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Abstract. Maintaining soil organic matter (SOM) is crucial for healthy and productive agricultural soils and requires under-

standing at the process level, including the role of SOM protection by soil aggregates and the connection between microbial

growth and aggregate formation. We developed the Soil Aggregation through Microbial Mediation (SAMM) model, to rep-

resent this important connection. The pools of SAMM are fully measurable, and we calibrated and evaluated it against data

from a long-term bare-fallow experiment in a tropical sandy soil. This experiment received additions of plant litter of different5

compositions, which resulted in twice the soil carbon stocks in the best treatment compared to the control (about 8 vs. 4 t C ha-1

in 0-15cm soil depth) after 25 years. As hypothesized, the SAMM model effectively represented the microbial growth response

after the addition of litter and the subsequent formation and later destabilization of aggregates. The low correlations between

different calibrated model parameters (r < 0.5 for all parameters; r > 0.4 for only 4 of 22) showed that SAMM is parsimonious.

SAMM was able to capture differences between treatments in soil organic carbon (Nash-Sutcliffe modeling efficiency (EF) of10

0.68), microbial nitrogen (EF of 0.24) and litter carbon (EF of 0.80). The amount of carbon within the aggregates (EF of 0.60)

and in the free silt and clay fraction (EF of 0.24) was also simulated very well to satisfactory. Our model results suggested that

in spite of the sandy soil, up to 50% of carbon stocks were stabilized through aggregate protection mechanisms; and that mi-

crobial and physical aggregate formation coexist. A version of the SAMM model without aggregate protection (SAMMnoAgg)

initially failed to stabilize soil organic carbon (EF decreased to -3.68) and the simulation of microbial nitrogen worsened (EF15

of 0.13). By recalibrating SAMMnoAgg, it was possible to partially correct for the lack of aggregate protection by reducing the

rate of mineral-attached carbon decomposition by about 85% (EF of 0.68, 0.75 and 0.18 for SOC, litter carbon and microbial

nitrogen, respectively). However, the slightly better evaluation statistics of SAMM (e.g., Akaike information criterion of 5351

vs. 5554) suggest that representing aggregate dynamics within SOM models can be beneficial and necessary to understand the

mechanism behind SOM dynamics. Our results indicate that current models without aggregate formation partly compensate20
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for the absence of aggregate protection by lowering the turnover rates of other pools. Thus, they remain suitable options where

data on aggregate associated carbon are not available.

1 Introduction

Soil aggregates play a crucial role in the context of soil carbon sequestration because soil organic matter (SOM) that is stabilized

in aggregates is a fraction of SOM that is strongly affected by human activities (Six and Paustian, 2014). There is evidence25

that the particulate organic matter (POM) stored within the aggregates may be the fraction of SOM that saturates the least if

carbon inputs are increased (Castellano et al., 2015), and thus may be a suitable fraction to target for the accumulation of SOM.

However, exactly this intra-aggregate POM becomes relatively easily available to decomposers upon disruption of aggregates

(Six et al., 2000) and may therefore be considered to be labile. Mineral-associated organic matter (MAOM), on the other hand,

is considered to have slower turnover rates, but the pathways upon which it is formed are not completely clear. For example,30

the concepts of Kallenbach et al. (2016) and Cotrufo et al. (2013) suggest that most of the stable MAOM is of microbial origin,

while Angst et al. (2021) recently estimated that about half of MAOM is formed through direct adsorption of dissolved organic

matter to soil minerals. As a result, we need a better understanding of the relative importance of the different processes of SOM

stabilization, such as MAOM formation and POM protection within aggregates.

Numerical models are a good way to test our mechanistic understanding of complex systems, such as soils, and to improve35

knowledge of interconnected processes by testing different hypotheses about the system. They allow quantifying fluxes which

are not directly measurable and testing one or several conceptual structures of a system against measured data (Necpálová et al.,

2015). Thus, they represent an elegant way to test research hypotheses. Despite the existence of conceptual models, the central

role of microbial growth in aggregate formation is still incompletely understood and is only poorly represented in current

SOM research models that are developed for the field scale. Initial attempts of Segoli et al. (2013), for example, modeled the40

formation and destruction of micro- and macroaggregates by including a simple microbial activity factor. However, the model

was not further developed into an ecosystem model and therefore is only applicable to shorter-term incubation experiments. The

Millennial model (Abramoff et al., 2018, 2022) has a specific microbial biomass pool and distinguishes between aggregated

and non-aggregated carbon, but its temporal dynamics have not been evaluated against long-term experiments and it does not

simulate the effect of nitrogen on the dynamics of SOM.45

In the sense of using models to test important research hypotheses, three important concepts/processes related to aggregate

formation should therefore be included into models. The first important process is the effect that the composition of the plant

residue and the elemental stoichiometry (Sinsabaugh et al., 2013) have on the carbon use efficiency (CUE) of the microbes.

It is considered a key factor in stabilizing SOC (Cotrufo et al., 2013). For example, Lavallee et al. (2018) showed that shoot

material leads to more stabilized MAOM than root material, which they attributed to a higher CUE for the shoot material due50

to higher quality (i.e., low C/N and lignin; Cotrufo et al., 2013). Also Laub et al. (2022), in a long-term field experiment,

found differences in aggregate dynamics between the additions of different types of litter and suggested that these were the

result of different CUE that depended on the composition of the litter. Secondly, the effect of microbial activity on aggregate
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formation must be considered. Many studies in the literature have shown the direct link between aggregate dynamics and

microbial functioning. For example, Bucka et al. (2019) showed, under incubation conditions, that microbial activity associated55

with dissolved organic matter and POM formed aggregates rapidly. Third, measurable pools. It has been suggested numerous

times that next generation SOM models should model carbon pools that are directly measurable (Segoli et al., 2013; Wang

et al., 2013; Wieder et al., 2014). However, when doing so, one should adhere as much as possible to the principle of distinct

structural identity (e.g. Oldfield et al., 2018; Wang et al., 2022; de Aguiar et al., 2022). Thus, within an optimal model based

on measurable pools, any quantity of carbon should maintain its structural identity until it is subject to an actual molecular60

change. This means that if carbon transfers from one modeled pool to another, this should correspond not only to a transfer

of matter between the pools but also to a chemical or physical reaction (e.g., depolymerization, anabolic microbial growth,

or adsorption to minerals). As such, MAOM and POM have been identified as possible modelable pools of relative distinct

structural identities (e.g. Segoli et al., 2013; Lavallee et al., 2020) and are commonly accepted as the main building blocks

of aggregates (Totsche et al., 2017). Furthermore, they can be derived from established soil fractionation schemes and differ65

strongly in average turnover times and properties (Lavallee et al., 2020; Schrumpf et al., 2013). It is, while POM consists

mostly of undecomposed plant material, stabilized MAOM originates either from microbial residues (Kallenbach et al., 2016;

Six et al., 2006) or from dissolved organic matter (Angst et al., 2021).

Here, we present an approach to include all the above-mentioned concepts into a model of Soil Aggregation through

Microbial Mediation (SAMM). SAMM is based on the foundations introduced by mechanistic SOM models, such as simu-70

lating measurable fractions and aggregates (Abramoff et al., 2018, 2022; Segoli et al., 2013) and the decomposition of plant-

derived carbon to low molecular weight carbon, before consumption by microbes (Tang and Riley, 2015; Wang et al., 2013;

Zhang et al., 2021). It enriches these concepts by (i) the central role of microbes in soil aggregate formation and (ii) a consis-

tent structural identity of POM and MAOM within aggregates. We applied the model to simulate data from a long-term SOM

formation experiment in a tropical sandy soil in Northeast Thailand, which included inputs of litter of different compositions75

and a non-amended control. SAMM is tested against measured data of microbial biomass, SOC, and carbon in different soil

fractions. To better understand the model and it‘s uncertainty, a Bayesian calibration of the model parameters is performed.

The calibrated model was then used to test three main hypotheses:

1. Simulating the connection between microbial growth and aggregate formation with SAMM helps to quantify the relative

importance of different SOM stabilizing processes.80

2. Including this connection in SOM models is essential to accurately represent the dynamics of SOM formation. Therefore,

a model that explicitly simulates aggregate formation as a result of microbial growth will outperform a model of similar

structure that does not include aggregate formation.

3. The dynamics of microbial activity, which are linked to temperature, moisture, and litter composition, help to explain

dynamics in aggregate formation. Thus, we expect that aggregates can be simulated with model performance similar to85

that of microbial biomass.
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Table 1. Chemical characteristics of applied organic residues/litter. Total carbon was measured by Walkley and Black wet digestion; total

nitrogen by micro-Kjeldahl, lignin and cellulose by acid detergent lignin method (Van Soest and Wine, 1968); polyphenols were determined

according to Anderson and Ingram (1993). Values within the same column that share the same capital letter are not significantly different (p

< 0.05). The table is adopted from Laub et al. (2022) under the creative common license 4: http://creativecommons.org/licenses/by/4.0/.

Carbon Nitrogen C/N Lignin Polyphenols Cellulose

Litter type (Abbreviation) (g kg-1) (g kg-1) (g g-1) (g kg-1) (g kg-1) (g kg-1)

Rice straw (RS) 367A 4.7A 78A 28.7A 6.5A 507A

Groundnut stover (GN) 388A 22.8B 17B 67.6A 12.9A 178AB

Dipterocarp (DP) 453B 5.7A 80A 175.5B 64.9B 306AB

Tamarind (TM) 427B 13.6C 32C 87.7C 31.5C 143B

SE+ 7 0.8 3.4 19 5.6 46

+Standard error

2 Material and Methods

2.1 Description of the experiment

We tested the capability of SAMM in a long-term bare fallow experiment, which was established on a degraded tropical sandy

soil in 1995 (Vityakon et al., 2000; Puttaso et al., 2011, 2013; Laub et al., 2022). In brief, the experiment was initiated to90

study the effects of annual additions of organic material (at a rate of 10 t dry matter ha-1 yr-1) of different compositions on

the dynamics of soil organic matter. The experiment is located within the research station of the Office of Agriculture and

Cooperatives of the Northeast, Khon Kaen province (16°20’ N; 102° 49’ E) in Northeast Thailand. The soil is a Khorat sandy

loam (Typic Kandiustult in USDA, Acrisol in WRB classification) with 90% sand and 5% clay (Puttaso et al., 2013). At the

start of the experiment, the bulk density was 1.45 g cm-3, the pH was 5.5 and the CEC 3.53 cmol kg-1 in the 0-15 cm topsoil95

(Vityakon et al., 2000). Later measurements did not find significant changes in bulk density due to treatments (Fig. A5), so

we assumed a constant bulk density of 1.45 g cm-3 throughout the whole period for all treatments in this study. The site has a

savanna-type climate with a wet period from April to September with approximately 1200 mm annual precipitation and a mean

temperature of 28°C (Puttaso et al., 2013). The experiment was a randomized complete block design with three replicated

plots of 4 × 4 m size. The annual litter application of 10 t ha-1 dry matter at the beginning of the rainy season around May,100

supplied about 4 t carbon ha-1 yr-1. Next to an unamended control (CT), the litter treatments were rice (Oryza sativa) straw

(RS; high C/N, low lignin/polyphenol contents), groundnut (Arachis hypogaea) stover (GN; low C/N, low lignin/polyphenol

contents), tamarind (Tamarindus indica) litter (TM; medium C/N, medium lignin/polyphenol contents) with leaf/petiole litter

ratio of 7:1, and dipterocarp (Dipterocarpus tuberculatus; DP; high C/N, high lignin/polyphenol contents) leaf litter (Table 1).

The applied litter was manually incorporated into the topsoil to a depth of approximately 15 to 20 cm using hand hoes. Hand105

weeding was conducted to keep the plots free of vegetation. This was done about once a month during the rainy season and

every second month for the rest of the year, attempting to have as little as possible additional organic matter input from weeds.
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Table 2. Overview of all measurements from the Khon Kaen long-term experiment that were used in this study.

Type Unit* Frequency Weeks+ Time span and reference

Litterbag C kg C ha-1 6 yr-1 0, 2, 4, 8, 16, 32 2004a

Microbial N kg N ha-1 6 yr-1 0, 2, 4, 8, 16, 32 1995b, 96-99X, 2004a, 07X, 12X, 19c

Soil organic C kg C ha-1 1 yr-1 0 1995-2005d, 2006-16X, 2019c

Soil C/N g g-1 1 yr-1 0 1995-2005d, 2006-16X, 2019c

Aggregate C kg C ha-1 6 yr-1 0, 2, 4, 8, 16, 30 2019c

Free mineral-associated C kg C ha-1 6 yr-1 0, 2, 4, 8, 16, 30 2019c

*Data rescaled to kg ha-1 using 15 cm soil depth and a bulk density of 1.45 g cm-3; +Weeks after residue addition (0 = prior); References: aPuttaso et al. (2011), bVityakon et al.

(2000), cLaub et al. (2022), dVityakon (2007), XUnpublished

However, despite best efforts it was not possible to keep the plots completely free of vegetation at all times. The experimental

data covered a time period from the establishment of the experiment in 1995 to December 2019.

2.2 Available long-term experiment data that was simulated with SAMM110

Carbon and nitrogen data from soil microbial biomass were available from most years and were always measured prior to the

incorporation of litter and at weeks 2, 4, 8, 16 and 32 after the addition of litter (Puttaso et al., 2011; Vityakon et al., 2000;

Vityakon, 2007; Laub et al., 2022, and unpublished data in Table 2). Litterbag decomposition experiments were conducted to

elucidate differences in litter decomposition rates as a function of litter composition, measuring ash-free dry weight remaining

at the same points in time (Puttaso et al., 2011). THe soil microbial biomass was measured by chloroform fumigation extrac-115

tion (see Puttaso et al., 2011, for more details). Because microbial carbon and nitrogen are usually correlated, we only used

microbial nitrogen data, which were of higher quality (fewer negative values than carbon, lower variability within treatments).

Annual measurements of soil organic carbon and soil C/N data, measured by the Walkley-Black method (Walkley and Black,

1934), were available from Vityakon et al. (2000) and from additional annual measurements until 2016 and from 2019. Further-

more, there were measurements of carbon in aggregates (carbon in small macroaggregates, 2–0.25 mm; and microaggregates,120

0.25–0.053 mm; combined) and the free silt and clay faction (MAOC) throughout the year 2019 at weeks 0, 2, 4, 8, 16 and 30

(Laub et al., 2022).

2.3 The SAMM model version 1.0: Core concepts and model description

The core concepts of SAMM are 1) all pools are measurable entities that adhere to the concept of structural carbon identity

(Wang et al., 2022), which they maintain within the aggregates and along the gradient of increased decomposition status, 2)125

linking the formation of the aggregates with the microbial life cycle, and 3) simulating aggregates in a coupled soil carbon and

nitrogen model. For brevity, we only explain the central concepts of SAMM and the flow of carbon and nitrogen in the main
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growth
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Figure 1. Conceptual model of SAMM. The carbon and nitrogen in the pools are represented as PoolC&N or PoolC for the pools only with car-

bon. The following pools exist: STRC, structural litter; LABC&N, labile litter; LMWC&N, low molecular weight; MICC&N, microbial; MAOC&N,

mineral-associated. Thick continuous arrows represent flows of carbon and nitrogen between pools that include a change in structural identity.

The thick dashed arrows represent aggregate protection and deprotection, which does not change the structural identity. The effect of MICC&N

on pool decomposition by reverse Michaelis Menten kinetics (aMIC parameter) is represented by the thin dashed arrow. The two large arrows

with a colored outline represent the factors that influence the rate of aggregate formation. Losses from the system are represented by thin

dotted arrows (CO2) and continuous arrows (leaching). Further abbreviations: Prot, protected by structural litter; Agg, aggregate protected

pools.

text, while the Appendix hosts a detailed description of model pools (A1) and the differential equations comprising the SAMM

model (A3). A list of all model pools is given in Table 3, while all parameters and their calibrated values are given in Table 4.

To achieve complete measurability, the simulated fresh litter was divided into two pools, structural litter measured as lignin130

and polyphenols (similar to Campbell et al., 2016), and labile (metabolic) litter representing the carbon and nitrogen of the

remaining litter, thus allowing different CUE and decomposition rates resulting in differences in microbial growth. By simu-

lating both carbon and nitrogen, the model further allows for a C/N ratio-dependent CUE at microbial uptake. The carbon and

nitrogen cycles are coupled (Fig. 1 and Table 3), but the structural litter pool is defined as a carbon-only pool. This is indicated

in the following by the subscripts next to the pool names (i.e., POOLC for carbon-only, and POOLC&N for carbon and nitrogen135

containing pools).
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Table 3. An overview of all SAMM model pools and their units.

Pool Description Unit+

STRC Structural litter pool C kg C ha-1

LABC Metabolic litter pool C kg C ha-1

LABN Metabolic litter pool N kg N ha-1

LMWC Low molecular weight pool C kg C ha-1

LMWN Low molecular weight pool N kg N ha-1

MICC Microbial biomass pool C kg C ha-1

MICN Microbial biomass pool N kg N ha-1

MAOC Mineral-associated C kg C ha-1

MAON Mineral-associated N kg N ha-1

AggSTRC Structural litter pool C protected in aggregates kg C ha-1

AggLABC Metabolic litter pool C protected in aggregates kg C ha-1

AggLABN Metabolic litter pool N protected in aggregates kg N ha-1

AggMAOC Mineral-associated C protected in aggregates kg C ha-1

AggMAON Mineral-associated N protected in aggregates kg N ha-1

+For a defined depth interval (here 0-15 cm).

The organic matter decomposition process within the SAMM model starts with undecomposed plant material, consisting of

structural litter (STRC), and the labile/metabolic litter pool (LABC&N). To distinguish between the cell walls and the interior

part of LABC&N, the STRC protects part of LABC&N from decomposition (ProtLAB pool; see Appendix A1), mimicking that

part of LABC&N is interviewed with STRC in the cell walls. Upon depolymerization, the carbon and nitrogen of any pool140

enters the easily soluble low molecular weight (LMWC&N) pool. This LMWC&N is the only pool that contains molecules that

are small enough to be incorporated by the microbial biomass (MICC&N). Extracellular enzyme production consumes energy,

which is indirectly accounted for by a pool-dependent carbon use efficiency (CUE), leading to CO2 respiration in the amount

of (1-CUE) during the transition from any litter pool to LMWC&N. When the MICC&N pool consumes LMWC&N, a portion of

the consumed carbon is respired as growth respiration, the rest is used for anabolism. The amount of growth respiration of145

MICC&N depends on a variable stoichiometric CUE, which is a function of the C/N ratio of LMWC&N. MICC&N is subject to

microbial death and microbes also have maintenance respiration. Parts of death microbes (cell walls) are attached to minerals,

creating mineral-associated carbon and nitrogen (MAOC&N), the rest (cell internal content) is transferred back into the LMWC&N

pool. Furthermore, MICC&N can immobilize or release N, to maintain their C/N ratio (see Appendix A1.4). Direct adsorption

of LMWC&N to MAOC&N is also possible. Carbon and nitrogen from the primary constituents (i.e., LABC&N, STRC, MAOC&N)150

get protected by integration into aggregates as a byproduct of microbial growth; i.e., the amount of aggregate formation is

a function of microbial growth. There is also a physicochemical aggregate formation, which for simplicity is assumed to be

constant in version 1.0 of SAMM. Inside the aggregates, there is no decomposition, a concept proposed by Luo et al. (2017)

7



as a way to reduce the number of parameters in aggregation models. The carbon of all pools outside of aggregates is subject to

decomposition by MICC&N following reverse Michaelis-Menten kinetics, a good approximation of enzymatic depolymerization155

(Abramoff et al., 2022; Tang and Riley, 2019). Thus, the speed of decomposition depends on the amount of substrate and the

amount of MICC&N. Aggregate disruption is simulated as a first-order kinetic process.

2.4 SAMM setup and Bayesian calibration

For the technical implementation of SAMM version 1.0, we used the R programming language (R Core Team, 2020). Details

are described in the Appendix A2. As SAMM is a new model, we added a mass balance equation to stop the model with an error160

message if the mass balance was not closed. Further, most model parameters needed to be calibrated. In addition to typical

parameters of a SOM model representing pool turnover, SAMM contains some unique parameters, such as the protection

capacity that STRC exhibits on LABC&N, the rate of aggregate formation per microbial growth, and the rate of physicochemical

aggregate formation (Table 4). Additionally, the amount and composition of carbon and nitrogen entering the soil through plant

roots were calibrated parameters. These were necessary because, despite best efforts to keep the experiment completely fallow,165

it was not possible to completely eliminate plant growth in the plots. Two model parameters were fixed on the basis of the

literature. The first uncalibrated parameter was the maximum CUE for LMWC, which was fixed at 0.6 (Sinsabaugh et al., 2013;

Manzoni et al., 2012). The second uncalibrated parameter was cSORP, the maximum sorption capacity of the fine fraction, which

was taken from Abramoff et al. (2022). To initialize the pools, we used the mean of the measured SOC fractions in the rice

straw treatment in 2019, which had not experienced major changes in SOC since the start of the experiment. In the absence of170

fractionation data from the start of the experiment and historic plant input quantities and qualities, this was considered the best

option. Ideally, SOC fractions would be measured at the beginning of any experiment. However, sensitivity analyses, perturbing

the distribution of initial SOC between MAOC and litter pools from 80 to 120% of our initial assumptions confirmed a very

limited effect (any visible differences in simulated SOC and aggregate C disappeared within less than ten and less than three

years, respectively; see response to referee comments https://doi.org/10.5194/egusphere-2023-1414-AC1).175

To test our hypotheses about the importance of aggregates in carbon stabilization and the need to simulate this process, we

also created a SAMM version without aggregate formation (SAMMnoAgg). By setting the turnover of aggregates (kAgg) to 1

d-1 and the aggregate formation parameters to 0, all aggregate protection was effectively removed from the model. We evaluated

the difference in simulated stabilized SOC in SAMM and SAMMnoAgg, using the parameters calibrated for SAMM, to gain

insight into the importance of aggregate protection for SOC stabilization. SAMMnoAgg was further recalibrated to test our180

hypothesis of the need to simulate aggregates to represent SOM dynamics. Note that measurements of carbon in aggregates

and in silt and clay fractions of 2019 were not used to recalibrate SAMMnoAgg.

As a starting point for the model parameters, an initial model calibration was performed using a genetic algorithm (GA

package of R; Scrucca, 2013). To explore the uncertainty associated with the two different versions (i.e., SAMM and SAMM-

noAgg), this initial calibration was followed by a Bayesian calibration applying the sampling importance resampling (SIR)185

method. This method was used by Gurung et al. (2020) to calibrate the SOM module of DayCent and is described in detail in

their article. Briefly, the SIR method uses Bayes‘ theorem to derive the posterior distribution of model parameters and model
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Table 4. Overview of all SAMM model parameters (top), further computed helper variables (middle) and external model drivers and site

conditions needed (bottom). The calibrated values are the best parameter set from the independent Bayesian calibration for the SAMM model

and the recalibrated non aggregate model (SAMMnoAgg).

Variable Description Units Calibrated SAMM1 SAMMnoAgg2

kSTR Turnover rate of structural litter pool g g-1 d-1 Yes 0.0024 0.0028

kLAB Turnover rate of metabolic litter pool g g-1 d-1 Yes 0.0225 0.0551

kMIC Death rate of microbial biomass pool g g-1 d-1 Yes 0.0046 0.0098

kMAO Turnover rate of mineral-associated carbon pool g g-1 d-1 Yes 0.00044 0.000057

µmax Maximum uptake rate of LMW by microbes g g-1 d-1 Yes 0.238 0.367

kAgg Turnover rate of aggregate pools g g-1 d-1 Yes 0.0316 1x

KMMIC Half-saturation constant of the microbial activity factor - Yes 35.5 1.0

mMIC Maintenance respiration of microbes g g-1 d-1 Yes 0.00035 0.0013

KLMWMAO Specific adsorption rate of LMW to MAOM g g-1 d-1 Yes 0.043 0.031

cSORP Maximum sorption capacity coefficient g g-1 No* 0.83 0.83

CUESTR Carbon use efficiency of structural litter pool g g-1 Yes 0.65 0.52

CUELAB Carbon use efficiency of metabolic litter pool g g-1 Yes 0.54 1.00

CUELMW Maximum carbon use efficiency of low molecular weight pool g g-1 No+ 0.6 0.6

CNmin(MIC) Minimum C/N ratio of microbial biomass pool g g-1 Yes 5.01 6.12

CNmax(MIC) Maximum C/N ratio of microbial biomass pool g g-1 Yes 10.1 9.49

fMICMAOM Fraction of MIC directed to MAOM upon microbial death g g-1 Yes 0.24 0.26

pcSTRLAB Protection capacity of STRC for LABC&N g g-1 Yes 2.47 3.98

aggfactSTRC Protection of STRC inside aggregates per microbial growth g g-1 Yes 0.71 0x

aggfactMAOC Protection of MAOC inside aggregates per microbial growth g g-1 Yes 2.70 0x

NonMicAgg Physicochemical aggregate formation kg MICCeq ha-1 d-1 Yes 31.0 0x

DailyLitterC Daily root carbon inputs (from unavoidable plant growth) kg C ha-1 d-1 Yes 3.07 3.09

DailyLitterC/N C/N ratio of daily root inputs g g-1 Yes 159.3 47.0

DailyLitterSTRC(%) Percent of structural litter in daily root inputs g g-1 Yes 0.13 0.24

Computed helper variables (rate modifiers etc.)

CUECN(LMW) Dynamic C/N based carbon use efficiency of LMWC pool g g-1 - - -

st Temperature scalar - - - -

sw Water scalar - - - -

pLAB Fraction of metabolic litter protected by structural litter g g-1 - - -

aMIC Michaelis-Menten microbial activity factor - - - -

MAOCmax Maximum adsorption capacity to MAOC t ha-1 - - -

wleach Share of soil water leached (HYDRUS calculation) g g-1 d-1 - - -

Site condition and other model driving variables

depth Soil depth to be simulated m - - -

BD Bulk density kg m-3 - - -

%SiCl Silt and Clay fraction % - - -

1Model version including soil aggregates; 2Recalibrated model version without soil aggregates;*from Abramoff et al. (2022); +established maximum

(Sinsabaugh et al., 2013; Manzoni et al., 2012); x set to 0/1 in model version without soil aggregates to deactivate them.
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output based on assumed prior and available data. We assumed normally distributed broad priors centered around the initial

calibrated model parameters, i.e., the mean parameter values from SAMM and SAMMnoAgg, to have the same priors for both

(except for the values only calibrated in the aggregate version). To calibrate SAMM and SAMMnoAgg, we used all available190

data of litterbag C, microbial N, and SOC, while data of aggregate C and free MAOC were only used to calibrate SAMM. In

the next step of SIR, the posteriors are derived by filtering the prior using importance weights to sample individual parameter

sets from the prior. The importance weights are proportional to the simulation likelihoods (i.e., of observing the data, given

the model), which are computed using the data, the simulated values, and the variance-covariance matrices of data (Wallach

et al., 2019). As is common practice, we assumed that the covariances were zero, and hence we only used the variances for195

each type of measurement (taking the median variance computed for each type of data from the three experimental repeti-

tions). Then, by dividing the likelihood of each simulation by the mean likelihood of all simulations, standardized importance

weights were computed. The prior parameter set was then resampled without replacement and the importance weights taken as

sampling probability. Overall, a total of 200.000 simulations were performed, of which 200 parameter sets were drawn in the

resampling.200

2.5 Model evaluation

The following standard evaluation statistics were used for model evaluation, as defined by Loague and Green (1991):

MSEy =
1

n

n∑
z=1

(Oyz −Pyz)
2 (1)

RMSEy =
√
MSEy (2)

EFy = 1−
∑n

z=1(Oyz −Pyz)
2∑n

z=1(Oyz − Ōy)2
(3)205

Here, MSEy is the mean square error and RMSE is its root. EFy is the Nash-Sutcliffe modeling efficiency, Oyz stands for the

measured value of the z-th measurement of the y-th type of measurement. Furthermore, Ōy is the mean of measured values of

the y-th type of measurement and Pyz is the model-predicted value corresponding to Oyz. As suggested by Gauch et al. (2003)

to gain better insight into the nature of model errors, we further divided MSEy into squared bias (SB), nonunity slope (NU) and

lack of correlation (LC). We expressed them in relative terms, by dividing them by MSEy:210

SBy(%) =
(Ōy − P̄y)

2

MSEy
∗ 100 (4)

NUy(%) =
(1− by)

2 ∗ (
∑n

z=1(O
2
yz)

n )

MSEy
∗ 100 (5)
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LCy(%) =
(1− ry)

2 ∗ (
∑n

z=1(P
2
yz)

n )

MSEy
∗ 100 (6)

Here, P̄ y is the mean predicted value of the y-th measurement type, b the slope of the regression of P on O. Finally, r is

the correlation coefficient between O and P. The relative LC, SB and NU provide information if the model errors are mostly215

random (high LC) or whether there is a systematic bias (high SB). A high relative NU indicates that the sensitivity of the

model is wrong (either too low or too high). The SB can be interpreted as the intercept of a regression between predictions and

measured values, while the NU is the slope of this regression (Gauch et al., 2003). Finally, the Akaike information criterion

(AIC) was computed to compare different model versions:

AIC = 2k− 2ln(L̄) (7)220

Here, k is the number of model parameters that were estimated (23 for SAMM and 19 SAMMnoAgg) and L̄ is the likelihood.

3 Results

Because SAMM is a new model, we first describe its behavior and illustrate the development of pools (Fig. 2) using the

treatment with the highest microbial activity, the groundnut stover treatment. It is important to note that our results cover a time

period where the model has not yet reached a new steady state. Second, the performance of the calibrated model is evaluated225

against the measured data, and posterior parameter distributions are discussed. Third, we test the importance of aggregate

protection in SAMM, by assessing how much the simulation performance decreases for different types of measurements when

aggregate formation is not simulated (SAMMnoAgg). Finally, we try to assess to which extent simulating aggregate formation

is necessary to correctly simulate microbial biomass and SOC, by recalibrating the SAMMnoAgg version and comparing it to

SAMM.230

3.1 SAMM model behavior: the connection between microbes and aggregate formation

After the groundnut stover application in 2001, a rapid depolymerization of the part of LABC that is not protected by STRC is

simulated (Fig. 2). The depolymerized material is transferred to the LMWC pool. This increase in LMWC feeds the growth of

MICC, which almost triples in biomass. The MICC growth slows down once the unprotected part of LABC is fully decomposed.

However, the peak of LMWC availability is within one to two weeks after litter addition, while the peak of MICC is about one235

to two months after litter addition and maximum LMWC availability. The increase in microbial growth is accompanied by an

increase in the formation of new aggregate-protected carbon. Unprotected MAOC and litter get thereby protected in aggregates,

increasing the amount of aggregate protected MAOC and litter by approximately 30%. Because the formation of aggregates is

linked to microbial growth, the peak of aggregate protected pools (MAOC, LABC and STRC) occurs simultaneously with the

peak of MICC. Subsequently, the amount of aggregate carbon starts to reduce again, which becomes visible in the increase240
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Figure 2. Exemplary SAMM model behavior and carbon pool dynamics of the groundnut treatment in the year 2001 to 2002 starting a day

before the addition of litter. The top figure displays all carbon pools inside and outside of aggregates, while the bottom figure displays the

soil water content (model driver, simulated by HYDRUS 1D). In the two figure, aggregate protected pools (Agg) are represented by a dashed

line, decomposable (Free) pools by a solid line. STRC, structural litter; LABC, labile litter; LMWC, low molecular weight; MICC, microbial;

MAOC, mineral-associated.
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Figure 3. Simulation of incubated litterbag residue-C dynamics from different litter materials (buried at 15 cm depth). Dots with error bars

indicate the mean and 95% credibility interval of measured values. The black line and grey band indicate the best simulation and the 95%

credibility interval of the Bayesian calibration posterior, respectively.

of unprotected MAOC, LABC and STRC. During the dry season about 250 days after residue application, another increase

in aggregate formation occurs, this time driven by the physicochemical aggregate formation that continues while aggregate

turnover is reduced due to limiting water availability. After a full year, just before the next addition of litter, most of the

newly added litter of the year before is decomposed and increased moisture availability increases aggregate disruption again.

However, a higher amount of MAOC compared to the beginning of the year and a slightly higher amount of aggregate protected245

MAOC, STRC and LABC leads to an increased amount of SOC compared to the previous year.

3.2 Evaluating SAMM against measured data

Overall, the SAMM model was able to simulate the different types of available measurements, as indicated by positive modeling

efficiencies for all of them (Table 5a; soil C/N was the only exception). The best representation of the measured values by the

model was that of residue-C in litterbags (Fig. 3; EF 0.80) and, interestingly, the measured decomposition of groundnut stover250

was so fast (>50% in the first week) that the model could not capture it. Furthermore, the measured values of the SOC of the

top soil were well represented by SAMM (Fig. 4 and 5; EF 0.68), with a tendency of the model to overestimate SOC in the

rice straw treatment and underestimate SOC in the tamarind and groundnut treatments. Further, microbial nitrogen (MICN;

EF 0.24) and carbon in the free silt and clay fraction (MAOC; EF 0.24) were simulated with acceptable accuracy (Fig. 5 and

6). The temporal trend of microbial nitrogen was also well captured for all litter treatments with the exception of the control,255

in which there was almost no simulated microbial growth response over the year (Fig. 6). For free MAOC, the differences

between treatments were captured, the temporal dynamic was low, both in measured and modeled values, and the model could

overall capture the treatment differences (EF 0.24). It could also very well capture the temporal dynamics of aggregate C in the

groundnut, rice straw, and tamarind treatments, as well as the absence of major temporal dynamics in the other two treatments

(Fig. 6; EF 0.60). Despite the dynamic CUE function of SAMM, the SOC content of the high C/N ratio residue treatments (rice260
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Figure 4. Measured and simulated development of SOC stocks in the top 15 cm of soil from all residue addition treatments. Displayed are

the measured versus modeled gain in SOC stocks since the onset of the experiment (left), with grey bars indicating 95% credibility interval.

Additionally, results for simulated versus measured SOC over time for different residues (right). Dots with error bars indicate the mean

and 95% credibility interval of measured values and simulations. The black line and grey band indicate the best simulation and the 95%

credibility interval of the Bayesian calibration posterior, respectively.

straw the most strongly and dipterocarp to some extent) tended to be overestimated while tamarind tended to be underestimated,

leading to poor model performance (EF -0.58; Fig. 5).

3.3 Model behavior when aggregate formation was removed

Removing the aggregate protection from the calibrated SAMM model to derive SAMMnoAgg showed that the model assigned

a high importance to aggregate protection for the process of SOC stabilization. Without aggregate protection, the simulated265

SOC of all treatments was reduced to approximately half compared to the measured values (Fig. 7; Table 5b). As a result, all

litter addition treatments had approximately the same amount of simulated SOC (excluding litter) in SAMMnoAgg, despite

their difference in C/N ratios, lignins, and polyphenols (Fig. 7). Hence, removing aggregate protection led to a significantly

reduced and now negative modeling efficiency (-3.68) for SOC (Table 5). In addition, the simulation of microbial nitrogen

was negatively affected by the removal of aggregate protection. Due to the absence of aggregate protection of LABC and270

STRC (i.e. POM), simulated microbial growth became too high after litter addition. However, it still had a positive modeling

efficiency (reduction of EF to 0.13 from 0.24, initially) and the temporal trend of the strongest microbial growth occurring
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Figure 5. Simulated versus measured values of aggregate carbon, litter carbon, mineral-associated organic carbon (MAOC), microbial

biomass nitrogen, soil organic carbon (SOC) and soil C/N ratio. The grey bars indicate the 95% credibility interval. The black line marks the

1 to 1 line, the blue line the regression of simulated on measured values.
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Figure 6. Simulation of microbial nitrogen (MICN) in 2005, 2008 and 2019 (top) and of aggregate protected C (AggC; bottom left) and free

mineral-associated C (MAOC; bottom right) of different residues in 2019. Dots with error bars indicate the mean and 95% credibility intervals

of measured values. The black line and grey band indicate the best simulation and the 95% credibility intervals of the Bayesian calibrations‘

posterior, respectively.The dashed line indicates the mean free MAOC in the control in 2019
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Figure 7. Results for the simulation of carbon stocks with the model version including aggregates (SAMM, left) and when aggregate

protection is removed without recalibration (SAMMnoAgg, right). The solid line indicates all carbon including litter, the dynamic dashed

line indicates the combined soil carbon stocks stored in MAOC, AggC and MICC. The horizontal dashed thin line indicates the mean measured

SOC in the control. Dots with error bars indicate the mean and 95% credibility intervals of measured values (excluding litter).

after litter addition was still represented (simulation not shown). In contrast, removing aggregate protection had little effect

on the simulation of litterbag carbon (EF was 0.79) and the increase in model error was minor because litterbag carbon is not

protected by aggregates. Overall, the dipterocarp treatment was simulated to have the highest carbon storage of litter and SOC275

combined without aggregate protection. This was mainly because not all dipterocarp litter decomposed within one year.

3.4 Comparison of SAMM separately calibrated with and without the aggregate protection mechanism

When the SAMM model without aggregate formation (SAMMnoAgg) was recalibrated, the poor model performance was

largely resolved (Table 5c). For example, the model performance for SOC were the same for the two models (EF of 0.68).

However, some notable difference between SAMM and recalibrated SAMMnoAgg remained for the microbial nitrogen and280

litter carbon. Their dynamics were simulated slightly worse in recalibrated SAMMnoAgg compared to SAMM (EF of 0.80

versus 0.75 for litterbag C and EF of 0.24 versus 0.18 for microbial nitrogen; Table 5c). Consequently, the overall model
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Table 5. Model evaluation statistics of a) the default SAMM model (with aggregate protection), b) the SAMM model without aggregate

protection (SAMMnoAgg), and c) the recalibrated SAMM model without aggregate protection (AMMnoAgg). The RMSE and the width

95% credibility intervals (w95% CI) are in kg ha-1. Evaluation statistics are from the Bayesian calibration. EF, Nash-Sutcliffe modelling

efficiency; (R)MSE, (root) mean squared error; LC, lack of correlation; NU, nonunity slope; SB, squared bias; AIC, Akaike information

criterion.

dataset EF RMSE R2 LC NU SB MSE AIC % in 95%CI w95% CIa

a) Default SAMM model 5351b

Litterbag C 0.80 537.3 0.82 87 1 11 288685 869 64 926

Microbial N 0.24 22.8 0.42 76 22 2 518 2041 53 36

SOC 0.68 788.4 0.77 73 5 22 621636 2534 62 1381

( Aggregate C 0.60 302.6 0.61 98 0 2 91548 521 93 1265 )

( Free MAO C 0.24 356.4 0.60 53 46 1 126997 664 93 1188 )

( Soil C/Nc -0.58 6.2 0.04 61 35 4 38 1201 61 12 )

b) Removing aggregate protection/formation (SAMMnoAgg) 11799b

Litterbag C 0.79 540.4 0.81 89 1 10 291993 896

Microbial N 0.13 24.4 0.38 70 22 8 594 2183

SOC -3.68 2922.3 0.62 8 2 90 8539715 8855

c) Recalibrated SAMMnoAgg 5554b

Litterbag C 0.75 600.4 0.77 89 3 8 360447 993 64 953

Microbial N 0.18 23.7 0.39 75 25 0 563 2112 51 38

SOC 0.68 792.3 0.75 77 19 4 627769 2540 55 1409

( Soil C/Nc -133262 1791 0.00 0 99 1 3211117 Inf 65 41 )

a95% witdh of the credibility interval from the Bayesian calibration posterior; bOverall model AIC. For comparability of model versions this was computed without Aggregate and

MAO C and soil C/N. cNot used in calibration.

AIC, considering, for comparability, only litterbag carbon, microbial nitrogen, and SOC, was slightly lower for SAMM versus

recalibrated SAMMnoAgg (5351 versus 5554).

When comparing the posterior distributions of both model versions, it became evident that the recalibration of SAMMnoAgg285

counteracted the loss of aggregate protection by lowering the turnover turnover of MAOM by almost an order of magnitude

(about 85%; Fig. A1). This indicates that the representation of aggregate protection on SOC was changed from explicit to

implicit. Also, the recalibrated SAMMnoAgg version had a lower half saturation constant for direct adsorption of LMWC&N

to MAOM in tendency, allowing for a faster direct adsorption (Table 4). However, the removal of aggregate protection did

not affect most other model parameters, which were similar in their posterior distributions between SAMM and recalibrated290

SAMMnoAgg. Interestingly, the 95% posterior credibility intervals were smaller for SAMM than for recalibrated SAMM-

noAgg and at the same time covered a higher proportion of measurements of microbial nitrogen and SOC, indicating that they

were more accurate for the aggregate version of SAMM.
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3.5 Analysis of model parameter behavior

In both calibrated model versions, SAMM and SAMMnoAgg showed a clear distinction between the turnover of different295

carbon pools (Fig. A1). The highest likelihood turnover rates of MAOM, structural and metabolic litter differed by a factor of

five to ten (e.g., around 0.0004, 0.002 and 0.02 for SAMM, respectively; Table 4). The breakdown of aggregates, with around

3% per day, as well as the physicochemical aggregate formation, equivalent to a MICC growth of 31 kg ha-1 per day, were

high in SAMM. This indicated a highly dynamic aggerregate fraction and a high importance assigned to physicochemical

aggregate formation. At the same time, few strong parameter correlations of r > 0.4 were present in the posterior parameters300

set for the SAMM (Fig. A2) and the parameter correlations in the recalibrated SAMMnoAgg were of similar magnitude

(Fig. A3). First, structural litter turnover and structural protection capacity for labile litter were correlated (r = 0.48). Then,

there was a negative correlation between the aggregate protection of POM by microbial growth and the rate of formation of

physicochemical aggregates (r = -0.43). Furthermore, the adsorption speed of LMWC to MAOC and the turnover of MAOM

were correlated (r = 0.40). Finally, the turnover of MAOM was correlated with microbial death (r = 0.42).305

4 Discussion

4.1 SAMM as a state-of-the-art soil model with measurable pools

With SAMM, we present a state-of-the-art microbe-driven coupled C/N model that is suitable for field-scale application. It

simulates the effect of residue stoichiometry on microbial CUE (Sinsabaugh et al., 2016) and the role of microbial growth in

aggregate formation (Laub et al., 2022; Bucka et al., 2021). It contains measurable pools, is well able to simulate aggregate310

formation resulting from microbial growth, maintains carbon and nitrogen identity (Wang et al., 2022) within the aggregates,

and can easily be converted into a lower complexity model without aggregates (i.e., SAMMnoAgg). The model evaluation

statistics (Table 5) showed that SAMM, with its representation of carbon and nitrogen in measurable pools (including litter as

measurable structural and metabolic pools), is capable of capturing the relevant processes in a long-term experiment of litter

addition in a tropical sandy soil and handling the complexity of microbial driven aggregate formation for different chemical315

compositions of litter. As demonstrated, SAMM captures the differences between treatments, the temporal development of

microbial biomass, and the connection between microbial growth and aggregate formation. To our knowledge, apart from an

early attempt to model in-situ aggregate stability without considering aggregate stored carbon (Abiven et al., 2008), SAMM is

the first model to demonstrate this capability in a field experiment with different litter qualities.

The fact that the parameter correlations were low (maximum r = 0.48) compared to calibration exercises with established320

models such as DayCent (Necpálová et al., 2015, showed parameter correlations between turnover times of different pools of

up to r = 0.9), Daisy (Laub et al., 2020, had parameter correlations between turnover of fast and slow pools of up to r = 0.8)

or ICBM (Ahrens et al., 2014, had correlations between pools up to r = 0.7), gives some indication that the structure of the

SAMM model with measurable pools has a clear advantage compared to models with theory-based conceptual pools. It could,

however, also be due to the superiority of Michaelis Menten to first-order kinetics. Furthermore, the fact that all pools can be325
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measured facilitates calibration, as was recently shown on a global scale with Millennial compared to Century (Abramoff et al.,

2022). However, the data needed to constrain models with measurable pools at the global scale may not be readily available.

For example, we are not aware of other field experiments that include different litter types and follow microbial biomass, SOC,

and aggregate carbon simultaneously over time. Therefore, this version of SAMM was tested only at one site, and it remains

to be evaluated for larger spatial scales and with a range of experiments with different quality organic amendments. It is likely330

that across a range of sites, SAMM model performance will be lower and that the calibration to the single site of this study

resulted in an overfitting of some parameters.

We posit that maintaining the carbon identity inside aggregates represents the next logical step for aggregate models, but

we are aware of the fact that the marginally better performance of SAMM vs. recalibrated SAMMnoAgg only provides ini-

tial evidence. Hence, we invite others to test the concept against further data sets with SAMM or with their own model. By335

maintaining the carbon identity, aggregate models can help answer important scientific questions, such as how important sta-

bilization of carbon in aggregates is for the global carbon cycle. As shown by the deactivation of aggregates in SAMMnoAgg,

SAMM can also provide novel insights into the relative importance of different processes, such as the importance of aggregate

protection for carbon stabilization versus protection by attachment to minerals (Angst et al., 2021). In this calibration exercise,

the model estimate was that only half of the carbon is protected as MAOC and that about half of the carbon is protected inside340

aggregates (Fig 7). However, because we had no measurements of POM versus MAOM in the aggregates, we cannot evaluate

this by measurements, and it is based on the assumption of complete protection of POM and MAOM inside the aggregates.

Another interesting process insight was that the calibration of SAMM assigned a similar importance to physicochemical ag-

gregate formation and microbial aggregate formation and that both processes probably happen in parallel, especially in tropical

soils, as tested here. However, it is clear that our data did not provide enough information to clearly distinguish between both345

processes, which can be seen by the wide posterior credibility intervals of physicochemical aggregate formation. Despite this,

the fact that SAMM could simulate the observed increase in aggregate C in the dry season towards the end of 2019 (Fig 6)

indicates that this process needs to be included.

4.2 Is aggregate protection necessary to better simulate microbial and SOC dynamics?

It has been postulated that because a substantial portion of soil carbon is located within soil aggregates, soil aggregation needs350

to be included in models to accurately capture reality (Segoli et al., 2013; Abramoff et al., 2018). In this paper we followed this

hypothesis and explicitly tested it by comparing the performance of SAMM with and without aggregate formation in simulating

litter carbon, microbial nitrogen, and SOC across the different treatments (Table 5). Since clear connections between microbial

growth and aggregate formation have been demonstrated (Laub et al., 2022; Bucka et al., 2021; Bossuyt et al., 2001; Denef

et al., 2001), including aggregate formation in SAMM is a more realistic process representation. In alignment with our second355

hypothesis, removing the soil aggregate formation did, even after recalibration of SAMMnoAgg, reduce model performance

of the non-aggregated pools, albeit not strongly. This suggests that simulation of aggregate formation and disruption can be

useful to understand the overall dynamics of SOC, but that SAMMnoAgg was able to artificially compensate for the missing

aggregate protection mechanism (which, as shown by crushed aggregates incubation, e.g., Kpemoua et al., 2022; Puttaso et al.,
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2011; Six et al., 2002, clearly exists) by reducing turnover of MAOM. What also speaks for this effect are the smaller posterior360

credibility intervals of SOC, microbial nitrogen, and litter carbon of the aggregate version of SAMM compared to recalibrated

SAMMnoAgg (Table 5) and that they still covered a higher percentage of measured values.

The fact that the recalibrated SAMMnoAgg model still seems to implicitly account for the aggregate protection of SOC by

reducing the turnover of MAOM (Fig. A1) could suggest that aggregate formation does not need to be included in models

to accurately capture differences in SOC formation at large scales. Despite being a better process representation, limited data365

availability of aggregate- and microbial dynamics may make a non-aggregate model more feasible. However, for a mechanistic

understanding, i.e., using the model as a research tool to test hypotheses, it is arguably better to include aggregate formation

and carbon protection in aggregates. In contrast, simulating aggregate protection may not be necessary to assess the carbon

sequestration potential of different management strategies. On the one hand, many processes that are relevant for soil formation

and SOC stabilization and occur inside aggregates, may be irrelevant at the field scale (Yudina and Kuzyakov, 2019) if they370

are implicitly included by adjusting other model parameters. On the other hand, we only had data to test SAMM with one

long-term experiment in a single soil type. Model parsimony and equifinality often depend on how much data is available

(Marschmann et al., 2019). Hence, it is possible that across sites, the interaction of factors such as differences in texture, litter

composition, and different climates on SOC protection may be best represented by a model that includes the mechanism of

aggregate protection. For example, the better model performance of Millenial compared to Century only became evident when375

looking at the global distribution of soil carbon (i.e., only at high latitudes is Millenial better; Abramoff et al., 2022). Clearly,

a range of field experiments that measured the temporal dynamics of aggregates together with microbial biomass and SOC

would be needed to better test and hence understand the relevance of aggregate formation to simulate SOC dynamics across

scales.

4.3 Potential limitations and open questions380

An interesting observation is that the model assumes a rather high amount of daily carbon input through roots (about 3 kg C

ha-1 day-1 for both SAMM and SAMMnoAgg) in addition to the litter that is added annually through the treatment. However,

this additional material is expected to have a rather high C/N ratio. The parameter of daily carbon input was included for two

reasons: 1) we observed weed growth in the plots, despite regular weeding, and hence assuming no additional inputs did not

seem reasonable, and 2) model runs with carbon inputs only from litter addition could not maintain any microbial activity in385

the control, further corroborating the validity for these inputs (simulations not shown). The fact that the calibration assumed

rather high root inputs is potentially due to the absence of more complex microbial traits in SAMM, such as dormancy, which

some other models include (Wang et al., 2015; Blagodatsky and Richter, 1998). Furthermore, CUE is only a function of litter

C/N and not of the microbial community. An earlier study showed that the different treatments led to different microbial

communities (Kamolmanit et al., 2013), and communities of minimal inputs usually become more efficient at recycling carbon390

and nitrogen (Dijkstra et al., 2022). The lower C/N ratio of daily root carbon inputs in SAMMnoAgg compared to SAMM in

that regard could be interpreted as aggregate formation within a model that helps simulate microbial biomass patterns. In fact,

aggregate formation, linked to both microbial growth and physicochemical formation, was very fast. Additionally, turnover
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rates were high (almost as fast as metabolic litter decomposition). This is in alignment with a recent model of aggregation on

the micro scale (Zech et al., 2022). Yet, it is difficult to distinguish between the different pathways of aggregate formation.395

Finally, the question is to what extent POM and MAOM are effectively protected inside aggregates. In this version of SAMM,

we simulated the most extreme case of complete protection of carbon inside aggregates, which in future versions should most

likely be replaced by a decomposition reduction factor because we know that aggregates do not completely protect carbon. Yet,

it will be very difficult to measure carbon turnover inside aggregates and hence to constrain such a reduction factor. Finally, the

next logical step would be to include multiple soil layers in SAMM, provided a suitable water leaching function is included.400

The LMWC/N leaching to deeper soil layers, feeding aggregate formation there should, in theory, help to explain SOC depth

gradients.

5 Conclusions

We presented and evaluated the SAMM model, a state-of-the-art soil organic matter research model with measurable pools

that can simulate the formation and turnover of aggregates under different organic amendment treatments. Overall, good model405

evaluation statistics (EF 0.2 to 0.8, depending on observation type) and low parameter correlations (r < 0.48) suggested that

the current structure of SAMM is valuable, clearly identifiable in calibration and hence parsimonious. The results suggested

that aggregate protection plays a crucial role for SOC stabilization, i.e., in the model simulations about 50% of soil carbon

was protected in aggregates, even in the sandy soil of the studied long-term experiment. While for basic research, aggregate

formation should be included into models, our results indicate that with model recalibration, the absence of aggregate protection410

in SOM models is partly compensated by reducing turnover of the MAOM pool. Hence, if the sole goal is to represent SOM,

microbial nitrogen, and litter carbon well, aggregate formation may be omitted in SOM models, especially if insufficient

data on aggregates exists. However, it is possible that this compensation within our study was only possible because the data

originated from a single site. For further evidence, studies would be needed in a variety of soils and climates, which calls for

more long-term studies to include repeated measurements of aggregate and microbe dynamics.415

Code and data availability. The full dataset used for this study, as well as the R code of SAMM version 1.0 is provided on Github via Zenodo

(https://zenodo.org/record/8086828). It may be adapted for further uses or integrated into full ecosystem models that allow for interchanging

of the SOM part of the model.
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Appendix A: Appendix

A1 Detailed description of the SAMM model pools420

A1.1 Structural litter pool - STRC

To make the structural litter pool (STRC) fully measurable, it consists of lignin and polyphenols, the parts of litter which

stabilize the cell wall and are processed by microbes with a low CUE. STRC is assumed to have a carbon content of 65%,

representing a lignin-typical C/H/O ratio of 20/23/7 (Gargulak et al., 2015). Through this definition, the structural litter pool

is measurable as acid detergent lignin (Van Soest and Wine, 1968) and polyphenols (Anderson and Ingram, 1993), and it does425

not contain nitrogen.

A1.2 Metabolic litter pool – LABC and LABN

The metabolic litter pool contains all parts of the litter which are not part of STRC. This includes cellulose, hemicellulose,

intracellular carbon, and nitrogen. Because plant cell walls are a mixture of structural components with celluloses and hemi-

celluloses (Alberts et al., 2002), there needs to be a distinction between the non-lignin components of the cell wall and the430

easily available cell interior. While others have solved this by creating three litter pools, containing the soluble part, the non-

lignin structural part and the lignin part (Campbell et al., 2016), we wanted to be parsimonious and have only two litter pools.

We therefore linked the decomposition speed of the non-lignin cell wall components to the decomposition speed of lignin by

adding a simulated protection capacity of the structural litter pool on the metabolic litter pool. This mimics that the parts of

the cellulose, hemicellulose and lignin of the cell wall are tightly interwoven (Alberts et al., 2002). The amount of protected435

metabolic carbon (ProtLABC&N) is not a real pool but a linear function of carbon in the structural pool (fixed ratio). This

approach implicitly assumes that non-lignin and lignin cell wall components decompose together and that the decomposition

speed of the lignin components is the rate-limiting factor. All components that are not protected by STRC are considered to

be easily available for microbial uptake and, due to the lower cost of depolymerization, microbes usually process them with a

higher CUE.440

A1.3 Low molecular weight carbon and nitrogen pools - LMWC and LMWN

The low molecular weight pool contains depolymerized carbon and nitrogen which easily enters the soil solution. All de-

composed plant and microbial residues, as well as MAOM, end up in this pool. The pool of LMWC&N can be measured by

extraction using a K2SO4 solution. Microbes, similar to other established models, such as MEND (Wang et al., 2013) and

Millenial (Abramoff et al., 2018), can only consume carbon and nitrogen in the LMWC&N pool. When consumed by microbes,445

LMWC is subject to a dynamic CUE. This dynamic CUE is a function of the C/N ratio of LMWC&N, thus accounting for a

C/N-dependent growth respiration and spilling (Sinsabaugh et al., 2013). We used the linear function of C/N dependent CUE

(Fig. A6) based on Campbell et al. (2016, equation 16B), which they based on Sinsabaugh et al. (2013). Additionally, the

LMWC&N pool is the only pool that can be leached. Finally, direct adsorption of LMWC and LMWN to particles from the silt
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and clay fraction is possible. This was simulated using a Langmuir-type relationship, as in Wang et al. (2013), with values for450

this relationship estimated by Abramoff et al. (2022).

A1.4 Microbial pools - MICC and MICN

The MICC&N pool comprises the living soil microbial biomass that actively influences the decomposition of all other pools.

MICC&N can be measured using various techniques, such as substrate-induced respiration (Kandeler et al., 1999), or the more

common chloroform fumigation extraction (Vance et al., 1987), but all of these are subject to considerable uncertainty. In455

SAMM, the MICC&N pool actively contributes to the decomposition of other pools through a microbial activity factor (aMIC).

Because the uptake of LMWC and LMWN by microbes only depends on the availability and on aMIC, the C/N ratio of microbes

is not fixed. We included indirect limits to microbial C/N through a C/N-dependent CUE and a direct limit through nitrogen

immobilization if microbial C/N surpasses an upper boundary and a spilling of nitrogen occurs for very low C/N ratios at

a lower boundary. If the C/N ratio of microbes becomes smaller than a minimum C/N, the excess nitrogen is released by460

the microbes to avoid unrealistically low C/N ratios of the microbes (maximally half of the excess nitrogen per day). Both

maximum and minimum microbial C/N are calibrated parameters. The microbial pool is subject to maintenance respiration

and microbial death. The carbon and nitrogen of dead microbes are divided between the LMWC&N and the mineral-associated

pool, representing the soluble cell constituents entering LMWC&N and cell wall structures, which are assumed to be attached

directly to the minerals (Krause et al., 2019).465

A1.5 Mineral-associated organic carbon and nitrogen pools – MAOC and MAON

This pool consists of all carbon and nitrogen which is attached to silt and clay. It has long been suggested that this is a form

of carbon and nitrogen with slower average turnover than total SOM (Christensen, 2001) with a residence time of decades to

millenia (Kögel-Knabner et al., 2008). There are two ways in which carbon and nitrogen can enter the MAOC&N pools: first,

microbial cell walls that attach to minerals after microbial death and second, the adsorption of LMWC&N. As in many models,470

we allow for an attachment of SOM to MAOC&N in the form of microbial residues that is only limited by a partitioning constant

as one process. The adsorption of LMWC&N to MAOC&N, as the other process, follows a Langmuir-type relationship, where

the limit is determined by the amount of silt and clay in a soil (Abramoff et al., 2022). The differences between LMWC&N and

MICC&N attachment to MAOC&N follow recent studies that demonstrated that N-rich microbial products preferentially attach

to new mineral surfaces (Kopittke et al., 2018, 2020), while the direct sorption of LMWC&N depends on the amount of fine475

particles (Georgiou et al., 2022).

A1.6 Aggregate pools – AggC and AggN

To adhere to the concept of structural carbon identities, the carbon and nitrogen in aggregates does not represent a single pool.

Instead, the aggregates consist of the primary constituents STRC, LABC&N and MAOC&N pools, which inside aggregates are

protected from decomposition (AggSTRC, AggLABC&N and AggMAOC&N). In alignment with recent studies showing that the480
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presence of microbially-produced binding agents stabilizes aggregates (Bettermann et al., 2021; Crouzet et al., 2019), the rate

of aggregate formation in SAMM (amounts of primary constituents entering the aggregate protected pools) is a function of

microbial growth. Furthermore, SAMM allows for physicochemical aggregate formation at a constant rate (currently defined

as daily microbial growth equivalent). This physicochemical aggregate formation represents all abiotic aggregate formation

processes. Hence, SAMM allows for both important processes of aggregate formation; biological and physicochemical (Six485

et al., 2002). While within the aggregates there is no decomposition, a concept proposed by Luo et al. (2017) as a way to

reduce the number of parameters in aggregation models and represent aggregate protection in a parsimonious way. Each

carbon identity is transferred back into the pool from which it originated without any loss of matter during aggregate turnover.

A2 Technical implementation of SAMM

The SAMM model was written in the R programming language (R Core Team, 2020), and differential equations were solved490

using the deSolve package with the rk4 solver (Soetaert et al., 2010). Thus, it can be run at any time step. We used a daily time

step with the optimized rk4() solver, after confirming that the results for this were the same as using an ode() solver, which

makes time steps infinitely small and has no numerical errors. Simulations of carbon and nitrogen dynamics are performed for

the topsoil layer (0-15 cm). While all flows of carbon and nitrogen between pools were simulated within the SAMM model, the

soil water status, water leaching, and temperature, needed to drive SAMM, are currently external inputs. Climatic data and soil495

temperature measurements were available from a station located close to the experiment, and soil water content and leaching of

water from the soil was simulated with the HYDRUS 1D model (Šimůnek et al., 2005) based on climatic data and soil texture.

Measurements conducted with moisture sensors during 2019 showed that the simulated HYDRUS water content matched the

moisture levels and the dynamical pattern of the measured water content (Figure A4). To be able to calibrate SAMM for litter

decomposition from a litterbag experiment, we created litterbag carbon and nitrogen pools, which were reinitialized with each500

yearly litter addition and did not flow into any other pools. They decomposed at the same turnover as the normal STRC and

LABC&N litter pools, but could not be protected in aggregates. Note that SOC was defined to correspond all pools combined,

excluding the free STRC and LABC pools.

A3 SAMM model equations and additional model graphs

The following section describes the differential equations of the SAMM model that govern the changes of pool sizes (Table 3)505

over time. Inputs into the system are only in the form of litter (ISTRC and ILABC ). The flows between pools are displayed as flows

(FX1X2 ) from the donor pool (X1) to the receiving pool (X2) as follows:

dSTRC

dt
=+ISTRC

−FSTRCLMWC
−FSTRCAggSTRC

+FAggSTRCSTRC
−FSTRCCO2 (A1)

dLABC

dt
=+ILABC

−FLABCLMWC
−FLABCAggLABC

+FAggLABCLABC
−FLABCCO2

(A2)

dLMWC

dt
=+FSTRCLMWC

+FLABCLMWC
+FMICCLMWC

+FMAOCLMWC
−FLMWCMICC

−FLMWCMAOC
−FLMWCCleach

−FLMWCCO2
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Figure A1. Prior and posterior parameter distributions of SAMM and the version without aggregates (SAMMnoAgg) for all model parame-

ters that were calibrated. Priors were the mean of SAMM and SAMMnoAgg from an initial calibration of both model versions with a genetic

algorithm. The width of the distribution was manually chosen and based on the range given by the genetic algorithm. Negative values were

excluded.

(A3)510

dMICC

dt
=+FLMWCMICC

−FMICCLMWC
−FMICCMAOC

−FMICCCO2 (A4)

dMAOC

dt
=+FMICCMAOC

+FLMWCMAOC
−FMAOCLMWC

−FMAOCAggMAOC
+FAggMAOCMAOC

(A5)

dAggSTRC

dt
=+FSTRCAggSTRC

−FAggSTRCSTRC
(A6)

dAggLABC

dt
=+FLABCAggLABC

−FAggLABCLABC
(A7)

dAggMAOC

dt
=+FMAOCAggMAOC

−FAggMAOCMAOC
(A8)515

Respired (CO2) and leached (Cleach) carbon are permanently lost from the system.

dCO2

dt
=+FSTRCCO2 +FLABCCO2 +FLMWCCO2 +FMICCCO2 (A9)
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Figure A2. Correlation matrix between all calibrated parameters of the SAMM model. The parameter values are from the posterior distribu-

tion of the Bayesian calibration using the SIR method.
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Figure A3. Correlation matrix between all calibrated parameters of the model without aggregates (SAMMnoAgg). The parameter values are

from the posterior distribution of the Bayesian calibration using the SIR method. Aggregate related parameters were fixed to deactivate the

aggregate formation.
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nested in the experimental block.
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dCleach

dt
=+FLMWCCleach

(A10)

The flows of carbon between pools, as described above, are computed from the state variables of each pool XC, the protection

capacity for the LABC pool (pLAB), carbon use efficiencies for each pool (CUEX) and their standard turnover rates (kX) or520

maximum microbial uptake for LMWC (µmax). Apart from LMWC, the CUEX, are not directly measurable, but represent a proxy

for depolymerization cost. The decomposition speed of all pools outside aggregates is influenced by a reverse Michaelis-

Menten microbial activity factor (aMIC), a temperature (st) and a moisture rate modifier (sw) influences all pools. Partitioning

coefficients (fX) are further used, where one pool feeds into several pools.

FSTRCLMWC
= STRC ∗CUESTR ∗ kSTR ∗ aMIC ∗ st ∗ sw (A11)525

FSTRCCO2
= STRC ∗ (1−CUESTR) ∗ kSTR ∗ aMIC ∗ st ∗ sw (A12)

FLABCLMWC
= LABC ∗ (1− pLAB) ∗CUELAB ∗ kLAB ∗ aMIC ∗ st ∗ sw (A13)

FLABCCO2
= LABC ∗ (1− pLAB) ∗ (1−CUELAB) ∗ kLAB ∗ aMIC ∗ st ∗ sw (A14)

FLMWCMICC
= LMWC ∗CUECN(LMW ) ∗µmax ∗ aMIC ∗ st ∗ sw (A15)

FLMWCCO2
= LMWC ∗ (1−CUECN(LMW )) ∗µmax ∗ aMIC ∗ st ∗ sw (A16)530

The protection and disruption of aggregates is formulated as follows:

FSTRCAggSTRC
=min(((FLMWCMICC

+NonMicAgg) ∗ aggfactSTRC
),STRC) (A17)

FLABCAggLABC
=min(FSTRCAggSTRC

∗ pcSTRLAB
,LABC) (A18)

FMAOCAggMAOC
=min(((FLMWCMICC

+NonMicAgg) ∗ aggfactMAOC
),MAOC) (A19)

FAggSTRCSTRC
=AggSTRC ∗ kAgg ∗ st ∗ sw (A20)535

FAggLABCLABC
=AggLABC ∗ kAgg ∗ st ∗ sw (A21)

FAggMAOCMAOC
=AggMAOC ∗ kAgg ∗ st ∗ sw (A22)
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FMICCCO2
=MICC ∗mmic ∗ st ∗ sw (A23)

FMICCLMWC
=MICC ∗ kmic ∗ (1− fMICMAOM ) ∗ st ∗ sw (A24)540

FMICCMAOC
=MICC ∗ kmic ∗ fMICMAOM ∗ st ∗ sw (A25)

FMAOCLMWC
=MAOC ∗ kMAO ∗ aMIC ∗ st ∗ sw (A26)

Adsorption to MAOC is formulated as follows:

FLMWCMAOC
= LMWC ∗KLMWMAO ∗

MAOCmax −MAOC

MAOCmax

∗ st ∗ sw (A27)

For leaching, which was externally calculated using the HYDRUS 1D model (Šimůnek et al., 2005) it is assumed that545

LMWC&N are equally mixed with the soil solution and thus lost at the same rate as leached water.

FLMWCCleach
=min(wleach ∗LMWC ;0.95 ∗LMWC) (A28)

The reverse Michaelis-Menten microbial activity factor (aMIC), which influences the decomposition speed of most pools, the

ratio of STRC, LABC&N and MAOCC&N protected in aggregates are calculated as follows:

aMIC =max(
MICC

KMMIC
+MICC

;0.05) (A29)550

It was defined as never being lower than 0.05, so that microbes in low organic matter input treatments would not completely

die off.

The maximum adsorption capacity of a soil depends on the modeled depth, the bulk density (BD) and the amount of silt and

clay particles (SiCl):

MAOCmax = depth ∗BD ∗%SiCl ∗ cSORP (A30)555

The temperature (st) and a moisture scalar (sw) and the dynamic CUE were adopted from established models and not subject

to further modification (Fig. A6). For the temperature scalar, an exponential equation was chosen as is common in many models

(e.g. Daisy; Hansen et al., 1993). In this context it is important to note that different temperature rate modifiers have a different

temperature at which they set the temperature scalar to 1. Here 20°C was chosen to be representative for the tropical climates.

Many temperate models use a value of 10°C for the scalar (Daisy, RothC), whereas Century and Millenial use a scalar that has560

a maximum value of 1 at 40°C but only 0.5 at 20°C. This difference in temperature scalar functions needs to be considered, for

example, when adopting turnover rates from one model to another. In that case, rates need to be adjusted accordingly (e.g. in

the case of SAMM multiplying them by 2 for models that define the scalar to be 1 at 10°C and use an exponential temperature

function with a Q10 value of 2).
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Figure A6. Graphic representation of the scalar functions which are applied in SAMM to represent the effect of a) temperature b) moisture.

Additionally the function that represents c) the dynamic CUE based on the C/N ratio of LMWC&N is displayed.

st = 2(
t−20
10

) (A31)565

sw =min

(
(0.6+0.4 ∗

pF

1.5
);max(1.625−

pF

4
;0);1

)
(A32)

CUECN(LMW ) = CUELMW ∗min
(
CN(LMW )−1 ∗ 13.4;1

)
(A33)

The flow of nitrogen between the different pools is simulated in a a way that is similar to the carbon pools:

dLABN

dt
=+ILABN

−FLABNLMWN
−FLABNAggLABN

+FAggLABNLABN
(A34)

dLMWN

dt
=+FLABNLMWN

+FMICNLMWN
+FMAONLMWN

−FLMWNMICN
−FLMWNMAON

−FLMWNNleach
−IMMICN

+OSMICN

(A35)570

dMICN

dt
=+FLMWNMICN

−FMICNLMWN
−FMICNMAON

+ IMMICN
−OSMICN

(A36)
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dMAON

dt
=+FMICNMAON

+FLMWCNMAON
−FMAONLMWN

−FMAONAggMAON
+FAggMAONMAON

(A37)

dAggLABN

dt
=+FLABCAggLABN

−FAggLABCLABN
(A38)

dAggMAON

dt
=+FMAOCAggMAON

−FAggMAOCMAON
(A39)

dNleach

dt
=+FLMWNNleach

(A40)575

To calculate the flows of nitrogen, the same scalars, ratios of protected STRC, LABC&N and MAOCC&N in aggregates, and

turnover rates are used. Additionally, the microbes can immobilize nitrogen (IMMICN ) from LMWN, if their C/N ratio gets too

wide, or spillover nitrogen to the DON pool (OSMICN ), if their C/N ratio gets too narrow:

FLABNLMWN
= LABN ∗ (1− pLAB) ∗ kLAB ∗ aMIC ∗ st ∗ sw (A41)

FLMWNMICN
= LMWN ∗µmax ∗ aMIC ∗ st ∗ sw + IMMICN

−OSMICN
(A42)580

FMICNLMWN
=MICN ∗ kmic ∗ (1− fMICMAOM ) ∗ st ∗ sw − IMMICN

+OSMICN
(A43)

FMICNMAON
=MICN ∗ kmic ∗ fMICMAOM ∗ st ∗ sw (A44)

FMAONLMWN
=MAON ∗ kMAO ∗ aMIC ∗ st ∗ sw (A45)

FLMWNMAON
= FLMWCMAOC

∗
LMWN

LMWC
(A46)

FLABNAggLABN
= FLABCAggLABC

∗
LABN

LABC
(A47)585

FMAONAggMAON
= FMAOCAggMAOC

∗
MAON

MAOC
(A48)

FAggLABNLABN
=AggLABN ∗ kAgg ∗ st ∗ sw (A49)

FAggMAONMAON
=AggMAON ∗ kAgg ∗ st ∗ sw (A50)
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FLMWNNleach
=min(wleach ∗LMWN ;0.95 ∗LMWN ) (A51)590

IMMICN
= if

(
MICC

MICN
>CNmax(MIC)

)[
min

(
MICC

CNmax(MIC)

−MICN ;
1

2
LMWN

)
;0

]
(A52)

OSMICN
= if

(
MICC

MICN
<CNmin(MIC)

)[
0.5

(
MICN −

MICC

CNmin(MIC)

)
;0

]
(A53)
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