has outperformed 204 
non-ensemble models in predicting debris flow and landslide susceptibility. AdaBoost has successfully 205 
predicted soil movement alerts ahead of time. At the same time, XGBoost and Light GBM have demonstrated 206 
their ability to achieve balanced and precise predictions, especially in earthquake-induced landslide 207 
susceptibility assessments. Among gradient-boosting models, CatBoost has the higheststands out for its superior 208 
prediction capability among gradient-boosting models, , making it a suitable choicewell-suited option for 209 
modelingmodelling landslide susceptibility. MLP as the base model, has provided more accurate predictions 210 
ofOn the other hand, when it comes to predicting root tensile strength. Finally, MLP has demonstrated higher 211 
accuracy in its predictions. Additionally, LSTM is, a robust recurrent neural network architecture that captures, 212 
is particularly effective in capturing temporal dependencies and long-term patterns in sequential data. 213 
TheseCollectively, these models collectively offer a rangediverse set of capabilities, making them that prove 214 
valuable tools for in the prediction of soil movement prediction. 215 

3. Data Collection and Description 216 

The data useddataset for predicting soil movement prediction was collected from a real-worldan actual landslide 217 
locationsite in Uttarakhand, India, over . The monitored landslides are characterized as shallow landslides with 218 
debris flow, occurring at elevations ranging from 1450 m to 1920 m. The slopes in the landslide zones in the 219 
upper parts are made up of weathered limestone and dolomitic limestone, whereas the lower slopes exhibit black 220 
carbonaceous slate. The slates are highly weathered and leached, adorned with white and yellow encrustation. 221 
These are covered with a thin veneer of debris, mainly consisting of pebble- and cobble-sized limestone, 222 
sandstone, and slate embedded in a periodsand–silt–clay matrix. Additional context includes an annual rainfall 223 
of 4190 mm in the area, as reported by Gupta et al. (2015). Spanning a duration of two years, from June 2019 224 
to June 2021. The monitoring was performed using a low-, this dataset holds valuable insights into the behaviour 225 
of soil in response to various environmental factors. To gather this data, a cost IoT based-effective landslide 226 
monitoring station (LMS) specifically installedwas carefully deployed at the site. The LMS was 227 
equippedlandslide. Equipped with variousa range of sensors to measure different, the LMS diligently recorded 228 
critical weather and soil-related parameters. In terms of weather parameters, the LMS recorded the Weather-229 
wise, it diligently captured temperature readings in degrees Celsius, humidity inlevels as a percentage, rainfall 230 
(Rain)measurements in inches per hour (in/hr), atmospheric pressure in millibars (mb), and even sunlight 231 
(Light)intensity in lux. These measurements provided valuable information aboutThese meticulous recordings 232 
shed light on the prevailing weather conditions experienced at the precise location of the landslide location. To 233 
monitor the soil conditions, the. The LMS employedrelied on an accelerometer sensor to measure the soil 234 
monitor the soil conditions with utmost precision. An advanced sensor was utilized to measure the acceleration 235 
(in 𝑚 𝑠!⁄ )of the soil in three directions: Ax, Ay, and Az. (in m/s²). This provided valuable insights into the soil's 236 
movement and stability. Additionally, a gyroscope sensor was utilizedemployed to capture the angular rotation 237 
of the soil along the Wx, Wy, and Wz axes (in degrees per second, represented by Wx, Wy, and Wz. These 238 
measurements helped in understanding the movement and stability of the soil. The LMS's). This sensor 239 
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enhanced the understanding of the soil's behaviour by accurately detecting its angular movements. Furthermore, 240 
the LMS was equipped with a capacitive soil moisture sensor measures, enabling it to measure the soil's 241 
volumetric moisture content (Mos)of the soil in percentpercentage. The LMS transmitted all these twelve 242 
attributes, including weather parameters, soil g-force, angular rotation, and soil moisture content, to the cloud 243 
every ten minutes. The dataset obtained from the LMS consisted of approximately thirty-nine thousand data 244 
points, covering a wide range of environmental and soil-related attributes. Table 1 is showcasingshowcases the 245 
statistics for the recorded soil movement prediction parameters. For each attribute, the table provides the mean 246 
value, representing the average measurement, along with the standard deviation (Std. Dev.),stdev), indicating 247 
the variability of the data. The minimum and maximum values highlight the range of measurements observed, 248 
offering insights into the extreme values and overall data distribution. 249 

Table 1. Summary statistics of recorded parameters for soil movement prediction dataset. 250 

Parameter Mean 
Std. 

Dev.stdev 
Min Max 

Temperature (°	𝐶) 16.18 10.48 0.00 39.00 
Humidity (%) 66.69 35.46 0.00 99.00 
Rain (in/hr) 0.00 5.60 0.00 15.00 
Pressure (mb) 1040.96 27.96 921.61 1065.41 
Light (lux) 5025.35 10154.75 0.00 54612.00 
Ax (𝑚 𝑠!⁄ ) 0.02 1.23 -28.02 40.25 
Ay (𝑚 𝑠!⁄ ) 0.00 1.37 -100.08 100.08 
Az (𝑚 𝑠!⁄ ) 0.00 2.28 -149.61 315.61 
Wx (° 𝑠⁄ ) 0.00 15.86 -1994.51 1997.24 
Wy (° 𝑠⁄ ) 0.00 15.85 -1998.05 1998.73 
Wz (° 𝑠⁄ ) 0.00 6.95 -932.00 932.00 
Moisture (%) 80.00 20.30 40.00 100.00 

 251 

4. Methodology 252 

4.1. Data Pre-processing 253 

The sensors installed at the landslide locations experienced malfunctions, resulting in multiple missing values 254 
within the collected data. To address this issue, we employed a method to fill these gaps by replacing the missing 255 
values with the average values recorded at the corresponding timestamps during the previous week. By 256 
calculating the average values for parameters such as light intensity, humidity, temperature, and pressure from 257 
the same time periods in the preceding week, we obtained estimates to replace the skewed or missing data points. 258 

4.2. Class Labeling 259 

The dataset included three contained values for acceleration due to gravity in the x, y, and z directions and three 260 
values for and angular rotation in degree per second in thethree directions: x, y, and z directions. The 261 
changechanges in acceleration and angular rotation was derived by calculating the difference betweenwere 262 
calculated by subtracting the current and values from the past values. The , allowing for the assessment of 263 
movement. Four categories were defined to classify the movement data were categorized into four classes (: no 264 
movement, smalllow movement, moderate movement, and largehigh movement) using. These categories were 265 
determined based on standard deviation thresholds calculated for derived from the acceleration and angular 266 
rotation values. Specifically, values within ± 1 standard deviation from the mean of acceleration and angular 267 
rotation were classified were categorized as no movement, ± 2 standard deviations as smalllow movement, ± 3 268 
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standard deviations as moderate movement, and values exceeding ± 3 standard deviations as largehigh 269 
movement. This classification approach enabled the determination of movement intensity based on considered 270 
the variability ofin acceleration and angular rotation changes to determine the change in acceleration and angular 271 
rotation. In our intensity of movement. 272 

During the analysis, we categorized each timestamp was assigned to a movement class based on the class 273 
that corresponds toassociated with the maximumhighest standard deviation ofobserved in any acceleration or 274 
velocityangular rotation element. This means that if anyIf an individual element among the acceleration and 275 
velocity measurements had the highest standard deviation at a particularspecific timestamp, we assigned that 276 
timestamp was assigned to the corresponding movement class associated with thatthe maximum standard 277 
deviation. 278 

Table 2 providespresents the distribution of movement intensity within the dataset. The dataset consists of a 279 
total, which consisted of 38,900 data points. ItThe table shows the percentage distribution of different movement 280 
categories, including: high intensity, medium intensity, moderate, low intensity, and no movement. MostThe 281 
majority of the dataset (97.8%) falls under the "No Movement" category, while the indicating a lack of 282 
significant movement. On the other hand, the high movement category represents only a small fraction (1.1%). 283 
The %) of the dataset. Additionally, the moderate movement category comprises 0.7% of the samples, while the 284 
low movement category accounts for 0.4% of the dataset. This distribution of movement highlights the class 285 
imbalance issue present in the dataset, which needs to be addressedtaken into account when buildingdeveloping 286 
a classification model for predicting soil movement. 287 

Table 2. Class distribution of soil movement data points. 288 

Movement Class Number of Data Points Percentage 

High Movement 423 1.1% 
Moderate Movement 146 0.7% 
Low Movement 268 0.4% 

No Movement 38063 97.8% 

4.3. Sliding Window Packets 289 

The sliding window packets technique involves creatingdividing a given dataset into fixed-length 290 
subsequences or packets from a given dataset and their corresponding labels. The To achieve this, a sequence 291 
length parameter determinesis used to determine the length of each subsequence. 292 
To generate these subsequences, the  The sliding window approach is applied. The slidingthen employed, where 293 
a window starts at the beginning of the dataset and moves acrossthrough the data with a step size of 1. At each 294 
position of the window, aA subsequence of the specified length is extracted from the dataset, and the at each 295 
window position. The label for prediction is taken from the next position after the window. This means that the 296 
sliding window packets technique is typically used for predicting future values or events based on the preceding 297 
subsequence. 298 

The sliding window packets technique aims to predict future values or events based on preceding 299 
subsequences. For instance, if the sequence length is set to five, the sliding window will select five consecutive 300 
values from the dataset as a subsequence at each step. The label for prediction will be the value at the 6thsixth 301 
position. This process continues until the end of the dataset is reached, resulting in multiple subsequences and 302 
their correspondingrespective labels. 303 

After creating Once the packets are created, they are flattened to form a single feature vector. For 304 
exampleinstance, if the sequence length is five and the dataset has twelve features, each packet will contain sixty 305 
featureselements (5x12). This transformation allows the packets to be treated as individual samples with 306 
multiple features suitable for ML models. 307 
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 The primary objectivepurpose of creating these packets is to address sequence-based prediction tasks, 308 

involving sequences where the input data's order and dependencies of the input data play aare crucial role. The 309 
model can effectively capture and learn patterns and relationships within the sequential data by utilizing the 310 
sliding window packets. The flattened packets generated throughusing the sliding window technique were used 311 
asare inputs in oversampling techniques. 312 

4.4. Oversampling 313 

In our analysis, we encountered a significant class imbalance issue in the labeled data. The "No Movement" 314 
class, which represents the majority of the data, had a large number of data points. On theAll other hand, 315 
theclasses, including "High Movement" class, which represents the," "Moderate Movement," and "Low 316 
Movement," represent minority class, hadclasses, each constituting only a minimal representation with just 1%, 317 
0.7%, and 0.4% of the total data, respectively. This class imbalance posed a challenge for building an effective 318 
classification model, as the skewed data distribution made it difficult to classify the minority class accurately. 319 

We employed variousTo overcome the class imbalance challenge, we implemented several oversampling 320 
techniques to address this issue, focusing on the, with a particular focus on SMOTE and its extensions (Chawla 321 
et al., 2002; Douzas et al., 2018; Tang et al., 2008; Han et al., 2005; He et al., 2008). SMOTE creates , which 322 
stands for Synthetic Minority Oversampling Technique, addresses the imbalance by generating synthetic data 323 
points for the minority class to balance its representation (Chawla et al., 2002). By generating new data points 324 
usingutilizing the characteristics of existing minority class samples, we increased the number of instances in 325 
from the "High Movement" class. Additionallyminority classes, we created new data points, thereby increasing 326 
the representation of the "High Movement," "Moderate Movement," and "Low Movement" classes. In addition 327 
to the standard SMOTE, we also explored other variations of SMOTE, including KMeanssuch as K-Means 328 
SMOTE (Douzas et al., 2018), SVM SMOTE (Tang et al., 2008), and Borderline SMOTE (Han et al., 2005) to 329 
further improveenhance the balance of the class distribution. 330 

Furthermore, we utilized the ADASYN, an extension of SMOTE that explicitly addresses the classification 331 
boundary of the minority class (He et al., 2008). ADASYN assigns higher weights to the minority examples that 332 
are more challenging to classify, leading to the generation of additional artificial data points for these instances. 333 
By incorporating ADASYN into our oversampling strategy, we enhanced the balance of the class distribution 334 
further and improved the classification accuracy for all classes. 335 

Fig.Figure 1. illustrates the application of the K-Mean SMOTE technique for addressing the class imbalance. 336 
The figureFig. 1 depicts a scatter plot where the red crosses represent the minority class samples, while the black 337 
dots represent the majority class samples. The green crosses indicate the newly generated synthetic samples by 338 
the K-Mean SMOTE algorithm. The dashed line represents the decision boundary separating the two classes. 339 
K-Mean SMOTE operates by following two simple steps iteratively [8].(Douzas et al., 2018). Firstly, it assigns 340 
each observation to the nearest cluster centroid among the k available. Secondly, it updates the position of the 341 
centroids so that they are positioned at the centercentre between the assigned observations. The 342 
informationimbalance ratio (IR) shown in Fig. 1 helps K-Means SMOTE determine the appropriate amount of 343 
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oversampling for the minority class, ensuring a balanced representation of the classes in synthetic samples. The 344 
value of kThe parameter 'k' in all SMOTE techniques was selected 4varied from 2 to 5 in this experiment to 345 
observe how different numbers of nearest neighbors impact the diversity and quality of synthetic samples 346 
created, thereby affecting the performance of the model on imbalanced data. 347 

Figure 1. K-Means SMOTE effectively addresses within-class imbalance by oversampling safe areas (Douzas et al., 2018). 
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Figure 1: K-Means SMOTE effectively addresses within-class imbalance by oversampling safe areas (Douzas et 
al., 2018). 

4.5. Machine Learning Models 348 

Various models were employed to classify the soil movement. The specific models will be discussed in the 349 
following subsection. To evaluate the accuracy of these models, the dataset was divided into two groups: training 350 
data (70%) and testing data (30%). Random sampling was used to select 70% of the data points for training the 351 
classification models mentioned below, while the remaining 30% of the dataset was reserved for model 352 
evaluation. 353 

4.5.1. AdaBoost  354 

AdaBoost, also known as Adaptive Boosting, is a probabilistic classification meta- enhances ML model 355 
designed to enhance the performance of ML models (Wu et al., 2020). It achieves this by combining the results 356 
offrom multiple weak learners, which are learning techniques with slightly better than random guessing (Wu et 357 
al., 2020). capabilities. Through an adaptive process, AdaBoost adjusts subsequent weak models to focus on the 358 
cases that were misclassified by earlier models. This adaptive nature helps improve the overall accuracy of the 359 
model and reduces the risk of overfitting in certain situations. Although individual weak learners may not 360 
perform well on their own, their collective strength allows the final model to converge as a powerful learner 361 
capable of making more accurate predictions. 362 
ForIn the AdaBoost model, the number of estimators determinestrees sets the maximum number of weak models 363 
to be combined. Increasing the number of estimators can improve the model's weak models, impacting 364 
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performance but may also increase the risk ofand overfitting. The learning rate controls the influences each 365 
model's contribution of each weak model, with a higher learning rate giving more weight to each model.. The 366 
maximum depth parameter limits the depth of individualprevents weak models, preventing them from becoming 367 
too complex and overfitting the data.. Table 3 shows thedetails the AdaBoost model's parameter range of 368 
hyperparameters for the AdaBoost model. 369 

4.5.2. XGBoost 370 

XGBoost is an , a gradient-boosting ensemble ML model based on gradient boosting and uses with decision 371 
trees (Chen and Guestrin, 2016). While deep neural networks excel), excels in predicting unstructured data such 372 
as images and text, decision tree-based methods are considered superior for dealing with structured data. 373 
Decision trees are particularly effective when the data has a well-defined structure or specific features, making 374 
them a preferred choice for certain prediction problems involving structured information. 375 
In the XGBoost model, the  handling. The number of estimators trees in XGBoost determines the number of 376 
boosting rounds or iterations. Increasing the number of estimators can improve the model's , impacting 377 
performance but also increases with a computational complexity trade-off. The learning rate controls the step 378 
size during the boosting process and affects the model's influences convergence speed and generalization ability. 379 
The, and the maximum depth parameter restricts the depth of the decision trees in the ensemble, 380 
preventingprevents overfitting and promotingfor enhanced interpretability. See Table 3 shows the range of 381 
hyperparameters for the XGBoost modelmodel's parameter range. 382 

4.5.3. Light GBM 383 

Light GBM is, a gradient-boosting framework that utilizes a decision-branching technique for various ML 384 
for tasks such aslike ranking and classification (Ke et al., 2017). Unlike other boosting methods that divide the 385 
tree lengthwise or layerwise, Light GBM employs a ), stands out with its leaf-wise approach, where the tree is 386 
divided leaf by leaf, selecting the best split at each step. This leaf-wise strategy reducesreducing loss and 387 
improves accuracy compared to traditional boosting techniques. Additionally, Light GBM is known for its speed 388 
and efficiency, earning its name "Light" due to its fast execution. 389 
In the Light GBM model, the number of estimators determines the number of, improving accuracy, and ensuring 390 
efficient learning.  The number of trees in the model influences boosting rounds, with a higher number 391 
potentially improving the model's for potential performance enhancement. The learning rate controls the step 392 
size during boosting and affects the trade-off betweenparameter balances convergence speed and model 393 
accuracy. The, while the maximum depth parameter limits the depth of the decision trees, controlling the model's 394 
controls complexity and the risk ofprevents overfitting. See Table 3 shows thefor the Light GBM model's 395 
parameter range of hyperparameters for the Light GBM model. 396 

4.5.4. CatBoost 397 

CatBoost, short for Category Boosting, is aan ML model developed by Yandex and recently made 398 
availablereleased as an open-source tool (Prokhorenkova et al., 2018). It is designed to be easily integrated with 399 
other popular frameworks like TensorFlow and Core ML, expanding its compatibility across different platforms. 400 
CatBoost is known for its versatility and ability to handle diverse datasets, making it suitable for solving various 401 
industry problems. In addition, it boasts industry-leading performance, delivering high-quality results and 402 
predictive accuracy. 403 
In the CatBoost model, the choice of the loss function can significantly impact the model'simpacts performance. 404 
Different lossLoss functions, such as like log, entropy, or hinge, handle various are tailored for specific 405 
classification problems and may yield different, influencing results. Table 3 showsoutlines the range of 406 
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hyperparametersparameters for the CatBoost model for fine-tuning and optimizing CatBoost's performance on 407 
a given dataset. 408 

4.5.5. Random Forest 409 

The regression or classification model was constructed using the RF technique, an ensemble learning method 410 
combining predictions from multiple decision trees (Breiman, 2001). This approach offers several advantages. 411 
It is commonly employed in scenarios involving various regression or classification tasks, as it does not require 412 
the assumption of variable independence in the data distribution. Using a combination of categorical and 413 
numerical variables, RF can account), constructs regression or classification models. Known for handling 414 
relationships and non-linearities without the need for dummy variables. The RF model has been widely used 415 
across requiring variable independence assumptions, RF excels in various industries and has demonstrated 416 
exceptional performance. It has also shown promise in, including landslide prediction and site recognition 417 
applications.  418 
The RF technique utilizes several. Optimizing RF performance involves adjusting parameters to optimize its 419 
performance. The first parameter islike the number of estimators, which determines the number of decision trees 420 
in the ensemble. The second parameter is the criteria for(DTs), splitting nodescriteria (Gini andor Entropy) in 421 
the decision trees. Gini measures node impurity based on the probability of misclassifying a randomly chosen 422 
element, while Entropy measures information gain at each split. The third parameter is the ), and maximum tree 423 
depth of the decision trees. It limits the number of levels a tree can grow., controlling robustness, accuracy, and 424 
complexity. Table 3 shows the range of hyperparametersdetails parameter ranges for the RF model.  425 

4.5.6. Multilayer Perceptron 426 

The MLP is, a popular neural network architecture for classification (introduced by Rosenblatt, in 1961). It 427 
consists of , features interconnected layers, including an: input layer, hidden layers, and an output 428 
layer.(Rosenblatt et al., 1961). Neurons in the MLP compute acalculate weighted sum of inputs and pass itsums, 429 
passing through an activation functionfunctions to learn complexcapture intricate relationships. Hidden layers 430 
extract informative features from the input data. Dropout layers are used to prevent overfitting by randomly 431 
deactivating neurons randomly during training. This regularization technique improves the MLP's , enhancing 432 
generalization ability and reduces reliance on specific patterns. The MLP is a versatile and effective approach. 433 
Versatile for solving classification problems. 434 
In, the MLP model, theMLP's look-back period determines the number of previous time steps considered for 435 
prediction, affecting the model's ability to capture temporal dependencies. The number of influences temporal 436 
dependency capture, while the number of layers and nodes per layer control the network'sgoverns complexity 437 
and capacity to learn complex representations from the data.. Table 3 shows the range of 438 
hyperparametersoutlines parameter ranges for the MLP model.  439 

4.5.7. LSTM 440 

The LSTM is a recurrent neural network architecture designed to analyze that captures long-term 441 
dependencies in sequential data (Hochreiter and Schmidhuber, 1997). It overcomes the vanishing gradient 442 
problem andIt excels at capturing long-term dependencies in sequences. LSTM networks use memory cells and 443 
gating mechanisms to selectively retain or forget information over time, allowing them to process and predict 444 
sequences of varying lengths. They have been successfully applied in various domainsapplications, including 445 
natural language processing, speech recognition, and time series forecasting. 446 
 In our LSTM model, we conducted experiments to analyze the effects of various parameters on its performance. 447 
We investigated the impact of differentexplored different parameters: LSTM unit sizes (32, 64, 128, and 256) 448 
to understand how the model's complexity influences its ability to capture patterns in the data. Additionally, we 449 
explored different ), activation functions (sigmoid, tanh, and ReLU) to assess their impact on the model's 450 
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capability to learn complex relationships within the dataset. The ), and a look-back period ranging from 3 to 10. 451 
We chose the categorical cross-entropy loss function was chosen for its suitability in for multi-class 452 
classification tasks. Furthermore, we varied the look-back period from 3 to 10 to evaluate how it affects the 453 
model's ability to capture temporal dependencies.. Table 3 showsdetails the parameter range of hyperparameters 454 
for the LSTM model. 455 

4.5.8. Dynamic Ensembling 456 

Dynamic ensembling is a powerfulhighly effective technique in ML that leverages takes advantage of the 457 
adaptability and continuousongoing improvement of predictive models (Ko et al., 2008). Dynamic ensembling 458 
createsIt involves creating a flexibleversatile and continuously evolving ensemble by combiningharnessing the 459 
strengths of multiple models, such asincluding RF, CatBoost, XGBoost, Light GBM, and AdaBoost. 460 
Traditionally, ensembling methods like bagging and boosting have focused on fixed ensembles. However, 461 
dynamic ensembling goes beyond this by introducing the ability to add or remove models based on their 462 
performance dynamically. In the case of dynamic ensembling with the models, as mentioned earlier, the 463 
monitoring criterion used is accuracy. Accuracy as the monitoring criterion ensures that the dynamic ensemble 464 
maintains a high level of accuracy in its predictions. If a model falls below a predefined accuracy threshold, it 465 
is considered underperforming and may be replaced to enhance the ensemble's overall performance. 466 

Dynamic ensembling offers numerous advantages, including handling concept drift, where the underlying 467 
data distribution changes over time. By incorporating new models that capture updated patterns and relationships 468 
in the data, the dynamic ensemble can effectively adapt to concept drift and maintain accurate predictions. 469 

The dynamic ensembling model utilized base models such as RF, CatBoost, XGBoost, Light GBM, and 470 
AdaBoost. Each base model was trained individually with the same default parameter settings as their standalone 471 
counterparts. The parameter valuesrange of parameters for eachthe dynamic ensemble model wereis mentioned 472 
in Table 3. 473 

Table 3. The range of hyperparametersparameters varied in the models. 474 

Model HyperparameterParameter Range of HyperparameterParameter 

 
AdaBoost 

Number of EstimatorsTrees  [15, 20010, 100] in steps of 105 
Learning Rate  [0.1, 2] in steps of 0.1 
Maximum Depth [3, 33] in steps of 3 

XGBoost 

Number of EstimatorsTrees  [50, 110010, 100] in steps of 505 
Learning Rate  [0.05, 0.55] in steps of 0.05 
Maximum Depth  [3, 335, 50] in steps of 35 

Light GBM  

Number of EstimatorsTrees  [20, 40010, 100] in steps of 205 
Learning Rate [0.05, 0.55] in steps of 0.05 
MaxMaximum Depth [3, 335, 50] in steps of 35 

 
CatBoost 

Loss Function  Log, Entropy, Hinge 
Learning Rate [0.1, 2] in steps of 0.1 
MaxMaximum Depth  [3, 33] in steps of 3 

 
RF 

Number of EstimatorsTrees [110, 100] in steps of 5 
Criteria  Gini, Entropy 
Maximum Depth [1, 1005, 50] in steps of 5 

 
MLP 

Look-back Period   3 to 10 
Layers  [1, 3]  



14  

 
Nodes Per Layer [50, 250] in steps of 50 

 Learning Rate [0.1, 0.9] in step of 0.1 

LSTM 

Look-back Period 3 to 10 
LSTM Units 32, 64, 128, 256 
Activation Function Sigmoid, tanh, ReLU 

 Learning Rate [0.1, 0.9] in step of 0.1 

5. Model Execution, Minimization, and Handling Class Imbalance 475 

A rigorous process was followed to develop an effective model for predicting the intensity of soil movement. 476 
The model was trained using grid search techniques, which systematically explored different combinations of 477 
hyperparameters to optimize its performance. The training phase utilized the labelled training data, split into 478 
The dataset was partitioned into a 70:30 ratio, with 70% allocated for training and 30% for testing purposes. 479 
One challenge encountered during the training process was . To tackle the class imbalance issue. The number 480 
of samples available for the minority class was insufficient compared to the majority class. To address this,  in 481 
the training data, oversampling techniques were applied exclusively to the training set, ensuring a balanced 482 
representation of all three classes. The oversampling methods were not extended to the testing data, preserving 483 
its original distribution. In this study, we developed two methods, referred to as method 5 Training Datasets (5-484 
TD) and method 5-fold cross-validation (5-CV). Method 5-TD was employed. By generating synthetic data 485 
points for the minority class, we were able to balance the dataset and mitigate the bias toward the majority class. 486 
Once the parameter variation analysis across different datasets. On the other hand, method 5-CV was utilized 487 
for conducting 5-fold cross-validation to analyze the performance of the ML models. 488 

5.1. Method 5-TD 489 

For method 5-TD, the training dataset was balanced, multiple ML models were trained using the training data. 490 
The primary objective was to optimize the models' parameters for improved performance. Each model was 491 
subjected to the grid search technique, systematically exploringsplit into five training datasets, each utilized for 492 
parameter variation analysis. This involved training and optimizing the ML model on each dataset independently 493 
using the grid search method. Since each dataset possessed different parameter combinations to identify the 494 
optimal settings. After trainingparameters, we calculated the models withmean and stdev of the ML-optimized 495 
parameters, they were tested on separate test dataparameter values across all datasets to assess their predictive 496 
capability. The evaluation processparameter variability. This enabled us to observe parameter variations across 497 
the ML models, providing insights into the sensitivity of the models to different dataset characteristics and 498 
parameter configurations. A lower stdev implied that the model maintained consistency across each dataset and 499 
demonstrated robust generalization capabilities. Conversely, a higher stdev suggested that the model 500 
encountered difficulties maintaining consistency across datasets, potentially hindering its ability to learn general 501 
patterns effectively. The evaluation primarily focused on measuring accuracyF1 score metrics to determine the 502 
models' effectiveness in predictinghow effectively the models predicted the intensity of soil movements in each 503 
of the 5 datasets. 504 

5.2. Method 5-CV 505 

For method 5-CV, a suite of ML models underwent training using a 5-fold cross-validation approach (Kumar et 506 
al., 2023). In the 5-CV method, the training data was split into 5 datasets, where each dataset was alternately 507 
used for validation while the others were used for training. The models were optimized by employing grid search 508 
methodology and optimized based on performance on the 5 validation sets, and a single set of best-performing 509 
parameters was selected for each model. Subsequently, the models with the best parameters found during 510 
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training were tested on the independent testing data, and their performance metrics were reported as indicative 511 
of their predictive capabilities. The evaluation primarily focused on F1 score metrics to determine how 512 
effectively the models predicted the intensity of soil movement across the 5 validation sets and the test set. 513 

6. Results 514 

6.1. Parameter Analysis Result 515 

Upon scrutinizing the parameter analysis presented in Table 3 showcases the 4 from method 5-TD, a discernible 516 
trend emerged: models trained with oversampling techniques exhibit notably smaller stdevs than their 517 
counterparts trained without oversampling. For instance, when examining the AdaBoost model, we observe that 518 
the stdev of the number of trees parameter was 0 for the oversampling case. In contrast, it stood at 16.43 for the 519 
dataset without oversampling. This phenomenon underscores the stabilizing effect of oversampling on 520 
parameter estimates, mitigating the variability that may arise from imbalanced datasets. 521 

Similarly, in the case of the RF model, the stdev of the number of trees parameter was 0 with oversampling, 522 
indicating consistent parameter values across folds. Conversely, for the dataset without oversampling, the stdev 523 
increased to 21.21, suggesting greater variability in parameter estimates. This trend persisted across various 524 
models and parameters, highlighting the robustness imparted by oversampling techniques in stabilizing model 525 
performance. 526 

Overall, these examples underscore the importance of oversampling in reducing parameter variability and 527 
ensuring consistent model behaviour, particularly in scenarios involving imbalanced datasets. 528 

Table 4. The result of parameter variation analysis across five datasets from method 5-TD. 529 

Model Parameter With Oversampling Without Oversampling   
Mean stdev Mean stdev 

AdaBoost 
Number of Trees 80 0 62 16.43 
Learning Rate 0.66 0.22 0.9 0 

XGBoost 
Number of Trees 50 0 50 0 
Maximum Depth 20 0 10 0 
Learning Rate 0.5 0 0.68 0.16 

Light GBM 
Number of Trees 50 0 50 0 
Maximum Depth 20 0 20 0 
Learning Rate 0.5 0 0.6 0.12 

CatBoost 
Number of Trees 50 0 50 0 
Maximum Depth 20 0 20 0 
Learning Rate 0.8 0 0.66 0.13 

RF 
Number of Trees 80 0 50 21.21 
Maximum Depth 20 0 20 0 

MLP 

Look-back Period 2.8 0.44 3.6 1.34 
Layers 2 0 2 0 
Nodes in First Layer  130 67.08 130 67.08 
Nodes in Second Layer  200 0 60 54.77 
Learning Rate 0.78 0.16 0.64 0.28 

LSTM Look-back Period 4.6 0.89 4 1.41 
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Layers 2 0 2 0 
Nodes in First Layer  90 22.36 70 27.39 
Nodes in Second Layer  160 54.77 100 61.24 
Learning Rate 0.84 0.08 0.86 0.05 

6.2. Optimized Parameters 530 

In method 5-CV, we optimized hyperparameter values determined through the parameters separately for the ML 531 
models using a 5-fold cross-validation process on the full training dataset. In analyzing various SMOTE 532 
techniques, the parameter 'k', representing the count of nearest neighbors for synthesizing new samples, was 533 
consistently optimized at a value of four. Table 5 presents each model's optimized parameter values obtained 534 
through the grid search method.in 5-CV on the training dataset. These hyperparametersparameters were 535 
carefully fine-tuned to findensure the best fit for the given data. In the XGBoostcase of AdaBoost, the optimized 536 
values included 800 for the number of estimators, 0.3 for the 80 trees and a learning rate, and 9 for the  of 0.6. 537 
The optimized values for the XGBoost model consisted of 50 trees, a learning rate of 0.3, and a maximum depth 538 
of 10. These parameter settings were selected after careful evaluation determined to enhance the model's ability 539 
to generalize and capture complex patterns in the data. In the Light GBM model, the optimized values consisted 540 
of 220 for the number of estimators, 0.25 for the number of hidden layers, and 12 for the maximum depth. These 541 
settings were determined to improve the model's performance in terms of performance in terms of both speed 542 
and accuracy.  543 

Similarly, the AdaBoostLight GBM model had its hyperparametersunderwent parameter optimization, 544 
selecting 50 trees, a learning rate of 0.5, and a maximum depth of 20. Next, the CatBoost model was also 545 
optimized, resulting in the leading to entropy selection of 25 for the number of estimators, 1.7 for the learning 546 
rate, and 20 for the maximum depth. These parameter values were chosen to enhance the model's adaptability 547 
and accuracy in classification tasks. The CatBoost model also underwent optimization, resulting in the selection 548 
of entropy as the loss function, 0.9 as thea learning rate of 0.8, 50 trees, and 20 as thea maximum depth. These 549 
settings of 20. In the RF model, the optimized values were chosen to maximize80 for the model's performance 550 
in terms of accuracynumber of trees and robustness. Similarly20 for the maximum depth, and the evaluation 551 
criteria were set to "Gini." Likewise, the MLP model had its hyperparameters optimized its parameters with a 552 
look-back period of 3, 2 layers, and 200 nodes per layer. These settings were selected to enhance the model's 553 
ability to capture complex relationships and improve classification accuracy. Similarly, LSTM has 128 unitsthe 554 
LSTM model consists of two layers with 100 and tanh200 nodes in the first and second layers and utilizes a 555 
ReLU activation function. In the RF model, the optimized values were 45 for the number of estimators, 25 for 556 
the maximum depth, and the evaluation criteria were set to "entropy." These values were chosen to maximize 557 
the model's accuracy and predictive power performance. Lastly, the dynamic ensemblingensemble model in this 558 
study incorporated the optimized RF, CatBoost, XGBoost, Light GBM, and AdaBoost models to improve the 559 
accuracy of landslide analysis predictions. By leveraging the strengths of these individually optimized models, 560 
as mentioned above, the dynamic ensembling model aimed to improve the accuracy and reliability of landslide 561 
analysis predictions. 562 

Table 45. The best value of the hyperparametersparameters was calibrated from the training data using method 5-CV. 563 

Model HyperparameterParameter Best Value of HyperparameterParameter 

 
AdaBoost 

Number of EstimatorsTrees 2580 
Learning Rate 1.70.6 
Maximum Depth 20 

XGBoost 
Number of EstimatorsTrees  80050 
Learning Rate  0.3 
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Maximum Depth  910 

Light GBM  

Number of EstimatorsTrees  22050 
Learning Rate 0.255 
MaxMaximum Depth 1220 

 
CatBoost 

Loss Function  Entropy 
Learning Rate 0.98 
Number of Trees 50 
MaxMaximum Depth  20 

 
RF 

Number of EstimatorsTrees 45 80 
Criteria  EntropyGini 
Maximum Depth 2520 

 
MLP 

Look-back Period  3 
Layers  2 
Nodes Per Layer 200 in both layers 
Learning Rate 0.6 

LSTM 

Look-back Period 5 
LSTM Units 128100 in first and 200 in second layer 
Activation Function tanhReLU 
Learning Rate 0.9 

 564 

6.2.1. Train-Test Results 565 

Table 56 presents the training results of different classification models combined with evaluated using 5-fold 566 
cross-validation on the training dataset and various oversampling techniques for landslide prediction. , utilizing 567 
method 5-CV. In Table 6, C0, C1, C2, and C3 represent no movement, low movement, moderate movement, 568 
and high movement classes’ accuracies, respectively. These results provide valuable insights into the 569 
performance of each model when trained on the training dataset with and without oversampling. The 570 
RFXGBoost model with K-Mean SMOTE emergesemerged as the best model in training, achieving outstanding 571 
accuracy, precision, recall, and F1-score of 100% and 1, respectively.  scores of 0.999, 0.999, 0.999, and 0.999, 572 
respectively. The dynamic ensemble model with K-Mean SMOTE and Borderline SMOTE techniques also 573 
performed similarly with 0.998 F1 scores. It demonstrates remarkable predictive capability by achieving perfect 574 
accuracy in both oversampling and non-oversampling scenarios. When the XGBoost model was trained without 575 
oversampling, its accuracy, precision, recall, and F1 score were notably lower, with values of 0.999, 0.999, 576 
0.971, and 0.985, respectively. 577 

Table 6 showcases7 presents the test results of various classification models combined with different 578 
oversampling techniques for landslide prediction. The dynamic ensemble model with  (here models were trained 579 
using the method 5-CV). In Table 7, C0, C1, C2, and C3 represent no movement, low movement, moderate 580 
movement, and high movement classes’ accuracies, respectively. Among them, the dynamic ensemble model 581 
utilizing the K-Mean SMOTE technique exhibitsdemonstrated exceptional performance in accurately predicting 582 
landslides on unseen data. It achieves impressive accuracy, precision, and recall raterates of 99.68% each0.995, 583 
0.995, and 0.995, respectively, along with an F1- score of 0.9968995. These outstanding results reaffirmconfirm 584 
the effectiveness of the dynamic ensemble approach in combinationwhen combined with K-Mean SMOTE for 585 
accurate landslidesoil movement prediction. The best-performed Similarly, the Borderline SMOTE technique 586 
also showed similar performance with accuracy, precision, recall, and an F1 score of 0.995 for all. When the 587 
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model is showntested without oversampling, its accuracy, precision, recall, and F1 score are notably lower, with 588 
values of 0.981, 0.646, 0.397, and 0.462, respectively. The best-performing model is highlighted in bold in Table 589 
6 and Table 7. 590 

Furthermore, the RF model with K-Mean SMOTE stands as the second-best model in the test phase, 591 
delivering a high accuracy, precision, and recall rate of 99.64% each and an F1-score of 0.9964. This highlights 592 
the reliability and robustness of the RF model in landslide prediction tasks. 593 

Moreover, it is noteworthy that K-Means SMOTE consistently outperformed other oversampling techniques 594 
across all models during the test performance evaluations, establishing itself as the optimal technique. Notably, 595 
it is crucial to highlight the impact of oversampling on the performance of the dynamic ensemble model. This 596 
underscores the discernible effectiveness of K-Means SMOTE in generating oversampling for the soil 597 
movement dataset. The success of K-Means SMOTE can be attributed to its ability to identify clusters within 598 
the minority class and select similar features for oversampling. The IR employed by K-Means SMOTE aids in 599 
determining the appropriate degree of oversampling for the minority class, ensuring a balanced representation 600 
of classes in synthetic samples. 601 

Moreover, the absence of oversampling techniques negatively impacted the models' performance in both 602 
training and testing. Without oversampling, the models exhibited lower accuracy, precision, recall, and F1 scores 603 
during training and testing, emphasizing the challenges posed by class imbalance. In the absence of balanced 604 
representation through oversampling, the models struggled to effectively learn and generalize from the 605 
imbalanced dataset. Consequently, this underscores the pivotal role of oversampling in mitigating class 606 
imbalance issues, leading to substantial enhancements in predictive accuracy and overall model robustness 607 
during training and testing evaluations. 608 

Models trained with oversampling techniques consistently demonstrate comparable performance across both 609 
training and testing datasets, indicating a lack of overfitting. Conversely, models trained without oversampling, 610 
notably RF, MLP, LSTM, and Dynamic Ensemble, exhibit signs of overfitting, as evidenced by significantly 611 
higher performance metrics on the training dataset relative to the testing dataset. This observation underscores 612 
the effectiveness of oversampling techniques in mitigating overfitting by enhancing the model's ability to 613 
generalize to unseen data. 614 

Comparing the dynamic ensemble and RF modelsmodel with the other classification models and 615 
oversampling techniques, it becomes evident that the dynamic ensemble model with K-Mean SMOTE and the 616 
RF model with K-Mean SMOTE consistently outperformoutperformed the rest, showcasinghighlighting their 617 
effectiveness in accurate landslide predictionaccurately predicting landslides. 618 

These findings underscore the significanceimportance of carefully selecting appropriate ML models and 619 
employing suitable oversampling techniques to address the class imbalance challenge in landslidesoil movement 620 
prediction. They provide valuable insights into the performance and suitability of these models and techniques 621 
for enhancing landslide prediction accuracy, therebyultimately enabling proactive measures to mitigate 622 
landslide risks. 623 

Table 5. The results of the ML models from training dataset. 624 

In Fig. 2, we juxtaposed the performance metrics obtained using K-Means SMOTE against those obtained 625 
without oversampling across various machine learning models. In Fig. 2, the blue bars represent the F1 score 626 
achieved with K-Means SMOTE (oversampling), while the orange bars represent the F1 score without 627 
oversampling. Notably, when comparing the performance in the test dataset using the F1 score metric, the 628 
oversampling dataset generated with K-Means SMOTE consistently yielded superior results compared to the 629 
without oversampling approach. For instance, in the case of the AdaBoost model, K-Means SMOTE resulted in 630 
an F1 score of 0.412 for the without oversampling technique, whereas it achieved an F1 score of 0.445 for K-631 
Means SMOTE. Similarly, in the XGBoost model, the F1 score improved from 0.447 without oversampling to 632 
0.842 with K-Means SMOTE. This trend persisted across various other models such as Light GBM, CatBoost, 633 
RF, MLP, LSTM, and Dynamic Ensemble, where K-Means SMOTE consistently demonstrated superior 634 
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performance in terms of F1 score compared to without oversampling. These results underscore the effectiveness 635 
of K-Means SMOTE in enhancing the predictive performance of ML models for soil movement prediction tasks. 636 

Figure 3 illustrates the confusion matrix depicting the performance of the Dynamic Ensemble model on both 637 
the training and testing datasets, utilizing the K-Mean SMOTE oversampling technique. The confusion matrix 638 
provides a comprehensive overview of the model's classification accuracy by presenting the true and predicted 639 
labels across different classes. The Dynamic Ensemble model demonstrates robust performance in the training 640 
dataset, as evidenced by the high counts along the diagonal, indicating a substantial number of correct 641 
predictions across all classes. Similarly, in the testing dataset, the model maintains its efficacy, with the majority 642 
of samples correctly classified across various classes.  643 

Table 6. Results of ML models obtained from the training dataset using 5-fold cross-validation in method 5-CV. 644 

Model Oversampling 
Technique Accuracy (in %) Precision 

(in %) 
Recall 
(in %) 

F1Score 
F1 Score 

  C0 C1 C2 C3 Overall    

AdaBoost 

SMOTE 71.450.
942 

71.410.
562 

71.450.
640 

0.71428
17 0.747 0.748 0.747 0.747 

K-Means 
SMOTE 

71.130.
948 

71.070.
760 

71.130.
675 

0.71058
55 0.807 0.809 0.807 0.806 

Borderline 
SMOTE 

77.540.
919 

77.480.
565 

77.540.
667 

0.77488
15 0.740 0.741 0.740 0.740 

ADASYN 72.970.
934 

72.910.
552 

72.970.
649 

0.72767
98 0.740 0.741 0.740 0.740 

Without 
Oversampling 

97.870.
995 

97.730.
250 

97.870.
243 

0.97793
41 0.980 0.575 0.465 0.506 

CatBoostX
GBoost  

SMOTE 99.850.
995 

99.850.
999 

99.850.
999 

0.99859
97 0.998 0.998 0.998 0.998 

K-Means 
SMOTE 

99.860.
997 

99.860.
999 

99.860.
999 

0.99869
98 0.999 0.999 0.999 0.999 

Borderline 
SMOTE 

99.780.
996 

99.780.
999 

99.780.
999 

0.99789
98 0.998 0.998 0.998 0.998 

ADASYN 99.850.
994 

99.850.
999 

99.850.
999 

0.99859
97 0.998 0.998 0.998 0.998 

Without 
Oversampling 

99.721.
000 

99.720.
995 

99.720.
953 

0.99719
06 0.999 0.999 0.971 0.985 

Light 
GBMXGB
oost 

SMOTE 99.970.
984 

99.970.
994 

99.970.
999 

0.99979
88 0.991 0.991 0.991 0.991 

K-Means 
SMOTE 

99.980.
991 

99.980.
998 

99.980.
998 

0.99989
96 0.996 0.996 0.996 0.996 

Borderline 
SMOTE 

99.980.
985 

99.980.
999 

99.980.
999 

0.99989
95 0.995 0.995 0.995 0.995 

ADASYN 99.970.
983 

99.970.
994 

99.970.
998 

0.99979
87 0.991 0.991 0.991 0.991 

Without 
Oversampling 

99.991.
000 

99.991.
000 

99.991.
000 

0.99999
76 0.994 0.999 0.999 0.996 

CatBoost 
Light 
GBM 

SMOTE 99.870.
990 

99.870.
999 

99.870.
999 

0.99879
97 0.997 0.997 0.997 0.997 

K-Means 
SMOTE 

99.910.
991 

99.910.
999 

99.910.
999 

0.99919
97 0.997 0.997 0.997 0.997 

Borderline 
SMOTE 

99.970.
992 

99.970.
999 

99.970.
999 

0.99979
97 0.997 0.997 0.997 0.997 

Inserted Cells

Inserted Cells

Inserted Cells

Inserted Cells
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ADASYN 99.880.

991 
99.880.

999 
99.880.

999 
0.99889

97 0.996 0.996 0.996 0.996 

Without 
Oversampling 

99.870.
999 

99.870.
924 

99.870.
916 

0.99877
35 0.997 0.997 0.903 0.946 

RF 

SMOTE 1000.92
0 

1000.89
2 

1000.95
1 10.905 0.921 0.923 0.921 0.922 

K-Means 
SMOTE 

1000.92
0 

1000.92
1 

1000.95
9 10.902 0.925 0.928 0.925 0.926 

Borderline 
SMOTE 

1000.94
8 

1000.96
9 

1000.98
8 10.959 0.967 0.967 0.967 0.967 

ADASYN 1000.92
1 

1000.89
8 

1000.94
5 10.899 0.915 0.917 0.915 0.915 

Without 
Oversampling 

1001.00
0 

1000.70
1 

1000.68
2 10.537 0.992 0.995 0.742 0.841 

MLP 

SMOTE 90.320.
959 

90.490.
976 

90.320.
997 

0.90289
52 0.961 0.961 0.961 0.961 

K-Means 
SMOTE 

60.160.
940 

73.240.
996 

60.160.
984 

0.57859
57 0.974 0.974 0.974 0.974 

Borderline 
SMOTE 

95.660.
968 

95.720.
974 

95.660.
989 

0.95669
13 0.964 0.964 0.964 0.964 

ADASYN 88.540.
929 

88.810.
975 

88.540.
981 

0.88549
84 0.961 0.961 0.961 0.961 

Without 
Oversampling 

97.810.
997 

96.430.
016 

97.810.
000 

0.96940
56 0.980 0.693 0.336 0.381 

LSTM 

SMOTE 68.730.
882 

68.810.
841 

68.730.
881 

0.67998
96 0.875 0.884 0.875 0.877 

K-Means 
SMOTE 

79.510.
980 

79.890.
996 

79.510.
992 

0.79599
68 0.984 0.984 0.984 0.984 

Borderline 
SMOTE 

86.400.
946 

86.660.
954 

86.400.
997 

0.86279
65 0.966 0.966 0.966 0.966 

ADASYN 77.470.
955 

77.720.
979 

77.470.
997 

0.77369
55 0.971 0.971 0.971 0.971 

Without 
Oversampling 

97.880.
999 

95.800.
859 

97.870.
925 

0.96837
00 0.995 0.979 0.871 0.919 

Dynamic 
Ensemble 

SMOTE 99.940.
992 

99.940.
999 

99.940.
999 

0.99949
99 0.997 0.997 0.997 0.997 

K-Means 
SMOTE 

99.960.
994 

99.960.
999 

99.960.
999 

0.99969
99 0.998 0.998 0.998 0.998 

Borderline 
SMOTE 

99.970.
997 

99.970.
999 

99.970.
999 

0.99979
98 0.998 0.998 0.998 0.998 

ADASYN 99.930.
992 

99.930.
999 

99.930.
999 

0.99939
98 0.997 0.997 0.997 0.997 

Without 
Oversampling 

99.991.
000 

99.990.
951 

99.990.
944 

0.99997
70 0.997 0.999 0.916 0.954 

Table 6. The results7. Results of the ML models obtained from testthe testing dataset in method 5-CV. 645 

Model Oversampling 
Technique Accuracy (in %) Precision 

(in %) 
Recall 
(in %) F1- Score  

  C0 C1 C2 C3 Overall    

AdaBoost 
SMOTE 71.570.

939 
71.540.

548 
71.570.

436 
0.71557

63 0.932 0.383 0.671 0.442 

K-Means 
SMOTE 

71.030.
946 

70.890.
583 

71.030.
436 

0.70916
81 0.939 0.382 0.662 0.445 
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Borderline 
SMOTE 

77.650.
917 

77.570.
595 

77.650.
462 

0.77577
56 0.911 0.374 0.682 0.423 

ADASYN 72.830.
995 

72.770.
226 

72.830.
205 

0.72632
30 0.978 0.514 0.414 0.447 

Without 
Oversampling 

97.590.
931 

97.410.
524 

97.590.
436 

0.97496
81 0.924 0.360 0.643 0.412 

XGBoost 
CatBoost 

SMOTE 99.560.
991 

99.560.
976 

99.560.
974 

0.99568
37 0.989 0.774 0.945 0.846 

K-Means 
SMOTE 

99.570.
993 

99.570.
952 

99.570.
949 

0.99577
85 0.990 0.787 0.920 0.842 

Borderline 
SMOTE 

99.500.
994 

99.500.
905 

99.500.
769 

0.99507
33 0.990 0.803 0.850 0.823 

ADASYN 99.580.
990 

99.580.
988 

99.580.
974 

0.99578
30 0.988 0.761 0.946 0.837 

Without 
Oversampling 

98.110.
996 

97.850.
250 

98.110.
026 

0.97873
33 0.980 0.553 0.401 0.447 

Light 
GBMXGB
oost 

SMOTE 99.630.
983 

99.630.
905 

99.630.
974 

0.99637
48 0.980 0.656 0.903 0.750 

K-Means 
SMOTE 

99.620.
984 

99.620.
917 

99.620.
872 

0.99627
04 0.980 0.654 0.869 0.737 

Borderline 
SMOTE 

99.570.
990 

99.570.
738 

99.570.
667 

0.99576
37 0.983 0.695 0.758 0.720 

ADASYN 99.640.
981 

99.640.
917 

99.640.
974 

0.99647
41 0.978 0.638 0.903 0.735 

Without 
Oversampling 

98.090.
996 

97.630.
214 

98.090.
205 

0.97753
26 0.980 0.547 0.435 0.472 

CatBoost 
Light 
GBM 

SMOTE 99.550.
986 

99.550.
964 

99.550.
974 

0.99558
52 0.984 0.705 0.944 0.799 

K-Means 
SMOTE 

99.600.
988 

99.600.
952 

99.600.
974 

0.99608
15 0.986 0.726 0.932 0.810 

Borderline 
SMOTE 

99.540.
990 

99.540.
798 

99.540.
641 

0.99546
89 0.984 0.720 0.779 0.743 

ADASYN 99.580.
987 

99.580.
988 

99.580.
974 

0.99588
59 0.985 0.722 0.952 0.814 

Without 
Oversampling 

98.000.
997 

97.590.
226 

98.000.
179 

0.97703
11 0.981 0.611 0.428 0.487 

RF 

SMOTE 99.520.
988 

99.530.
988 

99.520.
974 

0.99529
70 0.988 0.763 0.980 0.851 

K-Means 
SMOTE 

99.640.
995 

99.640.
917 

99.640.
821 

0.99648
67 0.993 0.885 0.900 0.889 

Borderline 
SMOTE 

99.580.
991 

99.580.
976 

99.580.
974 

0.99589
56 0.991 0.801 0.974 0.875 

ADASYN 99.540.
989 

99.540.
988 

99.540.
974 

0.99539
78 0.988 0.757 0.982 0.848 

Without 
Oversampling 

98.090.
998 

97.670.
190 

98.090.
051 

0.97632
89 0.980 0.676 0.382 0.440 

MLP 

SMOTE 89.890.
958 

90.071.
000 

89.891.
000 

0.89859
48 0.958 0.554 0.977 0.671 

K-Means 
SMOTE 

59.840.
965 

73.310.
988 

59.840.
974 

0.57548
30 0.964 0.578 0.939 0.689 

Borderline 
SMOTE 

95.440.
937 

95.530.
750 

95.440.
641 

0.95456
59 0.932 0.444 0.747 0.518 

ADASYN 88.190.
927 

88.441.
000 

88.190.
974 

0.88189
63 0.928 0.554 0.966 0.652 
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Without 
Oversampling 

97.610.
995 

96.000.
012 

97.610.
026 

0.96700
15 0.974 0.380 0.262 0.270 

LSTM 

SMOTE 69.020.
878 

69.090.
774 

69.010.
897 

0.68298
15 0.877 0.451 0.841 0.522 

K-Means 
SMOTE 

78.560.
981 

78.980.
869 

78.550.
923 

0.78647
63 0.977 0.693 0.884 0.766 

Borderline 
SMOTE 

86.230.
948 

86.520.
917 

86.221.
000 

0.86099
19 0.948 0.527 0.946 0.636 

ADASYN 76.780.
953 

77.060.
952 

76.771.
000 

0.76649
11 0.953 0.552 0.954 0.661 

Without 
Oversampling 

97.790.
996 

95.630.
488 

97.780.
667 

0.96694
15 0.985 0.804 0.642 0.704 

Dynamic 
Ensemble 

SMOTE 99.580.
978 

99.580.
999 

99.580.
999 

0.99589
97 0.994 0.994 0.994 0.994 

K-Means 
SMOTE 

99.680.
999 

99.681.
000 

99.680.
979 

0.99681
.000 0.995 0.995 0.995 0.995 

Borderline 
SMOTE 

99.550.
982 

99.550.
999 

99.550.
999 

0.99559
97 0.995 0.995 0.995 0.995 

ADASYN 99.580.
979 

99.580.
999 

99.580.
999 

0.99589
97 0.994 0.994 0.994 0.994 

Without 
Oversampling 

98.200.
998 

97.830.
167 

98.200.
128 

0.97832
96 0.981 0.646 0.397 0.462 

 646 

 
Figure 2: Comparison of F1 Score performance between K-Means SMOTE and without oversampling techniques 
across various ML models for soil movement prediction in testing. Blue bars represent F1 scores achieved with K-
Means SMOTE, while orange bars represent F1 scores obtained without oversampling. 

 647 
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Figure 3: Confusion matrix depicting the performance of the Dynamic Ensemble model on the training and testing 
datasets using K-Mean SMOTE oversampling technique. 

 648 

7. Discussion and Conclusions 649 

In conclusion,summary, the threat posed by landslides pose significant threats to lives and properties, 650 
necessitatingrequires the development of effective landslide prediction frameworks. While IoT devices have 651 
been used to notify people in advance about potential landslides, modeling, although modelling the chaotic 652 
nature of natural data remains a challengechallenging. The analyzed dataset used in the analysis described above 653 
showsexhibited a significant class imbalance, with the minority classes representing only 2% of the data while 654 
the majority class accounts for 98%.dominating the samples. This substantial disparity in sample distribution 655 
can pose challenges in analysis and modeling, requiringimbalance necessitated careful consideration and 656 
appropriate techniques to address the class imbalanceissue. 657 

To address the class imbalance, Various oversampling techniques such as were employed to tackle the class 658 
imbalance, including SMOTE and its extensions (KMeansK-Means SMOTE, Borderline SMOTE, and SVM 659 
SMOTE) were employed.ADASYN). ADASYN, which focuses on the classification minority class boundary 660 
of the minority class, was particularly effective in generating, effectively generated synthetic data points and 661 
improving the balance of improved the class distribution balance. 662 

VariousMultiple classification models were evaluated for predicting soil movement, including , such as 663 
ADABoost, XGBoost, Light GBM, CatBoost, RF, MLP, LSTM, and a dynamic ensemble of ADABoost, 664 
XGBoost, Light GBM, CatBoost, and RF., were evaluated to predict soil movement. The hyperparameters of 665 
each model were optimized using a grid search approach. The dynamic ensemble with K-Mean SMOTE and 666 
RF with K-Mean SMOTE emerged as the top-performing models, with dynamic ensemble achieving slightly 667 
higher accuracy. 668 

The combination of K-Means SMOTE oversampling with the dynamic ensemble model yielded the highest 669 
accuracy, precision, and recall of 99.68% and an F1-score of 0.9968 in predicting soil movement. These results 670 
demonstrate the effectiveness of oversampling techniques and the dynamic ensemble model for addressing class 671 
imbalance and improving the accuracy of landslide prediction. 672 
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This study highlights the importance of preprocessing, class labeling, addressing class imbalance, and 673 

selecting appropriate classification models in predicting soil movement. The findings can contribute to a better 674 
understanding and mitigation of landslide risks, ultimately aiding in developing effective preventive measures.  675 

There are several limitations to consider in this study. Firstly, the findings may not be directly applicable to 676 
other regions or geological conditions due to the specific dataset used. Secondly, while oversampling techniques  677 
and 5-CV were employed to address class imbalance, the synthetic data points may not fully capture the 678 
complexity of real-world landslide occurrences. Additionally, the choice of classification models and 679 
hyperparameter settings may introduce bias and alternative configurations could yieldoptimize the parameters 680 
of each model.  Within the 5-CV framework, the parameter analysis was conducted on each fold treated as an 681 
independent dataset, allowing for a comprehensive assessment of parameter variability across different results. 682 
The study also relied on historical data, potentially limiting its ability to account for future changes. Finally, 683 
factors such as rainfall intensity, seismic activity, and human influences were not fully captured, suggesting the 684 
need for further research to enhance landslide prediction accuracydataset splits. This approach facilitated the 685 
identification of optimal parameter configurations that yielded consistent performance across diverse dataset 686 
distributions. By treating each fold as an independent dataset, the parameter analysis provided insights into the 687 
variability of parameter values, thereby enhancing our understanding of how the models generalize to unseen 688 
data. 689 

In future work, we plan to evaluate theThe ML models' training results highlight oversampling's significant 690 
impact on model performance. The dynamic ensemble model, particularly when coupled with K-Means 691 
SMOTE, emerges as the standout performer in the training phase. This model demonstrates superior predictive 692 
capabilities by achieving remarkable accuracy, precision, recall, and F1 scores of 0.998, 0.998, 0.998, and 0.998, 693 
respectively.  694 

Furthermore, these models were tested to assess their ability to generalize well to unseen data. The testing 695 
results showcased the dynamic ensemble model with K-Means SMOTE as the top performer, achieving an 696 
outstanding accuracy of 0.995, precision of 0.995, recall of 0.995, and an F1 score of 0.995. This confirms that 697 
the exceptional performance observed in training extends to the testing phase, emphasizing the robustness and 698 
reliability of the dynamic ensemble approach with K-Means SMOTE. Moreover, the dynamic ensemble model 699 
incorporating Borderline SMOTE emerges as the second-best model in the test phase, showcasing high 700 
accuracy, precision, and recall rates of 0.995, 0.995, and 0.995, respectively, along with an F1 score of 0.995. 701 
This result reinforces the reliability and robustness of the model in tackling landslide prediction tasks. 702 

The superior performance of encoder-decoder the K-Means SMOTE technique can be attributed to its ability 703 
to identify clusters within the minority class and generate synthetic samples that maintain the underlying 704 
structure of the data. By considering the IR, K-Means SMOTE ensures a balanced representation of classes in 705 
the synthetic samples, contributing to improved model generalization and predictive accuracy. Furthermore, the 706 
lack of oversampling adversely affected both training and testing performances. The models faced challenges 707 
in learning and generalizing from the imbalanced dataset without a balanced representation. 708 

On the other hand, the success of the dynamic ensemble model, comprising AdaBoost, XGBoost, Light 709 
GBM, CatBoost, and RF, can be attributed to the complementary strengths of these diverse algorithms. 710 
Ensemble methods leverage the collective decision-making power of multiple models , each capturing different 711 
aspects of the underlying data patterns. The combination of boosting algorithms like AdaBoost, gradient 712 
boosting methods like XGBoost, tree-based models like Light GBM and CatBoost, and the robustness of RF 713 
creates a robust and versatile ensemble that excels in handling various aspects of the dataset, contributing to its 714 
overall superior performance. 715 

In summary, the findings underscore the critical role of oversampling techniques, especially K-Means 716 
SMOTE, in enhancing the predictive performance of landslide prediction models. The success of the dynamic 717 
ensemble model further highlights the importance of ensemble techniques in aggregating diverse model 718 
predictions for improved accuracy. 719 

The superior performance demonstrated by oversampling techniques compared to without oversampling can 720 
be attributed to several factors. Firstly, oversampling techniques address class imbalance by generating synthetic 721 
samples for minority classes, thus providing the model with more representative training data. This allows the 722 
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ML model to learn the underlying patterns of the minority class more effectively, leading to improved 723 
classification performance. Additionally, oversampling techniques help reduce the risk of overfitting by 724 
providing a more balanced representation of the dataset, enhancing the model's ability to generalize to unseen 725 
data. Moreover, by increasing the diversity of the training data, oversampling techniques enable the model to 726 
capture a wider range of variation within the dataset, resulting in better generalization performance. Overall, 727 
using oversampling techniques ensures that the ML model is better equipped to handle imbalanced datasets, 728 
leading to enhanced predictive performance in soil movement prediction tasks. 729 

Furthermore, the parameter analysis reveals that oversampling techniques add generalized information to the 730 
dataset, making it more consistent across different datasets. This reduced variability in the dataset allows ML 731 
models to learn these generalized patterns more effectively. As evident in the parameter analysis results, 732 
oversampling techniques lead to smaller stdev in parameter values across different models, indicating improved 733 
consistency and generalization. This further supports the notion that oversampling techniques help mitigate 734 
overfitting and enhance the overall performance of ML models in soil movement prediction tasks. 735 

Despite these achievements, it is crucial to acknowledge the study's limitations. The generalizability of the 736 
findings to different geological conditions or regions may be restricted due to the specificity of the dataset. 737 
While effective, the synthetic data points generated through oversampling may only capture part of the 738 
complexity inherent in real-world landslide occurrences. The choice of classification models and parameter 739 
settings introduces a level of bias, with alternative configurations potentially yielding different results. 740 
Additionally, relying on historical data may limit the model's ability to account for future changes or unforeseen 741 
events, such as changes in rainfall intensity, seismic activity, or human influences. 742 

In future work, the exploration of encoder-decoder or transformer models on the class-imbalanced movement 743 
dataset is planned. These models have demonstrated, known for their success in sequence-to-sequence tasks and 744 
could potentially, may improve classification accuracy and address class imbalance challenges. This avenue of 745 
experimentation willaims to provide valuable insights into theirthe suitability of advanced models for analyzing 746 
and modelingmodelling imbalanced movement data. 747 

To sum up, the study contributes to understanding landslide risks and supports the development of effective 748 
preventive measures. The combination of robust oversampling techniques, ensemble modelling, and a 749 
systematic approach to parameter tuning yields a promising framework for accurate landslide prediction. The 750 
work presented lays the groundwork for future research to refine models and address the inherent challenges in 751 
landslide prediction tasks. 752 
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