
Dear Anonymous Referee #1, 

 

Thank you for your positive and constructive comments. Below is a documented list of changes we 

have made to the manuscript (marked R: in blue font). We have shortened the introduction of the ML 

algorithms, detailed the majority and minority class sampling used in the training and testing, revised 

the results by 5-fold cross-validation, and refined the discussion and conclusion of the findings. We 

hope these clarifications will improve the reader’s understanding of our work. 

 

Kind Regards, 

Praveen Kumar  

 

Anonymous Referee #1 Comments 

 

1. The different ML algorithms are individually reported and described in perhaps too much detail. 

 

R: We appreciate the reviewer's feedback on our ML algorithm descriptions. In response, we 

have revised and shortened the introductions of each algorithm. We now provide a brief overview 

of each algorithm in three to four sentences, followed by an explanation focused solely on the 

crucial parameter variations and their significance in our experimental setup. 

 

2. The monitored landslide is presented only in geographical terms. It might be useful to provide 

more details on the characteristics of the landslide. 

 

R: Thank you for this suggestion. We have revised the main manuscript and added the paragraph 

in the Data Collection and Description section on page 4 as follows, along with a new reference: 

 

"The monitored landslides are characterized as shallow landslides with debris flow, occurring at 

elevations ranging from 1450 m to 1920 m. The slopes in the landslide zones in the upper parts 

are made up of weathered limestone and dolomitic limestone, whereas the lower slopes exhibit 

black carbonaceous slate. The slates are highly weathered and leached, adorned with white and 

yellow encrustation. These are covered with a thin veneer of debris, mainly consisting of pebble- 

and cobble-sized limestone, sandstone, and slate embedded in a sand–silt–clay matrix. Additional 

context includes an annual rainfall of 4190 mm in the area, as reported by Gupta et al. (2015)." 

 

We added a new reference.  

 

Gupta, V., Bhasin, R. K., Kaynia, A. M., Tandon, R. S., & Venkateshwarlu, B. (2016). Landslide 

hazard in the Nainital township, Kumaun Himalaya, India: the case of September 2014 Balia Nala 

landslide. Natural Hazards, 80, 863-877. 

 

3.  However, it is not clear if the other two minority classes were oversampled, or if they were 

removed in subsequent analyses. 

 



R: Thank you for your comment. We appreciate your feedback and have addressed this concern 

in the revised manuscript. 

 

In the Class Labeling section on page 5, we now provide detailed information on the distribution 

of classes, explicitly stating the percentages for each category:  

 

"The majority of the dataset (97.8%) falls under the 'No Movement' category, indicating a lack of 

significant movement. On the other hand, the 'High Movement' category represents only a small 

fraction (1.1%) of the dataset. Additionally, the 'Moderate Movement' category comprises 0.7% 

of the samples, while the 'Low Movement' category accounts for 0.4% of the dataset." 

 

In the Oversampling section on page 6, we clarify the representation of all classes: 

 

"All other classes, including "High Movement," "Moderate Movement," and "Low Movement," 

represent minority classes, each constituting only 1%, 0.7%, and 0.4% of the total data, 

respectively." 

 

Furthermore, on page 6, in the Oversampling section, we now explicitly state: 

 

"By utilizing the characteristics of existing samples from the minority classes, we created new 

data points, thereby increasing the representation of the 'High Movement,' 'Moderate Movement,' 

and 'Low Movement' classes." 

 

4. The main results are synthesised in Tables 5 and 6. In my opinion, these two tables are not 

enough to convey the effect of oversampling. In most cases the data without oversampling returns 

better scores than the oversampled data in all the metrics, not allowing the reader to understand 

the cause. Furthermore, scores so close to 1 might suggest a data leakage between training and 

model testing. It could be worth it to revise the data-splitting procedure and implement the 

pipeline with cross-validation to avoid this issue. 

 

R: We appreciate your valuable feedback and have taken your comments into careful 

consideration. To address your concerns regarding the impact of oversampling, we have revised 

our methodology by incorporating a 5-fold cross-validation approach. This enhancement ensures 

a more robust evaluation of model performance, minimizing the risk of data leakage between the 

training and testing phases. 

 

Upon implementing this cross-validation technique, we re-evaluated the results and observed a 

consistent improvement in the performance of models utilizing K-Means SMOTE for 

oversampling. The revised Tables 5 and 6 now accurately reflect the effectiveness of 

oversampling techniques, particularly highlighting the superiority of K-Means SMOTE in 

enhancing predictive accuracy. 

 



We have updated the manuscript to include this important modification in the "Model Execution, 

Minimization, and Handling Class Imbalance" section on page 9, providing a clear description of 

the revised methodology.  

 

“A rigorous process was followed to develop an effective model for predicting the intensity of 

soil movement. The dataset was partitioned into a 70:30 ratio, with 70% allocated for training and 

the remaining 30% for testing. To tackle the class imbalance issue in the training data, 

oversampling techniques were applied exclusively to the training set, ensuring a balanced 

representation of all three classes. The oversampling methods were not extended to the testing 

data, preserving its original distribution. Following the balancing process, a suite of ML models 

underwent training using a 5-fold cross-validation (5-CV) approach to the training data (Kumar et 

al., 2023). The models were optimized by employing grid search methodology, systematically 

exploring various parameter combinations that maximized the average cross-validation accuracy 

during training. The training performance, assessed through 5-CV, reflected the models' 

effectiveness with the optimized parameters. Subsequently, the models with the best parameters 

found during training were tested on the independent testing data, and their performance metrics 

were reported as indicative of their predictive capabilities. The evaluation primarily focused on 

accuracy metrics to determine how effectively the models predicted the intensity of soil 

movement.” 

 

We have also added a new reference. 

 

Kumar, P., Priyanka, P., Dhanya, J., Uday, K. V., & Dutt, V.: Analyzing the Performance of 

Univariate and Multivariate Machine Learning Models in Soil Movement Prediction: A 

Comparative Study. IEEE Access, 11, 62368–62381, 2023  

 

Additionally, the results section on page 11 has been amended to present the latest findings 

obtained through 5-fold cross-validation. 

 

“Table 5 presents the training results of different classification models combined with various 

oversampling techniques for landslide prediction. These results provide valuable insights into the 

performance of each model when trained on the training dataset with and without oversampling. 

The dynamic ensemble model with K-Mean SMOTE emerges as the best model in training, 

achieving outstanding accuracy, precision, recall, and F1 scores of 0.996, 0.996, 0.996, and 0.996, 

respectively. The dynamic ensemble model with SMOTE, Borderline SMOTE, and ADASYN 

techniques also showed similar performance with 0.995 F1 scores. It demonstrates remarkable 

predictive capability by achieving perfect accuracy in oversampling scenarios. When the model is 

trained without oversampling, its accuracy, precision, recall, and F1 score are notably lower, with 

values of 0.981, 0.557, 0.386, and 0.436, respectively.  

 

Table 6 presents the test results of various classification models combined with different 

oversampling techniques for landslide prediction. Among them, the dynamic ensemble model 

utilizing the K-Mean SMOTE technique demonstrates exceptional performance in accurately 

predicting landslides on unseen data. It achieves impressive accuracy, precision, and recall rates of 



0.994, 0.882, and 0.945, respectively, along with an F1 score of 0.911. These outstanding results 

confirm the effectiveness of the dynamic ensemble approach when combined with K-Mean 

SMOTE for accurate soil movement prediction. Notably, it is crucial to highlight the impact of 

oversampling on the performance of the dynamic ensemble model. When the model is tested 

without oversampling, its accuracy, precision, recall, and F1 score are notably lower, with values 

of 0.981, 0.557, 0.386, and 0.436, respectively. The best-performing model is highlighted in bold 

in Table 6. 

 

Additionally, the dynamic ensemble model incorporating SMOTE emerges as the second-best 

model in the test phase, showcasing high accuracy, precision, and recall rates of 0.993, 0.872, and 

0.950, respectively, along with an F1 score of 0.907. Moreover, it is noteworthy that K-Means 

SMOTE consistently outperformed other oversampling techniques across all models during the test 

performance evaluations, establishing itself as the optimal technique. In addition, the SMOTE 

technique consistently secured the second-best position across all models. This underscores the 

discernible effectiveness of K-Means SMOTE in generating oversampling for the soil movement 

dataset. The success of K-Means SMOTE can be attributed to its ability to identify clusters within 

the minority class and select similar features for oversampling. The IR employed by K-Means 

SMOTE aids in determining the appropriate degree of oversampling for the minority class, ensuring 

a balanced representation of classes in synthetic samples. 

 

Moreover, the absence of oversampling techniques negatively impacted the models' performance 

in both training and testing. Without oversampling, the models exhibited lower accuracy, precision, 

recall, and F1 scores during training and testing, emphasizing the challenges posed by class 

imbalance. In the absence of balanced representation through oversampling, the models struggled 

to effectively learn and generalize from the imbalanced dataset. Consequently, this underscores the 

pivotal role of oversampling in mitigating class imbalance issues, leading to substantial 

enhancements in predictive accuracy and overall model robustness during both training and testing 

evaluations." 

 

Table 5. The results of the ML models from the training dataset. 

Model Oversampling Technique Accuracy Precision Recall F1 Score  

AdaBoost 

SMOTE 0.632 0.638 0.632 0.632 

K-Means SMOTE 0.641 0.646 0.641 0.631 

Borderline SMOTE 0.663 0.670 0.663 0.659 

ADASYN 0.618 0.622 0.618 0.618 

Without Oversampling 0.980 0.556 0.357 0.393 

XGBoost  

SMOTE 0.921 0.921 0.921 0.921 

K-Means SMOTE 0.926 0.926 0.926 0.926 

Borderline SMOTE 0.973 0.973 0.973 0.973 

ADASYN 0.915 0.916 0.915 0.915 

Without Oversampling 0.994 0.983 0.814 0.882 

Light GBM 

SMOTE 0.920 0.920 0.920 0.920 

K-Means SMOTE 0.939 0.940 0.939 0.939 

Borderline SMOTE 0.963 0.963 0.963 0.963 

ADASYN 0.915 0.916 0.915 0.915 

Without Oversampling 0.991 0.845 0.791 0.807 

CatBoost  SMOTE 0.860 0.860 0.860 0.859 



K-Means SMOTE 0.876 0.876 0.876 0.876 

Borderline SMOTE 0.932 0.932 0.932 0.932 

ADASYN 0.859 0.859 0.859 0.859 

Without Oversampling 0.983 0.797 0.399 0.469 

RF 

SMOTE 0.731 0.742 0.731 0.728 

K-Means SMOTE 0.734 0.748 0.734 0.729 

Borderline SMOTE 0.795 0.806 0.795 0.797 

ADASYN 0.732 0.747 0.732 0.728 

Without Oversampling 0.982 0.905 0.325 0.372 

MLP 

SMOTE 0.902 0.903 0.902 0.901 

K-Means SMOTE 0.944 0.945 0.944 0.944 

Borderline SMOTE 0.961 0.962 0.961 0.962 

ADASYN 0.942 0.943 0.942 0.942 

Without Oversampling 0.979 0.635 0.309 0.339 

LSTM 

SMOTE 0.747 0.750 0.747 0.745 

K-Means SMOTE 0.767 0.769 0.767 0.766 

Borderline SMOTE 0.779 0.781 0.779 0.778 

ADASYN 0.756 0.759 0.756 0.755 

Without Oversampling 0.758 0.760 0.758 0.756 

Dynamic 

Ensemble 

SMOTE 0.995 0.995 0.995 0.995 

K-Means SMOTE 0.996 0.996 0.996 0.996 

Borderline SMOTE 0.995 0.995 0.995 0.995 

ADASYN 0.995 0.995 0.995 0.995 

Without Oversampling 0.981 0.557 0.386 0.436 

Table 6. The results of the ML models from the test dataset. 

Model Oversampling Technique Accuracy Precision Recall F1 Score  

AdaBoost 

SMOTE 0.798 0.301 0.646 0.313 

K-Means SMOTE 0.865 0.313 0.610 0.342 

Borderline SMOTE 0.804 0.313 0.598 0.326 

ADASYN 0.788 0.293 0.625 0.300 

Without Oversampling 0.979 0.419 0.313 0.340 

XGBoost  

SMOTE 0.957 0.509 0.872 0.610 

K-Means SMOTE 0.957 0.486 0.807 0.576 

Borderline SMOTE 0.954 0.480 0.770 0.560 

ADASYN 0.958 0.517 0.876 0.619 

Without Oversampling 0.981 0.618 0.402 0.461 

Light GBM  

SMOTE 0.951 0.495 0.858 0.591 

K-Means SMOTE 0.952 0.475 0.796 0.561 

Borderline SMOTE 0.954 0.474 0.735 0.548 

ADASYN 0.951 0.488 0.865 0.586 

Without Oversampling 0.978 0.511 0.447 0.467 

CatBoost 

SMOTE 0.944 0.439 0.831 0.524 

K-Means SMOTE 0.945 0.443 0.793 0.528 

Borderline SMOTE 0.948 0.431 0.747 0.510 

ADASYN 0.948 0.433 0.791 0.517 

Without Oversampling 0.980 0.664 0.389 0.442 

RF 

SMOTE 0.829 0.342 0.737 0.367 

K-Means SMOTE 0.831 0.336 0.687 0.355 

Borderline SMOTE 0.833 0.321 0.632 0.346 

ADASYN 0.828 0.350 0.689 0.364 

Without Oversampling 0.978 0.477 0.268 0.280 

MLP 

SMOTE 0.887 0.414 0.945 0.498 

K-Means SMOTE 0.928 0.499 0.959 0.602 

Borderline SMOTE 0.907 0.423 0.742 0.473 



ADASYN 0.909 0.454 0.942 0.547 

Without Oversampling 0.978 0.635 0.308 0.339 

LSTM 

SMOTE 0.856 0.318 0.684 0.352 

K-Means SMOTE 0.940 0.402 0.736 0.473 

Borderline SMOTE 0.925 0.384 0.720 0.448 

ADASYN 0.887 0.326 0.556 0.361 

Without Oversampling 0.827 0.312 0.710 0.339 

Dynamic 

Ensemble 

SMOTE 0.993 0.872 0.950 0.907 

K-Means SMOTE 0.994 0.882 0.945 0.911 

Borderline SMOTE 0.993 0.900 0.869 0.880 

ADASYN 0.993 0.854 0.952 0.898 

Without Oversampling 0.982 0.695 0.434 0.506 

 

5. Chapter 7 is just conclusions; the critical investigation of results (i.e., the discussion) is 

completely missing. 

 

R: We sincerely appreciate your thorough review of Chapter 7. Your insightful comments have 

guided us in making important revisions to ensure the completeness of the document. We have 

now addressed this concern by incorporating a comprehensive discussion section on page 13, 

covering critical investigation, outcomes of the experiment, implications of oversampling 

techniques, limitations, and key findings. 

 

The Discussion and Conclusion Section is revised as follows: 

 

In summary, the threat posed by landslides requires the development of effective prediction 

frameworks, although modeling the chaotic nature of natural data remains challenging. The 

analyzed dataset exhibited a significant class imbalance, with the majority class dominating the 

samples. This distribution imbalance necessitated careful consideration and appropriate 

techniques to address the issue. 

 

Various oversampling techniques, including SMOTE and its extensions (K-Means SMOTE, 

Borderline SMOTE, and ADASYN), were employed to tackle the class imbalance. ADASYN, 

which focuses on the minority class boundary, effectively generated synthetic data points and 

improved the class distribution balance. 

 

Multiple classification models, such as ADABoost, XGBoost, Light GBM, CatBoost, RF, MLP, 

LSTM, and a dynamic ensemble, were evaluated to predict soil movement. The grid search 

approach and 5-CV were employed to optimize the hyperparameters of each model. The training 

results highlight the significant impact of oversampling on model performance. The dynamic 

ensemble model, particularly when coupled with K-Means SMOTE, emerges as the standout 

performer in the training phase. Achieving remarkable accuracy, precision, recall, and F1 scores 

of 0.996, 0.996, 0.996, and 0.996, respectively, this model demonstrates superior predictive 

capabilities.  

 

Furthermore, these models were tested to assess their ability to generalize well to unseen data. 

The testing results showcased the dynamic ensemble model with K-Means SMOTE as the top 

performer, achieving an outstanding accuracy of 0.994, precision of 0.882, recall of 0.945, and an 



F1 score of 0.911. This confirms that the exceptional performance observed in training extends to 

the testing phase, emphasizing the robustness and reliability of the dynamic ensemble approach 

with K-Means SMOTE. Moreover, the dynamic ensemble model incorporating SMOTE emerges 

as the second-best model in the test phase, showcasing high accuracy, precision, and recall rates 

of 0.993, 0.872, and 0.950, respectively, along with an F1 score of 0.907. This result reinforces 

the reliability and robustness of the model in tackling landslide prediction tasks. 

 

Furthermore, the dynamic ensemble model incorporating SMOTE emerges as the second-best 

model in the test phase, showcasing high accuracy, precision, and recall rates of 0.993, 0.872, and 

0.950, respectively, along with an F1 score of 0.907. This result reinforces the reliability and 

robustness of the model in tackling landslide prediction tasks. 

 

The superior performance of the K-Means SMOTE technique can be attributed to its ability to 

identify clusters within the minority class and generate synthetic samples that maintain the 

underlying structure of the data. By considering the IR, K-Means SMOTE ensures a balanced 

representation of classes in the synthetic samples, contributing to improved model generalization 

and predictive accuracy. Furthermore, the lack of oversampling adversely affected both training 

and testing performances. The models faced challenges in learning and generalizing from the 

imbalanced dataset without a balanced representation. 

 

On the other hand, the success of the dynamic ensemble model, comprising AdaBoost, XGBoost, 

Light GBM, CatBoost, and Random Forest, can be attributed to the complementary strengths of 

these diverse algorithms. Ensemble methods leverage the collective decision-making power of 

multiple models, each capturing different aspects of the underlying data patterns. The 

combination of boosting algorithms like AdaBoost, gradient boosting methods like XGBoost, 

tree-based models like Light GBM and CatBoost, and the robustness of RF creates a robust and 

versatile ensemble that excels in handling various aspects of the dataset, contributing to its overall 

superior performance. 

 

In summary, the findings underscore the critical role of oversampling techniques, especially K-

Means SMOTE, in enhancing the predictive performance of landslide prediction models. The 

success of the dynamic ensemble model further highlights the importance of ensemble techniques 

in aggregating diverse model predictions for improved accuracy. 

 

Despite these achievements, it is crucial to acknowledge the study's limitations. The 

generalizability of the findings to different geological conditions or regions may be restricted due 

to the specificity of the dataset. The synthetic data points generated through oversampling, while 

effective, may only capture part of the complexity inherent in real-world landslide occurrences. 

The choice of classification models and hyperparameter settings introduces a level of bias, with 

alternative configurations potentially yielding different results. Additionally, relying on historical 

data may limit the model's ability to account for future changes or unforeseen events, such as 

changes in rainfall intensity, seismic activity, or human influences. 

In future work, the exploration of encoder-decoder models or transformer models on the class-

imbalanced movement dataset is planned. These models, known for their success in sequence-to-



sequence tasks, may offer improvements in classification accuracy and address class imbalance 

challenges. This avenue of experimentation aims to provide valuable insights into the suitability 

of advanced models for analyzing and modeling imbalanced movement data. 

 

To sum up, the study contributes to the understanding of landslide risks and supports the 

development of effective preventive measures. The combination of robust oversampling 

techniques, ensemble modeling, and a systematic approach to hyperparameter tuning yields a 

promising framework for accurate landslide prediction. The work presented lays the groundwork 

for future research aimed at refining models and addressing the inherent challenges in landslide 

prediction tasks. 

 

 

 

 


