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Abstract. In light of the large role that soil organic matter (SOM) plays in maintaining healthy and productive agricultural

soils, it is crucial to understand the processes of SOM protection including the role of soil aggregate protection. Yet, few

numerical process models include aggregate formation and even fewer represent the important connection between microbial

growth and aggregate formation. Here, we propose a model of Soil Aggregation through Microbial Mediation (SAMM), which

consist of measurable pools and couples soil aggregate formation to microbial growth. The model was evaluated against data5

from a long term bare-fallow experiment in a tropical sandy soil, subject to plant litter additions of different compositions. The

SAMM model effectively represented the microbial growth response after litter addition and the following formation and later

disruption of aggregates. Model parameter correlation was low (all r < 0.5; r > 0.4 for only 4 of 22 parameters) showing that

SAMM is well parameterized. Differences between treatments resulting from different litter compositions could be captured

by SAMM for soil organic carbon (Nash-Sutcliffe modelling efficiency (EF) of 0.68), microbial nitrogen (EF of 0.24) and litter10

carbon (EF of 0.80). Aggregate-related fractions, i.e., carbon inside aggregates (EF of 0.60) and also carbon in the free silt and

clay fraction (EF of 0.24) were simulated very well to satisfactory. Analysis of model parameters led to further noteworthy

insights. For example, model results suggested that up to 50% of carbon in the soil is stabilized through aggregate protection,

even in a sandy soil, and that both microbial activity and physical aggregate formation coexist. When aggregate formation was

deactivated, the model failed to stabilize soil organic carbon (EF dropped to -3.68) and microbial nitrogen was represented less15

well (EF of 0.13). By re-calibrating the model version with deactivated aggregates, it was possible to partly correct for removing

the aggregate formation, i.e., by reducing the decomposition rate of mineral attached carbon by about 85% (EF of 0.68, 0.75

and 0.18 for SOC, litter carbon and microbial nitrogen, respectively). Yet, the overall slightly better evaluation statistics (e.g.,

Akaike information critereon of 5351 vs 5554) show the potential importance of representing aggregate dynamics within SOM

models. Our results indicate that current models without aggregate formation partly compensate the missing protection effect20
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by lowering turnover rates of other pools and thus may still be suitable options where data on aggregate associated carbon is

not available.

1 Introduction

Soil aggregates play a crucial role in the context of soil carbon sequestration because soil organic matter (SOM) stabilized in

aggregates is a fraction of SOM that is strongly affected by human activities (Six and Paustian, 2014). There is evidence that25

the particulate organic matter (POM) stored within aggregates may be the SOM fraction that does least saturate if carbon inputs

are increased (Castellano et al., 2015), and may thus be a suitable fraction to target for SOM accumulation. Yet, exactly this

intra-aggregate POM becomes relatively easily available to decomposers upon disruption of aggregates (Six et al., 2000) and

may therefore be considered to be labile. Mineral associated organic matter (MAOM), on the other hand, is thought as a part of

SOM with slower turnover rates, but the pathways upon which it is formed are not completely clear. For example the concepts30

by Kallenbach et al. (2016) and Cotrufo et al. (2013) suggest that most stable MAOM is of microbial origin, whereas Angst

et al. (2021) recently estimated that about half of MAOM is formed through direct adsorption of dissolved organic matter to soil

minerals. As a result, we need a better understanding of the relative importance of the different processes of SOM stabilization,

such as MAOM formation and POM protection within aggregates.

Numerical models are a good way to test our mechanistic understanding of complex systems, such as soils, and to improve35

knowledge about the interconnected processes by testing different hypotheses about the system. They allow to quantify fluxes

which are not directly measurable and to test one or several conceptual structures of a system against measured data (Necpálová

et al., 2015). Thus, they represent an elegant way to test research hypotheses. Despite the existence of conceptual models, the

central role of microbial growth in aggregate formation is still incompletely understood and is only poorly represented in

current SOM research models developed for the field scale. Initial attempts of Segoli et al. (2013), for example, modelled the40

formation and destruction of micro- and macroaggregates by including a simple microbial activity factor, but the model was

not further developed into an ecosystem model and therefore is only applicable to shorter-term incubation experiments. The

Millennial model (Abramoff et al., 2018, 2022) has a specific microbial biomass pool and distinguishes between aggregated

and non-aggregated carbon, but its temporal dynamics have not been evaluated against long-term experiments and it does not

simulate the effect of nitrogen on SOM dynamics.45

In the sense of using models to test important research hypotheses, three important concepts/processes related to aggregate

formation should therefore be included into models. The first important process to include into models of soil aggregate

formation is the effect that plant residue composition and elemental stoichiometry (Sinsabaugh et al., 2013) have on carbon

use efficiency (CUE) of microbes. For example, Lavallee et al. (2018) showed that shoot material leads to more stabilized

MAOM than root material, which they attributed to a higher CUE for shoot material due to higher quality (i.e., low C/N50

and lignin; Cotrufo et al., 2013). Also Laub et al. (2022), in a long-term field experiment, found differences in aggregate

dynamics between different litter type additions and suggested that these were a result of different CUE that depended on litter

composition. Secondly, the effect of microbial activity on aggregate formation needs to be considered. Many studies in the
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literature have shown the direct link between aggregate dynamics and microbial functioning. For example, Bucka et al. (2019)

showed - under incubation conditions - that microbial activity associated with dissolved organic matter and POM formed55

aggregates rapidly. Thirdly, measurable pools. It has been suggested numerous times that next generation SOM models should

model carbon pools which are directly measurable (Segoli et al., 2013; Wang et al., 2013; Wieder et al., 2014). However, when

doing so one needs to adhere as much as possible to the principle of distinct structural identity (e.g. Oldfield et al., 2018; Wang

et al., 2022; de Aguiar et al., 2022). Thus within an optimal model based on measurable pools, any quantity of carbon should

maintain its structural identity until it is subject to an actual molecular change. This means that if carbon transfers from one60

modeled pool to another, this should not only correspond to a transfer of matter between the pools, but also to a chemical or

physical reaction (e.g., depolymerization, anabolic microbial growth or adsorption to minerals). As such, MAOM and POM

have been identified as possible modelable pools of relative distinct structural identities (e.g. Segoli et al., 2013; Lavallee et al.,

2020) and are commonly accepted as the main building blocks for aggregates (Totsche et al., 2017). Furthermore, they can be

derived by established soil fractionation schemes and differ strongly in average turnover times and properties (Lavallee et al.,65

2020; Schrumpf et al., 2013). It is, while POM consists mostly of undecomposed plant material, stabilized MAOM originates

either from microbial residues (Kallenbach et al., 2016; Six et al., 2006) or from dissolved organic matter (Angst et al., 2021).

Here, we present an approach to include all the above-mentioned concepts into a model of Soil Aggregation through

Microbial Mediation (SAMM). SAMM builds on the foundations introduced by mechanistic SOM models, such as simu-

lating measurable fractions and aggregates (Abramoff et al., 2018, 2022; Segoli et al., 2013) and the decomposition of plant70

derived carbon to low molecular weight carbon, prior to consumption by microbes (Tang and Riley, 2015; Wang et al., 2013;

Zhang et al., 2021). It enriches these concepts by (i) the central role of microbes for soil aggregate formation and (ii) a consis-

tent structural identity of POM and MAOM within aggregates. We applied the model to simulate data from a long-term SOM

formation experiment in a tropical sandy soil in Northeast Thailand, which included inputs of litter of different compositions

and a non-amended control. SAMM is tested against measured data of microbial biomass, SOC and carbon in different soil75

fractions. To better understand the model and it‘s uncertainty, a Bayesian calibration of model parameters is performed. The

calibrated model was then used to test three main hypotheses:

1. Simulating the connection between microbial growth and aggregate formation with SAMM helps to quantify the relative

importance of different SOM stabilizing processes.

2. Including this connection into SOM models is essential to accurately represent dynamics of SOM formation. Thus, a80

model that explicitly simulates aggregate formation as a result of microbial growth will outperform a model of similar

structure that does not include aggregate formation.

3. The dynamics of microbial activity, which are linked to temperature, moisture and litter composition, help to explain

dynamics in aggregate formation. Thus, we expect that aggregates can be simulated with a similar model performance

as microbial biomass.85
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Table 1. Chemical characteristics of applied organic residues/litter. Total carbon was measured by Walkley and Black wet digestion; total

nitrogen by micro-Kjeldahl, lignin and cellulose by acid detergent lignin method (Van Soest and Wine, 1968); polyphenols were determined

according to Anderson and Ingram (1993). Values within the same column that share the same capital letter are not significantly different (p

< 0.05). The table is adopted from Laub et al. (2022) under the creative common license 4: http://creativecommons.org/licenses/by/4.0/.

Carbon Nitrogen C/N Lignin Polyphenols Cellulose

Litter type (Abbreviation) (g kg-1) (g kg-1) (g g-1) (g kg-1) (g kg-1) (g kg-1)

Rice straw (RS) 367A 4.7A 78A 28.7A 6.5A 507A

Groundnut stover (GN) 388A 22.8B 17B 67.6A 12.9A 178AB

Dipterocarp (DP) 453B 5.7A 80A 175.5B 64.9B 306AB

Tamarind (TM) 427B 13.6C 32C 87.7C 31.5C 143B

SE+ 7 0.8 3.4 19 5.6 46

+Standard error

2 Material and Methods

2.1 Description of the experiment

We tested the capability of SAMM in a long-term bare fallow experiment, which was established on a degraded tropical sandy

soil in 1995 (Vityakon et al., 2000; Puttaso et al., 2011, 2013; Laub et al., 2022). In brief, the experiment was initiated to

study the effects of annual additions of organic material (at a rate of 10 t dry matter ha-1 yr-1) of different composition on soil90

organic matter dynamics. The experiment is located within the research station of the Office of Agriculture and Cooperatives

of the Northeast, Khon Kaen province (16°20’ N; 102° 49’ E) in Northeast Thailand. The soil is a Khorat sandy loam (Typic

Kandiustult in USDA, Acrisol in WRB classification) with 90% sand and 5% clay (Puttaso et al., 2013). At the start of the

experiment, the bulk density was 1.45 g cm-3, the pH was 5.5 and CEC 3.53 cmol kg-1 in the 0-15 cm topsoil (Vityakon

et al., 2000). Later measurements did not find significant changes in bulk density due to the treatments (data not shown), so95

we assumed a constant bulk density of 1.45 g cm-3 throughout the whole period for all treatments in this study. The site has

a savanna type climate with a wet period from April to September with about 1200 mm annual precipitation and a mean

temperature of 28°C (Puttaso et al., 2013). The experiment was a randomized complete block design with three replicated

plots of 4 × 4 m size. The annual litter application of 10 t ha-1 dry matter at the beginning of the rainy season around May,

supplied about 4 t carbon ha-1 yr-1. Next to an unamended control (CT), the litter treatments were rice (Oryza sativa) straw100

(RS; high C/N, low lignin/polyphenol contents), groundnut (Arachis hypogaea) stover (GN; low C/N, low lignin/polyphenol

contents), tamarind (Tamarindus indica) litter (TM; medium C/N, medium lignin/polyphenol contents) with leaf/petiole litter

ratio of 7:1, and dipterocarp (Dipterocarpus tuberculatus; DP; high C/N, high lignin/polyphenol contents) leaf litter (Table

1). The applied litter was manually incorporated into the topsoil until a depth of approximately 15 to 20 cm using hand hoes.

Hand weeding was conducted to keep plots vegetation free. This was done about once a month during the rainy season and105

every second month for the rest of the year, attempting to have as little as possible additional organic matter inputs from weeds.
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Table 2. Overview of all measurements from the Khon Kaen long-term experiment that were used in this study.

Type Unit* Frequency Weeks+ Time span and reference

Litterbag C kg C ha-1 6 yr-1 0, 2, 4, 8, 16, 32 2004a

Microbial N kg N ha-1 6 yr-1 0, 2, 4, 8, 16, 32 1995b, 96-99X, 2004a, 07X, 12X, 19c

Soil organic C kg C ha-1 1 yr-1 0 1995-2005d, 2006-16X, 2019c

Soil C/N g g-1 1 yr-1 0 1995-2005d, 2006-16X, 2019c

Aggregate C kg C ha-1 6 yr-1 0, 2, 4, 8, 16, 30 2019c

Free mineral associated C kg C ha-1 6 yr-1 0, 2, 4, 8, 16, 30 2019c

*Data rescaled to kg ha-1 using 20 cm soil depth and a bulk density of 1.45 g cm-3; +Weeks after residue addition (0 = prior); References: aPuttaso et al. (2011), bVityakon et al.

(2000), cLaub et al. (2022), dVityakon (2007), XUnpublished

However, despite best efforts it was not possible, to keep the plots completely free of vegetation at all times. The experimental

data covered a time period from establishment of the experiment in 1995 until December 2019.

2.2 Measurements available from the long-term experiment

Soil microbial biomass carbon and nitrogen data were available from most years and always measured prior to litter incorpora-110

tion and in weeks 2, 4, 8, 16 and 32 after litter addition (Puttaso et al., 2011; Vityakon et al., 2000; Vityakon, 2007; Laub et al.,

2022, and unpublished data in Table 2). Litterbag decomposition experiments were conducted to elucidate differences in litter

decomposition rates as a function of litter composition, measuring ash-free dry weight remaining at the same points in time

(Puttaso et al., 2011). Soil microbial biomass was measured by chloroform fumigation extraction (see Puttaso et al., 2011, for

more details). Because microbial carbon and nitrogen are usually correlated, we only made use of the microbial nitrogen data,115

which was of higher quality (fewer negative values than carbon, lower variability within treatments). Annual measurements of

soil organic carbon and soil C/N data, measured by Walkley-Black method (Walkley and Black, 1934), were available from

Vityakon et al. (2000) and from further annual measurements until 2016 and from 2019. Additionally, there were measurements

of carbon in aggregates (carbon in small macroaggregates, 2–0.25 mm; and microaggregates, 0.25–0.053 mm; combined) and

the free silt and clay faction (MAOC) throughout the year 2019 at weeks 0, 2, 4, 8, 16 and 30 (Laub et al., 2022).120

2.3 The SAMM model version 1.0: Core concepts and model description

The core concepts of SAMM are 1) all pools are measurable entities that have a conceptual carbon identity (Wang et al.,

2022), which they maintain inside aggregates and along the gradient of increased decomposition status, 2) linking aggregate

formation to the microbial life cycle and 3) simulating aggregates in a coupled soil carbon and nitrogen model. For brevity, we

only explain the central concepts of SAMM and the flow of carbon and nitrogen in the main text, while the appendix hosts a125

detailed description of model pools (A1) and the differential equations comprising the SAMM model (A3). A list of all model

pools is given in Table 3, while all parameters and their calibrated values are given in Table 4.
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Aggregates

AggMAOC&N

AggSTRC

MICC&N

STRC

MAOC&N

AggLABC&N

LABC&N

LMWC&N

C&Nleach

aMIC

ProtLABC&N

CO2
Litter input

f(MIC) phys_chem

STRC
Protects parts of the metabolic litter 
(LAB) so it cannot be decomposed

aMIC
Depolimerization of C/N by reverse 

Michaelis- Menten kinetics

Important Mechanisms

Agg Aggregate pools are not decomposing

Prot Structural litter protected pools are not 
decomposing

f(MIC)

phys_chem

Microbially mediated aggregate
formation is a function of microbial

growth

Physicochemical aggregate formation 
is a constant

Figure 1. Conceptual model of SAMM. Carbon and nitrogen in pools are depicted as PoolC&N or PoolC for carbon only pools. The following

pools exist: STRC, structural litter; LABC&N, labile litter; LMWC&N, low molecular weight; MICC&N, microbial; MAOC&N, mineral associated.

Thick continuous arrows represent flows of carbon and nitrogen between pools which include a change in structural identity. Thick, dashed

arrows represent aggregate protection and deprotection, which does not change the structural identity. The effect of MICC&N on pool decom-

position by reverse Michaelis Menten kinetics (aMIC paramter) is represented by the thin dashed arrow. The two large arrows with coloured

outline represent the factors that influence the rate of aggregate formation. Losses from the system are depicted by thin dotted (CO2) and

continued arrows (leaching). Further abbreviations: Prot, protected by structural litter; Agg, aggregate protected pools.

To achieve full measurability, simulated fresh litter was divided into two pools, structural litter measured as lignin and

polyphenols (similar to Campbell et al., 2016), and metabolic (labile) litter representing the remaining litter carbon and nitro-

gen, thus enabling different CUE and decomposition rates resulting in differences in microbial growth. Through simulating130

both carbon and nitrogen, the model further allows for a C/N ratio-dependent CUE at microbial uptake. Carbon and nitrogen

cycles are coupled (Fig. 1 and Table 3), but the structural litter pool is defined as a carbon-only pool. This is indicated in

the following by the subscripts next to the pool names (i.e., POOLC for carbon only, and POOLC&N for carbon and nitrogen

containing pools).

The organic matter decomposition process within the SAMM model starts with undecomposed plant material, consisting135

of structural litter (STRC), and the metabolic/labile litter pool (LABC&N). Upon depolymerization, the carbon and nitrogen

of any pool enters the easily soluble low molecular weight (LMWC&N) pool. This LMWC&N is the only pool that contains
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Table 3. An overview of all SAMM model pools and their units.

Pool Description Unit+

STRC Structural litter pool C kg C ha-1

LABC Metabolic litter pool C kg C ha-1

LABN Metabolic litter pool N kg N ha-1

LMWC Low molecular weight pool C kg C ha-1

LMWN Low molecular weight pool N kg N ha-1

MICC Microbial biomass pool C kg C ha-1

MICN Microbial biomass pool N kg N ha-1

MAOC Mineral associated C kg C ha-1

MAON Mineral associated N kg N ha-1

AggSTRC Structural litter pool C protected in aggregates kg C ha-1

AggLABC Metabolic litter pool C protected in aggregates kg C ha-1

AggLABN Metabolic litter pool N protected in aggregates kg N ha-1

AggMAOC Mineral associated C protected in aggregates kg C ha-1

AggMAON Mineral associated N protected in aggregates kg N ha-1

+For a defined depth interval (here 0 - 15 cm).

molecules that are small enough to be incorporated by the microbial biomass (MICC&N). The production of extracellular

enzymes consumes energy, which is indirectly accounted for by a pool-dependent carbon use efficiency (CUE), leading to the

respiration of CO2 in the amount of (1-CUE) during the transition from any litter pool to LMWC&N. When the MICC&N pool140

consumes LMWC&N, a portion of the consumed carbon is respired as growth respiration, the rest is used for anabolism. The

amount of growth respiration of MICC&N depends on a variable stoichiometric CUE, which is a function of the C/N ratio of

LMWC&N. A fraction of MICC&N dies each time step and microbes also have a maintenance respiration. Part of it (the cell

walls) are attached to minerals creating mineral associated carbon and nitrogen (MAOC&N), the rest (cell internal content)

is transferred back into the LMWC&N pool. Direct adsorption of LMWC&N to MAOC&N is also possible. Carbon and nitrogen145

from the primary constituents (i.e., LABC&N, STRC, MAOC&N) get protected by integration into aggregates as a byproduct of

microbial growth, i.e., the amount of aggregate formation is a function of microbial growth. There is also a physicochemical

aggregate formation, which for simplicity is assumed to be constant in this version of SAMM. While inside the aggregates

there is no decomposition, a concept proposed by Luo et al. (2017) as a way to reduce the number of parameters in aggregation

models. The carbon of all pools outside of aggregates is subject to decomposition by MICC&N following reverse Michaelis-150

Menten kinetics, a good approximation of enzymatic depolimerization (Abramoff et al., 2022; Tang and Riley, 2019). Thus,

the speed of decomposition depends on the amount of substrate and the amount of MICC&N. Aggregate disruption is simulated

as a first order kinetic process.
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Table 4. Overview of all SAMM model parameters (top), further computed helper variables (middle) and external model drivers and site

conditions needed (bottom). The calibrated values are the best parameter set from the independent Bayesian calibration for the SAMM model

and the recalibrated non aggregate model (SAMMnoAgg).

Variable Description Units Calibrated SAMM1 SAMMnoAgg2

kSTR Turnover rate of structural litter pool g g-1 d-1 Yes 0.0024 0.0028

kLAB Turnover rate of metabolic litter pool g g-1 d-1 Yes 0.0225 0.0551

kMIC Death rate of microbial biomass pool g g-1 d-1 Yes 0.0046 0.0098

kMAO Turnover rate of mineral associated carbon pool g g-1 d-1 Yes 0.00044 0.000057

µmax Maximum uptake rate of LMW by microbes g g-1 d-1 Yes 0.238 0.367

kAgg Turnover rate of aggregate pools g g-1 d-1 Yes 0.0316 1x

KMMIC Half-saturation constant of the microbial activity factor - Yes 35.5 1.0

mMIC Maintenance respiration of microbes g g-1 d-1 Yes 0.00035 0.0013

KLMWMAO Specific adsorption rate of LMW to MAOM g g-1 d-1 Yes 0.043 0.031

cSORP Maximum sorption capacity coefficient g g-1 No* 0.83 0.83

CUESTR Carbon use efficiency of structural litter pool g g-1 Yes 0.65 0.52

CUELAB Carbon use efficiency of metabolic litter pool g g-1 Yes 0.54 1.00

CUELMW Maximum carbon use efficiency of low molecular weight pool g g-1 No+ 0.6 0.6

CNmin(MIC) Minimum C/N ratio of microbial biomass pool g g-1 Yes 5.01 6.12

CNmax(MIC) Maximum C/N ratio of microbial biomass pool g g-1 Yes 10.1 9.49

fMICMAOM Fraction of MIC directed to MAOM upon microbial death g g-1 Yes 0.24 0.26

pcSTRLAB Protection capacity of STRC for LABC&N g g-1 Yes 2.47 3.98

aggfactSTRC Protection of STRC inside aggregates per microbial growth g g-1 Yes 0.71 0x

aggfactMAOC Protection of MAOC inside aggregates per microbial growth g g-1 Yes 2.70 0x

NonMicAgg Physicochemical aggregate formation kg MICCeq ha-1 d-1 Yes 31.0 0x

DailyLitterC Daily root carbon inputs (from unavoidable plant growth) kg C ha-1 d-1 Yes 3.07 3.09

DailyLitterC/N C/N ratio of daily root inputs g g-1 Yes 159.3 47.0

DailyLitterSTRC(%) Percent of strucural litter in daily root inputs g g-1 Yes 0.13 0.24

Computed helper variables (rate modifiers etc.)

CUECN(LMW) Dynamic C/N based carbon use efficiency of LMWC pool g g-1 - - -

st Temperature scalar - - - -

sw Water scalar - - - -

pLAB Fraction of metabolic litter protected by structural litter g g-1 - - -

aMIC Michaelis-Menten microbial activity factor - - - -

MAOCmax Maximum adsorption capacity to MAOC t ha-1 - - -

wleach Share of soil water leached (HYDRUS calculation) g g-1 d-1 - - -

Site condition and other model driving variables

depth Soil depth to be simulated m - - -

BD Bulk density kg m-3 - - -

%SiCl Silt and Clay fraction % - - -

1Model version including soil aggregates; 2Recalibrated model version without soil aggregates;*from Abramoff et al. (2022); +established maximum

(Sinsabaugh et al., 2013; Manzoni et al., 2012); x set to 0/1 in model version without soil aggregates to deactivate them.
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2.4 SAMM setup and Bayesian calibration

For the technical implementation of SAMM version 1.0, we used the R programming language (R Core Team, 2020). The155

details are described in appendix A2. As SAMM is a new model, most model parameters needed to be calibrated. In addition

to typical SOM model parameters representing pool turnover, SAMM contains some unique parameters, such as the protection

capacity that STRC exhibits on LABC&N, the rate of aggregate formation per microbial growth, and the rate of physicochemical

aggregate formation (Table 4). Also, the amount and composition of carbon and nitrogen entering the soil via plant roots were

calibrated parameters. These were necessary because, despite best attempts to keep the experiment completely fallow, it was160

not possible to completely eliminate plant growth in the plots. Two model parameters were fixed based on literature. The first

uncalibrated parameter was the maximum CUE for LMWC, which was fixed to 0.6 (Sinsabaugh et al., 2013; Manzoni et al.,

2012). The second uncalibrated parameter was cSORP, the maximum sorption capacity of the fine fraction, which was taken

from Abramoff et al. (2022).

To test our hypotheses about the importance of aggregates in carbon stabilization and the need to simulate this process, we165

also created a SAMM version without aggregate formation (SAMMnoAgg). By setting the turnover of aggregates (kAgg) to 1

d-1 and the aggregate formation parameters to 0, all aggregate protection was effectively removed from the model. We assessed

the difference in simulated stabilized SOC in SAMM and SAMMnoAGG, using the parameters calibrated for SAMM, to gain

insights into the importance of aggregate protection for SOC stabilization. SAMMnoAGG was further recalibrated to test our

hypothesis of the need to simulate aggregates to represent SOM dynamics. Note that measurements of carbon in aggregates170

and in the silt and clay fraction from 2019 were not used in recalibrating SAMMnoAGG.

As a starting point for model parameters, an initial model calibration was performed using a genetic algorithm (GA package

of R; Scrucca, 2013). To explore the uncertainty associated with the two different versions (i.e., SAMM and SAMMnoAgg),

this initial calibration was followed by a Bayesian calibration applying the sampling importance resampling (SIR) method. This

method was used by Gurung et al. (2020) to calibrate the SOM module of DayCent and is described in detail in their article.175

Briefly, the SIR method uses Bayes‘ theorem to derive the posterior distribution of model parameters and model outputs based

on an assumed prior and available data. We assumed normally distributed broad priors centered around the initial calibrated

model parameters, i.e., the mean parameter values from SAMM and SAMMnoAgg to have the same priors for both (except

for the values only calibrated in the aggregate version). In the next step of SIR, the posteriors are derived by filtering the

prior using importance weights to sample individual parameter sets from the prior. The importance weights are proportional180

to the simulation likelihoods (i.e., of observing the data, given the model), which are computed using the data, the simulated

values and the variance-covariance matrices of data (Wallach et al., 2019). As is common practice, we assumed that the

covariances were zero, hence we only used the variances for each type of measurement (taking the median variance computed

for each type of data from the three experimental repetitions). Then, by dividing the likelihood of each simulation by the mean

likelihood of all simulations, standardized importance weights were computed. The prior parameter set was then resampled185

without replacement and the importance weights taken as sampling probability. Overall, a total of 200.000 simulations were

performed, of which 200 parameter sets were drawn in the resampling.

9

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



2.5 Model evaluation

The following standard evaluation statistics were used for model evaluation, as defined by Loague and Green (1991):

MSEy =
1
n

n∑

z=1

(Oyz −Pyz)2 (1)190

RMSEy =
√

MSEy (2)

EFy = 1−
∑n

z=1(Oyz −Pyz)2∑n
z=1(Oyz − Ōy)2

(3)

Here, MSEy is the mean-squared-error and RMSE is its root. EFy is Nash-Sutcliffe modelling efficiency, Oyz stands for the

measured value of the z-th measurement of the y-th type of measurement. Further, Ōy is the mean of measured values of the

y-th type of measurement and Pyz is the model predicted value corresponding to Oyz. As suggested by Gauch et al. (2003) to195

gain a better insight into the nature of model errors, we further divided MSEy into the squared bias (SB), nonunity slope (NU)

and lack of correlation (LC). We expressed them in relative terms, by dividing them by the MSEy:

SBy(%) =
(Ōy − P̄y)2

MSEy
∗ 100 (4)

NUy(%) =
(1− by)2 ∗ (

∑n
z=1(O

2
yz)

n )
MSEy

∗ 100 (5)

LCy(%) =
(1− ry)2 ∗ (

∑n
z=1(P

2
yz)

n )
MSEy

∗ 100 (6)200

Here, P̄ y is the mean predicted value of the y-th measurement type, b the slope of the regression of P on O. Finally, r is

the correlation coefficient between O and P. The relative LC, SB and NU provide information if the model errors are mostly

random (high LC) or whether there is a systematic bias (high SB). A high relative NU indicates that the model sensitivity

is wrong (either too low or too high). The SB can be interpreted as the intercept of a regression between predictions and

observations, whereas the NU is the slope of this regression (Gauch et al., 2003). Finally, the Akaike information criterion205

(AIC) was computed to compare different model versions:

AIC = 2k− 2ln(L̄) (7)

Here, k is the number of model parameters that were estimated (23 for SAMM and 19 SAMMnoAgg) and L̄ is the likelihood.
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3 Results

Because SAMM is a new model, we first describe its behaviour and illustrate the development of pools (Fig. 2) using the210

treatment with the highest microbial activity, the groundnut stover treatment. It is important to note that our results cover a time

period where the model has not yet reached a new steady state. Second, the performance of the calibrated model is evaluated

against the measured data and posterior parameter distributions are discussed. Third, we test the importance of aggregate

protection in SAMM, by assessing how much the simulation performance decreases for different types of measurements when

aggregate formation is not simulated (SAMMnoAGG). Finally, we try to assess to which extent simulating aggregate formation215

is necessary to correctly simulate microbial biomass and SOC, by recalibrating the SAMMnoAGG version and comparing it

to SAMM.

3.1 SAMM model behavior: the connection between microbes and aggregate formation

After the groundnut stover application in the year 2001, a rapid depolymerization of the part of LABC that is not protected by

STRC is simulated (Fig. 2). The depolymerized material is transferred to the LMWC pool. This increase in LMWC feeds the220

growth of MICC, which almost triples in biomass. The MICC growth slows down once the unprotected part of LABC is fully

decomposed. Yet, the peak of LMWC availability is within one to two weeks after litter addition, while the peak of MICC is about

one to two months after litter addition and maximum LMWC availability. The increase of microbial growth is accompanied by

an increase in the formation of new aggregate-protected carbon. Unprotected MAOC and litter get thereby protected in the

aggregates, increasing the amount of aggregate protected MAOC and litter by about 30%. Because the formation of aggregates225

is linked to microbial growth, the peak of aggregate protected pools (MAOC, LABC and STRC) occurs simultaneously with

the peak of MICC. Thereafter, the amount of aggregate carbon starts to reduce again, which becomes visible in the increase

of unprotected MAOC, LABC and STRC. During the dry season about 250 days after residue application, another increase

in aggregate formation occurs, this time driven by the physicochemical aggregate formation that continues while aggregate

turnover is reduced due to limiting water availability. After a full year, just prior to the next addition of litter, most of the newly230

added litter of the year before is decomposed and increased moisture availability increases aggregate disruption again. Yet, a

higher amount of MAOC compared to the beginning of the year, and a slightly higher amount of aggregate protected MAOC,

STRC and LABC leads to an increased amount of SOC compared to the previous year.

3.2 Evaluating SAMM against measured data

Overall, the SAMM model was capable of simulating the different types of available measurements, as indicated by positive235

modelling efficiencies for all of them (Table 5a; soil C/N was the only exception). The best representation of measured values by

the model was that of residue-C in litterbags (Fig. 3; EF 0.80) and interestingly, the measured groundnut stover decomposition

was so fast (>50% in the first week) that the model could not capture it. Also the measured values of topsoil SOC were

represented well by SAMM (Fig. 4 and 5; EF 0.68), with a tendency of the model to overestimate SOC in the rice straw

treatment. Further, microbial nitrogen (MICN; EF 0.24) and carbon in the free silt and clay fraction (MOAC; EF 0.24) were240
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Figure 2. Exemplary SAMM model behavior amd pooly carbon dynamics of the groundnut treatment in the year 2001 to 2002 starting a day

before the addition of litter. The top figure displays all carbon pools inside and outside of aggregates, while the bottom figure displays the

soil water content (model driver, simulated by HYDRUS 1D). In the two figure, aggregate protected pools (Agg) are represented by a dashed

line, decomposable (Free) pools by a solid line. STRC, structural litter; LABC, labile litter; LMWC, low molecular weight; MICC, microbial;

MAOC, mineral associated.

simulated with acceptable accuracy (Fig. 5 and 6). The temporal trend of microbial nitrogen was also captured well for all

litter treatments with the exception of the control, in which there was almost no simulated microbial growth response over the

year (Fig. 6). For free (MOAC, the differences between treatments were captured, and the temporal dynamic was low, both in

measured and modelled values. The temporal variation of free MAOC was minimal both in measurements and simulated values

and the model could overall capture the treatment differences (EF 0.24). It could also very well capture the temporal dynamics245

of aggregate C in the groundnut, rice straw and tamarind treatments, as well as the absence of major temporal dynamics in the

other two treatments (Fig. 6; EF 0.60). Despite the dynamic CUE function of SAMM, the SOC content of the high C/N ratio

residue treatments (rice straw most strongly and dipterocarp to some extent) tended to be overestimated while tamarind tended

to be underestimated, leading to poor model performance (EF -0.58; Fig. 5).
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Figure 3. Simulation of incubated litterbag residue-C dynamics from different litter materials (burried at 15 cm depth). Dots with error

bars indicate the mean and 95% credibility interval of observations. The black line and grey band indicate the best simulation and the 95%

credibility interval of the Bayesian calibration posterior, respectively.
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Figure 4. Measured and simulated development of SOC stocks in the top 15 cm of soil from all residue addition treatments. Displayed are

the measured versus modelled gain in SOC stocks since the onset of the experiment (left), with grey bars indicating 95% credibility interval.

Additionally, results for simulated versus measured SOC over time for different residues (right). Dots with error bars indicate the mean and

95% credibility interval of observations and simulations. The black line and grey band indicate the best simulation and the 95% credibility

interval of the Bayesian calibration posterior, respectively.
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Figure 5. Simulated versus measured values of aggregate carbon, litter carbon, mineral associated organic carbon (MAOC), microbial

biomass nitrogen, soil organic carbon (SOC) and soil C/N ratio. The grey bars indicate the 95% credibility interval. The black line marks the

1 to 1 line, the blue line the regression of simulated on measured values.
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Figure 6. Simulation of microbial nitrogen (MICN) in 2005, 2008 and 2019 (top) and of aggregate protected C (AggC; bottom left) and free

mineral associated C (MAOC; bottom right) of different residues in 2019. Dots with error bars indicate the mean and 95% credibility intervals

of observations. The black line and grey band indicate the best simulation and the 95% credibility intervals of the Bayesian calibrations‘

posterior, respectively.The dashed line indicates the mean free MAOC in the Control in 2019
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3.3 Model behavior when aggregate formation was removed250

Removing the aggregate protection from the calibrated SAMM model to derive SAMMnoAGG, showed that the model as-

signed a high importance to aggregate protection for the process of SOC stabilization. Without aggregate protection, the

simulated SOC of all treatments reduced to about half compared to measured values (Fig. 7; Table 5b). As a result, all litter

addition treatments had approximately the same amount of simulated SOC (excluding litter) in SAMMnoAgg, despite their

difference in C/N ratios, lignins and polyphenols (Fig. 7). Hence, removing aggregate protection led to a significantly reduced255

and now negative modelling efficiency (-3.68) for SOC (Table 5). In addition, the simulation of microbial nitrogen was neg-

atively affected by removing aggregate protection. Because of the absence of aggregate protection of LABC and STRC (i.e.

POM), simulated microbial growth become too high after litter addition. However, it still had a positive modelling efficiency

(reduction of EF to 0.13 from 0.24, initially) and the temporal trend of the strongest microbial growth occurring after litter

addition, was still represented (simulation not shown). In contrast, removing aggregate protection had little effect on the sim-260

ulation of litterbag carbon (EF was 0.79) and the increase in model error was minor because litterbag carbon is not protected

by aggregates. Overll, the dipterocarp treatment was simulated to have the highest carbon storage of litter and SOC combined

without aggregate protection. This was mainly because not all dipterocarp litter decomposed within one year.

3.4 Comparison of SAMM separately calibrated with and without the aggregate protection mechanism

When the SAMM model without aggregate formation (SAMMnoAgg) was recalibrated, the poor model performance was265

largely resolved (Table 5c). For example, the model performance for SOC were the same for the two models (EF of 0.68). Yet,

some notable difference between SAMM and recalibrated SAMMnoAgg remained for the microbial nitrogen and litter carbon.

Their dynamics were simulated slightly worse in recalibrated SAMMnoAGG compared to SAMM (EF of 0.80 versus 0.75

for litterbag C and EF of 0.24 versus 0.18 for microbial nitrogen; Table 5c). Consequently, the overall model AIC, consider-

ing, for comparability, only litterbag carbon, microbial nitrogen and SOC, was slightly lower for SAMM versus recalibrated270

SAMMnoAgg (5351 versus 5554).

When comparing the posterior distributions of both model versions, it became evident that the recalibration of SAMMnoAgg

counteracted the loss of aggregate protection by lowering the turnover turnover of MAOM by almost an order of magnitude

(about 85%; Fig. A1). This indicates that the representation of aggregate protection on SOC was changed from explicit to

implicit. Also, the recalibrated SAMMnoAgg version had a lower half saturation constant for direct absorption of LMWC&N to275

MAOM in tendency, allowing for a faster direct absorption (Table 4). Removing aggregate protection did, however, not affect

most other model parameters, which were similar in their posterior distributions between SAMM and recalibrated SAMM-

noAgg . Interestingly, the 95% posterior credibility intervals were smaller for SAMM than recalibrated SAMMnoAgg and at

the same time covered a larger proportion of measurements of microbial nitrogen and SOC, indicating that they were more

accurate for the aggregate version of SAMM.280
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Figure 7. Results for the simulation of carbon stocks with the model version including aggregates (SAMM, left) and when aggregate

protection is removed without recalibration (SAMMnoAgg, right). The solid line indicates all carbon including litter, the dynamic dashed

line indicates the combined soil carbon stocks stored in MAOC, AggC and MICC. The horizontal dashed thin line indicates the mean measured

SOC in the control. Dots with error bars indicate the mean and 95% credibility intervals of observations (excluding litter).

3.5 Analysis of model parameter behavior

In both calibrated model versions, SAMM showed a clear distinction between the turnover of different carbon pools (Fig.

A1). The highest likelihood turnover rates of MAOM, structural and metabolic litter differed by a factor of five to ten (e.g.,

around 0.0004, 0.002 and 0.02 for SAMM; Table 4). The breakdown of aggregates, with around 3% per day, as well as the

physicochemical aggregate formation, equivalent to a MICC growth of 31 kg ha-1 per day, and were high in SAMM. This285

indicated a highly dynamic aggerregate fraction and a high importance assigned to physicochemical aggregate formation. At

the same time, few strong parameter correlations of r > 0.4 were present in the posterior parameters set for the SAMM (Fig.

A2) and the parameter correlations in recalibrated SAMMnoAgg were of similar magnitude (Fig. A3). First, the structural

litter turnover and the protection capacity of structural for labile litter were correlated (r = 0.48). Then, there was a negative

correlation between aggregate protection of POM by microbial growth, and the rate of physicochemical aggregate formation290
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Table 5. Model evaluation statistics of a) the default SAMM model (with aggregate protection), b) SAMM model without aggregate protec-

tion (SAMMnoAgg), and c) recalibrated SAMM model without aggregate protection (AMMnoAgg). RMSE and the width 95% credibility

intervals (w95% CI) are in kg ha-1. Evaluation statistics are from the Bayesian calibration. EF, Nash-Sutcliffe modelling efficiency; (R)MSE,

(root) mean squared error; LC, lack of correlation; NU, nonunity slope; SB, squared bias; AIC, Akaike information criterion.

dataset EF RMSE R2 LC NU SB MSE AIC % in 95%CI w95% CIa

a) Default SAMM model 5351b

Litterbag C 0.80 537.3 0.82 87 1 11 288685 869 64 926

Microbial N 0.24 22.8 0.42 76 22 2 518 2041 53 36

SOC 0.68 788.4 0.77 73 5 22 621636 2534 62 1381

( Aggregate C 0.60 302.6 0.61 98 0 2 91548 521 93 1265 )

( Free MAO C 0.24 356.4 0.60 53 46 1 126997 664 93 1188 )

( Soil C/Nc -0.58 6.2 0.04 61 35 4 38 1201 61 12 )

b) Removing aggregate protection/formation (SAMMnoAgg) 11799b

Litterbag C 0.79 540.4 0.81 89 1 10 291993 896

Microbial N 0.13 24.4 0.38 70 22 8 594 2183

SOC -3.68 2922.3 0.62 8 2 90 8539715 8855

c) Recalibrated SAMMnoAgg 5554b

Litterbag C 0.75 600.4 0.77 89 3 8 360447 993 64 953

Microbial N 0.18 23.7 0.39 75 25 0 563 2112 51 38

SOC 0.68 792.3 0.75 77 19 4 627769 2540 55 1409

( Soil C/Nc -133262 1791 0.00 0 99 1 3211117 Inf 65 41 )

a95% witdh of the credibility interval from the Bayesian calibration posterior; bOverall model AIC. For comparability of model versions this was computed without Aggregate and

MAO C and soil C/N. cNot used in calibration.

(r = -0.43). Also, the absorption speed of LMWC to MOAC and the turnover of MAOM were correlated (r = 0.40). Finally, the

turnover of MAOM was correlated with the microbial death (r = 0.42).

4 Discussion

4.1 SAMM as a state-of-the-art soil model with measurable pools

With SAMM, we present a state-of-the-art microbe-driven coupled C/N model, suitable for field-scale application. It simulates295

the effect of residue stoichiometry on microbial CUE (Sinsabaugh et al., 2016) and the role of microbial growth on aggregate

formation (Laub et al., 2022; Bucka et al., 2021). It contains measurable pools, is well able to simulate aggregate formation

resulting from microbial growth, maintains carbon and nitrogen identity (Wang et al., 2022) inside aggregates, and it can easily

be converted into a lower complexity model without aggregates (i.e., SAMMnoAgg). The model evaluation statistics (Table
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5) showed that SAMM, with its representation of carbon and nitrogen in measurable pools (including litter as measurable300

structural and metabolic pools), is capable of capturing the relevant processes in a long-term litter addition experiment in a

tropical sandy soil and handle the complexity of microbial driven aggregate formation for different litter chemical compositions.

As was demonstrated, SAMM captures the differences between treatments, the temporal development of microbial biomass,

and the connection between microbial growth and aggregate formation. To our knowledge, apart from an early attempt to

model in-situ aggregate stability without considering aggregate stored carbon (Abiven et al., 2008), SAMM is the first model305

that demonstrated this capability in a field experiment.

That the parameter correlations were low (maximum r = 0.48) compared to calibration exercises with established models

such as DayCent (Necpálová et al., 2015, showed parameter correlations between turnover times of different pools of up to

r = 0.9), Daisy (Laub et al., 2020, had parameter correlations between turnover of fast and slow pools of up to r = 0.8) or

ICBM (Ahrens et al., 2014, had correlations between pools up to r = 0.7), shows that the model structure of SAMM with310

measurable pools has a clear advantage compared to models with theory-based conceptual pools. Furthermore, that all pools

can be measured facilitates calibration, as was recently shown at global scale with Millennial compared to Century (Abramoff

et al., 2022). Yet, the data needed to constrain models with measurable pools at global scale may not be readily available. For

example, we are not aware of other field experiments that include different litter types and follow microbial biomass, SOC and

aggregate carbon simultaneously over time. Hence, this version of SAMM was only tested at one site, and it remains to be315

evaluated for larger spatial scales and with a range of experiments with different quality organic amendments.

We posit that maintaining the carbon identity inside aggregates represents the next logical step for aggregate models, but

are aware of the fact that the marginally better performance of SAMM vs recalibrated SAMMnoAgg only provides initial

evidence. Hence, we invite others to test the concept against further data sets with SAMM or with their own model. By

maintaining the carbon identity, aggregate models can help answer important scientific questions, such as how important320

the stabilization of carbon in aggregates is for the global carbon cycle. As shown by disabling aggregates in SAMMnoAgg,

SAMM can also provide novel insights into the relative importance of different processes, such as the importance of aggregate

protection for carbon stabilization versus protection by attachment to minerals (Angst et al., 2021). In this calibration exercise,

the model estimation was that only half of the carbon is protected as MAOC and that about half of the carbon is protected inside

aggregates (Fig 7). However, because we had no measurements of POM versus MOAM in aggregates, we cannot evalute this325

by measurements, and it is based on the assumption of complete protection of POM and MAOM inside aggregates. Another

interesting process insight was that physicochemical aggregate formation was estimated by SAMM to be of similar importance

as microbial aggregate formation and that both processes probably happen in parallel, especially in tropical soils as was tested

here. Yet, it is clear that our data did not provide enough information to clearly distinguish between both processes, which can

be seen by the wide posterior credibility intervals of physicochemical aggregate formation. Despite this, the fact that SAMM330

could simulate the observed increase of aggregate C in the dry season towards the end of 2019 (Fig 6) indicates that this process

needs to be included.
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4.2 Is aggregate protection necessary to better simulate microbial and SOC dynamics?

It has been postulated that because a substantial portion of soil carbon is located within soil aggregates, soil aggregation needs

to be included into models to accurately capture reality (Segoli et al., 2013; Abramoff et al., 2018). In this paper we followed335

this hypothesis and explicitly tested it by comparing the performance of SAMM with and without aggregate formation on

litter carbon, microbial nitrogen and SOC simulation across the different treatments (Table 5). Since clear connections between

microbial growth and aggregate formation have been demonstrated (Laub et al., 2022; Bucka et al., 2021; Bossuyt et al., 2001;

Denef et al., 2001), including aggregate formation in SAMM is a more realistic process representation. In alignment with

our second hypothesis, removing the soil aggregate formation did, even after recalibration of SAMMnoAgg, reduce model340

performance of the non-aggregated pools, albeit not strongly. This suggests that the simulation of aggregate formation and

disruption can be useful to understand overall SOC dynamics but that SAMMnoAgg was able to artificially compensate for

the missing mechanism of aggregate protection (which, as shown by crushed aggregates incubation, e.g., Kpemoua et al.,

2022; Puttaso et al., 2011; Six et al., 2002, clearly exists) by reducing turnover of MAOM. What also speaks for this effect

are the smaller posterior credibility intervals of SOC, microbial nitrogen and litter carbon of the aggregate version of SAMM345

compared to recalibrated SAMMnoAgg (Table 5) and that they still covered a higher percentage of observations.

The fact that the recalibrated SAMMnoAgg model still seems to implicitly account for aggregate protection of SOC by

reducing the turnover of MAOM (Fig. A1), could suggest that aggregate formation does not need to be included into models

to accurately capture differences in SOC formation at large scales. Despite being a better process representation, limited data

availability of aggregate- and microbial dynamics may make a non-aggregate model more feasible. However, for a mechanistic350

understanding, i.e., using the model as a research tool to test hypotheses, it is arguably better to include aggregate formation

and carbon protection in aggregates. In contrast, simulating aggregate protection may not be necessary to assess carbon seques-

tration potential from different management strategies. One the one hand, many processes that are relevant for soil formation

and SOC stabilization and happen inside the aggregates, may be irrelevant at the field scale (Yudina and Kuzyakov, 2019) if

they are implicitly included by adjusting other model parameters. On the other hand, we only had data to test SAMM with one355

long-term experiment in one single soil type. Model parsimony and equifinality often depend on how much data is available

(Marschmann et al., 2019). Hence, it is possible that across sites, the interaction of factors such as differences in texture, litter

composition and different climates on SOC protection may be best represented by a model that includes the mechanism of

aggregate protection. For example, the improvement of the model performance of Millenial over Century also only became ev-

ident when looking at the global distribution of soil carbon (i.e., only at high latitudes is Millenial better; Abramoff et al., 2022).360

Clearly, a range of field experiments that measured the temporal dynamics of aggregates together with microbial biomass and

SOC would be needed to better test and hence understand the relevance of aggregate formation to simulate SOC dynamics

across scales.
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4.3 Potential limitations and open questions

An interesting observation is that the model assumes a rather high amount of daily carbon input through roots (about 3 kg C365

per ha and day for both SAMM and SAMMnoAgg) additional to the litter that is added annually through the treatment. Yet,

this additional material is expected to be of a rather high C/N ratio. The parameter of daily carbon input was included for two

reasons: 1) we observed weed growth in the plots, despite regular weeding, and hence assuming no additional inputs did not

seem reasonable and 2) model runs with carbon inputs only from litter addition could not maintain any microbial activity in

the control, further corroborating the validity for these inputs (simulations not shown). The fact that the calibration assumed370

rather high root inputs is potentially due to the absence of more complex microbial traits in SAMM, such as dormancy, which

some other models include (Wang et al., 2015; Blagodatsky and Richter, 1998). Further, CUE is only a function of litter C/N

and not of microbial community. An earlier study showed that the different treatments led to different microbial communities

(Kamolmanit et al., 2013), and communities of minimal inputs usually became more efficient at recycling carbon and nitrogen

(Dijkstra et al., 2022). The higher quality daily root carbon inputs in SAMMnoAgg compared to SAMM in that regard could be375

interpreted as aggregate formation within a model helping to simulate microbial biomass patterns. In fact, aggregate formation,

linked to both microbial growth and physicochemical formation, was very fast. Also turnover rates were high (almost as fast as

metabolic litter decomposition). This is in alignment with a recent model of aggregation at the micro scale (Zech et al., 2022).

Yet, it is difficult to distinguish between the different pathways of aggregate formation. Finally, the question is to what extent

POM and MAOM are effectively protected inside aggregates. In this version of SAMM, we simulated the most extreme case of380

a complete protection of carbon inside aggregates, which in future versions should most likely be replaced by a decomposition

reduction factor because we know that aggregates do not completely protect carbon. Yet, it will be very difficult to measure

carbon turnover inside aggregates and hence to constrain such a reduction factor. Finally, a next logical step would be to include

multiple soil layers into SAMM, provided a suitable water leaching function is included. The LMWC/N leaching to deeper soils

layers, feeding aggregate formation there should in theory help to explain SOC depth gradients.385

5 Conclusions

We presented and evaluated the SAMM model, a state-of-the-art research model with measurable pools that can simulate the

formation and turnover of aggregates under different organic amendment treatments. Overall good model evaluation statistics

(EF 0.2 to 0.8, depending on observation type) and low parameter correlations (r < 0.48) suggested that the current structure of

SAMM is valuable, clearly identifiable in calibration and hence parsimonious. The results suggested that aggregate protection390

plays a crucial role for SOC stabilization, i.e., the model results suggested that about 50% of soil carbon was protected in

aggregates, even in the sandy soil of the studied long-term experiment. While for basic research, aggregate formation should

be included into models, our results indicate that with model recalibration, the absence of aggregate protection in SOM models

is partly compensated by reducing turnover of the MAOM pool. Hence, if the sole goal is to represent SOM, microbial nitrogen

and litter carbon well, aggregate formation may be omitted in SOM models, especially if insufficient data on aggregates exists.395

It is, however, possible that this compensation within our study was only possible because the data originated from a single
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site. For further evidence, studies over a range of soils and climates would be needed, which calls for more long-term studies

to include repeated measurements of aggregate and microbe dynamics.

Code and data availability. The full dataset used for this study, as well as the R code of SAMM version 1.0 is provided on Github via Zenodo

(https://zenodo.org/record/8086828). It may be adapted for further uses, or integrated into full ecosystem models that allow for interchanging400

of the SOM part of the model.)

Appendix A: Appendix

A1 Detailed description of SAMM pools

A1.1 Structural litter pool - STRC

The structural litter pool (STRC) consists of lignin and polyphenols, the parts of litter which stabilize the cell wall and are405

processed by microbes with a low CUE. STRC is assumed to have a carbon content of 65%, representing a lignin-typical C/H/O

ratio of 20/23/7 (Gargulak et al., 2015). Through this definition, the structural litter pool is measurable as acid detergent lignin

(Van Soest and Wine, 1968) and polyphenols (Anderson and Ingram, 1993), and it does not contain nitrogen. However, cell

walls are usually a mix of structural components with celluloses and hemicelluloses, and those do not decompose as easily as

the cell interior. This is accounted for by a simulated protection capacity of structural litter pool in the metabolic litter pool,410

allowing that hemicelluloses and celluloses are protected by the presence of structural litter and their decomposition is limited

by the rate of structural litter depolimerization.

A1.2 Metabolic litter pool – LABC and LABN

The metabolic litter pool contains all parts of the litter which are not part of STRC. This includes cellulose, hemicellulose,

intracellular carbon and nitrogen (Campbell et al., 2016). All these components are considered to be easily available to mi-415

crobial uptake if not protected by STRC and due to lower depolimerization costs, microbes usually process them with a higher

CUE. To distinguish between cell wall components and cell interior, the structural litter asserts a protective capacity on a part

of the metabolic litter. This mimics that cell wall cellulose and hemicellulose are protected by cell wall lignin. The amount of

protected metabolic carbon (ProtLABC&N) is not a real pool but a linear function of carbon in the structural pool. Thus, the

cell wall components are protected by the structural components by a fixed ratio. Protected metabolic carbon is thus becoming420

accessible to microbes at the same rate at which the structural pool is decomposed.

A1.3 Low molecular weight carbon and nitrogen pools - LMWC and LMWN

The low molecular weight pool contains depolymerized carbon and nitrogen originating from all other pools and easily enters

the soil solution. All decomposed residues end up in this pool. The LMWC&N pool can be measured by extraction using a K2SO4
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solution. Microbes, similar to other established models, such as MEND (Wang et al., 2013) and Millenial (Abramoff et al.,425

2018), can consume the carbon and nitrogen in the LMWC&N pool. When consumed by microbes, LMWC is subject to a variable

CUE. This variable CUE is a function of the C/N ratio of LMWC&N, thus accounting for a C/N dependent growth respiration

and spilling (Sinsabaugh et al., 2013). We used the linear function of C/N dependent CUE (Fig. A5) based on Campbell et al.

(2016, equation 16B), which they based on Sinsabaugh et al. (2013). Additionally, the LMWC&N pool is the only pool which

can be leached. Finally, direct adsorption of LMWC and LMWN to particles from the silt and clay fraction is possible. This430

was simulated using a Langmuir-type relationship such as in Wang et al. (2013), with values for this relationship estimated by

Abramoff et al. (2022).

A1.4 Microbial pools - MICC and MICN

The MICC&N pool comprises the living soil microbial biomass that actively influences the decomposition of all other pools.

MICC&N can be measured by various techniques, such as substrate induced respiration (Kandeler et al., 1999), or the more435

common chloroform fumigation extraction (Vance et al., 1987), but all of these are subject to considerable uncertainty. In

SAMM, the MICC&N pool actively contributes to the decomposition of other pools through a microbial activity factor (aMIC).

As the uptake of LMWC and LMWN by microbes only depends on the availability and on aMIC, the C/N ratio of microbes is not

fixed. We included indirect limits to microbial C/N through a C/N-dependent CUE and a direct limit through immobilization

of nitrogen if microbial C/N surpasses an upper boundary. A spilling of nitrogen happens for very low C/N ratios at a lower440

boundary: If the C/N ratio of microbes becomes smaller than a minimum C/N, the excess nitrogen is released by the microbes to

avoid unrealistically low C/N ratios of the microbes (maximally half of excess nitrogen per day). Both maximum and minimum

microbial C/N are calibrated parameters. The microbial pool is subject to maintenance respiration and microbial death. The

carbon and nitrogen of dead microbes are split between the LMWC&N and the mineral associated pool, representing soluble cell

constituents and cell wall structures, which are assumed to become directly attached to minerals (Krause et al., 2019).445

A1.5 Mineral associated organic carbon and nitrogen pools – MAOC and MAON

This pool consists of all carbon and nitrogen which is attached to silt and clay. It has been long suggested that this is the form

of carbon and nitrogen with a slower average turnover than total SOM (Christensen, 2001) with a residence time of decades to

millenia (Kögel-Knabner et al., 2008), even in sandy soils in the tropics (e.g. Puttaso et al., 2013). There are two ways in which

carbon and nitrogen can enter the MAOC&N pools: first, microbial cell walls which attach to minerals upon microbial death and450

second, adsorption of LMWC&N. As in many models, we allow for an attachment of SOM to MAOC&N in the form of microbial

residues that is only limited by a partitioning constant. The adsorption of LMWC&N to MAOC&N on the other hand follows a

Langmuir-type relationship, where the limit is determined by the amount of silt and clay in a soil (Abramoff et al., 2022). This

follows recent studies that demonstrated that N-rich microbial products preferentially attach to new mineral surfaces (Kopittke

et al., 2018, 2020), while the direct sorption of LMWC&N depends on the amount of fine particles (Georgiou et al., 2022).455
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A1.6 Aggregate pools – AggC and AggN

To maintain the conceptual carbon identities, the carbon and nitrogen in aggregates does not represent a single pool. Instead, the

aggregates consist of part of the primary constituents STRC, LABC&N and MAOC&N pools, which inside aggregates are protected

from decomposition (AggSTRC, AggLABC&N and AggMAOC&N). The amounts of primary constituent entering the aggregate

protected pools at each time step are a function of microbial growth. Additionally, is also a constant physicochemical aggregate460

formation, representing all abiotic aggregate formation processes. While inside the aggregates there is no decomposition, a

concept proposed by Luo et al. (2017) as a way to reduce the number of parameters in aggregation models.

Each carbon identity is transferred back into the pool that it originated from without any matter losses during aggregate

turnover. This simple concept of protection was first proposed by Luo et al. (2017) to model aggregate protection in a par-

simonious way. In alignment with recent studies which showed that the presence of microbially-produced binding agents465

stabilizes aggregates (Bettermann et al., 2021; Crouzet et al., 2019), the rate of aggregate formation in SAMM is a function of

microbial growth. Furthermore, SAMM allows for physicochemical aggregate formation at a constant rate (currently defined

as daily microbial growth equivalent). Hence it allows for both important processes of aggregate formation; biological and

physicochemical (Six et al., 2002).

A2 Technical implementation of SAMM470

The SAMM model is written in the R programming language (R Core Team, 2020), with the differential equations being

solved using the deSolve package with the rk4 solver (Soetaert et al., 2010). Simulation of carbon and nitrogen dynamics are

performed for the topsoil layer (0 – 15 cm). While all flows of carbon and nitrogen between pools were simulated within the

SAMM model, soil water status, water leaching and temperature are external inputs, needed to drive SAMM. Measurements

of soil temperature were available from a station that is located at close distance to the experiment, and soil water content and475

leaching of water from the soil was simulated with HYDRUS 1D model (Šimůnek et al., 2005) based on climatic data and soil

texture. Measurements done with moisture sensors during 2019 showed that the HYDRUS simulated water content matched

the moisture levels and dynamical pattern of measured water content (Figure A4). To be able to calibrate SAMM to litter

decomposition from a litterbag experiment, we created litterbag carbon and nitrogen pools, which was reinitialized with every

yearly litter addition and did not flow into any other pools. They decomposed at the same turnover as the normal STRC and480

LABC&N litter pools, but could not be protected in aggregates. Note that SOC was defined to correspond all pools combined,

excluding the free STRC and LABC pools.

A3 SAMM model equations and additional model graphs

The following section describes the SAMM model by displaying the changes of pools (Table 3) with each time step. Inputs

into the system are only in the form of litter (ISTRC and ILABC ). The flows between pools are displayed as flows (FX1X2 ) from the485

donor pool (X1) to the receiving pool (X2) as follows:
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Figure A1. Prior and posterior parameter distributions of SAMM and the version without aggregates (SAMMnoAgg) for all model parame-

ters that were calibrated. Priors were the mean of SAMM and SAMMnoAgg from an initial calibration of both model versions with a genetic

algorithm. The width of the distribution was manually chosen and based on the range given by the genetic algorithm. Negative values were

excluded.

dSTRC

dt
= +ISTRC

−FSTRCLMWC
−FSTRCAggSTRC

+ FAggSTRCSTRC
−FSTRCCO2 (A1)

dLABC

dt
= +ILABC

−FLABCLMWC
−FLABCAggLABC

+ FAggLABCLABC
−FLABCCO2 (A2)

dLMWC

dt
= +FSTRCLMWC

+FLABCLMWC
+FMICCLMWC

+FMAOCLMWC
−FLMWCMICC

−FLMWCMAOC
−FLMWCCleach

−FLMWCCO2

(A3)

dMICC

dt
= +FLMWCMICC

−FMICCLMWC
−FMICCMAOC

−FMICCCO2 (A4)490

dMAOC

dt
= +FMICCMAOC

+ FLMWCMAOC
−FMAOCLMWC

−FMAOCAggMAOC
+ FAggMAOCMAOC

(A5)

dAggSTRC

dt
= +FSTRCAggSTRC

−FAggSTRCSTRC
(A6)
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Figure A2. Correlation matrix between all calibrated parameters of the SAMM model. The parameter values are from the posterior distribu-

tion of the Bayesian calibration using the SIR method.
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Figure A3. Correlation matrix between all calibrated parameters of the model without aggregates (SAMMnoAgg). The parameter values are

from the posterior distribution of the Bayesian calibration using the SIR method. Aggregate related parameters were fixed to deactivate the

aggregate formation.
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lated water content by HYDRUS 1D (red dashed line). Sensors were installed in different plots of the long-term Experiment in Khon Kaen.

dAggLABC

dt
= +FLABCAggLABC

−FAggLABCLABC
(A7)

dAggMAOC

dt
= +FMAOCAggMAOC

−FAggMAOCMAOC
(A8)

Respired (CO2) and leached (Cleach) carbon are permanently lost from the system.495

dCO2

dt
= +FSTRCCO2 + FLABCCO2 + FLMWCCO2 + FMICCCO2 (A9)

dCleach

dt
= +FLMWCCleach

(A10)

The flows of carbon between pools, as described above, are computed from the state variables of each pool XC, the protection

capacity for the LABC pool (pLAB), carbon use efficiencies for each pool (CUEX) and their standard turnover rates (kX) or

maximum microbial uptake for LMWC (µmax). Apart from LMWC, the CUEX, are not directly measurable, but represent a proxy500

for depolymerization cost. The decomposition speed of all pools outside aggregates is influenced by a reverse Michaelis-

Menten microbial activity factor (aMIC), a temperature (st) and a moisture rate modifier (sw) influences all pools. Partitioning

coefficients (fX) are further used, where one pool feeds into several pools.

FSTRCLMWC
= STRC ∗CUESTR ∗ kSTR ∗ aMIC ∗ st ∗ sw (A11)
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FSTRCCO2 = STRC ∗ (1−CUESTR) ∗ kSTR ∗ aMIC ∗ st ∗ sw (A12)505

FLABCLMWC
= LABC ∗ (1− pLAB) ∗CUELAB ∗ kLAB ∗ aMIC ∗ st ∗ sw (A13)

FLABCCO2 = LABC ∗ (1− pLAB) ∗ (1−CUELAB) ∗ kLAB ∗ aMIC ∗ st ∗ sw (A14)

FLMWCMICC
= LMWC ∗CUECN(LMW ) ∗µmax ∗ aMIC ∗ st ∗ sw (A15)

FLMWCCO2 = LMWC ∗ (1−CUECN(LMW )) ∗µmax ∗ aMIC ∗ st ∗ sw (A16)

The protection and disruption of aggregates is formulated as follows:510

FSTRCAggSTRC
= min(((FLMWCMICC

+ NonMicAgg) ∗ aggfactSTRC
),STRC) (A17)

FLABCAggLABC
= min(FSTRCAggSTRC

∗ pcSTRLAB
,LABC) (A18)

FMAOCAggMAOC
= min(((FLMWCMICC

+ NonMicAgg) ∗ aggfactMAOC
),MAOC) (A19)

FAggSTRCSTRC
= AggSTRC ∗ kAgg ∗ st ∗ sw (A20)

FAggLABCLABC
= AggLABC ∗ kAgg ∗ st ∗ sw (A21)515

FAggMAOCMOAC
= AggMOAC ∗ kAgg ∗ st ∗ sw (A22)

FMICCCO2 = MICC ∗mmic ∗ st ∗ sw (A23)

FMICCLMWC
= MICC ∗ kmic ∗ (1− fMICMAOM ) ∗ st ∗ sw (A24)

FMICCMAOC
= MICC ∗ kmic ∗ fMICMAOM ∗ st ∗ sw (A25)520

FMAOCLMWC
= MAOC ∗ kMAO ∗ aMIC ∗ st ∗ sw (A26)

29

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Adsorption to MOAC is formulated as follows:

FLMWCMAOC
= LMWC ∗KLMWMAO ∗ MAOCmax −MAOC

MAOCmax

∗ st ∗ sw (A27)

For leaching, which was externally calculated using the HYDRUS 1D model (Šimůnek et al., 2005) it is assumed that

LMWC&N are equally mixed with the soil solution and thus lost at the same rate as leached water.525

FLMWCCleach
= min(wleach ∗LMWC ;0.95 ∗LMWC) (A28)

The reverse Michaelis-Menten microbial activity factor (aMIC), which influences the decomposition speed of most pools, the

ratio of STRC, LABC&N and MAOCC&N protected in aggregates are calculated as follows:

aMIC = max(
MICC

KMMIC
+ MICC

;0.05) (A29)

It was defined as never being lower than 0.05, so that microbes in low organic matter input treatments would not completely530

die off.

The maximum adsorption capacity of a soil depends on the modeled depth, the bulk density (BD) and the amount of silt and

clay particles (SiCl):

MCmax = depth ∗BD ∗%SiCl ∗ cSORP (A30)

The temperature (st) and a moisture scalar (sw) and the dynamic CUE were adopted from established models and not subject535

to further modification (Fig. A5). For the temperature scalar, an exponential equation was chosen as is common in many models

(e.g. Daisy; Hansen et al., 1993). In this context it is important to note that different temperature rate modifiers have a different

temperature at which they set the temperature scalar to 1. Here 20°C was chosen to be representative for the tropical climates.

Many temperate models use a value of 10°C for the scalar (Daisy, RothC), whereas Century and Millenial use a scalar that has

a maximum value of 1 at 40°C but only 0.5 at 20°C. This difference in temperature scalar functions needs to be considered, for540

example, when adopting turnover rates from one model to another. In that case, rates need to be adjusted accordingly (e.g. in

the case of SAMM multiplying them by 2 for models that define the scalar to be 1 at 10°C and use an exponential temperature

function with a Q10 value of 2).

st = 2( t−20
10 ) (A31)

sw = min

(
(0.6+0.4 ∗ pF

1.5
);max(1.625− pF

4
;0);1

)
(A32)545

CUECN(LMW ) = CUELMW ∗min
(
CN(LMW )−1 ∗ 13.4;1

)
(A33)

The flow of nitrogen between the different pools is simulated in a similar way as the carbon pools:
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Figure A5. Graphic representation of the scalar functions which are applied in SAMM to represent the effect of a) temperature b) moisture.

Additionally the function that represents c) the dynamic CUE based on the C/N ratio of LMWC&N is displayed.

dLABN

dt
= +ILABN

−FLABN LMWN
−FLABN AggLABN

+ FAggLABN LABN
(A34)

dLMWN

dt
= +FLABN LMWN

+FMICN LMWN
+FMAON LMWN

−FLMWN MICN
−FLMWN MAON

−FLMWN Nleach
−IMMICN

+OSMICN

(A35)

dMICN

dt
= +FLMWN MICN

−FMICN LMWN
−FMICN MAON

+ IMMICN
−OSMICN

(A36)550

dMAON

dt
= +FMICN MAON

+ FLMWCN MAON
−FMAON LMWN

−FMAON AggMAON
+ FAggMAON MAON

(A37)

dAggLABN

dt
= +FLABCAggLABN

−FAggLABCLABN
(A38)

dAggMAON

dt
= +FMAOCAggMAON

−FAggMAOCMAON
(A39)

dNleach

dt
= +FLMWN Nleach

(A40)
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To calculate the flows of nitrogen, the same scalars, ratios of protected STRC, LABC&N and MAOCC&N in aggregates, and555

turnover rates are used. Additionally, the microbes can immobilize nitrogen (IMMICN ) from LMWN, if their C/N ratio gets too

wide, or spillover nitrogen to the DON pool (OSMICN ), if their C/N ratio gets too narrow:

FLABN LMWN
= LABN ∗ (1− pLAB) ∗ kLAB ∗ aMIC ∗ st ∗ sw (A41)

FLMWN MICN
= LMWN ∗µmax ∗ aMIC ∗ st ∗ sw + IMMICN

−OSMICN
(A42)

FMICN LMWN
= MICN ∗ kmic ∗ (1− fMICMAOM ) ∗ st ∗ sw − IMMICN

+ OSMICN
(A43)560

FMICN MAON
= MICN ∗ kmic ∗ fMICMAOM ∗ st ∗ sw (A44)

FMAON LMWN
= MAON ∗ kMAO ∗ aMIC ∗ st ∗ sw (A45)

FLMWN MAON
= FLMWCMAOC

∗ LMWN

LMWC
(A46)

FLABN AggLABN
= FLABCAggLABC

∗ LABN

LABC
(A47)

FMAON AggMAON
= FMAOCAggMAOC

∗ MAON

MAOC
(A48)565

FAggLABN LABN
= AggLABN ∗ kAgg ∗ st ∗ sw (A49)

FAggMAON MOAN
= AggMOAN ∗ kAgg ∗ st ∗ sw (A50)

FLMWN Nleach
= min(wleach ∗LMWN ;0.95 ∗LMWN ) (A51)

IMMICN
= if

(
MICC

MICN
> CNmax(MIC)

)[
min

(
MICC

CNmax(MIC)

−MICN ;
1

2
LMWN

)
;0

]
(A52)570

OSMICN
= if

(
MICC

MICN
< CNmin(MIC)

)[
0.5

(
MICN − MICC

CNmin(MIC)

)
;0

]
(A53)

Author contributions. PV and GC designed the long-term experiment and acquired funding throughout. PV maintained the experiment and

supervised data generation. BK was involved in data generation for many years. SSch with help of ML generated the detailed 2019 data of

aggregate dynamics. ML, GC and SB jointly developed the conceptual model, JS and MvdB gave critical feedback on it. ML developed the

model equations from the conceptual model, wrote the model code and implemented the model-data fusion, MvdB helped ML in revising575

the model code. ML wrote the initial draft. All coauthors were involved in refining the initial draft to the submitted version.

32

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Competing interests. The authors declare that they have no conflict of interest.

33

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



References

Abiven, S., Menasseri, S., Angers, D. A., and Leterme, P.: A Model to Predict Soil Aggregate Stability Dynamics following Organic Residue

Incorporation under Field Conditions, Soil Science Society of America Journal, 72, 119–125, https://doi.org/10.2136/sssaj2006.0018,580

_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.2136/sssaj2006.0018, 2008.

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, M., and Mayes, M. A.:

The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry,

137, 51–71, https://doi.org/10.1007/s10533-017-0409-7, 2018.

Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R. A., Yuan, W., and Ciais, P.: Im-585

proved global-scale predictions of soil carbon stocks with Millennial Version 2, Soil Biology and Biochemistry, p. 108466,

https://doi.org/10.1016/j.soilbio.2021.108466, 2022.

Ahrens, B., Reichstein, M., Borken, W., Muhr, J., Trumbore, S. E., and Wutzler, T.: Bayesian calibration of a soil organic carbon model

using ∆14C measurements of soil organic carbon and heterotrophic respiration as joint constraints, Biogeosciences, 11, 2147–2168,

https://doi.org/10.5194/bg-11-2147-2014, 2014.590

Anderson, J. M. and Ingram, J. S. I.: Tropical Soil Biology and Fertility: A Handbook of Methods., CAB international, Wallingford, second

edi edn., https://doi.org/10.2307/2261129, 1993.

Angst, G., Mueller, K. E., Nierop, K. G. J., and Simpson, M. J.: Plant- or microbial-derived? A review on the molecular composition of

stabilized soil organic matter, Soil Biology and Biochemistry, 156, 108 189, https://doi.org/10.1016/j.soilbio.2021.108189, 2021.

Bettermann, A., Zethof, J. H. T., Babin, D., Cammeraat, E. L. H., Solé-Benet, A., Lázaro, R., Luna, L., Nesme, J., Sørensen, S. J., Kalbitz, K.,595

Smalla, K., and Vogel, C.: Importance of microbial communities at the root-soil interface for extracellular polymeric substances and soil

aggregation in semiarid grasslands, Soil Biology and Biochemistry, 159, 108 301, https://doi.org/10.1016/j.soilbio.2021.108301, 2021.

Blagodatsky, S. A. and Richter, O.: Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of

microorganisms, Soil Biology and Biochemistry, 30, 1743–1755, https://doi.org/10.1016/S0038-0717(98)00028-5, 1998.

Bossuyt, H., Denef, K., Six, J., Frey, S. D., Merckx, R., and Paustian, K.: Influence of microbial populations and residue quality on aggregate600

stability, Applied Soil Ecology, 16, 195–208, https://doi.org/10.1016/S0929-1393(00)00116-5, 2001.

Bucka, F. B., Kölbl, A., Uteau, D., Peth, S., and Kögel-Knabner, I.: Organic matter input determines structure development and aggregate

formation in artificial soils, Geoderma, 354, 113 881–113 881, https://doi.org/10.1016/j.geoderma.2019.113881, 2019.

Bucka, F. B., Felde, V. J. M. N. L., Peth, S., and Kögel-Knabner, I.: Disentangling the effects of OM quality and soil texture on microbially

mediated structure formation in artificial model soils, Geoderma, 403, 115 213, https://doi.org/10.1016/j.geoderma.2021.115213, 2021.605

Campbell, E. E., Parton, W. J., Soong, J. L., Paustian, K., Hobbs, N. T., and Cotrufo, M. F.: Using litter chemistry controls on microbial

processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) model, Soil Biology & Biochemistry, 100,

160–174, https://doi.org/10.1016/j.soilbio.2016.06.007, 2016.

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., and Six, J.: Integrating plant litter quality, soil organic matter stabilization, and

the carbon saturation concept, Global Change Biology, 21, 3200–3209, https://doi.org/10.1111/gcb.12982, 2015.610

Christensen, B. T.: Physical fractionation of soil and structural and functional complexity in organic matter turnover, European Journal of

Soil Science, 52, 345–353, https://doi.org/10.1046/j.1365-2389.2001.00417.x, 2001.

34

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E.: The Microbial Efficiency-Matrix Stabilization (MEMS) framework

integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Global

Change Biology, 19, 988–995, https://doi.org/10.1111/gcb.12113, 2013.615

Crouzet, O., Consentino, L., Pétraud, J.-P., Marrauld, C., Aguer, J.-P., Bureau, S., Le Bourvellec, C., Touloumet, L., and Bérard, A.: Soil

Photosynthetic Microbial Communities Mediate Aggregate Stability: Influence of Cropping Systems and Herbicide Use in an Agricultural

Soil, Frontiers in Microbiology, 10, 1319, https://doi.org/10.3389/fmicb.2019.01319, 2019.

de Aguiar, T. C., de Oliveira Torchia, D. F., van Tol de Castro, T. A., Tavares, O. C. H., de Abreu Lopes, S., de Souza da Silva, L., Castro,

R. N., Berbara, R. L. L., Pereira, M. G., and García, A. C.: Spectroscopic–chemometric modeling of 80 humic acids confirms the structural620

pattern identity of humified organic matter despite different formation environments, Science of The Total Environment, 833, 155 133,

https://doi.org/10.1016/j.scitotenv.2022.155133, 2022.

Denef, K., Six, J., Bossuyt, H., Frey, S. D., Elliott, E. T., Merckx, R., and Paustian, K.: Influence of dry–wet cycles on the interrelation-

ship between aggregate, particulate organic matter, and microbial community dynamics, Soil Biology and Biochemistry, 33, 1599–1611,

https://doi.org/10.1016/S0038-0717(01)00076-1, 2001.625

Dijkstra, P., Martinez, A., Thomas, S. C., Seymour, C. O., Wu, W., Dippold, M. A., Megonigal, J. P., Schwartz, E., and Hungate, B. A.: On

maintenance and metabolisms in soil microbial communities, Plant and Soil, https://doi.org/10.1007/s11104-022-05382-9, 2022.

Gargulak, J. D., Lebo, S. E., and McNally, T. J.: Lignin, in: Kirk-Othmer Encyclopedia of Chemical Technol-

ogy, pp. 1–26, John Wiley & Sons, Ltd, https://doi.org/10.1002/0471238961.12090714120914.a01.pub3, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471238961.12090714120914.a01.pub3, 2015.630

Gauch, H. G., Hwang, J. T. G., and Fick, G. W.: Model Evaluation by Comparison of Model-Based Predictions and Measured Values,

Agronomy Journal, 95, 1442–1442, https://doi.org/10.2134/agronj2003.1442, 2003.

Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J. W., Pellegrini, A. F. A., Polley, H. W.,

Soong, J. L., Riley, W. J., and Torn, M. S.: Global stocks and capacity of mineral-associated soil organic carbon, Nature Communications,

13, 3797, https://doi.org/10.1038/s41467-022-31540-9, number: 1 Publisher: Nature Publishing Group, 2022.635

Gurung, R. B., Ogle, S. M., Breidt, F. J., Williams, S. A., and Parton, W. J.: Bayesian calibration of the DayCent ecosystem model to simulate

soil organic carbon dynamics and reduce model uncertainty, Geoderma, 376, 114 529, https://doi.org/10.1016/j.geoderma.2020.114529,

2020.

Hansen, S., Jensen, L. S., Nielsen, N. E., and Svendsen, H.: The Soil Plant System Model Daisy - Basic Principles and Modelling Approach,

Copenhagen: The Royal Veterinary and Agricultural University., 1993.640

Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for microbial-derived soil organic matter formation and its ecophysiolog-

ical controls, Nature Communications, 7, 1–10, https://doi.org/10.1038/ncomms13630, 2016.

Kamolmanit, B., Vityakon, P., Kaewpradit, W., Cadisch, G., and Rasche, F.: Soil fungal communities and enzyme activities in a sandy,

highly weathered tropical soil treated with biochemically contrasting organic inputs, Biology and Fertility of Soils, 49, 905–917,

https://doi.org/10.1007/s00374-013-0785-7, 2013.645

Kandeler, E., Tscherko, D., and Spiegel, H.: Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a

Chernozem under different tillage management, Biology and Fertility of Soils, 28, 343–351, https://doi.org/10.1007/s003740050502,

1999.

35

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Kopittke, P. M., Hernandez-Soriano, M. C., Dalal, R. C., Finn, D., Menzies, N. W., Hoeschen, C., and Mueller, C. W.: Nitrogen-rich microbial

products provide new organo-mineral associations for the stabilization of soil organic matter, Global Change Biology, 24, 1762–1770,650

https://doi.org/10.1111/gcb.14009, 2018.

Kopittke, P. M., Dalal, R. C., Hoeschen, C., Li, C., Menzies, N. W., and Mueller, C. W.: Soil organic matter is stabilized by

organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio, Geoderma, 357, 113 974–113 974,

https://doi.org/10.1016/j.geoderma.2019.113974, 2020.

Kpemoua, T. P. I., Barré, P., Chevallier, T., Houot, S., and Chenu, C.: Drivers of the amount of organic carbon protected inside soil aggregates655

estimated by crushing: A meta-analysis, Geoderma, 427, 116 089, https://doi.org/10.1016/j.geoderma.2022.116089, 2022.

Krause, L., Biesgen, D., Treder, A., Schweizer, S. A., Klumpp, E., Knief, C., and Siebers, N.: Initial microaggregate formation: As-

sociation of microorganisms to montmorillonite-goethite aggregates under wetting and drying cycles, Geoderma, 351, 250–260,

https://doi.org/10.1016/j.geoderma.2019.05.001, 2019.

Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., and Leinweber, P.: Organo-mineral660

associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry, Journal of Plant Nutrition and Soil Science,

171, 61–82, https://doi.org/10.1002/jpln.200700048, 2008.

Laub, M., Demyan, M. S., Nkwain, Y. F., Blagodatsky, S., Kätterer, T., Piepho, H.-p., and Cadisch, G.: DRIFTS band areas as measured pool

size proxy to reduce parameter uncertainty in soil organic matter models, Biogeosciences, 17, 1393–1413, https://doi.org/10.5194/bg-17-

1393-2020, 2020.665

Laub, M., Schlichenmeier, S., Vityakon, P., and Cadisch, G.: Litter Quality and Microbes Explain Aggregation Differences in a Tropical

Sandy Soil, Journal of Soil Science and Plant Nutrition, 22, 848–860, https://doi.org/10.1007/s42729-021-00696-6, 2022.

Lavallee, J. M., Conant, R. T., Paul, E. A., and Cotrufo, M. F.: Incorporation of shoot versus root-derived 13C and 15N into mineral-

associated organic matter fractions: results of a soil slurry incubation with dual-labelled plant material, Biogeochemistry, 137, 379–393,

https://doi.org/10.1007/s10533-018-0428-z, 2018.670

Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms

to address global change in the 21st century, Global Change Biology, 26, 261–273, https://doi.org/10.1111/gcb.14859, _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.14859, 2020.

Loague, K. and Green, R. E.: Statistical and graphical methods for evaluating solute transport models: Overview and application, Journal of

Contaminant Hydrology, 7, 51–73, https://doi.org/10.1016/0169-7722(91)90038-3, 1991.675

Luo, Z., Baldock, J., and Wang, E.: Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and

explanation of the priming effect, Global Change Biology, 23, 5273–5283, https://doi.org/10.1111/gcb.13793, 2017.

Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Ågren, G. I.: Environmental and stoichiometric controls on microbial carbon-use

efficiency in soils, New Phytologist, 196, 79–91, https://doi.org/10.1111/j.1469-8137.2012.04225.x, 2012.

Marschmann, G. L., Pagel, H., Kügler, P., and Streck, T.: Equifinality, sloppiness, and emergent structures of mechanistic soil biogeochemical680

models, Environmental Modelling & Software, 122, 104 518, https://doi.org/10.1016/j.envsoft.2019.104518, 2019.

Necpálová, M., Anex, R. P., Fienen, M. N., Del Grosso, S. J., Castellano, M. J., Sawyer, J. E., Iqbal, J., Pantoja, J. L., and Barker, D. W.:

Understanding the DayCent model: Calibration, sensitivity, and identifiability through inverse modeling, Environmental Modelling &

Software, 66, 110–130, https://doi.org/10.1016/j.envsoft.2014.12.011, 2015.

Oldfield, E. E., Crowther, T. W., and Bradford, M. A.: Substrate identity and amount overwhelm temperature effects on soil carbon formation,685

Soil Biology and Biochemistry, 124, 218–226, https://doi.org/10.1016/j.soilbio.2018.06.014, 2018.

36

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Puttaso, A., Vityakon, P., Saenjan, P., Trelo-ges, V., and Cadisch, G.: Relationship between residue quality, decomposition patterns,

and soil organic matter accumulation in a tropical sandy soil after 13 years, Nutrient Cycling in Agroecosystems, 89, 159–174,

https://doi.org/10.1007/s10705-010-9385-1, 2011.

Puttaso, A., Vityakon, P., Rasche, F., Saenjan, P., Treloges, V., and Cadisch, G.: Does Organic Residue Quality Influence Carbon Retention690

in a Tropical Sandy Soil?, Soil Science Society of America Journal, 77, 1001–1001, https://doi.org/10.2136/sssaj2012.0209, 2013.

R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/, 2020.

Schrumpf, M., Kaiser, K., Guggenberger, G., Persson, T., Kögel-Knabner, I., and Schulze, E.-D.: Storage and stability of organic

carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals, Biogeosciences, 10, 1675–1691,

https://doi.org/10.5194/bg-10-1675-2013, publisher: Copernicus GmbH, 2013.695

Scrucca, L.: GA: A Package for Genetic Algorithms in R, Journal of Statistical Software, 53, 1–37, https://doi.org/10.18637/jss.v053.i04,

2013.

Segoli, M., De Gryze, S., Dou, F., Lee, J., Post, W., Denef, K., and Six, J.: AggModel: A soil organic matter model with measurable pools

for use in incubation studies, Ecological Modelling, 263, 1–9, https://doi.org/10.1016/j.ecolmodel.2013.04.010, 2013.

Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., and Richter, A.: Carbon use efficiency of microbial communities: stoichiometry, method-700

ology and modelling, Ecology Letters, 16, 930–939, https://doi.org/10.1111/ele.12113, 2013.

Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., and Follstad Shah, J. J.:

Stoichiometry of microbial carbon use efficiency in soils, Ecological Monographs, 86, 172–189, https://doi.org/10.1890/15-2110.1, 2016.

Six, J. and Paustian, K.: Aggregate-associated soil organic matter as an ecosystem property and a measurement tool, Soil Biology & Bio-

chemistry, 68, A4–A9, https://doi.org/10.1016/j.soilbio.2013.06.014, 2014.705

Six, J., Elliott, E., and Paustian, K.: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under

no-tillage agriculture, Soil Biology & Biochemistry, 32, 2099–2103, https://doi.org/10.1016/S0038-0717(00)00179-6, 2000.

Six, J., Feller, C., Denef, K., Ogle, S. M., Sa, J. C. d. M., and Albrecht, A.: Soil organic matter, biota and aggregation in temperate and

tropical soils - Effects of no-tillage, Agronomie, 22, 755–775, https://doi.org/10.1051/agro:2002043, publisher: EDP Sciences, 2002.

Six, J., Frey, S. D., Thiet, R. K., and Batten, K. M.: Bacterial and Fungal Contributions to Carbon Sequestration710

in Agroecosystems, Soil Science Society of America Journal, 70, 555–569, https://doi.org/10.2136/sssaj2004.0347, _eprint:

https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2136/sssaj2004.0347, 2006.

Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving Differential Equations in R: Package deSolve, Journal of Statistical Software, 33, 1–25,

https://doi.org/10.18637/jss.v033.i09, 2010.

Tang, J. and Riley, W. J.: Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions, Nature Climate Change,715

5, 56–60, https://doi.org/10.1038/nclimate2438, 2015.

Tang, J. and Riley, W. J.: Competitor and substrate sizes and diffusion together define enzymatic depolymerization and microbial substrate

uptake rates, Soil Biology and Biochemistry, 139, 107 624, https://doi.org/10.1016/j.soilbio.2019.107624, 2019.

Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S.,

Prechtel, A., Ray, N., and Kögel-Knabner, I.: Microaggregates in soils, Journal of Plant Nutrition and Soil Science, pp. 1–33,720

https://doi.org/10.1002/jpln.201600451, 2017.

Van Soest, P. J. and Wine, R. H.: Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate, Journal of AOAC

INTERNATIONAL, 51, 780–785, https://doi.org/10.1093/jaoac/51.4.780, 1968.

37

https://doi.org/10.5194/egusphere-2023-1414
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Vance, E., Brookes, P., and Jenkinson, D.: An extraction method for measuring soil microbial biomass C, Soil Biology & Biochemistry, 19,

703–707, https://doi.org/10.1016/0038-0717(87)90052-6, 1987.725

Vityakon, P.: Degradation and restoration of sandy soils under different agricultural land uses in northeast Thailand: A review, Land Degra-

dation and Development, https://doi.org/10.1002/ldr.798, 2007.

Vityakon, P., Meepech, S., Cadisch, G., and Toomsan, B.: Soil organic matter and nitrogen transformation mediated by plant residues of differ-

ent qualities in sandy acid upland and paddy soils, NJAS - Wageningen Journal of Life Sciences, 48, 75–90, https://doi.org/10.1016/S1573-

5214(00)80006-8, 2000.730

Walkley, A. and Black, I. A.: An examination of the degtjareff method for determining soil organic matter, and a proposed modification of

the chromic acid titration method, Soil Science, 37, 29–38, https://doi.org/10.1097/00010694-193401000-00003, 1934.

Wallach, D., Makowski, D., Jones, J. W., and Brun, F.: Chapter 8 - Parameter Estimation With Bayesian Methods, in: Working with Dy-

namic Crop Models (Third Edition), edited by Wallach, D., Makowski, D., Jones, J. W., and Brun, F., pp. 275–309, Academic Press,

https://doi.org/10.1016/B978-0-12-811756-9.00008-3, 2019.735

Wang, G., Post, W. M., and Mayes, M. A.: Development of microbial-enzyme-mediated decomposition model parameters through steady-

state and dynamic analyses, Ecological Applications, 23, 255–272, https://doi.org/10.1890/12-0681.1, 2013.

Wang, G., Jagadamma, S., Mayes, M. A., Schadt, C. W., Megan Steinweg, J., Gu, L., and Post, W. M.: Microbial dormancy improves

development and experimental validation of ecosystem model, The ISME Journal, 9, 226–237, https://doi.org/10.1038/ismej.2014.120,

number: 1 Publisher: Nature Publishing Group, 2015.740

Wang, S., Redmile-Gordon, M., Shahbaz, M., Ge, T., Zhang, M., Wu, Y., Liu, J., Huang, Q., and Cai, P.: Microbial formation and

stabilisation of soil organic carbon is regulated by carbon substrate identity and mineral composition, Geoderma, 414, 115 762,

https://doi.org/10.1016/j.geoderma.2022.115762, 2022.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan, G. B.: Integrating microbial physiology and physio-chemical principles in soils

with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, Biogeosciences, 11, 3899–3917, https://doi.org/10.5194/bg-11-3899-745

2014, 2014.

Yudina, A. and Kuzyakov, Y.: Saving the face of soil aggregates, Global Change Biology, 25, 3574–3577, https://doi.org/10.1111/gcb.14779,

2019.

Zech, S., Schweizer, S. A., Bucka, F. B., Ray, N., Kögel-Knabner, I., and Prechtel, A.: Explicit spatial modeling at the pore

scale unravels the interplay of soil organic carbon storage and structure dynamics, Global Change Biology, 28, 4589–4604,750

https://doi.org/10.1111/gcb.16230, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.16230, 2022.

Zhang, Y., Lavallee, J. M., Robertson, A. D., Even, R., Ogle, S. M., Paustian, K., and Cotrufo, M. F.: Simulating measurable ecosystem carbon

and nitrogen dynamics with the mechanistically defined MEMS 2.0 model, Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-

18-3147-2021, publisher: Copernicus GmbH, 2021.
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