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Abstract.

We apply Causal Effect Networks to evaluate the influence of spring North Atlantic extratropical sea surface temperatures

(NA-SST) on the summer East Atlantic Pattern (EA) seasonal predictability during the period of 1908-2008. We find in
::
In the

ERA-20C reanalysisthat a ,
:::
we

::::
find

:::
that

:::
the

::::::
causal

:::
link

:::::
from

:::
the meridional NA-SST gradient in spring (SST index) causally

influences
::::::::
expressed

::
by

:
a
::::::::::

meridional
:::::
"SST

::::::
index")

::
to

:
the summer EA

:
is
::::::
robust

:::::
during

:::
the

::::::
period

::::
from

:::::
1958

::
to

:::::
2008, with an5

estimated causal effect expressed by a β-coefficient of about 0.2 (a 1 standard deviation change in
:::
the spring SST index causes

a 0.2 standard deviation change in the EA 3-4
:
4
:

months later). Notably
::::::::
However, this causal link is only evident during the

period from 1958 to 2008, and is not observed throughout the entirety of the investigated period.
::
not

:::::::
evident

::::
when

:::::::::
analysing

::
the

:::::
entire

::::::
period

::::
from

:::::
1908

::
to

:::::
2008. When performing the analysis on 45-year-long time series randomly sampled in

::::
from

:
this

late period, we find the strength of the causal link to be affected by interannual variability, suggesting a potential modulation10

by an external physical mechanism. In addition to the summer EA, we find that the spring SST index has an estimated causal

effect of about -0.2 on summer 2-metre air temperatures over northwestern Europe, possibly mediated by summer EA. We then

use a pre-industrial and
:::::::
different

::::::
datasets

:::::
from

:::
the

:::::::::::::
MPI-ESM-MR

::
to

:::::::
analyse

:::
the

:::::::::
1908-2008

::::::
period,

::::::::
focusing

::
on

:
a historical

simulation , as well as
::
and

:
a 30-member initialised seasonal prediction ensemblewith MPI-ESM-MR to

:
.
:::
We

:::::::::
specifically

:
test

the modelperformance in reproducing the detected causal links
:
’s
::::::
ability

::
to

::::::::
reproduce

:::
the

::::::
causal

::::
links

:::::::
detected in ERA-20C and15

to evaluate whether this performance might leave an imprint in the modelpredictive skill of
:::::::
evaluate

::::
their

::::::
impact

::
on

:::
the

:::::::
model’s

::::::::
predictive

::::
skill

:::
for European summer climate. We find that while both the pre-industrial and historical simulations using MPI-

ESM-MR are mostly unable
:::::::
generally

::::
fails

:
to reproduce the causal link between spring SST

::
the

::::::
spring

::::
SST

:::::
index

:
and the

summer EA among the different datasets, the
:::::
across

:::
the

:::::::
datasets.

::::
The 30-member initialised ensemble can reproduce a causal

linkbetween spring SST and summer 2-metre air temperatures over a region west of the British Isles
::::::::::
occasionally

::::::::::
reproduces20
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::
the

::::::
causal

::::
link,

:::::::
though

:
it
::::::::
typically

:::::::::::::
underestimates

::
its

:::::::
strength. We perform a predictive skill assessment conditioned on the

spring SST index causal links for July-August sea level pressure, 500 hPa geopotential height and 2-metre air temperatures

for predictions initialised in May. Our results suggest that MPI-ESM-MR’s performance in reproducing the spring SST index

causal links constrains
::::
while

:::
the

::::::
overall

::::::
impact

::::
may

:::
be

:::::::
limited,

:::::::::
leveraging

::::
these

::::::
causal

::::
links

:::::::
locally

:::::
could

::::
help

::
to

::::::::
constrain

:::
and

:::::::
improve the seasonal prediction skill of European summer climate.25

1 Introduction

The summer East Atlantic Pattern (EA) is an important atmospheric teleconnections influencing weather and climate in the

Euro-Atlantic region (e.g. Comas-Bru and McDermott (2014); Bastos et al. (2016)). Along with the summer North Atlantic

Oscillation (NAO), these teleconnections are often used to describe the combined changes in latitude and speed of the North

Atlantic jet stream (Woollings et al., 2010) – one of the major modulators of mid-latitude weather extremes (e.g. Rousi et al.30

(2022)). Understanding the predictability associated with these teleconnections is therefore of paramount importance. Although

several recent studies have focused on predictability of the NAO (Domeisen et al., 2018; O’Reilly et al., 2019; Athanasiadis

et al., 2020; Klavans et al., 2021), the EA has received less attention. Here, we apply the Peter and Clark momentary con-

ditional independence (PCMCI) causal discovery algorithm to evaluate the influence of North Atlantic extratropical surface

temperatures (NA-SST) on the predictability of EA at seasonal timescales.35

The most common description of the EA pattern features a well-defined sea level pressure (SLP) centre of action south of

Iceland and west of the British Isles, usually defined as the second leading empirical orthogonal function (EOF) of SLP in the

Euro-Atlantic region (e.g. Moore et al. (2013)). Wallace and Gutzler (1981) define a positive phase of the EA as characterised

by the centre of action exhibiting anticyclonic conditions, featuring the northward extension of the Azores High. A positive

EA has been associated with below-average surface temperatures (Cassou et al., 2005; Comas-Bru and Hernández, 2018) and40

dry spells in parts of Europe (Rousi et al., 2021). Conversely, anomalous cyclonic conditions offshore of Ireland have been

suggested to influence heatwaves in Europe for a negative EA phase (e.g. Duchez et al. (2016)). Using a clustering approach

(e.g. Cassou et al. (2004); Carvalho-Oliveira et al. (2022)), a positive EA phase is reminiscent of an Atlantic Ridge, whereas

a negative EA phase resembles the Atlantic Low. A common feature amongst the different EA definitions is that its centre of

action is positioned along the NAO nodal line, thus ultimately modulating the location and strength of the NAO dipole and45

the North Atlantic storm track (Woollings et al., 2010). That is, summer climate predictability in the Euro-Atlantic region is

closely linked to EA variability.

While there is no consensus on the physical processes driving the EA, spring NA-SST have been proposed to influence EA

variability and predictability. Gastineau and Frankignoul (2015) suggested that summer 500-hPa geopotential height anomalies

in the Euro-Atlantic significantly co-vary with a spring NA-SST tripole pattern in observations over the 20th century. Moreover,50

Carvalho-Oliveira et al. (2022) suggested that spring North Atlantic SSTs can influence predictive skill of summers dominated

by EA in initialised simulations. Based on linear regression analyses of the period 1979–2017, Ossó et al. (2018) and Ossó

et al. (2020) proposed a physical mechanism whereby anomalous extratropical North Atlantic SSTs in spring may persist into
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summer and influence shifts in the eddy-driven jet stream, imprinting at the surface an SLP pattern that resembles the EA.

These studies suggest that this mechanism is forced by changes in baroclinicity of the lower troposphere associated with a55

strong meridional NA-SST gradient in spring located between subpolar and subtropical gyres. The authors hypothesised that

the delayed atmospheric response in summer, and not in spring, could be explained by the seasonal evolution of both NA-

SST gradient and jet stream position, modulated by a positive coupled ocean–atmosphere feedback that operates primarily in

summer.

Nevertheless, while the linear regression-based analysis provided in Ossó et al. (2018) suggests a contribution of spring NA-60

SST on the
::
to

:
summer SLP variability, this approach does not imply causation. Disentangling the complex causal-effect path-

ways underlying the mechanism proposed in Ossó et al. (2020) over a long observational record is a crucial step to evaluate
::
in

::::::::
evaluating

:
EA predictability in dynamical climate models. Hence, in this paper we use

::::::::
Although

:::::::::
dynamical

:::::::
seasonal

::::::::
forecasts

::
of

::::::::
European

:::::::
summer

::::::
climate

::::::::
typically

::::
show

::::::
limited

::::
skill

:::::
(e.g.,

::::::::::::::::
Mishra et al. (2019)

::
),

:::::
recent

::::::
studies

::::::
suggest

::::
that

:::::::::
improving

:::
the

:::::::::::
representation

::
of

:::::::::::::
teleconnections

:::
can

:::::::
increase

:::::::
forecast

::::
skill

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Oliveira et al., 2020; Carvalho-Oliveira et al., 2022; Schuhen et al., 2022)65

:
.
:::
The

:::::::
physical

::::::::::
mechanism

::::::::::
connecting

:::::::
NA-SST

:::::::::
variability

:::
and

:::
jet

::::::
stream

::::::::
dynamics

::::::::
proposed

::
in

:::::::::::::::
Ossó et al. (2020)

:::::::
provides

::
a

:::::::::
framework

:::
for

:::::::
assessing

:::
the

:::::::
broader

::::::::
influence

::
of

:::::::
NA-SST

:::
on

:::::::
seasonal

:::::::::::
predictability

::
of

:::
the

::::
EA,

:::::
which

::
is

:::
the

:::
aim

:::
of

::
the

:::::::
present

:::::
study.

::
In

:::
this

:::::
paper,

:::
we

:::
use

:
a
:
Causal Effect Network based on PCMCI (hereafter : CEN, Kretschmer et al. (2016)) to test the hypoth-

esis of
:::
that spring NA-SST causally driving

:::::
drives a response in the summer SLP and temperature fields in the Euro-Atlantic70

sector during the 20th century. CEN overcomes spurious correlations due to
::::::
caused

::
by

:
autocorrelation, indirect effects, or com-

mon drivers (Runge et al., 2014, 2019). It has been successfully used to complement
::::::
applied

::
to hypothesis testing for other trop-

ical and mid-latitude teleconnections in the Atlantic-Pacific region (e.g.Karmouche et al. (2023) and
:
,
::::::::::::::::::::
Karmouche et al. (2023)

:
),
:::
the

:
Indian Ocean (e.g.

:
, Di Capua et al. (2020a)), as well as in

:::
and

:
the Arctic region (e.g.

:
, Siew et al. (2020); Kretschmer et al.

(2020)).75

Although dynamical seasonal forecasts of European summer climate usually show very little skill (e.g. Mishra et al. (2019)),

recent studies suggest that improving the representation of teleconnections can increase forecast skill (Oliveira et al., 2020; Carvalho-Oliveira et al., 2022; Schuhen et al., 2022)

. The physical mechanism connecting NA-SST variability and jet stream dynamics proposed in Ossó et al. (2020) thus offers

a framework to more generally assess the influence of NA-SST on seasonal predictability of the EA – the aim of the present

study.80

Here
:::::::::
Specifically, we use CEN to firstly investigate under which circumstances

::::::::
investigate

:::
the

::::::::::::
circumstances

:::::
under

::::::
which

spring extratropical North Atlantic SSTs causally influence the summer EA and its
:::::::
summer

:::
EA

:::::::::
conditions

:::
and

::::
their

:
associated

impact on surface climate. Secondly, we
::
We

::::
also

:
analyse pre-industrial, historical,

:
and initialised simulations with the Max

Planck Institute Earth System Model in its mixed-resolution setup MPI-ESM-MR (MPI-ESM-MR, Dobrynin et al. (2018)) .

We specifically test the
:
to

:::::::
evaluate

:
model performance in reproducing the observed NA-SST-

:
–EA link, in order

::::::
aiming to85

identify how this performance might
:::
may

:
constrain the seasonal prediction skill of European summer climate.
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2 Methodology

2.1 Reanalysis and model data

We investigate the NA-SST - EA link first using ERA-20C reanalysis (Poli et al., 2016), and then using model simulations

with MPI-ESM-MR (Dobrynin et al., 2018)). The physical variables analysed are NA-SST, SLP and air temperature at 2 metre90

height (T2m). We use monthly means for each variable as we are testing mechanisms which are expected to act on monthly

timescales. We focus our analysis on the 101-year long period spanning 1908-2008 in the model and observations.

In MPI-ESM-MR, the atmospheric component ECHAM6 (Stevens et al., 2013) has a resolution of T63L95, with a nominal

horizontal resolution of 200 km (1.875◦) and 95 vertical layers up to 0.01 hPa. The oceanic component MPI-OM (Jungclaus

et al., 2013) is coupled to ECHAM6 and has a resolution of TP04L40, with an approximate horizontal resolution of 40 km95

(0.4◦) and 40 vertical layers. External forcing is taken from CMIP5 (Giorgetta et al., 2013).

We investigate how MPI-ESM-MR performs in reproducing the NA-SST - EA link among three independent sets of MPI-

ESM-MR simulations. The datasets comprise a pre-industrial control run (piControl), a historical run, and a 30-member sea-

sonal initialised hindcast ensemble (MR-30). Comparing the performance of each set against reanalysis enables us to distin-

guish the role of forcing (from piControl to historical), and of assimilation (historical to initialised ensemble) on the model100

skill.

The pre-industrial coupled atmosphere/ocean control run piControl has a total length of 1000 years (period 1850-2849)

(Giorgetta et al., 2011), with forcing constant in time: orbital parameters and greenhouse gases concentration are fixed at 1850

values; spectral solar irradiance remains constant as the solar cycle average over 1844-1856, and monthly ozone concentrations

are fixed at the 11-year average over 1850-1860 (Mauritsen et al., 2012). The historical simulations run from 1850 to 2005105

under natural and anthropogenic forcing following CMIP5 protocol (Dobrynin et al., 2018).

Lastly, the hindcast ensemble MR-30 is initialised on 1st of May every year from 1902-2008, with initial conditions taken

from an assimilation experiment (Oliveira et al., 2020). In the assimilation experiment, Newtonian relaxation (nudging) is

used in full-field mode towards all atmospheric and ocean levels except in the boundary layer. The atmosphere conditions of

vorticity, divergence, three-dimensional temperature and two-dimensional pressure are assimilated with ERA-20C data. In the110

ocean, three-dimensional daily mean salinity and temperature anomalies are nudged at a relaxation time of approximately 10

days. To help reduce initialisation shock, the ocean state is derived from an ocean-only simulation performed with MPI-OM

forced with the atmospheric variables from ERA-20C, thus maintaining consistency in model physics. The three-dimensional

atmospheric and ocean fields of the assimilation experiment form the initial conditions, from which 30 ensemble members are

generated by perturbing the atmospheric state with slightly disturbed diffusion coefficients in the uppermost layer.115

:::
We

:::::
focus

:::
our

:::::::
analysis

:::
on

:::
the

::::::::
101-year

::::::
period

::::::::
spanning

::::::::::
1908-2008,

:::::
using

::::
data

:::::
from

::::
both

::::
the

::::::::
historical

::::::::::
simulation,

:::
the

::::::
MR-30

:::::::
hindcast

:::::::::
ensemble,

::::
and

:::::::::
ERA-20C.

:::
In

:::::::
addition,

::::
the

::::::::
piControl

::::::::::
simulation,

::::
with

:::
its

:::::
fixed

:::::::
external

::::::::
forcings,

:::::
offers

::
a

:::::
unique

:::::::::::
opportunity

::
to

:::::
study

:::::::::
long-term

:::::::
internal

::::::
climate

:::::::::
variability

::::
free

:::::
from

::::::::::::
anthropogenic

:::::::::
influences.

:::
To

:::::::
capture

:::
the

::::
full

::::
range

:::
of

::::::
natural

:::::::::
variability,

:::
we

:::::::
leverage

:::
the

:::::
entire

:::::::::
1000-year

:::::
period

::
of

:::
the

:::::::::
piControl

::
in

:::
our

:::::::
analysis.

::::
This

::::::::
approach

::::::
allows

:::
for

:::::::::::
benchmarking

:::::::
internal

:::::::::
variability

:::::
across

::::::::
observed,

:::::::::
historical,

:::
and

:::::::
hindcast

::::::::
datasets.120
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2.2 Data-processing and climate indices

We compute anomalies at every gridpoint by removing mean seasonal cycle and linear trend, satisfying data input requirements

for the CEN algorithm (Kretschmer et al., 2016). We analyse bimonthly means in March-April (MA) and April-May (AM)

for spring NA-SST and July-August (JA) SLP and T2m. We choose to investigate both MA and MA spring windows to allow

comparison with previous studies (e.g. Ossó et al. (2018)). In MR-30, we use the assimilation experiment to obtain spring NA-125

SST fields, and the hindcast ensemble at lead times of 3-4 months to obtain summer SLP, T2m and 500 hPa geopotential height

(Z500). We apply area-weighting by multiplying each value with the cosine of its latitudinal location to take into account the

dependence of the gridpoint density on latitude.

We calculate the EA index to analyse the summer EA teleconnection. As a first step, we define a reference EA index as the

second principal component (PC) of the EOF of JA anomalies of SLP over the Euro-Atlantic sector 70◦W-40◦E, 25◦-80◦N130

calculated from the ERA-20C reanalysis data (e.g. Comas-Bru and McDermott (2014)). Next, EA index values in the model

simulations from MPI-ESM-MR are calculated by projecting each ensemble member onto the EA reference EOF pattern. We

consider a positive phase of the EA index when characterised by a centre of positive SLP anomalies that lies south of Iceland

and west of the British Isles (e.g. Wallace and Gutzler (1981); Comas-Bru and McDermott (2014), Fig.1a).

We further test the influence of spring extratropical North Atlantic SSTs on the summer EA using the SST index proposed135

in Ossó et al. (2018). We
::
As

::
a
::::::
second

::::
step,

:::
we

:
calculate the SST index by subtracting the average NA-SST

:::::::::
anomalies over

the eastern box (35◦W-20◦W, 35◦-42◦N) from the average NA-SST
:::::::::
anomalies over the western box (52◦W-40◦W, 42◦-52◦N),

represented by green boxes in Fig.1b. We analyse the SST index for both March-April and April-May means.

To comprehensively investigate the influence of spring NA-SST on summer SLP variability, we incorporate the SLP index

introduced by Ossó et al. (2018) alongside the EA index. This approach aims to address the broader significance of pres-140

sure dynamics in the region, particularly in relation to the physical mechanism proposed by Ossó et al. (2020). The SLP

index is calculated as JA SLP anomalies averaged over the region 45◦N-55◦N; 25◦W-5◦W indicated by a blue box in Fig1b.

In a second step
::::
Next, we analyse the impact of NA-SST on summer T2m using two additional indices, i.e. T2mCE and

T2mRidge (Sects.3.2,3.4). The T2mCE index is calculated as JA T2m anomalies averaged over the region 45
::
46◦N-55◦N;

10
::
11◦E-35

::::
E-34◦E (indicated by a red box in Fig.2f

:
i), and the T2mRidge index is calculated over the region 40◦N-55◦N;145

15◦W-34◦W (indicated by a black box in Fig.7b).

All climate indices are standardised to have mean of zero and standard deviation (SD) of 1 to allow for comparison. Using the

aforementioned climate indices, we perform linear regressions and correlations to analyse the linear relationship between the

predictor spring NA-SST and the target variables summer EA, SLP
::::
index, and T2mCE indices. We use a two-tailed Student’s

t-test to calculate the statistical significance of point-wise correlations maps. We provide a description of the indices used in150

the analysis in Table 1.
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Table 1. Summary of the indices used in our analysis.

Index Variable name Region used for calculation

SST_ind
::ind:

Sea surface temperature index Eastern box (35◦W-20◦W, 35◦-42◦N); Western box

(52◦W-40◦W, 42◦-52◦N)

SLP_ind
::ind:

Sea level pressure index 45◦N-55◦N; 25◦W-5◦W

EA East Atlantic Pattern 70◦W-40◦E, 25◦-80◦N

T2m_CE
:::CE Air temperature at 2m height for central Europe 46◦N-55◦N; 11◦E-34◦E

T2m_Ridge
::::Ridge:

Air temperature at 2m height for Atlantic Ridge region
40

::
44◦N-55◦N; 15◦W-34◦W

2.3 Causal effect networks
:::::
Effect

:::::::::
Networks

We use
::::::
employ

:::
the Causal Effect Network analysis (CEN, Runge et al. (2015); Kretschmer et al. (2016)) to test whether spring

NA-SST anomalies causally influences the variability of summer SLP and temperature fields
::::::
(CEN)

::::::
method

:::::::::::::::::::::::::::::::::::::
(Runge et al., 2015; Kretschmer et al., 2016)

::
to

::::::
analyse

:::
the

::::::
causal

::::::::
influence

::
of

:::
the

::::::
spring

::::
SST

:::::
index

::
on

:::::::
summer

::::
EA

:::
and

::::::::::
temperature

:::::::::
variability

:
in the Euro-Atlantic sec-155

torduring the 20th century, investigating the mechanism proposed in Ossó et al. (2018, 2020). CEN allow to represent the

output of the Peter and Clark momentary conditional independence (PCMCI) causal discovery algorithm (Runge et al., 2019;

Spirtes et al., 2000). We specifically use the PCMCI version 4.2 from the Python package Tigramite (https://github.com/

jakobrunge/tigramite). This algorithm iteratively calculates partial correlations
:
is

:::::
based

:::
on

:::::::
iterative

:::::::::
conditional

::::::::::::
independence

:::::
testing

:
amongst a set of time series (actors) to test if

:::::
assess

:::::::
whether a link between a potential precursor and a target variable160

at a certain time lag is: i) considered spurious, i.e. can be explained by the linear combination of other time series at different

lags (i.e. conditional independence); or ii) considered causal, i.e. cannot be explained by the combined influence of other in-

vestigated variables (i.e. conditional dependence). In the algorithm, this calculation
:::::
testing

:
is performed for a minimum and

maximum time lags
::
lag, denoted τmin and τmax.

We emphasise that the term "causal" should be interpreted cautiously within the context of this study. When we refer to165

causality, we mean causality relative to the set of investigated variables and under the specific assumptions considered in the

PCMCI algorithm (such as the stationarity of time series data). As a consequence, the possibility of remaining spurious corre-

lations cannot be entirely ruled out. The choices of variables included in the analysis is another crucial aspect for determining

the causality of the identified links. Yet, this poses a challenge as including more variables enhances the credibility of causal

discoveries but introduces complexities. For instance, accommodating numerous variables and significant time lags to address170

physical delays, like identifying atmospheric teleconnections, leads to high dimensionality. This, in turn, can significantly affect

the reliability of statistical outcomes. Hence, a successful application of CEN requires (such as for any data-driven method),

expert knowledge of the underlying physical processes, including relevant variables, time-scales and temporal resolution. For

a more detailed understanding of the CEN analysis and the PCMCI algorithm, we refer the reader to Runge (2018), which

provides a comprehensive description of these techniques.175
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We visualise the output of PCMCI in a CEN, i.e. a causal graph where nodes represent the investigated variables, arrows

indicate the direction of the causal links, and colours denote the strength of these links. The strength is expressed by the

standardised linear regression coefficient, denoted β-coefficient, and defined as the expected change of Yt in units of its SD

induced by raising Xt−τ by 1 SD, while keeping all other potential precursors constant. Moreover, CEN analysis outputs

the autocorrelation path coefficient, which represents the causal influence of a variable on itself, as opposed to the Pearson180

autocorrelation.

We apply causal maps (Di Capua et al., 2020b) to investigate the causal effects of a specific variable on a given atmospheric

field along latitude, longitude and time dimensions. This tool builds upon the PCMCI algorithm and CEN approach, and

provides a powerful visualisation of spatial patterns. Causal maps display β-coefficients calculated with the time series of a

potential precursor and each grid point of a target atmospheric field. We refer the reader to Di Capua et al. (2020b) for a detailed185

explanation of this method.

Lastly, the PCMCI parameters are chosen as follows: pc alpha = 0.2, alpha level to print results = 0.1, τmin = 3 months

and τmax = 4 months, independence test = parcorr
::::::
ParCorr, significance = ’

:
‘analytic’, masking type ‘y’.

::::::
ParCorr

::::
was

::::::
chosen

::
for

:::
its

:::::::::::
effectiveness

::
in
:::::::::

detecting
:::::
linear

:::::::::::
relationships,

:::::::::::::
computational

:::::::::
efficiency,

:::
and

::::::::::
established

:::
use

:::
in

::::::
related

::::::
studies

:::::
(e.g.

::::::::::::::
Siew et al. (2020)

:
),
:::::::
offering

:::::
clear

:::::::
insights

:::
into

::::::::::
conditional

:::::::::::
relationships.

::::
Our

:::::
CEN

:::::::
analysis

::::::
focuses

:::
on

::::
τmin::

=
::
3

::::::
months

::::
and190

::::
τmax::

=
:
4
:::::::
months,

::::::
which

::
for

:::::::::
simplicity

:::
we

::::
refer

::
to

::
as

::
3

:::
and

:::::::
4-month

:::::
lags.

2.4 Bootstrapping
::::::::::::::
Cross-validation

:
and ensemble subsampling

We perform bootstrapping
:::::::::::::
cross-validation and ensemble subsampling (e.g. Dobrynin et al. (2018)) to investigate the sensitivity

of the causal links to data sampling
:::
and

::
to

:::::
better

:::::::::
understand

:::
the

::::::::::
differences

::
in

:::
the

:::::::
strength

::
of

::::::
causal

::::
links

:::::::
between

:::::::::
ERA-20C

:::
and

::::::
MR-30. When analysing

:::
the

:::::
period

:
1958-2008 using observations in Sect. 3.3, we randomly select 500 samples of 45-years195

long, i.e. excluding
::::::
conduct

::
a
:::::::::
leave-k-out

::::::::::::::
cross-validation,

:::::
where

:::
we

:::::::::
randomly

::::::
exclude

:
6 random years

::::
years

:::::::::::::
(approximately

::::
12%

::
of

:::
the

:::::::
period) at each iteration. Each of these time seriesare then analysed with CEN using

::::
This

::::::::
approach

:::::
yields

::::
500

:::::::
different

:::::::
samples

::
of

:::::::::::
45-year-long

:::::
time

:::::
series,

:::::
each

:::::::
analysed

:::::
using

:::::
CEN

::::
with

:
the same hyperparameters (see Sect.2.3). We

perform a similar bootstrapping using
::::
This

::::::
method

::::::
allows

::
us

::
to

::::
test

:::
the

:::::::::
robustness

::
of

:::
the

:::::
causal

::::::
graph

:::::::
structure

:::
by

::::::::
assessing

:::
how

:::::::::
consistent

:::
the

::::::::
identified

::::
links

:::
are

::::::
across

::::::
various

::::::
subsets

:::
of

::
the

::::::::::::
observational

::::
data.

:
200

:::
We

:::::
apply

:
a
::::::
similar

::::::::::::::
cross-validation

::::::::
approach

::
to

:
MR-30, but additionally include a second step of ensemble subsampling

. That is
:::::::::::
incorporating

::
an

:::::::::
additional

:::::::::
ensemble

::::::::::
subsampling

:::::
step.

::::::::::
Specifically, we first randomly exclude 6 years from the

analysed period. Next, we randomly select 1
:::::
Then,

::
for

:::::
each

::::::::
remaining

:::::
year,

::
we

:::::::
perform

::::::::::::
bootstrapping

::::::
without

:::::::::::
replacement

::
to

::::::::
randomly

:::::
select

:::
one

:
ensemble member from the 30-member setfor each selected year. Each time seriesis then analysed with

CEN . This process is repeated at least 500 times.
::::
This

:::::
results

::
in
::
a
::::
total

::
of

::::
1000

:::::::
samples

::
of

:::::::::::
45-year-long

::::
time

:::::
series.

::
In

:::
the

:::::
CEN205

:::::::
analysis,

:::
we

::::::
impose

:::
the

:::
set

::
of

:::::
causal

::::::
parents

::::::::
identified

::
as
:::::::::
significant

::
in

:::::::::
ERA-20C

::::
onto

::::::
MR-30

:::
and

::::::::
calculate

:::
the

::::::::::::
corresponding

:::::
causal

::::::
effects.

::::
This

::::::
allows

:::
for

:
a
:::::
fairer

::::::::::
comparison

::
of

:::
the

:::::::
strength

::
of

:::
the

::::::::::::
β-coefficients

:::::::
between

:::
the

:::::
model

::::
and

:::::::::::
observations.

It is important to note that
:::::
while reducing the length of the time series in this way increases the variability and hence lowers

the
:::::::
increases

:::::::::
variability

:::
and

::::::
lowers

:::
the

::::::::
statistical significance of the obtained β-coefficients. However, this should not by itself
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lower
:
,
:
it
:::::
does

:::
not

:::::::::
necessarily

::::::::
diminish

:
the strength of the coefficients themselves.

:::::
causal

::::::
effects

::::::::::
themselves.

:::
By

:::::::::
employing210

:::::::::::::
cross-validation

:::
and

::::::::
ensemble

:::::::::::
subsampling,

:::
we

::::::
ensure

::::
that

:::
our

:::::::
findings

:::
are

::::::
robust

::
to

::::
data

::::::::
sampling

:::
and

:::::::
sensitive

:::
to

::::
both

:::
the

:::::::::::
observational

:::::
record

::::
and

:::::
model

::::::::
ensemble

:::::::::
variability.

:

2.5 Predictive skill assessment

In Sect.3.4, we perform a predictive skill assessment for SLP, T2m and Z500 at lead times of 3-4 months in MR-30 against

ERA-20C. For this assessment we use point-wise detrended anomaly correlation coefficient (ACC, Collins (2002)). We are in-215

terested in assessing the predictive skill conditioned to the strength of significant β-coefficients (p-value < 0.1). Our hypothesis

is that the predictive skill in summer is likely to increase in cases where MR-30 is able to capture the causal link between spring

SST index and summer EA, as opposed to cases where the model fails to capture the observed causal link. We refer to these

time series as MR-30 bootstrap ensemble. For example, we shall assume that we are interested in calculating the conditioned

predictive skill of JA Z500. To accomplish this task, we first identify the specific years and ensemble members that correspond220

to significant β-coefficients for the spring SST and summer EA. With this information, we can then sample JA Z500 to create

a time series of similar length. In case more than one ensemble member is randomly selected in a given year, we calculate an

ensemble mean. We then determine the ACC between the MR-30 bootstrap and ERA-20C.

3 Results

3.1 Characteristics of the observed link: temporal and spatial variability225

The spatial pattern of the summer EA in its positive phase is characterised by large-scale cyclonic conditions
:::::
across

::::
the

:::::::::::
Euro-Atlantic

::::::
region, except at the anticyclonic centre of action located south of Iceland and west of the British Isles (Fig.1a).

A typical surface climate imprint of the summer EA in positive phase correlates with below-average temperatures in continental

Europe (Fig.1c) and below-average precipitation in the British Isles and northwestern Europe (Fig.1d). As a first approach

to evaluate the influence of spring extratropical SSTs in the summer EA, we use
::::::::
explained

:::
in

:::::::
Sect2.2,

:::
we

:::::::
evaluate

::::::
spring230

::::::::::
extratropical

:::::
North

:::::::
Atlantic

:::::
SSTs

:::
via

:
the SST indexdefined in ,

:::::::::
following Ossó et al. (2018). A Pearson correlation analysis

reveals a time-dependent relationship between the AM SST index and the EA in summer (Fig.1e). Over a span of 101 years

(1908-2008), this relationship appears weak (r = 0.22, p < 0.05). However, examining the most recent 51 years (1958-2008)

shows a doubling of correlation values (r = 0.43, p < 0.05). Furthermore, focusing on the latest 30 years (the period analysed

in Ossó et al. (2018)) results in correlation values increasing even further to 0.60 (p < 0.05) . The temporal variability of this235

relationship is well illustrated for correlations calculated using a 20-year running window, which shows a reversal in the sign

of correlations starting from 1945, and highlights an increase in the strength beyond 1958 (Fig.1f). This analysis suggests that

the spring NA-SST
::::
SST

:::::
index - summer EA relationship is nonstationary. Hence, we distinguish the following three periods

to scope the remaining analysis: i) early period: 1908 - 1957; ii) late period: 1958-2008, and iii) full period: 1908-2008.
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Figure 1. Variability and linear relationships of EA in ERA-20C. a) Positive phase of the EA teleconnection, defined as the second EOF of

July-August (JA) SLP. b) Regions used to calculate the NA-SST and SLP indices proposed in Ossó et al. (2018). c) Pointwise correlation of

EA index with concurrent JA anomalies of 2-metre air temperatures in the full period (1908-2008). d) Same as c), for JA anomalies of total

precipitation. e) Time series of April-May (AM) SST (blue) and JA EA (grey) indices in ERA-20C for 1908-2008, smoothed by a 3-year

running mean. f) Running-correlation between AM SST and JA EA indices for a 20-year window. Coloured markers indicate significant

correlations at the 95% confidence interval, illustrated by dashed lines.
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Figure 2. Distinct spatial characteristics of the spring SST influence on the summer circulation over the 20th century (for ERA-20C) for

early (1908-1957, left), late (1958-2008, middle) and full periods (1908-2008, right column). Top row (a-c) shows point-wise correlation

coefficients for the April-May SST index and July-August SLP. Middle row (d-f) shows hows
::::
linear

::::::::
regression

::::
maps

::
of

:::::::::
July-August

:::::::
NA-SST

:::::::
anomalies

::::::::
(shading)

:::
and

:::
SLP

::::::::
(contours)

::::::
against

:::
the

:::::::
precursor

:::
SST

:::::
index

:::::::::
(normalised

::
by

:::
the

::::
SD).

::::::
Contour

::::::
interval

::
is
:::
0.2

:::::::
hPaSD-1.

::::::
Bottom

:::
row

:::
(g-i)

:::::
shows

:
point-wise correlation coefficients for the April-May SST index and July-August air temperature at 2 metre height. Stippling

indicates correlations significant at the 95% confidence level, calculated with a Student’s t-test. Bottom row (g-i) shows linear regression

maps of July-August NA-SST anomalies (shading) and SLP (contours) against the precursor SST index (normalised by the SD). Contour

interval is 0.2 hPaSD-1. Box in Fig.2f
:
i illustrates the region used to calculate the T2mCE index, as described in the text.

We assess the spatial features of the SST index influence on the summer atmospheric circulation in the different periods to240

further explore the variability of the spring NA-SST - summer EA relationship. We analyse bimonthly averages, i.e. April-May

(AM) NA-SST and July-August (JA) SLP means, to observe the seasonal evolution of anomalies. Correlation maps
:::::::::
Correlation

::::
maps

::
in
:::::::
Fig.2a-f

:
show distinct patterns in early and late periods. We find significant correlations between the precursor SST

index and summer SLP over a region in the North Atlantic which reasonably coincides with the location of the EA telecon-

nection centre of action during the late period (Fig.2b, Fig.1a). The location of this region seems to oscillate about 45◦N,245

remaining south of this latitude in the early period (Fig.2a), while located northwards in the late one (Fig.2b). Surrounding this

high correlation region, the sign of correlations is opposite between early (Fig.2a) and late (Fig.2b) periods. We find similar

results using March-April (MA) NA-SST means, only in weaker strength (not shown
:::
e.g.

::
SI

::::
Fig.

:
1).

Regression maps further suggest that spring NA-SST anomalies persist into summer and
:::
the

:::::
spring

::::
SST

:::::
index

::
is

:::::::::
associated

::::
with

::::::
summer

::::
SST

:::::::::
anomalies,

::::::
which then influence atmospheric circulation (Fig.2g-i

:::
d-f). Positive values of the AM SST index250
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in spring are associated with warm summer anomalies east of Newfoundland and cool anomalies west of
:::
off Iberia, leading to

concomitant anticyclonic conditions in the ocean located south of Greenland. In the late period (Fig.2he), these anticyclonic

conditions coincide specifically with the position of the EA centre of action, whereas this association is absent in the early

period.

Moreover, we test whether the SST index influences JA T2m via the EA. We find significant correlations between the255

AM SST index and JA T2m, showing a similar pattern of significant positive correlations west of the British Isles, as in

Fig.1c corresponding to JA EA - T2m. We find that correlations between AM SST index and JA T2m show distinct patterns

between early and late periods (Fig.2d,e
:::
g,h). A positive phase of the SST index in spring precedes a positive phase of the

summer EA (e.g. Fig.2h
:
e), which in turn can be associated with below-average temperatures, primarily over central Europe.

To further investigate this relationship, we calculate a T2mCE index, defined as the average summer T2m over the central260

European region 46◦N-55◦N; 11◦E-34◦E, represented by the red box in Fig.2f
:
i. In summary, this analysis reveals that spring

extratropical oceanic forcing of the summer atmospheric circulation has a marked temporal and spatial variability over the 20th

century, only projecting onto the EA pattern over the late period. This variability might pose a constraint on the predictive skill

of European summer climate based on spring extratropical NA-SST during certain periods of time.

3.2 Investigating causality265

To further test the robustness of the SST-EA relationship in ERA-20C, we evaluate whether spring extratropical SSTs
::::
SST

::::
index

:
and summer EA are conditionally dependent. Specifically, we test the hypothesis that spring NA-SST

:::
SST

:::::
index

:
is a

causal driver for the summer EA, thus excluding autocorrelation effects or common drivers which could lead to spurious links.

First, we build one CEN for each of the three investigated periods in ERA-20C,
:::
i.e.

:::::
early,

::::
late

:::
and

:::
full

:::::::
periods,

::
as

:::::::
defined

::
in

::::::
Sect.3.1. Besides the EA and SST indices, we include two additional indices in the CEN. The first is the SLP index, defined in270

Ossó et al. (2018) and illustrated by the blue box in Fig.1b. Thus, we test whether differences between early and late periods

(Sec.??
:::
3.1) are reflected in distinct timing or strength among the EA and SLP indices with SST. The second index concerns

summer air temperatures averaged over the region represented by the red box in Fig.2f
:
i (T2mCE), which shows significant

anticorrelations with SST. We test whether the spring SST index causally drives changes in summer T2m over central Europe

and under which circumstances this holds true. Therefore, our CEN analysis focuses on τmin = 3 months and τmax = 4 months,275

which for simplicity we refer to as 3 and 4-month lags.

Over the late period, we confirm that the spring SST index is a causal driver for both the summer EA and the summer SLP

index, at distinct time lags (Fig.3a). The strength of the causal link is expressed by the standardised regression coefficient,

denoted β-coefficient in CEN. At a 4-month lag, we find βSST→EA ≈ 0.22
:::::::::::::::
βSSTind→EA ≈ 0.22, which means that a change of 1

standard deviation (SD) in the March-April
:::
MA SST index leads to a change of 0.22 SD in July-August

::
JA EA. We find a causal280

link of similar strength at a 3-month lag, βSST→SLP ≈ 0.21, between April-May
::::::::::::::::
βSSTind→SLPind ≈ 0.21

:
,
::::::::
between

::::
AM SST

index and July-August EA
::
JA

::::
SLP

:::::
index, as well as βSST→T2mCE

≈−0.2 between April-May
::::::::::::::::::
βSSTind→T2mCE ≈−0.2

:::::::
between

:::
AM

:
SST index and July-August

::
JA

:
T2mCE . Although we speculate that the link SST → T2mCE :::::

Using
:::
the

::::::::::
path-tracing

::::
rule

::::
(e.g.

::::::::::::::::::::
Kretschmer et al. (2021))

:::
we

::::
find

:::
that

::::::
about

:
a
::::
third

:::
of

:::
the

:::::::
influence

:::::
from

::::
AM

::::
SST

:::::
index

::
on

:::
JA

:::::::
T2mCE is mediated via
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EA

c)                                                                              d)

β-coef.auto-coef. β-coef.auto-coef.

a) b)

Figure 3. Causal effect network
:::::
Effect

:::::::
Network analysis for the late period (1958-2008) in ERA-20C. Causal graphs between a) SST index,

EA teleconnection, SLP index and T2mCE and b) SST index, EA teleconnection and SLP index only. The strength and direction of the

causal links is given by the β-coefficient and is represented by the arrows, whereas the auto-correlation path coefficient is represented for

each variable by the respective circle colour. The numbers over each arrow represent the time tag
::
lag (in months) when the strongest causal

link between each variable pair is detected. c-f
:::
c-d) Sensitivity of the causal links shown as the PDF of β-coefficients calculated for a random

sample selection of 45 years, iterated 500 times, between the variables: SST and SLP indices at lag 3 (c)and lag 4 (d), and SST index and

EA at lag 3 (e) and lag 4 (f
:
d). Only causal links with p-value < 0.1 are shown

:
in

:::
(a)

:::
and

::
(b). Red lines show the correspondent β-coefficients

represented in (a).

the summer EA, we are unable to confirm this mediation with a CEN analysis focusing on 3-4 months lag. While PCMCI285

cannot handle the nonstationarity identified in the full period (e.g. Runge (2018)), we
:::
EA.

::::
We find no significant causal links

in the early period
::::
when

:::::
using

:::
the

::::
early

::
or

::::
full

::::::
periods.

Next, we test the sensitivity of the detected causal links between spring SST index and summer SLP to slight differences

in the analysed years.
:::
We

:::::
assess

:::::::
summer

::::
SLP

:::::
using

::::
both

:::
EA

::::
and

::::
SLP

::::::
indices.

:
By removing 6 randomly selected years (12%

of tested years in the late period) in each new CEN over 500 iterations, we test whether the causal links are particularly290

subjected to interannual variability (Fig.3c-f
:::
c-d). We find high

::::::::
significant

:
variability in the strength of the linksβSST→EA

and βSST→SLP (Fig.3c, f), ranging from zero (i.e. no causal link) to 0.5, with median values corresponding to β-coefficients

calculated in Fig. 3a
:
,
::::
with

:
a
::::::::::::
concentration

::::::
around

::::
0.25

:
in
::::
both

::::::
cases.

:::
For

::::::::::
βSSTind→EA,

:
a
:::::::
minority

:::
of

::::::
samples

::::::
(about

::::
8%)

::::::
exhibit

:::::::
negative

::::::
values,

::::::::::
highlighting

:::
the

::::::
overall

::::::::
sensitivity

:::
of

:::
the

:::
link

:::::::
strength

:::::::
between

::::
SST

:::
and

:::
the

::::
EA

::::::
pattern. This sensitivity in the

causal link strength due to sampling suggests that the
:::::::::
relationship

::::::::
between

:::
the spring SST index - summer SLP relationship295
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Figure 4. Model skill in reproducing summer EA and its link with spring SST. a) probability density functions (PDF) of the summer EA,

b) running-correlation between SST and EA indices for a 20-year window, c) time series of the summer EA. Light grey colours represent

individual ensemble members, black represents ERA-20C, green represents the historical simulation. In a) the dashed grey line shows the

pi-Control and in b) the coloured markers indicate significant correlations at the 95% confidence interval, illustrated by the horizontal dashed

lines.

might be modulated
:::
and

:::::::
summer

::::
SLP

::::
may

:::
be

:::::::::
influenced

:
by an external physical mechanism, i.e. .

:::::::::::
Specifically,

::::
this

:::::
could

::::::
involve an additional variable not included from this CEN

::
in

:::
this

:::::
CEN,

::::
such

:::
as

::
the

::::::::::
mechanism

::::::
linking

:::::::
tropical

:::::
SSTs

::::::::
described

::
in

:::::::::::::::
Wulff et al. (2017).

3.3 Does MPI-ESM reproduce the observed link?

We now test whether the causal links detected in ERA-20C during the late period can be reproduced by MR-30. As a first300

step, we compare the model ability to reproduce the temporal variability of the observed summer EA. We find that MPI-

ESM generally captures the range of variability, although its performance in replicating the summer EA varies across different

simulation sets . (Fig.4a). Historical simulations show low agreement with ERA-20C (r = 0.14), whereas MR-30 initialised

simulations tend to mostly encompass the observed variability (Fig.4c).

Next, we evaluate the model skill in reproducing the spring SST index - summer EA relationship. We find that the model305

shows
:::
both

::::::::
historical

::::
and

::::::
MR-30

::::::::::
simulations

:::::
show

:
limited skill, particularly in the late period (Figs.4b, 5). A comparison

between correlation maps computed for the evaluated periods shows that while historical simulations do not show agreement

in the spatial pattern of the spring SST - summer EA relationship against observations (Fig.2a-c), the MR-30 ensemble mean
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Figure 5. Spatial characteristics of the SST-SLP relationship over the 20th century in MPI-ESM-MR. Correlation maps show point-wise

correlation coefficients for the April-May SST index and July-August SLP means considering early (1908-1957; a,d,g), late (1958-2008;

b,e,h) and full periods (1908-2008; c,f,i), respectively. Top row shows results for the MPI-ESM-MR historical simulation and bottom row for

MPI-ESM-MR 30-member ensemble. The reader may refer to Figs.2a-c for a comparison with ERA-20C.

shows an improvement in reproducing the mechanism (Fig.5d-f). These results motivate us to assess whether the model is able

to reproduce any of the observed causal links, or whether it shows different causal paths than those observed.310

The observed disparities between the model and observations, as highlighted in the spatial correlations and time series

analyses depicted in Figs.4-5, prompt further investigation into the causal relationships within MR-30. To address this, we

proceed to assess whether the model reproduces any of the observed causal links or presents alternative causal pathways. We

construct three different CEN sets to evaluate, respectively, pi-Control, historical and initialised simulations with MR-30. The

variables analysed in the CEN sets are SST, EA and SLP indices and the time lag of interest is spring - summer (3 and 4 months315

lag). While no causal links are found in the historical simulations, we find opposite causal links than those in ERA-20C for

the pi-Control simulation, suggesting an atmospheric forcing from EA into the extratropical North Atlantic (e.g. βEA→SST ≈
0.22

::::::::::::::
βEA→SSTind ≈ 0.22 ), but no detected causal influence from the ocean on the atmosphere (Fig.6c).

Moving on to the initialised simulations, we leverage the entire 30-member ensemble of MR-30 to construct a comprehensive

CEN spanning the full period (1908-2008), resulting in each constructed time series comprising 3030 years. We find that MR-30320

is able to reproduce a weakly positive SST index - EA link (i.e. βSST→EA|SLP ::::::::::::
βSSTind→EA|SLPind:

= 0.04) at 3-month lag (Fig.6a),

but not at 4-month lag as detected in ERA-20C during the late period, and in much weaker strength (i.e. βSST→EA|SLP = 0.22,

ERA-20C). Moreover, we find a weak negative causal link from SST index to SLP index in the model (i.e. βSST→SLP |EA

:::::::::::::
βSSTind→SLPind|EA = - 0.02), as opposed to observations (i.e. βSST→SLP |EA = 0.21, Fig.3b). This finding aligns with Fig.5d-f,

which shows that the area of positive correlations in MR-30 is displaced southwestwards with respect to ERA-20C. No causal325

links from SST index to EA or SLP indices are found when analysing only the late period (1958-2008). Next, we therefore
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Figure 6. Causal effect networks
::::
Effect

::::::::
Networks for MPI-ESM. a) CEN between SST index, EA teleconnection and SLP index for the

MPI-ESM-MR 30-member ensemble (MR-30) considering the full period. b) Sensitivity of the causal links between SST ,
:::
and SLP

:::::
indices

:
at
:::::::

3-month
:::
lag,

:::
and

::::
SST

:
and EA indices at 3 and 4-month lags in the late period. Boxplots show β-coefficients calculated for a random

selection of 45 years, sampling one random ensemble member amongst the 30-member set per year. This process is repeated 2000
::::
1000

times and only significant β-coefficients are shown (p-value < 0.1). Orange "x" markers represent the β-coefficient calculated from ERA-

20C (red
:::::
dashed lines in Fig.3). c) Same as (a) for a 1000-year long pi-Control simulation with MPI-ESM-MR. d) Comparison of the impact

on SLP predictive skill in lead times of 3-4 months in MR-30 against ERA-20C for time series showing opposite β-coefficient strengths:

a MR-30 bootstrap ensemble with (left) β1 = -0.28
::::
-0.18, and (right) β2 = 0.36

::::
0.18. Predictive skill is quantified with anomaly correlation

coefficients for the late period. β1 and β2 are highlighted in (b) by orange arrows.

investigate the causal link sensitivity to the sample size and focus on 45-year long time series covering the late period, allowing

a direct comparison with the sensitivity analysis performed in ERA-20C (Fig.6b-d).

3.4 Sensitivity analysis and impact on predictive skill

We perform a two-step sampling method in our sensitivity analysis with MR-30 . First, 45-years are randomly selected in the330

late period (1958-2008). Second, one ensemble member amongst the full 30-member ensemble is randomly selected in every

year. We iterate this process 2000 times, thus generating 2000 45-year-long time series for each
::
for

:
SST, EA and SLP variables.

In each iteration, we build one CEN to analyse whether any causal relationships are detected for the sampled SST, SLP and

EA time series
::::::
indices

:
(Sect.2.4). Our sensitivity results suggest that the model predominantly fails to reproduce the observed
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SLP
T2m 

a) b) 

c)

Figure 7. Spatial features of the causal influence of spring SST index on summer climate
::::::::
temperature. a) observed causal links between

SST index, EA teleconnection
:::
SLP

::::
index

:
and T2mCE in the late period (1958-2008); b) respective causal map for 3-month lag, showing

causal links between April-May SST index and July-August temperature in shading βSST→T ::::::::::::
βSSTind→T2m|SLPind:

and April-May SST index

and July-August SLP βSST→SLP ::::::::::::
βSSTind→SLP|SLPind in contours. Black box highlights the region of strongest causal influence and represents

the area used to calculate the T2m index denoted T2mRidge::::::::
T2mRidge in the text

:
;
::
c)

:::::::
observed

:::::
causal

::::
links

::::::
between

::::
SST

:::::
index,

:::
SLP

:::::
index

:::
and

:::::::
T2mRidge::

in
:::
the

:::
late

:::::
period

:::::::::
(1958-2008).

links between SST index and EA or SLP indices (Fig.6b), showing only in very rare
:::::
about

:::
5%

::
of

:::
the

:
cases β-coefficients in335

the positive range as in ERA-20C (Fig.3).

We hypothesise that this MR-30 limitation in reproducing the causal links detected in ERA-20C might constrain the skillful

prediction of European summers a season ahead. As a first test, we focus on two particular values of the β-coefficients, namely

β1 = -0.28
::::
-0.18

:
and β2 = 0.36

:::
0.18, corresponding to the link SST index → SLP at 3-month lag illustrated by orange arrows

in Fig.6b. In other words, we analyse two cases with strong causal link strength but in opposite signs, with β2 lying in
::::::
closest340

::
to the observed ERA-20C range.

We perform a predictive skill assessment for the MR-30 bootstrap ensemble respective to β1 and β2 against ERA-20C,

checking whether the strength of the causal link has a fingerprint in the predictive skill of JA SLP (Sect.2.5). We find a better

agreement between model and reanalysis for β2 than for β1, with significant ACC particularly over the region where spring

SST is significantly correlated to summer SLP in ERA-20C (e.g. Fig2b). However, since positive causal links are only rarely345

present in MR-30, we are unable to identify a robust fingerprint in the predictive skill related to any of the links between SST

and EA or SLP indices.
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3.5 Forecasts of opportunity: could causality help?

We aim to identify a robust fingerprint of spring NA-SST on summer predictive skill, which could potentially enhance targeted

forecasting opportunities (Mariotti et al., 2020). Our correlation analysis, as depicted in Fig. 2, indicates the potential influence350

of spring NA-SST on summer T2m variability across the Euro-Atlantic region during the late period. Thus, we conduct an

additional causal analysis in ERA-20C to pinpoint the regions within the T2m field where a causal relationship with spring

NA-SST is anticipated. We also explore whether this causal relationship might impact the predictive skill of MR-30.

We compute a causal map (Di Capua et al., 2020b) that represents the β-coefficients calculated for the link between AM

SST index and each grid point of JA T2m and SLP fields
::::::::::
conditioned

:::
on

:::
the

::::
SLP

:::::
index, i.e. βSST→T2m and βSST→SLP355

::::::::::::::
βSSTind→T2m|SLPind :::

and
::::::::::::::
βSSTind→SLP|SLPind (Fig.7b, shading and contours, respectively).

::::
The

:::::
choice

::
of
:::::

using
:::::
either

:::
the

::::
EA

::
or

::::
SLP

::::
index

::::
has

:::::::
minimal

::::::
impact

::
on

:::
the

::::::
results,

::
as

::::::
shown

:::
by

::
the

::::::
similar

::::::
causal

::::
map

::::::::
generated

::::
with

:::
the

:::
EA

:::::
index

::
in

::
SI

::::
Fig.

::
2.

:
We find

two causal regions of opposite signs. The first region shows negative causal links and is located in northwestern Europe, partly

encompassing the area used to calculate the T2mCE index expressed in the causal graph in Fig.3a
:
,
:::::::
hereafter

:::
CE

:::::
region. This

can be interpreted as an increase of 1 SD in the spring SST index (e.g. warming over subpolar, and cooling over subtropical360

North Atlantic) causally driving a decrease of about 0.3 SD in the summer T2m field in northwestern Europe. The second region

shows a positive causal influence on both T2m and SLP fields, reaching strong values above 0.5 for the T2m field. A black box

illustrates this causal region(40◦N-55◦N; 15◦W-34◦W), denoted Ridge , and used to calculate the index T2mRidge ::::::::
(Sect.2.2).

Targeting this causal region
::
the

::::
two

::::::
causal

::::::
regions

::::
CE

:::
and

::::::
Ridge, we test the hypothesis that

::
the

:
predictive skill of the

summer surface climate in MR-30 might be
:
is
:
higher for time series able to

:::
that

:::
can reproduce the causal link strength

:::::::
observed365

in ERA-20C(βSST→T2mRidge
> 0.5), than for those unable to reproduce the link (βSST→T2mRidge

= 0). To test this hypothesis
:
,

::::::::
compared

::
to

::::
those

::::
that

::::::
cannot.

:::::
Thus,

:::
we

:::::::::
specifically

::::
test

::
the

::::
four

::::
links

::::::::::::
corresponding

::
to

:::
the

:::::
causal

::::::
graphs

::
in

:::::::
Fig.7a,c

::
in

:::::::
MR-30.

::
To

:::
this

::::
end, we first perform bootstrapping

:::::::::::::
cross-validation and ensemble subsampling to generate 500 time series consisting of

45-years randomly selected in
::::
1000

:::::
time

:::::
series

::
for

:::::
each

:::::::
analysed

::::
link,

::::
each

:::::::::
timeseries

::::::::
consisting

:::
of

::::::
45-year

:::::::
periods

::::::::
randomly

::::::
selected

:::::
from the ensemble space during the late period (Sect.2.4). At 3-month lag, we find that

::::::
Fig.8a-c

::::
and

::
SI

::::
Fig.

::
3).

::::::
While370

MR-30 is able to reproduce a range of β-coefficients for SST index → T2mRidge, encompassing
:::::
mostly

::::
fails

::
to

::::::::::
encompass

the observed link 16% of the times (Fig.8a). That is, 16% of random combinations in the MR-30 ensemble space result in time

series which represent a causal influence of the SST index in spring (April-May) onto the T2mRidge in summer (JA).

::::::::
strengths,

:::
we

:::::
focus

:::
on

:::
the

::::::::
extremes:

:::::
time

:::::
series

::::
that

:::
lie

::::
near

:::
the

::::
tails

:::
of

:::
the

::::::::::
distribution.

:::::::::::
Specifically,

:::
we

::::::::
examine

:::
the

:::::::::
percentiles

::::::
closest

::
to

:::
the

:::::::
observed

::::
link

:::::::
strength,

:::::::
looking

::
at

:::
the

::::
95th

::::::::
percentile

:::
for

:::::
values

::::
near

:::::::
positive

::::::::::
observations

::::
and

:::
the

:::
5th375

::::::::
percentile

:::
for

:::::::
negative

:::::::::::
observations. Next, we evaluate whether the strength of this causal link

::
the

::::::
causal

::::
links

:
is imprinted on

MR-30’s skill in predicting summer SLP, T2m and Z500 for the Ridge region
:::
two

:::::
causal

::::::
regions

:
a season ahead. We quantify

the predictive skill with ACC using ERA-20C as a reference, for two opposite cases in MR-30: i) time series showing strong

β-coefficients lying in the range 0.6 < β < 0.8 (denoted "causal" in Fig.8) and ii) time series showing β-coefficients = 0 (denoted

"non-causal"). We find 25 samples in i), and we therefore randomly select 25 samples in ii) to enable a direct comparison. We380

calculate the ACC for each of the total 50 samples, averaging over the Ridge region (Fig.8b) . We find that a random selection
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in the ensemble space tends to show
:::
d,f)

:::
and

::::
CE

:::::
region

::::::::
(Fig.8e).

::
In

:::::
panel

:::
d,

:::
we

::::::
observe

::::
that

:::
the

:::::
ACC

:::
for

::::
SLP

::::
and

:::::
Z500

:
is
:::::::::::

significantly
::::::
higher

:::::
when

::::
time

:::::
series

:::
are

:::::::
closest

::
to

:::
the

::::::::
observed

::::::
values

::::
(i.e.,

:::::
above

::::
the

::::
95th

::::::::::
percentile),

::
as

::::::::
indicated

:::
by

:::::::::::::
non-overlapping

:::::::
boxplot

:::::::::
envelopes.

:::
The

:::::::::
difference

::
in

::::
T2m

:::::
ACC

::
is

:::::
more

:::::
subtle,

:::::
with

:
a
:::::::
slightly higher median and maximum

valuesfor the predictive skill of SLP, T2m
:::::
higher

:::::
upper

:::::::
quartile

:::
for

::::
time

:::::
series

:::::
closer

::
to

:::
the

::::::::
observed

::::::
values.

:::
For

::::::
panels

:
e
::::
and385

:
f,
::::::::::
differences

:::
are

::::::::
minimal,

::::
with

::::
only

::
a
:::::
slight

:::::::
increase

::
in

:::::
ACC

:::
for

::::
time

::::::
series

:::::
closer

::
to

:::
the

::::::::
observed

:::::::
values.

::
In

::::::::::
conclusion,

::::
while

:::::::
MR-30

::::::::
generally

::::::::
struggles

::
to

::::::
capture

:::
the

::::::::
observed

:::
link

:::::::::
strengths,

::::
time

:::::
series

:::
that

:::::
align

:::::
more

::::::
closely

::::
with

:::
the

::::::::
observed

:::::
values

:::::
show

:
a
:::::::::

significant
::::::::::::

improvement
::
in

:::::::::
predictive

::::
skill

:::
for

::::
SLP

:
and

:::::
Z500.

::::
This

::::::::
suggests

:::
that

:::::::::
achieving

:::::
closer

:::::::::
alignment

::::
with

:::::::
observed

::::::
causal

::::
link

::::::::
strengths

:::
can

:::::::
notably

:::::::
enhance

::::::::
predictive

:::::::::::
performance

:::
for

:::::
these

::::::::
variables,

::::::
though

:::
the

:::::
effect

::
is

::::
less

:::::::::
pronounced

:::
for

:::::
T2m

:::
than

::::
SLP

::
or
:
Z500 when MR-30 reproduces the causal link SST → T2mRidge, than when the causal link390

is absent.

In summary, our predictive skill assessments conditioned to the causal influence of spring SST index on both SLP (Fig.6b,d)

and T2mRidge (Fig. 8) suggest that MR-30’s low performance in reproducing these causal links, in particular between spring

SST index and the summer EA, constrains the seasonal prediction skill of European summer climate
::
in

::::
both

:::::::
analysed

:::::::
regions.

4 Discussion395

The framework of forecasts of opportunity (Mariotti et al., 2020) in seasonal prediction has been increasingly explored to

identify physical processes which lead to enhanced predictability and forecast skill. Such a strategy has been particularly useful

for summer (Carvalho-Oliveira et al., 2022) and winter (Dobrynin et al., 2018) seasonal predictions in the European region,

where predictive skill is limited. Here, we target the summer EA to understand how its seasonal predictability is influenced by

spring North Atlantic SSTs using the causal inference-based tool CEN based on PCMCI algorithm.400

Using ERA-20C, our CEN analysis confirms that the spring SST index proposed in Ossó et al. (2018) causally influences the

variability of summer SLP in the Euro-Atlantic region with a 3-4 months delay during the late period (1958-2008). Specifically,

we find that a 1 SD change in the spring SST index first drives a 0.2 SD change in the summer SLP index at 3-month lag (e.g.

March-April SST
::::
index

:
→ June-July SLP index), and then drives a 0.2 SD change a month later in the summer EA (e.g.

March-April SST
::::
index

:
→ July-August EA, Fig.3a). While EA and SLP indices are highly correlated (r = 0.82), the position405

of the area used to calculate the SLP index (Fig.2c) only partly overlaps the EA centre of action (Fig.1a), which extends further

northwest. We speculate that the northward migration of the North Atlantic jet stream during summer (e.g. Hallam et al. (2022))

could explain the delay of a month between the causal link of SST index and EA/SLP indices.

Besides extratropical SSTs, ENSO-related tropical forcing has been suggested to influence the summer EA over more recent

decades (1979 - 2016, e.g. Wulff et al. (2017); O’Reilly et al. (2018)). As opposed to the mechanism proposed in Ossó et al.410

(2018), Wulff et al. (2017) suggested that the summer EA is forced by diabatic heating anomalies in the tropical Pacific and

Caribbean, and it is characterised by an extratropical Rossby wave train with a centre of action west of the British Isles. The

CEN analysis proposed in this paper could therefore be extended to include tropical SST predictors, thus testing how the causal

links discussed here could be affected by the influence of additional drivers.
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a) b) c)

e)d) f)

Figure 8. Does the spring
::::::
Influence

:::
of

:::::
Spring

:::::
(AM)

:
SST index influence summer predictive skill

::::
Index

:::
on

:::::::
Summer

::::
(JA)

::::::::
Predictive

:::
Skill

:
in MR-30?

:
.
:::
The

:::::
upper

::::
row

:::::
shows

:::
the

:::::::::
sensitivity

::
of

:::::
causal

::::
link

:::::::
strength

::
in

::::::
MR-30

:::
for

:
a) Sensitivity of CEN built with the

SST
::::::::::::::
βSSTind→SLPind|T2mCE ,

::
b)
:::::::::::::::
βSSTind→T2mCE|SLPind , SLP and T2m indices for MR-30

:
c)

::::::::::::::::
βSSTind→T2mRidge|SLPind . Boxplots show β-coefficients

calculated for
::::
Each

:::::::::
distribution

:
is
::::::::

generated
::::
from

::::
1000

:::::::
bootstrap

:::::::
samples,

::::
with a random selection of 45 years , sampling

:::
and one random

ensemble member amongst
:::
from

:
the 30-member set per year. This process is repeated 500 times and only significant β-coefficients are

shown. Orange "x" markers represent the β-coefficient calculated for a CEN built with the SST, SLP and T2m indices from ERA-20C for

the late period. Only causal links with p-value < 0.1 are shown. b) Comparison of
:::
The

:::::
lower

:::
row

:::::::
compares

:
the impact on summer surface

climate predictive skill in
::
of MR-30 against ERA-20Cfor causal and non-causal MR-30 ,

:::::::::
highlighting

:
time series

::
that

::::
best

::::
match

:::
the

:::::::
observed

::::
causal

::::
link

::::::
strength

:::::
(above

:::
the

:::
95th

::::::::
percentile

::
for

:::::::
positive

:::::
values,

:::::
below

::
the

:::
5th

::::::::
percentile

::
for

::::::
negative

::::::
values)

:::::
versus

::::
those

::::::
furthest

::::
from

:::
the

::::::
observed

:::::::
strength

:::::
(below

:::
the

:::
5th

:::::::
percentile

:::
for

::::::
positive

::::
links,

:::::
above

::
the

::::
95th

:::
for

::::::
negative

:::::
links). Mean ACCs are shown for July-August sea

level pressure (SLP), 2-metre air temperature (T2m),
:

and 500 hPa geopotential height (Z500), averaged over the region highlighted by the

grey box. See the text for further description
:::::
Further

:::::
details

:::
are

:::::::
provided

::
in

::::::
Sect.3.5.
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Our findings suggest that the causal links detected in ERA-20C are nonstationary during the 20th century, being present only415

in the late period (1958-2008). Nonstationarity in teleconnections has been reported by several studies (e.g. Woollings et al.

(2015); Weisheimer et al. (2019)). In particular, Rieke et al. (2021) used a 700-year pre-industrial control run with MPI-ESM-

LR to investigate the tropical link of the summer EA (Wulff et al., 2017) with a statistical model, and showed that the link had

a nonstationary behaviour, being present in some multidecadal epochs but not in others. Detecting nonstationarity in the causal

links discussed here has an important consequence for the application on predictive skill in seasonal forecasting, implying a420

limited use of such causal links to target forecasts of opportunity.

Yet, our causal analysis with CEN offers an alternative assessment of MPI-ESM-MR’s performance, enabling a direct com-

parison of the causal links reproduced by the model with those detected in reanalysis. We find that the causal links between

spring SST index and summer EA and T2m are absent in pi-Control and historical simulations, but appear in some 45-year-

long time series sampled in the initialised ensemble MR-30, thus suggesting a role of initialisation (Fig.6). Nevertheless, our425

results suggest that MR-30’s limited performance in reproducing these causal links, in particular between spring SST index and

the summer EA, might explain its low skill in predicting summer seasonal European climate (e.g. Neddermann et al. (2018);

Carvalho-Oliveira et al. (2022)).

5 Conclusions

We apply the causal inference-based tool CEN based on PCMCI algorithm to evaluate the influence of spring North Atlantic430

extratropical SSTs on the predictability of summer EA and its associated impact on surface climate at seasonal timescales. Our

main findings are:

– Analysing ERA-20C, we find that the observed relationship between spring SST index and summer EA is nonstationary

during the 20th century, showing distinct spatial patterns between early (1902-1957) and late (1958-2008) periods. The

estimated causal influence of spring SST index on summer EA is of β ≈ 0.2.435

– We find that this relationship in ERA-20C is only causal over the late period. A sensitivity analysis of its strength during

the late period shows high variability, suggesting that the presence or absence of specific years plays an important role in

the quantification of the causal link. This implies
:::
may

:::::::
suggest

:
that an external physical mechanism not included in our

analysis might modulate the spring SST - summer EA causal link.

– In addition to summer EA, we find in ERA-20C that the spring SST index causally influences summer T2m (β ≈ -0.2)440

over a region in northwestern Europe, and the Ridge region located west of the British Isles (β ≈ 0.5). This causal

influence is possibly
:::
with

:::::
about

::
a
::::
third

::
of

::::
this

:::::
causal

::::::::
influence

:::::
being mediated by the EA.

– We find that pre-industrial and historical simulations of the MPI-ESM-MR do not reproduce the causal links detected in

ERA-20C
:::::
during

:::
the

:::
late

::::::
period. In contrast, our CEN analysis with the full initialised ensemble MR-30 reveals a weak

positive causal link between spring SST index and summer EA (β ≈ 0.04).445
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– However, for 45-year-long time series randomly sampled in MR-30, we find that the initialised ensemble is mostly unable

to reproduce the spring SST index - summer EA link.

– In contrast, MR-30 shows a moderate performance in reproducing the spring SST index - summer T2mRidge causal link

. We find that MR-30 tends to show
::::::
Despite

::::
this,

::::
there

:::
are

:::::::
notable

:::::::::
exceptions

:::::
where

::::::::
individual

::::
time

::::::
series

:::
that

::
lie

::::::
closer

::
to

::
the

::::::::
observed

::::::
causal

:::
link

::::::
exhibit

::::::::::
significantly

:
improved predictive skillfor summer surface climate predictions over the450

Ridge region when the spring SST index - summer T2mRidge causal link is correctly reproduced by the model.
:

–
::::
This

:::::::::::
improvement

::
is

:::::::::
particularly

:::::::
evident

:::
for

:::
3-4

::::::
month

::::
lead

::::
time

::::
SLP

:::
and

::::::
Z500,

:::::
where

::::::
higher

::::
skill

::
is

:::::::::
associated

::::
with

::::
time

:::::
series

::::
that

::::::
capture

::::
the

:::::::
observed

::::::
causal

::::
link

:::::::
strength

:::::
more

::::::::::
accurately.

:::::
These

::::::
results

:::::::
suggest

::::
that

::::
even

::::::
within

::
a

:::::::
generally

::::::::::::::
underperforming

:::::::::
ensemble,

::::
there

:::
are

::::::::
instances

:::::
where

::
a
:::::
closer

::::::::
alignment

::::
with

::::::::
observed

::::::::
causality

::::
leads

::
to

:::::
more

:::::
skilful

::::::::::
predictions,

::::::::
especially

:::
for

::::
key

::::::::::
atmospheric

::::::::
variables.455

In this analysis, we demonstrate that MPI-ESM-MR has limited performance in reproducing a causal link between spring

NA-SST (SST index) and summer EA amongst uninitialised and initialised model datasets. Our causality analysis therefore

sheds light on the limitations of this model in providing skillful seasonal predictions of summer climate, particularly over

areas which undergo a significant EA influence. Exploring the causes behind the model’s deficienciesin this aspect—such as

whether they stem from
::::::::::
Addressing

::::
these

:::::::::::
deficiencies,

::::
such

::
as inadequacies in representing crucial coupled ocean-atmosphere460

feedbacksor other processes—will be a significant focus for future research,
::::
will

::
be

:::
key

::
in

::::::
future

:::::
model

::::::::::::
improvements. Finally,

our results for the initialised ensemble MR-30 show that ensemble members able to reproduce a causal link to spring SST

have a potential for regional skill improvement. Our findings thereby illustrate how a causality framework could be used to

target forecasts of opportunity, and highlight
:::
This

:::::::::
highlights

::::
how

:::::::
causality

::::::::::
frameworks

::::
can

:::::
target

:::::::
forecast

:::::::::::
opportunities,

::::
and

:::::::::
emphasises

:
the importance of improving

::::::::
enhancing

:
the representation of teleconnections in climate models.465
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