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Abstract.

We apply Causal Effect Networks to evaluate the influence of spring North Atlantic extratropical
::
sea

:
surface temperatures

(SST
:::::::
NA-SST) on the summer East Atlantic Pattern (EA) seasonal predictability during the 20th century

:::::
period

::
of

:::::::::
1908-2008.

We find in the ERA-20C reanalysis that a meridional SST
:::::::
NA-SST gradient in spring (SST index) causally influences the

summer EA, with an estimated causal effect expressed by a β-coefficient of about 0.2 (a 1 standard deviation change in spring5

SST index causes a 0.2 standard deviation change in the EA 3-4 months later). We only find this link to be causal , however,

:::::::
Notably,

:::
this

::::::
causal

:::
link

::
is

::::
only

::::::
evident during the period

::::
from

:
1958 - 2008.

::
to

:::::
2008,

:::
and

::
is

:::
not

:::::::
observed

:::::::::
throughout

:::
the

:::::::
entirety

::
of

:::
the

::::::::::
investigated

::::::
period. When performing the analysis on 45-year-long timeseries

:::
time

::::::
series randomly sampled in this late

period, we find the strength of the causal link to be affected by interannual variability, suggesting a potential modulation by an

external physical mechanism. In addition to the summer EA, we find that spring SST
::
the

::::::
spring

::::
SST

:::::
index has an estimated10

causal effect of about -0.2 on summer 2-metre air temperatures over northwestern Europe, possibly mediated by summer EA.

We then use a pre-industrial and a historical simulation, as well as a 30-member initialised seasonal prediction ensemble with

MPI-ESM-MR to test the model performance in reproducing the detected causal links in ERA-20C and to evaluate whether

this performance might leave an imprint in the model predictive skill of European summer climate. We find that while
::::
both

:::
the

:::::::::::
pre-industrial

:::
and

::::::::
historical

::::::::::
simulations

:::::
using MPI-ESM-MR is

:::
are mostly unable to reproduce the causal link between spring15

SST and the summer EA among the different datasets, the 30-member initialised ensemble can moderately reproduce a causal

link between spring SST and summer 2-metre air temperatures over a region west of the British Isles. We perform a predictive

skill assessment conditioned on the spring SST
:::::
index causal links for July-August sea level pressure, 500 hPa geopotential

height and 2-metre air temperatures for predictions initialised in May. Our results suggest that MPI-ESM-MR’s performance

in reproducing the spring SST
::::
index

:
causal links constrains the seasonal prediction skill of European summer climate.20
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1 Introduction

The summer East Atlantic Pattern (EA) is an important atmospheric teleconnections influencing weather and climate in the

Euro-Atlantic region (e.g. Comas-Bru and McDermott (2014); Bastos et al. (2016)). Along with the summer North Atlantic

Oscillation (NAO), these teleconnections are often used to describe the combined changes in latitude and speed of the North

Atlantic jet stream (Woollings et al., 2010) – one of the major modulators of mid-latitude weather extremes (e.g. Rousi et al.25

(2022)). Understanding the predictability associated with these teleconnections is therefore of paramount importance. Although

several recent studies have focused on predictability of the NAO (Domeisen et al., 2018; O’Reilly et al., 2019; Athanasiadis

et al., 2020; Klavans et al., 2021), the EA has received less attention. Here, we apply a causal inference-based tool
:::
the

::::
Peter

::::
and

::::
Clark

::::::::::
momentary

::::::::::
conditional

:::::::::::
independence

:::::::::
(PCMCI)

:::::
causal

::::::::
discovery

:::::::::
algorithm to evaluate the influence of North Atlantic

extratropical surface temperatures (SST
:::::::
NA-SST) on the predictability of EA at seasonal timescales.30

The most common description of the EA pattern features a well-defined sea level pressure (SLP) centre of action south of

Iceland and west of the British Isles, usually defined as the second leading empirical orthogonal function (EOF) of SLP in the

Euro-Atlantic region (e.g. Moore et al. (2013)). Wallace and Gutzler (1981) define a positive phase of the EA as characterised

by the centre of action exhibiting anticyclonic conditions, featuring the northward extension of the Azores High. A positive

EA has been associated with below-average surface temperatures (Cassou et al., 2005; Comas-Bru and Hernández, 2018) and35

dry spells in parts of Europe (Rousi et al., 2021). Conversely, anomalous cyclonic conditions offshore of Ireland have been

suggested to influence heatwaves in Europe for a negative EA phase (e.g. Duchez et al. (2016)). Using a clustering approach

(e.g. Cassou et al. (2004); Carvalho-Oliveira et al. (2022)), a positive EA phase is reminiscent of an Atlantic Ridge, whereas

a negative EA phase resembles the Atlantic Low. A common feature amongst the different EA definitions is that its centre of

action is positioned along the NAO nodal line, thus ultimately modulating the location and strength of the NAO dipole and40

the North Atlantic storm track (Woollings et al., 2010). That is, summer climate predictability in the Euro-Atlantic region is

closely linked to EA variability.

While there is no consensus on the physical processes driving the EA, spring North Atlantic sea surface temperatures (SSTs)

:::::::
NA-SST have been proposed to influence EA variability and predictability. Gastineau and Frankignoul (2015) suggested that

summer 500-hPa geopotential height anomalies in the Euro-Atlantic significantly co-vary with a spring North Atlantic SST45

:::::::
NA-SST tripole pattern in observations over the 20th century. Moreover, Carvalho-Oliveira et al. (2022) suggested that spring

North Atlantic SSTs can influence predictive skill of summers dominated by EA in initialised simulations. Based on linear

regression analyses of the period 1979–2017, Ossó et al. (2018) and Ossó et al. (2020) proposed a physical mechanism whereby

anomalous extratropical North Atlantic SSTs in spring may persist into summer and influence shifts in the eddy-driven jet

stream, imprinting at the surface an SLP pattern that resembles the EA. These studies suggest that this mechanism is forced by50

changes in baroclinicity of the lower troposphere associated with a strong meridional SST
:::::::
NA-SST gradient in spring located

between subpolar and subtropical North Atlantic
::::
gyres. The authors hypothesised that the delayed atmospheric response in

summer, and not in spring, could be explained by the seasonal evolution of both SST
:::::::
NA-SST gradient and jet stream position,

modulated by a positive coupled ocean–atmosphere feedback that operates primarily in summer.
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Nevertheless, while the linear regression-based analysis provided in Ossó et al. (2018) suggests a contribution of spring55

SST
:::::::
NA-SST

:
on the summer SLP variability, this approach does not imply causation. Disentangling the complex causal-

effect pathways underlying the mechanism proposed in Ossó et al. (2020) over a long observational record is a crucial

step to evaluate EA predictability in dynamical climate models. Hence, in this paper we use Causal Effect Network (CEN,

Runge et al. (2015); Kretschmer et al. (2016)
:::::
based

::
on

:::::::
PCMCI

:::::::::
(hereafter:

:::::
CEN,

::::::::::::::::::::
Kretschmer et al. (2016)) to test the hypoth-

esis of spring SST
:::::::
NA-SST

:
causally driving a response in the summer SLP and temperature fields in the Euro-Atlantic60

sector during the 20th century. CEN overcomes spurious correlations due to autocorrelation, indirect effects, or common

drivers (Runge et al., 2019), and
:::::::::::::::::::::
(Runge et al., 2014, 2019).

::
It
:
has been successfully used to complement hypothesis testing

for other teleconnections
::::::
tropical

::::
and

::::::::::
mid-latitude

:::::::::::::
teleconnections

::
in

:::
the

:::::::::::::
Atlantic-Pacific

:::::
region

::::
(e.g.

:::::::::::::::::::::
Karmouche et al. (2023)

:::
and

:::::
Indian

::::::
Ocean (e.g. Di Capua et al. (2020a))

:
,
::
as

::::
well

::
as

::
in

:::
the

:::::
Arctic

::::::
region

::::
(e.g.

:::::::::::::::::::::::::::::::::::
Siew et al. (2020); Kretschmer et al. (2020)

:
).65

Although dynamical seasonal forecasts of European summer climate usually show very little skill (e.g. Mishra et al. (2019)),

recent studies suggest that improving the representation of teleconnections can increase forecast skill (Oliveira et al., 2020;

Carvalho-Oliveira et al., 2022; Schuhen et al., 2022). The physical mechanism connecting SST
:::::::
NA-SST variability and jet

stream dynamics proposed in Ossó et al. (2020) thus offers a framework to more generally assess the influence of SST
:::::::
NA-SST

on seasonal predictability of the EA – the aim of the present study.70

Here, we use CEN to firstly investigate under which circumstances spring extratropical North Atlantic SSTs causally influ-

ence the summer EA and its associated impact on surface climate. Secondly, we analyse pre-industrial, historical and initialised

simulations with the Max Planck Institute Earth System Model in its mixed-resolution setup MPI-ESM-MR (MPI-ESM-MR,

Dobrynin et al. (2018)). We specifically test the model performance in reproducing the observed SST
:::::::
NA-SST - EA link, in

order to identify how this performance might constrain the seasonal prediction skill of European summer climate.75

2 Methodology

2.1 Reanalysis and model data

We investigate the SST
:::::::
NA-SST - EA link first using ERA-20C reanalysis (Poli et al., 2016), and then using model simulations

with MPI-ESM-MR (Dobrynin et al., 2018)). We analyse sea level pressure, sea surface temperature (SST),
:::
The

::::::::
physical

:::::::
variables

::::::::
analysed

:::
are

::::::::
NA-SST,

::::
SLP and air temperature at 2 metre height (T2m). We use monthly means for each variable80

as we are testing mechanisms which are expected to act on monthly timescales. We focus our analysis on the 101-year long

period spanning 1908-2008 in the model and observations.

In MPI-ESM-MR, the atmospheric component ECHAM6 (Stevens et al., 2013) has a resolution of T63L95, with a nominal

horizontal resolution of 200 km (1.875◦) and 95 vertical layers up to 0.01 hPa. The oceanic component MPI-OM (Jungclaus

et al., 2013) is coupled to ECHAM6 and has a resolution of TP04L40, with an approximate horizontal resolution of 40 km85

(0.4◦) and 40 vertical layers. External forcing is taken from CMIP5 (Giorgetta et al., 2013).
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We investigate how MPI-ESM-MR performs in reproducing the SST
::::::
NA-SST

:
- EA link among three independent sets of

MPI-ESM-MR simulations. The datasets comprise a pre-industrial control run (piControl), a historical run, and a 30-member

seasonal initialised hindcast ensemble (MR-30). Comparing the performance of each set against reanalysis enables us to dis-

tinguish the role of forcing (from piControl to historical), and of assimilation (historical to initialised ensemble) on the model90

skill.

The pre-industrial coupled atmosphere/ocean control run piControl has a total length of 1000 years (period 1850-2849)

(Giorgetta et al., 2011), with forcing constant in time: orbital parameters and greenhouse gases concentration are fixed at 1850

values; spectral solar irradiance remains constant as the solar cycle average over 1844-1856, and monthly ozone concentrations

are fixed at the 11-year average over 1850-1860 (Mauritsen et al., 2012). The historical simulations run from 1850 to 200595

under natural and anthropogenic forcing following CMIP5 protocol (Dobrynin et al., 2018).

Lastly, the hindcast ensemble MR-30 is initialised on 1st of May every year from 1902-2008, with initial conditions taken

from an assimilation experiment (Oliveira et al., 2020). In the assimilation experiment, Newtonian relaxation (nudging) is

used in full-field mode towards all atmospheric and ocean levels except in the boundary layer. The atmosphere conditions

of vorticity, divergence, three-dimensional temperature and two-dimensional pressure are assimilated with ERA-20C data. In100

the ocean, three-dimensional daily mean salinity and temperature anomalies are nudged at a relaxation time of approximately

10 days. The
::
To

::::
help

::::::
reduce

:::::::::::
initialisation

:::::
shock,

:::
the

:
ocean state is derived in

::::
from an ocean-only simulation performed with

MPI-OM forced with the atmospheric variables from ERA-20C,
::::

thus
:::::::::::

maintaining
::::::::::
consistency

::
in

:::::
model

:::::::
physics. The three-

dimensional atmospheric and ocean fields of the assimilation experiment form the initial conditions, from which 30 ensemble

members are generated by perturbing the atmospheric state with slightly disturbed diffusion coefficients in the uppermost layer.105

2.2 Data-processing and climate indices

We compute anomalies at every gridpoint by removing mean seasonal cycle and linear trend, satisfying data input requirements

for the CEN algorithm (Kretschmer et al., 2016). We analyse bimonthly means in March-April (MA) and April-May (AM) for

spring SST
:::::::
NA-SST

:
and July-August (JA) SLP and T2m. In MR-30, we use the assimilation experiment to obtain spring SST

:::::::
NA-SST fields, and the hindcast ensemble at lead times

::
of

:
3-4 months to obtain summer SLP, T2m and 500 hPa geopotential110

height (Z500). We apply area-weighting by multiplying each value with the cosine of its latitudinal location to take into account

the dependence of the gridpoint density on latitude.

We calculate the EA index to analyse the summer EA teleconnection. As a first step, we define a reference EA index as

the second principal component (PC) of the leading empirical orthogonal function (EOF )
::::
EOF

:
of JA anomalies of sea level

pressure
::::
SLP over the Euro-Atlantic sector 70◦W-40◦E, 25◦-80◦N calculated from the ERA-20C reanalysis data (e.g. Comas-115

Bru and McDermott (2014)). Next, EA index values in the model simulations from MPI-ESM-MR are calculated by projecting

each ensemble member onto the EA reference EOF pattern. We consider a positive phase of the EA index when characterised

by a centre of positive SLP anomalies that lies south of Iceland and west of the British Isles (e.g. Wallace and Gutzler (1981);

Comas-Bru and McDermott (2014), Fig.1a).
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We further test the influence of spring extratropical North Atlantic SSTs on the summer EA using the SST index proposed120

in Ossó et al. (2018). We calculate the SST index by subtracting the average SST
:::::::
NA-SST

:
over the eastern box (35◦W-20◦W,

35◦-42◦N) from the average SST
:::::::
NA-SST

:
over the western box (52◦W-40◦W, 42◦-52◦N), represented by green boxes in

Fig.1b. We analyse the SST index for both March-April and April-May means.

To fully analyse the impact of spring SST on the
::::::::::::::
comprehensively

:::::::::
investigate

:::
the

::::::::
influence

::
of

::::::
spring

:::::::
NA-SST

:::
on summer

SLP variability, we include
:::::::::
incorporate the SLP index proposed in Ossó et al. (2018) , in addition to the EA index

:::::::::
introduced125

::
by

:::::::::::::::
Ossó et al. (2018)

::::::::
alongside

:::
the

:::
EA

::::::
index.

::::
This

:::::::
approach

:::::
aims

::
to

::::::
address

:::
the

:::::::
broader

::::::::::
significance

::
of

:::::::
pressure

:::::::::
dynamics

::
in

::
the

:::::::
region,

:::::::::
particularly

:::
in

::::::
relation

::
to
:::
the

::::::::
physical

:::::::::
mechanism

::::::::
proposed

:::
by

:::::::::::::::
Ossó et al. (2020). The SLP index is calculated as

JA SLP anomalies averaged over the region 45◦N-55◦N; 25◦W-5◦W indicated by a blue box in Fig1b.
::
In

:
a
::::::
second

:::::
step,

:::
we

::::::
analyse

:::
the

::::::
impact

::
of

::::::::
NA-SST

::
on

:::::::
summer

::::
T2m

:::::
using

::::
two

::::::::
additional

:::::::
indices,

:::
i.e.

:::::::
T2mCE:::

and
:::::::::
T2mRidge:::::::::::::

(Sects.3.2,3.4).
::::
The

::::::
T2mCE:::::

index
::
is
:::::::::
calculated

::
as

:::
JA

::::
T2m

::::::::
anomalies

::::::::
averaged

::::
over

:::
the

::::::
region

::::::::::
45◦N-55◦N;

::::::::::
10◦E-35◦E

::::::::
(indicated

:::
by

:
a
:::
red

::::
box

::
in130

::::::
Fig.2f),

::::
and

:::
the

:::::::::
T2mRidge:::::

index
::
is

::::::::
calculated

::::
over

:::
the

::::::
region

::::::::::
40◦N-55◦N;

:::::::::::
15◦W-34◦W

::::::::
(indicated

:::
by

:
a
:::::
black

::::
box

::
in

::::::
Fig.7b).

:

All climate indices are standardised to have mean of zero and SD
::::::
standard

::::::::
deviation

:::::
(SD)

:
of 1 to allow for comparison.

Using the aforementioned climate indices, we perform linear regressions and correlations to analyse the linear relationship

between the predictor spring SST
:::::::
NA-SST and the target variables summer EA, SLP, and T2mCE indices. Wherever useful,

we
::
We

:
use a two-tailed Student’s t-test to calculate the statistical significance of correlations.

:::::::::
point-wise

:::::::::
correlations

::::::
maps.

:::
We135

::::::
provide

:
a
::::::::::
description

::
of

:::
the

::::::
indices

::::
used

::
in

:::
the

:::::::
analysis

::
in

:::::
Table

::
1.

:

Table 1.
:::::::
Summary

::
of
:::
the

::::::
indices

:::
used

::
in
:::
our

:::::::
analysis.

::::
Index

::::::
Variable

:::::
name

:::::
Region

::::
used

:::
for

:::::::::
calculation

:::::::
SST_ind

:::
Sea

:::::
surface

:::::::::
temperature

:::::
index

:::::
Eastern

::::
box

:::::::::::
(35◦W-20◦W,

:::::::::
35◦-42◦N);

:::::::
Western

::::
box

::::::::::
(52◦W-40◦W,

::::::::
42◦-52◦N)

:

:::::::
SLP_ind

:::
Sea

::::
level

::::::
pressure

:::::
index

:::::::::
45◦N-55◦N;

:::::::::
25◦W-5◦W

:::
EA

::::
East

::::::
Atlantic

:::::
Pattern

:

:::::::::
70◦W-40◦E,

::::::::
25◦-80◦N

:::::::
T2m_CE

::
Air

:::::::::
temperature

::
at

:::
2m

:::::
height

::
for

::::::
central

:::::
Europe

:

:::::::::
46◦N-55◦N;

:::::::::
11◦E-34◦E

:::::::::
T2m_Ridge

:::
Air

:::::::::
temperature

:
at
:::
2m

:::::
height

:::
for

::::::
Atlantic

:::::
Ridge

:::::
region

:::::::::
40◦N-55◦N;

::::::::::
15◦W-34◦W

2.3 Causal effect networks

We use Causal Effect Network analysis (CEN, Runge et al. (2015); Kretschmer et al. (2016)) to test whether spring SST

:::::::
NA-SST anomalies causally influences the variability of summer SLP and temperature fields in the Euro-Atlantic sector dur-

ing the 20th century. CEN analysis is a causal discovery tool which implements the so-called ,
:::::::::::
investigating

:::
the

::::::::::
mechanism140
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:::::::
proposed

::
in

::::::::::::::::::::
Ossó et al. (2018, 2020).

:::::
CEN

:::::
allow

::
to

:::::::
represent

:::
the

::::::
output

::
of

:::
the Peter and Clark momentary conditional indepen-

dence algorithm (PC-MCI, Runge et al. (2019)
:::::::
(PCMCI)

::::::
causal

::::::::
discovery

:::::::::
algorithm

::::::::::::::::::::::::::::::::
(Runge et al., 2019; Spirtes et al., 2000)

:
.

:::
We

:::::::::
specifically

:::
use

:::
the

:::::::
PCMCI

::::::
version

:::
4.2

::::
from

:::
the

::::::
Python

:::::::
package

:::::::::
Tigramite

:
(https://github.com/jakobrunge/tigramite). This

algorithm iteratively calculates partial correlations amongst a set of time-series
::::
time

:::::
series

:::::::
(actors) to test if a link between a

potential precursor and a target variable at a certain time lag is: i) considered spurious, i.e. can be explained by the
::::
linear

:
com-145

bination of other time-series
::::
time

:::::
series at different lags (i.e. conditional independence); or ii) considered causal, i.e. cannot be

explained by the combined influence of other investigated variables (i.e. conditional dependence). We stress, however,
::
In

:::
the

::::::::
algorithm,

::::
this

:::::::::
calculation

::
is

:::::::::
performed

::
for

::
a
::::::::
minimum

:::
and

:::::::::
maximum

::::
time

::::
lags,

:::::::
denoted

:::::
τmin :::

and
:::::
τmax.

:

:::
We

:::::::::
emphasise that the term causal

::::::
"causal"

:
should be interpreted as causal

:::::::::
cautiously

:::::
within

::::
the

::::::
context

:::
of

:::
this

::::::
study.

:::::
When

:::
we

::::
refer

::
to

::::::::
causality,

:::
we

:::::
mean

::::::::
causality

:
relative to the set of investigated variables , under the

:::
and

:::::
under

:::
the

:::::::
specific150

assumptions considered in the PC-MCI algorithm (e.g. stationarity of time-series). We refer the reader to Runge (2018) for

a thorough description
::::::
PCMCI

:::::::::
algorithm

:::::
(such

::
as

:::
the

::::::::::
stationarity

::
of

::::
time

:::::
series

::::::
data).

::
As

::
a
:::::::::::
consequence,

:::
the

:::::::::
possibility

:::
of

::::::::
remaining

:::::::
spurious

::::::::::
correlations

::::::
cannot

::
be

:::::::
entirely

::::
ruled

::::
out.

:::
The

:::::::
choices

::
of

::::::::
variables

:::::::
included

::
in

:::
the

:::::::
analysis

:
is
:::::::
another

::::::
crucial

:::::
aspect

:::
for

::::::::::
determining

:::
the

:::::::
causality

:::
of

::
the

::::::::
identified

:::::
links.

::::
Yet,

:::
this

:::::
poses

::
a

::::::::
challenge

::
as

::::::::
including

::::
more

::::::::
variables

::::::::
enhances

:::
the

::::::::
credibility

::
of

::::::
causal

:::::::::
discoveries

:::
but

:::::::::
introduces

:::::::::::
complexities.

::::
For

:::::::
instance,

:::::::::::::
accommodating

:::::::::
numerous

::::::::
variables

:::
and

:::::::::
significant155

::::
time

:::
lags

::
to
:::::::
address

:::::::
physical

::::::
delays,

::::
like

:::::::::
identifying

:::::::::::
atmospheric

:::::::::::::
teleconnections,

:::::
leads

::
to

::::
high

:::::::::::::
dimensionality.

::::
This,

::
in
:::::

turn,

:::
can

::::::::::
significantly

::::::
affect

:::
the

::::::::
reliability

:::
of

::::::::
statistical

:::::::::
outcomes.

::::::
Hence,

::
a

::::::::
successful

::::::::::
application

::
of

:::::
CEN

:::::::
requires

:::::
(such

:::
as

:::
for

:::
any

:::::::::
data-driven

::::::::
method),

::::::
expert

:::::::::
knowledge

::
of

:::
the

:::::::::
underlying

:::::::
physical

:::::::::
processes,

::::::::
including

:::::::
relevant

::::::::
variables,

:::::::::
time-scales

::::
and

:::::::
temporal

:::::::::
resolution.

:::
For

::
a
::::
more

:::::::
detailed

::::::::::::
understanding

:
of the CEN analysis and the PC-MCI algorithm

::::::
PCMCI

:::::::::
algorithm,

:::
we

::::
refer

:::
the

:::::
reader

::
to

::::::::::::
Runge (2018),

::::::
which

:::::::
provides

:
a
:::::::::::::
comprehensive

:::::::::
description

:::
of

::::
these

:::::::::
techniques.160

We visualise the output of CEN analysis as a process graph , where circles
::::::
PCMCI

::
in
::
a
:::::
CEN,

:::
i.e.

:
a
:::::
causal

:::::
graph

::::::
where

:::::
nodes

represent the investigated variables, and arrows indicate the strength and the direction of the causal links
:
,
:::
and

:::::::
colours

::::::
denote

::
the

:::::::
strength

:::
of

::::
these

:::::
links. The strength is expressed by the standardised linear regression coefficient, denoted β-coefficient,

and defined as the expected change of Yt in units of its standard deviation (SD )
:::
SD induced by raising Xt−τ by 1 SD, while

keeping all other potential precursors constant. Moreover, CEN analysis outputs the autocorrelation path coefficient, which165

represents the causal influence of a variable on itself, as opposed to the Pearson autocorrelation.

We apply causal maps (Di Capua et al., 2020b) to investigate the causal effects of a specific variable on a given atmospheric

field along latitude, longitude and time dimensions. This tool builds upon the PC-MCI
::::::
PCMCI

:
algorithm and CEN approach,

and provides a powerful visualisation of spatial patterns. Causal maps display β-coefficients calculated with the time series

of a potential precursor and each grid point of a target atmospheric field. We refer the reader to Di Capua et al. (2020b) for a170

detailed explanation of this method.

:::::
Lastly,

:::
the

:::::::
PCMCI

:::::::::
parameters

:::
are

::::::
chosen

:::
as

:::::::
follows:

::
pc

:::::
alpha

:
=
::::
0.2,

:::::
alpha

::::
level

::
to

::::
print

::::::
results

::
=

:::
0.1,

:::::
τmin :

=
::
3
::::::
months

::::
and

::::
τmax::

=
:
4
:::::::
months,

::::::::::::
independence

:::
test

::
=

::::::
parcorr,

::::::::::::::::::::
significance=’analytic’,

:::::::
masking

::::
type

:::
‘y’.

:

2.4
::::::::::::

Bootstrapping
:::
and

:::::::::
ensemble

:::::::::::
subsampling

6

https://github.com/jakobrunge/tigramite


:::
We

:::::::
perform

:::::::::::
bootstrapping

::::
and

::::::::
ensemble

:::::::::::
subsampling

::::
(e.g.

::::::::::::::::::
Dobrynin et al. (2018)

:
)
::
to

:::::::::
investigate

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::
causal175

::::
links

::
to

::::
data

::::::::
sampling.

:::::
When

::::::::
analysing

:::::::::
1958-2008

:::::
using

:::::::::::
observations

::
in

:::::::
Sect.3.3,

:::
we

::::::::
randomly

:::::
select

:::
500

:::::::
samples

::
of

::::::::
45-years

::::
long,

:::
i.e.

:::::::::
excluding

:
6
:::::::
random

:::::
years

::
at

::::
each

::::::::
iteration.

:::::
Each

::
of

:::::
these

::::
time

:::::
series

:::
are

::::
then

::::::::
analysed

::::
with

:::::
CEN

:::::
using

:::
the

:::::
same

:::::::::::::
hyperparameters

::::
(see

::::::::
Sect.2.3).

::::
We

:::::::
perform

:
a
::::::
similar

::::::::::::
bootstrapping

:::::
using

:::::::
MR-30,

:::
but

::::::::::
additionally

:::::::
include

:
a
:::::::

second
:::
step

:::
of

::::::::
ensemble

:::::::::::
subsampling.

::::
That

:::
is,

:::
we

::::
first

::::::::
randomly

:::::::
exclude

::
6
:::::
years

:::::
from

:::
the

::::::::
analysed

::::::
period.

:::::
Next,

:::
we

:::::::::
randomly

:::::
select

::
1

::::::::
ensemble

:::::::
member

::::
from

:::
the

::::::::::
30-member

::
set

:::
for

::::
each

:::::::
selected

:::::
year.

::::
Each

::::
time

:::::
series

::
is

::::
then

:::::::
analysed

::::
with

:::::
CEN.

::::
This

:::::::
process

::
is180

:::::::
repeated

::
at

::::
least

:::
500

::::::
times.

:
It
::
is

::::::::
important

::
to

::::
note

::::
that

:::::::
reducing

:::
the

:::::
length

::
of

:::
the

::::
time

:::::
series

::
in

::::
this

:::
way

::::::::
increases

:::
the

:::::::::
variability

:::
and

:::::
hence

::::::
lowers

:::
the

::::::::::
significance

:::
of

:::
the

:::::::
obtained

::::::::::::
β-coefficients.

::::::::
However,

::::
this

::::::
should

:::
not

:::
by

::::
itself

:::::
lower

:::
the

:::::::
strength

:::
of

:::
the

:::::::::
coefficients

::::::::::
themselves.

:

2.5
::::::::

Predictive
::::
skill

::::::::::
assessment

::
In

:::::::
Sect.3.4,

:::
we

:::::::
perform

::
a
::::::::
predictive

::::
skill

::::::::::
assessment

:::
for

::::
SLP,

:::::
T2m

:::
and

:::::
Z500

::
at

::::
lead

:::::
times

::
of

:::
3-4

:::::::
months

::
in

::::::
MR-30

:::::::
against185

:::::::::
ERA-20C.

:::
For

:::
this

::::::::::
assessment

:::
we

:::
use

:::::::::
point-wise

:::::::::
detrended

::::::::
anomaly

:::::::::
correlation

:::::::::
coefficient

::::::
(ACC,

::::::::::::
Collins (2002)

:
).
::::
We

:::
are

::::::::
interested

::
in

::::::::
assessing

::
the

:::::::::
predictive

:::
skill

::::::::::
conditioned

::
to

:::
the

:::::::
strength

::
of

:::::::::
significant

:::::::::::
β-coefficients

:::::::
(p-value

::
<

::::
0.1).

:::
Our

:::::::::
hypothesis

:
is
::::
that

:::
the

::::::::
predictive

::::
skill

::
in

:::::::
summer

:
is
:::::
likely

::
to
:::::::
increase

::
in
:::::
cases

:::::
where

:::::::
MR-30

:
is
::::
able

::
to

::::::
capture

:::
the

::::::
causal

:::
link

:::::::
between

::::::
spring

:::
SST

:::::
index

::::
and

:::::::
summer

::::
EA,

::
as

:::::::
opposed

::
to

:::::
cases

::::::
where

:::
the

:::::
model

::::
fails

::
to

:::::::
capture

:::
the

::::::::
observed

:::::
causal

::::
link.

::::
We

::::
refer

::
to

:::::
these

::::
time

:::::
series

::
as

::::::
MR-30

::::::::
bootstrap

::::::::
ensemble

:
.
:::
For

::::::::
example,

:::
we

::::
shall

::::::
assume

::::
that

:::
we

:::
are

::::::::
interested

::
in
::::::::::
calculating

:::
the

::::::::::
conditioned190

::::::::
predictive

::::
skill

::
of

:::
JA

:::::
Z500.

::
To

::::::::::
accomplish

:::
this

::::
task,

:::
we

::::
first

:::::::
identify

::
the

:::::::
specific

:::::
years

:::
and

::::::::
ensemble

::::::::
members

:::
that

::::::::::
correspond

::
to

::::::::
significant

::::::::::::
β-coefficients

:::
for

:::
the

:::::
spring

::::
SST

::::
and

:::::::
summer

:::
EA.

:::::
With

:::
this

:::::::::::
information,

:::
we

:::
can

::::
then

::::::
sample

:::
JA

::::
Z500

::
to
::::::
create

:
a
::::
time

:::::
series

::
of

::::::
similar

::::::
length.

:::
In

::::
case

::::
more

::::
than

::::
one

::::::::
ensemble

:::::::
member

::
is

::::::::
randomly

:::::::
selected

::
in

:
a
:::::

given
:::::
year,

:::
we

:::::::
calculate

:::
an

::::::::
ensemble

:::::
mean.

:::
We

::::
then

::::::::
determine

:::
the

:::::
ACC

:::::::
between

:::
the

::::::
MR-30

::::::::
bootstrap

::::
and

:::::::::
ERA-20C.

3 Results195

3.1 Characteristics of the observed link: temporal and spatial variability

The spatial pattern of the summer EA in its positive phase is characterised by large-scale cyclonic conditions, except at the

anticyclonic centre of action located south of Iceland and west of the British Isles (Fig.1a). A typical surface climate imprint

of the summer EA in positive phase shows
::::::::
correlates

::::
with

:
below-average temperatures in continental Europe (Fig.1c) and

below-average precipitation in the British Isles and northwestern Europe (Fig.1d). As a first approach to evaluate the influence200

of
:::::
spring

:
extratropical SSTs in the summer EA, we use the SST index defined in Ossó et al. (2018). A pearson correlation

analysis suggests that the strength of the
:::::::
Pearson

:::::::::
correlation

:::::::
analysis

::::::
reveals

:
a
:::::::::::::
time-dependent

:
relationship between the SST

index in spring
:::
AM

::::
SST

:::::
index

:
and the EA index in summer is time dependent

:
in
::::::::

summer (Fig.1f). Considering a period of

observations spanning
::
e).

::::
Over

::
a
::::
span

::
of

:
101 years (1908-2008), this relationship is

::::::
appears

:
weak (r = 0.2, Fig.1e

::::
0.22,

::
p
::
<

::::
0.05). However, this relationship changes over time: considering only the latest

::::::::
examining

:::
the

::::
most

:::::
recent

:
51 years (1958-2008)205
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, correlation reaches significant
:::::
shows

:
a
::::::::
doubling

::
of

::::::::::
correlation values (r = 0.5

::::
0.43,

::
p

:
<
::::::
0.05).

:::::::::::
Furthermore,

:::::::
focusing

:::
on

:::
the

::::
latest

:::
30

::::
years

::::
(the

::::::
period

:::::::
analysed

::
in

:::::::::::::::
Ossó et al. (2018))

::::::
results

::
in

:::::::::
correlation

::::::
values

::::::::
increasing

:::::
even

:::::
further

::
to
::::
0.60

:::
(p

:
<
::::
0.05)

. The temporal variability of this relationship is well illustrated for correlations calculated using a 20-year running window,

which shows a reversal in the sign of correlations starting from 1945, and highlights an increase in the strength beyond 1958

(Fig.1f). This analysis suggests that the spring SST
:::::::
NA-SST - summer EA relationship is nonstationary. Hence, we distinguish210

the following three periods to scope the remaining analysis: i) early period: 1908 - 1957; ii) late period: 1958-2008, and iii)

full period: 1908-2008.

We assess the spatial features of the SST index influence on the summer atmospheric circulation in the different periods

to further explore the variability of the spring SST
:::::::
NA-SST - summer EA relationship. We analyse bimonthly averages, i.e.

April-May (AM) SST
:::::::
NA-SST

:
and July-August (JA) SLP means, to observe the seasonal evolution of anomalies. Correlation215

maps show distinct patterns in early and late periods. We find significant correlations between the precursor SST index and

the summer sea level pressure (SLP )
::::::
summer

:::::
SLP over a region in the North Atlantic which reasonably coincides with the

location of the EA teleconnection centre of action during the late period (Fig.2b, c.f. Fig.1a). The location of this region seems

to oscillate about 45◦N, remaining south of this latitude in the early period (Fig.2a), while located northwards in the late one

(Fig.2b). Surrounding this high correlation region, the sign of correlations is opposite between early and late
::::::
(Fig.2a)

:::
and

::::
late220

:::::::
(Fig.2b)

:
periods. We find similar results using March-April (MA) SST

::::::
NA-SST

:
means, only in weaker strength .

:::
(not

:::::::
shown).

:

Regression maps further suggest that spring SST
:::::::
NA-SST

:
anomalies persist into summer and then influence atmospheric

circulation (Fig.2d-f
:::
g-i). Positive values of the AM SST index in spring are associated with warm summer anomalies east of

Newfoundland and cool anomalies west of Iberia, leading to concomitant anticyclonic conditions in the ocean located south of

Greenland. In the late period
:::::
Fig.2h), these anticyclonic conditions coincide

:::::::::
specifically with the position of the EA centre of225

action,
:::::::
whereas

::::
this

:::::::::
association

::
is

::::::
absent

::
in

:::
the

::::
early

::::::
period.

Moreover, we test whether the SST index influences JA T2m via the EA. We find significant correlations between the AM

SST index and JA T2m, showing a similar pattern
::
of

:::::::::
significant

:::::::
positive

::::::::::
correlations

::::
west

::
of

:::
the

::::::
British

:::::
Isles,

:
as in Fig.1b

:
c

corresponding to JA EA - T2m. We find that correlations between AM SST index and JA T2m show distinct patterns between

early and late periods (Fig.2g,h
:::
d,e). A positive phase of the SST index in spring precedes a positive phase of the summer EA230

(e.g. Fig.2e
:
h), which in turn can be associated with below-average temperatures, primarily over central Europe. For

::
To further

investigate this relationship, we calculate a T2mCE index, defined as the average summer air temperatures
::::
T2m

:
over the central

European region 46◦N-55◦N; 11◦E-34◦E, represented by the red box in Fig.2i
:
f. In summary, this analysis reveals that spring

extratropical oceanic forcing of the summer atmospheric circulation has a marked temporal and spatial variability over the 20th

century, only projecting onto the EA pattern over the late period. This variability might pose a constraint on the predictive skill235

of European summer climate based on spring extratropical SST
:::::::
NA-SST

:
during certain periods of time.

3.2 Investigating causality

To further test the robustness of the SST-EA relationship in ERA-20C, we evaluate whether spring extratropical SSTs and

summer EA are conditionally dependent. Specifically, we test the hypothesis that spring SST
:::::::
NA-SST

:
is a causal driver for

8



Figure 1. Variability and linear relationships of EA in ERA-20C. a) Positive phase of the EA teleconnection, defined as the second EOF

of July-August
:::
(JA) SLP. b) Regions used to calculate the SST

::::::
NA-SST

:
and SLP indices proposed in Ossó et al. (2018). c) Pointwise

correlation of EA index with concurrent July-August
::
JA

:
anomalies of 2-metre air temperatures in the full period

:::::::::
(1908-2008). d) Same as

c), for July-August
::
JA anomalies of total precipitation. e) Time series of

::::::::
April-May

::::
(AM)

:
SST (blue) and

::
JA

:
EA (grey) indices in ERA-20C

for 1908-2008, smoothed by a 3-year running mean. f) Running-correlation between
:::
AM SST and

::
JA

:
EA indices for a 20-year window.

Coloured markers indicate significant correlations at the 95% confidence interval, illustrated by dashed lines.
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Figure 2. Distinct spatial characteristics of the spring SST influence on the summer circulation over the 20th century (for ERA-20C) . Top

row (a-c) shows point-wise correlation coefficients for the April-May SST index and July-August SLP means considering early (1908-1957
:
,

::
left), late (1958-2008

:
,
:::::
middle) andfull

:::
full periods (1908-2008), respectively

::::
right

::::::
column). Middle

::
Top

:
row (d-f

::
a-c) shows linear regression

maps of July-August SST anomalies (shading) and SLP (contours) against
::::::::
point-wise

::::::::
correlation

:::::::::
coefficients

::
for

:
the precursor

::::::::
April-May

SST index (normalised by the standard deviation σ). Contour interval is 0.2 hPaσ-1
::
and

:::::::::
July-August

::::
SLP. Bottom

:::::
Middle row (g-i

::
d-f) shows

::::
hows point-wise correlation coefficients for the April-May SST index and July-August air temperature at 2 metre height. Stippling indicates

correlations significant at the 95% confidence level, calculated with a Student’s t-test.
:::::
Bottom

::::
row

:::
(g-i)

::::::
shows

::::
linear

::::::::
regression

:::::
maps

::
of

:::::::::
July-August

:::::::
NA-SST

:::::::
anomalies

::::::::
(shading)

:::
and

:::
SLP

::::::::
(contours)

::::::
against

::
the

::::::::
precursor

:::
SST

:::::
index

:::::::::
(normalised

::
by

:::
the

::::
SD).

::::::
Contour

::::::
interval

::
is

::
0.2

:::::::
hPaSD-1.

:
Box

::
in

::::
Fig.2f

:
illustrates the region used to calculate the T2mCE index, as described in the text.

the summer EA, thus excluding autocorrelation effects or common drivers which could lead to spurious links. We perform a240

causality analysis using the PC-MCI algorithm (Runge et al., 2015).

First, we build one CEN for each of the three investigated periods in ERA-20C. Besides the EA and SST indices, we include

two additional indices in the CEN. The first is the SLP index, defined in Ossó et al. (2018) and illustrated by the blue box in

Fig.1b. We thus
:::::
Thus,

:::
we test whether differences between early and late periods (c.f. Sec.3.1) are reflected in distinct timing

or strength among the EA and SLP indices with SST. The second index concerns summer air temperatures averaged over the245

region represented by the red box in Fig.2i
:
f (T2mCE), which shows significant correlations

::::::::::::
anticorrelations

:
with SST. We test

whether the spring SST index causally drives changes in air temperature
:::::::
summer

::::
T2m

:
over central Europe and under which

circumstances this holds true. Our
::::::::
Therefore,

:::
our

:
CEN analysis focuses on

::::
τmin :

=
:
3 and

:::::
months

::::
and

::::
τmax::

= 4 monthslag only
:
,

:::::
which

:::
for

::::::::
simplicity

:::
we

::::
refer

::
to
:::
as

:
3
:::
and

::::::::
4-month

:::
lags.
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c) d)

e) f)

β-coef. β-coef.

SST index - SLP index (lag = 3)

SST index - EA (lag = 3)

SST index - SLP index (lag = 4)

SST index - EA (lag = 4)

β-coef.auto-coef. β-coef.auto-coef.

a) b)

Figure 3. Causal effect network analysis for the late period (1958-2008) in ERA-20C.
:::::
Causal

:::::
graphs

::::::
between

:
a) causal graph between SST

index, EA teleconnection, SLP index and T2mCE (left
:::
and

:
b)

::::
SST

::::
index,

:::
EA

:::::::::::
teleconnection and schematic with illustration of the causal

pathways in the Euro-Atlantic region
::::
SLP

::::
index

::::
only. The strength and direction of the causal links is given by the β-coefficient and is

represented by the arrows, whereas the auto-correlation path coefficient is represented for each variable by the respective circle colour. The

numbers over each arrow represent the time tag (in months) when the strongest causal link between each variable pair is detected. b-e
::
c-f)

Sensitivity of the causal links shown as the PDF of β-coefficients calculated for a random sample selection of 45 years, iterated 500 times,

between the variables: SST and SLP indices at lag 3 (b
:
c) and lag 4 (cd), and SST index and EA at lag 3 (d

:
e) and lag 4 (e

:
f). Only causal links

with p-value < 0.1 are shown. Red lines show the correspondent β-coefficients represented in (a).

Over the late period, we confirm that the spring SST index is a causal driver for both the summer EA , and the summer250

SLP index, at distinct time lags (Fig.3a). The strength of the causal link is expressed by the standardised regression coefficient,

denoted β-coefficient in CEN. At
:
a 4-month lag, we find βSST→EA ≈ 0.22

:::::::::::::::
βSST→EA ≈ 0.22, which means that a change of 1

standard deviation (SD) in the March-April SST index leads to a change of 0.22 SD in July-August EA. We find a causal link

of similar strength at
:
a
:
3-month lagβSST→SLP ≈ 0.21 ,

:::::::::::::::::
βSST→SLP ≈ 0.21, between April-May SST

::::
index

:
and July-August

EA, as well as -0.2
::::::::::::::::::
βSST→T2mCE

≈−0.2 between April-May SST
::::
index

:
and July-August T2mCE . Although we speculate255

that the link SST → T2mCE::::::::::::::
SST → T2mCE:

is mediated via the summer EA, we are unable to confirm this mediation with

a CEN analysis focusing on 3-4 months lag. We
:::::
While

:::::::
PCMCI

::::::
cannot

::::::
handle

:::
the

::::::::::::
nonstationarity

:::::::::
identified

::
in

:::
the

:::
full

::::::
period

::::
(e.g.

:::::::::::
Runge (2018)

:
),
:::
we

:
find no significant causal links when analysing the full or

:
in
:::
the

:
early period.

Next, we test the sensitivity of the detected causal links between spring SST
::::
index

:
and summer SLP to slight differences

in the analysed years. By removing 6 randomly selected years (12% of tested years in the late period) in each new CEN260
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over 500 iterations, we test whether the causal links are particularly subjected to interannual variability (Fig.3b-e
::
c-f). We find

high variability in the strength of the links βSST→EA and βSST→SLP (Fig.3b, e
::
c,

:
f), ranging from zero (i.e. no causal link)

to 0.5, with median values corresponding to β-coefficients calculated in Fig.3a. This sensitivity in the causal link strength

due to sampling suggests that the spring SST
:::::
index

:
- summer SLP relationship might be modulated by an external physical

mechanism, i.e. an additional actor excluded
:::::::
variable

:::
not

:::::::
included from this CEN.265

3.3 Does MPI-ESM reproduce the observed link?

We now test whether the causal links detected in ERA-20C during the late period can be reproduced by MR-30. As a first

step, we compare the model ability to reproduce the temporal variability of the observed summer EA. We find that MPI-

ESM is overall able to reproduce
::::::::
generally

:::::::
captures the range of variabilitybut shows different levels of skill in reproducing

:
,

:::::::
although

::
its

:::::::::::
performance

::
in

:::::::::
replicating the summer EA amongst the

::::
varies

::::::
across different simulation sets. (Fig.4a). Historical270

simulations show low agreement with ERA-20C (r = 0.14), whereas MR-30 initialised simulations tend to mostly encompass

the observed variability (Fig.4c).

Next, we evaluate the model skill in reproducing the spring SST
::::
index

:
- summer EA relationship. We find that the model

shows limited skill, with MR-30 capturing the temporal variability of the relationship in the early, but not
::::::::::
particularly in the late

period (Figs.4b, 5). A comparison between correlation maps computed for the evaluated periods shows that while historical275

simulations do not show agreement in the spatial pattern of the spring SST - summer EA relationship against observations

::::::::
(Fig.2a-c), the MR-30 ensemble mean shows an improvement in reproducing the mechanism (Fig.5d-f). These results motivate

us to assess whether the model is able to reproduce any of the observed causal links, or whether it shows different causal paths

than those observed.

We build
:::
The

::::::::
observed

:::::::::
disparities

:::::::
between

:::
the

:::::
model

::::
and

:::::::::::
observations,

::
as

::::::::::
highlighted

::
in

:::
the

::::::
spatial

::::::::::
correlations

::::
and

::::
time280

:::::
series

:::::::
analyses

:::::::
depicted

::
in

::::::::
Figs.4-5,

::::::
prompt

::::::
further

:::::::::::
investigation

::::
into

:::
the

:::::
causal

:::::::::::
relationships

::::::
within

:::::::
MR-30.

::
To

:::::::
address

::::
this,

::
we

:::::::
proceed

::
to
::::::
assess

:::::::
whether

:::
the

:::::
model

::::::::::
reproduces

:::
any

::
of

:::
the

::::::::
observed

::::::
causal

::::
links

::
or
::::::::

presents
:::::::::
alternative

:::::
causal

:::::::::
pathways.

:::
We

:::::::
construct

:
three different CEN sets to evaluate, respectively, pi-Control, historical and initialised simulations with MR-30.

The variables analysed in the CEN sets are first SST, EA and SLP indices and the time lag of interest is spring - summer (3

and 4 months lag). While no causal links are found in the historical simulations, we find opposite causal links than those in285

ERA-20C for the pi-Control simulation, suggesting an atmospheric forcing into the ocean
::::
from

:::
EA

:::
into

:::
the

:::::::::::
extratropical

:::::
North

::::::
Atlantic

:
(e.g. βEA→SST ≈ 0.22), but no detected causal influence from the ocean on the atmosphere (Fig.6c).

Analysing
::::::
Moving

:::
on

::
to

:
the initialised simulations, we first exploit the full

:::::::
leverage

:::
the

:::::
entire

:
30-member ensemble

::
of

MR-30 to build a CEN for
:::::::
construct

::
a
:::::::::::::
comprehensive

::::
CEN

::::::::
spanning

:
the full period (1908-2008), where each constructed

timeseries thus comprises
:::::::
resulting

::
in

::::
each

::::::::::
constructed

:::::
time

:::::
series

::::::::::
comprising 3030 years. We find that MR-30 is able to290

reproduce a weakly positive SST
::::
index

:
- EA link (i.e. βSST→EA|SLP = 0.03

:::
0.04) at 3-month lag (Fig.6a), but not at 4-month

lag as detected in ERA-20C during the late period, and in much weaker strength (i.e. βSST→EA|SLP = 0.22, ERA-20C).

::::::::
Moreover,

:::
we

::::
find

::
a
:::::
weak

:::::::
negative

::::::
causal

::::
link

::::
from

::::
SST

:::::
index

:::
to

::::
SLP

:::::
index

::
in

:::
the

::::::
model

::::
(i.e.

:::::::::::::
βSST→SLP |EA::

=
:
-
::::::

0.02),

::
as

:::::::
opposed

::
to

:::::::::::
observations

:::
(i.e.

:::::::::::::
βSST→SLP |EA::

=
:::::
0.21,

:::::::
Fig.3b).

::::
This

::::::
finding

:::::
aligns

:::::
with

:::::::
Fig.5d-f,

::::::
which

:::::
shows

::::
that

:::
the

::::
area

12
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Figure 4. Model skill in reproducing summer EA and its link with spring SST. a) probability density functions (PDF) of the summer EA
:
,
::
b)

::::::::::::::
running-correlation

::::::
between

::::
SST and

:::
EA

:::::
indices

:::
for

:
a
::::::
20-year

:::::::
window, c) time series of the summer EA: light .

:::::
Light grey colours in a) and

c) represent individual ensemble members, and dashed grey line shows
::::
black

::::::::
represents

::::::::
ERA-20C,

:::::
green

:::::::
represents

:
the pi-Control

:::::::
historical

::::::::
simulation. b) Running-correlation between SST and EA indices for

:
In

:
a20-year window, for ERA-20C (black line) , the ensemble mean

(
:::::
dashed grey line ) and

:::::
shows the historical simulation (green line

::::::::
pi-Control

:::
and

::
in

:
b) . Coloured

::
the

:::::::
coloured

:
markers indicate significant

correlations at the 95% confidence interval, illustrated by the horizontal dashed lines.

::
of

:::::::
positive

::::::::::
correlations

::
in

:::::::
MR-30

::
is

::::::::
displaced

:::::::::::::
southwestwards

:::::
with

::::::
respect

::
to

:::::::::
ERA-20C.

:
No causal links from SST

:::::
index295

to EA or SLP indices are found when analysing only the late period (1958-2008). Next, we therefore investigate the causal

link sensitivity to the sample size and focus on 45-year long timeseries
:::
time

::::::
series covering the late period, allowing a direct

comparison with the sensitivity analysis performed in ERA-20C (Fig.6b-e
:::
b-d).

3.4 Sensitivity analysis and impact on predictive skill

We perform a two-step sampling method in our sensitivity analysis with MR-30. First, 45-years are randomly selected in the300

late period (1958-2008). Second, one ensemble member amongst the full 30-member ensemble is randomly selected in every

year. We iterate this process 2000 times, thus generating 2000 45-year-long timeseries
::::
time

:::::
series for each SST, EA and SLP

variables. In each iteration, we build one CEN to analyse whether any causal associations
::::::::::
relationships

:
are detected for the

sampled SST, SLP and EA timeseries
::::
time

:::::
series

::::::::
(Sect.2.4). Our sensitivity results suggest that the model does mostly not

::::::::::::
predominantly

::::
fails

::
to reproduce the observed links between SST

::::
index

:
and EA or SLP indices (Fig.6b), showing only in very305

rare cases β-coefficients in the positive range as in ERA-20C (Fig.3).
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Figure 5. Comparison of the spatial
:::::
Spatial characteristics of the SST-SLP relationship over the 20th century (model against ERA-20C)

::
in

:::::::::::
MPI-ESM-MR. Correlation maps show point-wise correlation coefficients for the April-May SST index and July-August SLP means con-

sidering early (1908-1957; a,d,g), late (1958-2008; b,e,h) and full periods (1908-2008; c,f,i), respectively. Top row shows results for the

MPI-ESM-MR historical simulation , middle
:::
and

::::::
bottom row for MPI-ESM-MR 30-member ensemble, and bottom row

:
.
:::
The

:::::
reader

::::
may

:::
refer

::
to
:::::::
Figs.2a-c

:
for

:
a
:::::::::
comparison

::::
with ERA-20C.

We hypothesise that this MR-30 limitation in reproducing the causal links detected in ERA-20C might constrain the skillful

prediction of European summers a season ahead. As a first test, we focus on two particular values of the β-coefficients, namely

β1 = -0.28 and β2 = 0.36, corresponding to the link SST
::::
index

:
→ SLP at 3-month lag illustrated by orange arrows in Fig.6b.

In other words, we analyse two cases with strong causal link strength but in opposite signs, with β2 lying in the observed310

ERA-20C range.

We perform a predictive skill assessment for each
:::
the MR-30 causal timeseries

:::::::
bootstrap

:::::::::
ensemble respective to β1 and β2

against ERA-20C, checking whether the strength of the causal link has a fingerprint in the predictive skill of JA SLP
::::::::
(Sect.2.5).

We find a better agreement between model and reanalysis for β2 than for β1, with significant anomaly correlation coefficients

(ACC )
::::
ACC

:
particularly over the region where spring SST is significantly correlated to summer SLP in ERA-20C (e.g.315

Fig2b). However, since positive causal links are only rarely present in MR-30, we are unable to identify a robust fingerprint in

the predictive skill related to any of the links between SST and EA or SLP indices.

Nevertheless, identifying

3.5
::::::::

Forecasts
::
of

:::::::::::
opportunity:

:::::
could

::::::::
causality

:::::
help?

:::
We

:::
aim

::
to

:::::::
identify

:
a robust fingerprint of spring SST

:::::::
NA-SST

:
on summer predictive skillcould be an important step towards320

targeting forecasts of opportunity (Mariotti et al., 2020). The correlation analysis,
::::::

which
:::::
could

:::::::::
potentially

::::::::
enhance

:::::::
targeted

:::::::::
forecasting

:::::::::::
opportunities

::::::::::::::::::
(Mariotti et al., 2020).

::::
Our

:::::::::
correlation

::::::::
analysis,

::
as

:::::::
depicted

:
in Fig. 2suggests that spring SST could

14
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Figure 6. Causal effect networks for MPI-ESM. a) Causal graph
::::
CEN

:
between SST index, EA teleconnection and SLP index for the MPI-

ESM-MR 30-member ensemble (MR-30) considering the full period. b) Sensitivity of the causal links between SST, SLP and EA indices

at 3 and 4-month lags in the late period. Boxplots show β-coefficients calculated for a random selection of 45 years, sampling one random

ensemble member amongst the 30-member set per year. This process is repeated 2000 times and only
:::::::
significant

:
β-coefficients different

from zero are shown (here denoted MR-30 causal ensemble
::::::
p-value

:
<
:::
0.1). Orange "x" markers represent the β-coefficient calculated from

ERA-20C (red lines in Fig.3). c) Same as (a) for a 1000-year long pi-Control simulation with MPI-ESM-MR. Only causal links with p-value

< 0.1 are shown. d) Comparison of the impact on SLP predictive skill for 3-4 month
:
in
:

lead time
::::
times

::
of
:::

3-4
::::::

months
:
in MR-30 against

ERA-20C for timeseries
:::
time

:::::
series showing opposite β-coefficient strengths: a MR-30 causal timeseries

:::::::
bootstrap

:::::::
ensemble

:
with (left) β1 =

-0.28, and (right) β2 = 0.36. Predictive skill is quantified with anomaly correlation coefficients for the late period. β1 and β2 are highlighted

in (b) by orange arrows.
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Figure 7.
:::::
Spatial

::::::
features

::
of

:::
the

:::::
causal

:::::::
influence

::
of
:::::

spring
::::

SST
:::::
index

::
on

:::::::
summer

::::::
climate.

::
a)

:::::::
observed

:::::
causal

::::
links

:::::::
between

::::
SST

:::::
index,

::
EA

::::::::::::
teleconnection

:::
and

::::::
T2mCE::

in
:::
the

:::
late

:::::
period

:::::::::::
(1958-2008);

::
b)

::::::::
respective

:::::
causal

:::
map

:::
for

:::::::
3-month

:::
lag,

:::::::
showing

:::::
causal

::::
links

:::::::
between

::::::::
April-May

:::
SST

:::::
index

:::
and

::::::::::
July-August

:::::::::
temperature

::
in

::::::
shading

:::::::
βSST→T:::

and
:::::::::

April-May
:::
SST

:::::
index

:::
and

::::::::::
July-August

:::
SLP

::::::::::
βSST→SLP ::

in

:::::::
contours.

::::
Black

::::
box

::::::::
highlights

::
the

::::::
region

::
of

:::::::
strongest

:::::
causal

:::::::
influence

::::
and

:::::::
represents

:::
the

::::
area

::::
used

::
to

:::::::
calculate

:::
the

::::
T2m

::::
index

:::::::
denoted

::::::::
T2mRidge::

in
::
the

::::
text.

influence ,
::::::::
indicates

:::
the

:::::::
potential

::::::::
influence

::
of

::::::
spring

:::::::
NA-SST

:::
on summer T2m variability over

:::::
across the Euro-Atlantic region

in ERA-20C during the late period(Fig.7a). Therefore, we perform an additional causality .
::::::

Thus,
:::
we

:::::::
conduct

::
an

:::::::::
additional

:::::
causal analysis in ERA-20C to highlight where in

:::::::
pinpoint

:::
the

::::::
regions

::::::
within the T2m field a causal influence of spring SST is325

expected, and
:::::
where

::
a
:::::
causal

::::::::::
relationship

::::
with

::::::
spring

:::::::
NA-SST

::
is

::::::::::
anticipated.

:::
We

::::
also

::::::
explore whether this causal relationship

could be used to investigate an effect on
:::::
might

::::::
impact

:::
the

::::::::
predictive

::::
skill

:::
of MR-30’s predictive skill .

Spring extratropical SST causal associations and impact on MR-30 predictive skill. a) observed causal links between SST

index, EA teleconnection and T2mCE in the late period (1958-2008); b) respective causal map for 3-month lag, showing

causal links between April-May SST index and July-August temperature in shading βSST→T and April-May SST index and330

July-August SLP βSST→SLP in contours. Black box highlights the region of strongest causal influence and represents the

area used to calculate the T2m index denoted T2mRidge in the text. c) Sensitivity of CEN built with the SST, SLP and T2m

indices for MR-30. Boxplots show β-coefficients calculated for a random selection of 45 years, sampling one random ensemble

member amongst the 30-member set per year. This process is repeated 500 times and only β-coefficients different from zero

are shown. Orange "x" markers represent the β-coefficient calculated for a CEN built with the SST, SLP and T2m indices from335

ERA-20C for the late period. Only causal links with p-value < 0.1 are shown. d) Comparison of the impact on summer surface

climate predictive skill in MR-30 against ERA-20C for causal and non-causal MR-30 timeseries. Mean ACCs are shown for
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July-August sea level pressure (SLP), 2-metre air temperature (T2m) and 500 hPa geopotential height (Z500), averaged over

the region highlighted by the grey box. See the text for further description.

We compute a causal map (Di Capua et al., 2020b) that represents the β-coefficients calculated for the link between AM340

SST index and each grid point of JA T2m and SLP fields, i.e. βSST→T2m and βSST→SLP (Fig.7b, shading and contours,

respectively). We find two causal regions of opposite signs. The first region shows negative causal links and is located in

northwestern Europe, partly encompassing the area used to calculate the T2mCE index expressed in the causal graph in Fig.3a.

This can be interpreted as an increase of 1 SD in the spring SST index (e.g. warming over subpolar, and cooling over subtropical

North Atlantic) causally driving a decrease of about 0.3 SD in the summer T2m field in northwestern Europe. The second region345

shows a positive causal influence on both T2m and SLP fields, reaching strong values above 0.5 for the T2m field. A black box

illustrates this causal region (40◦N-55◦N; 15◦W-34◦W), denoted Ridge, and used to calculate the index T2mRidge.

Targeting this causal region, we test the hypothesis that predictive skill of the summer surface climate in MR-30 might

be higher for timeseries
:::
time

:::::
series

:
able to reproduce the causal link strength in ERA-20C (βSST→T2mRidge

> 0.5), than for

those unable to reproduce the link (βSST→T2mRidge
= 0). To test this hypothesis, we perform a two-step sampling method350

:::
first

:::::::
perform

::::::::::::
bootstrapping

:::
and

::::::::
ensemble

:::::::::::
subsampling to generate 500 timeseries

:::
time

:::::
series

:
consisting of 45-years randomly

selected in the ensemble space during the late period – similarly to the analysis performed for SST, EA and SLP
::::::::
(Sect.2.4). At

3-month lag, we find that MR-30 is able to reproduce a range of β-coefficients for SST
::::
index

:
→ T2mRidge, encompassing

the observed link 16% of the times (Fig.7c
:::
??a). That is, 16% of random combinations in the MR-30 ensemble space result

in a MR-30 causal timeseries which represents
:::
time

:::::
series

::::::
which

::::::::
represent

:
a causal influence of the SST index in spring355

(April-May) onto the T2mRidge in summer (JA).

Next, we evaluate whether the strength of this causal link is imprinted on MR-30’s skill in predicting summer SLP, T2m

and Z500 for the Ridge region a season ahead. We quantify the predictive skill with ACC using ERA-20C as a reference, for

two opposite cases in MR-30: i) timeseries
:::
time

:::::
series

:
showing strong β-coefficients lying in the range 0.6 < β < 0.8

:::::::
(denoted

:::::::
"causal"

::
in

::::::
Fig.??)

:
and ii) timeseries

::::
time

:::::
series showing β-coefficients = 0 , i.e.

:::::::
(denoted

::
"non-causal

::
"). We find 25 samples360

in i), and we therefore randomly select 25 samples in ii) to enable a direct comparison. We calculate the ACC for each of the

total 50 samples, averaging over the Ridge region (Fig.7d)
:::::
??b). We find that a random selection in the ensemble space tends to

show higher median and maximum values for the predictive skill of SLP, T2m and Z500 when MR-30 reproduces the causal

link

The framework of forecasts of opportunity (Mariotti et al., 2020) in seasonal prediction has been increasingly explored to365

identify physical processes which lead to enhanced predictability and forecast skill. Such a strategy has been particularly useful

for summer (Carvalho-Oliveira et al., 2022) and winter (Dobrynin et al., 2018) seasonal predictions in the European region,

where predictive skill is limited. Here, we target the summer EA to understand how its seasonal predictability is influenced by

spring North Atlantic SSTs using the causal inference-based tool CEN
::::
based

:::
on

:::::::
PCMCI

::::::::
algorithm.

Using ERA-20C, our CEN analysis confirms that the spring SST index proposed in Ossó et al. (2018) causally influences the370

variability of summer SLP in the Euro-Atlantic region with a 3-4 months delay during the late period
::::::::::
(1958-2008). Specifically,
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we find that a 1 SD change in the spring SST index first drives a 0.2 SD change in the summer SLP index at 3-month lag (e.g.

March-April SST → June-July SLP index), and then drives a 0.2 SD change a month later in the summer EA (e.g. March-April

SST → July-August EA, Fig.3a). While EA and SLP indices are highly correlated (r = 0.82), the position of the area used to

calculate the SLP index (Fig.2c) only partly overlaps the EA centre of action (Fig.1a), which extends further northwest. We375

speculate that the northward migration of the North Atlantic jet stream during summer (e.g. Hallam et al. (2022)) could explain

the delay of a month between the causal link of SST index and EA/SLP indices.

Besides extratropical SSTs, ENSO-related tropical forcing has been suggested to influence the summer EA over more recent

decades (1979 - 2016, e.g. Wulff et al. (2017); O’Reilly et al. (2018)). As opposed to the mechanism proposed in Ossó et al.

(2018), Wulff et al. (2017) suggested that the summer EA is forced by diabatic heating anomalies in the tropical Pacific and380

Caribbean, and it is characterised by an extratropical Rossby wave train with a centre of action west of the British Isles. The

CEN analysis proposed in this paper could therefore be extended to include tropical SST predictors, thus testing how the causal

links discussed here could be affected by the influence of additional drivers.

Our findings suggest that the causal links detected in ERA-20C are nonstationary during the 20th century, being present only

in the late period (1958-2008). Nonstationarity in teleconnections has been reported by several studies (e.g. Woollings et al.385

(2015); Weisheimer et al. (2019)). In particular, Rieke et al. (2021) used a 700-year pre-industrial control run with MPI-ESM-

LR to investigate the tropical link of the summer EA (Wulff et al., 2017) with a statistical model, and showed that the link had

a nonstationary behaviour, being present in some multidecadal epochs but not in others. Detecting nonstationarity in the causal

links discussed here has an important consequence for the application on predictive skill in seasonal forecasting, implying a

limited use of such causal links to target forecasts of opportunity.390

Yet, our causality
:::::
causal

:
analysis with CEN offers an alternative assessment of MPI-ESM-MR’s performance, enabling

a direct comparison of the causal links reproduced by the model with those detected in reanalysis. We find that the causal

links between spring SST index and summer EA and T2m are absent in pi-Control and historical simulations, but appear in

some 45-year-long timeseries
:::
time

:::::
series

:
sampled in the initialised ensemble MR-30, thus suggesting a role of initialisation

(Fig.6). We use a random ensemble subsampling to perform a predictive skill assessment conditioned to MR-30’s performance395

in reproducing causal links between spring SST and both summer EA and T2mRidge. As a result, one ensemble member is

randomly chosen among the 30-member per year. Alternatively, performing an ensemble subsampling to calculate an ensemble

mean over a subset of ensemble members could provide a better analysis of MR-30’s potential. Nevertheless, our results suggest

that MR-30’s limited performance in reproducing these causal links, in particular between spring SST
::::
index

:
and the summer

EA, might explain its low skill in predicting summer seasonal European climate (e.g. Neddermann et al. (2018); Carvalho-400

Oliveira et al. (2022)).
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5 Conclusions

We apply the causal inference-based tool CEN
:::::
based

::
on

:::::::
PCMCI

:::::::::
algorithm to evaluate the influence of spring North Atlantic

extratropical SSTs on the predictability of summer EA and its associated impact on surface climate at seasonal timescales. Our

main findings are:405

– Analysing ERA-20C, we find that the observed relationship between spring SST index and summer EA is nonstationary

during the 20th century, showing distinct spatial patterns between early (1902-1957) and late (1958-2008) periods. The

estimated causal influence of spring SST
::::
index

:
on summer EA is of β ≈ 0.2, meaning a 0.2 SD increase in EA when

SST increases by 1 SD.

– We find that this relationship
::
in

::::::::
ERA-20C

:
is only causal over the late period. A sensitivity analysis of its strength during410

the late period shows high variability, suggesting that the presence or absence of specific years plays an important role in

the quantification of the causal link. This implies that an external physical mechanism not included in our analysis might

modulate the spring SST - summer EA causal link.

– In addition to summer EA, we find
:
in

:::::::::
ERA-20C that the spring SST index causally influences summer T2m (β ≈ -0.2)

over a region in northwestern Europe, and the Ridge region located west of the British Isles (β ≈ 0.5). This causal415

influence is possibly mediated by the EA.

– We find that pre-industrial and historical simulations of the MPI-ESM-MR do not reproduce the causal links detected in

ERA-20C. In contrast, our CEN analysis with the full initialised ensemble MR-30 reveals a weakly
:::::
weak positive causal

link between spring SST
:::::
index and summer EA (β ≈ 0.03

:::
0.04).

– However, for 45-year-long timeseries
:::
time

:::::
series

:
randomly sampled in MR-30, we find that the initialised ensemble is420

mostly unable to reproduce the spring SST
::::
index

:
- summer EA link.

– In contrast, MR-30 shows a moderate performance in reproducing the spring SST
::::
index

:
- summer T2mRidge causal

link. We find that MR-30 tends to show improved predictive skill for summer surface climate predictions over the Ridge

region when the spring SST
::::
index

:
- summer T2mRidge causal link is correctly reproduced by the model.

In this analysis, we demonstrate that MPI-ESM-MR has limited performance in reproducing a causal link between spring425

SST
:::::::
NA-SST

:::::
(SST

:::::
index)

:
and summer EA amongst uninitialised and initialised model datasets. Our causality analysis there-

fore sheds light on the limitations of this model in providing skillful seasonal predictions of summer climate, particularly over

areas which undergo a significant EA influence
:
.
::::::::
Exploring

:::
the

::::::
causes

::::::
behind

:::
the

:::::::
model’s

::::::::::
deficiencies

::
in

:::
this

::::::::::::
aspect—such

::
as

::::::
whether

::::
they

:::::
stem

::::
from

:::::::::::
inadequacies

::
in

::::::::::
representing

::::::
crucial

:::::::
coupled

:::::::::::::::
ocean-atmosphere

::::::::
feedbacks

:::
or

::::
other

:::::::::::::
processes—will

:::
be

:
a
:::::::::
significant

:::::
focus

:::
for

:::::
future

::::::::
research. Finally, our results for the initialised ensemble MR-30 show that ensemble members430

able to reproduce a causal link to spring SST have a potential for regional skill improvement. Our findings thereby illustrate

how a causality framework could be used to target forecasts of opportunity, and highlight the importance of improving the

representation of teleconnections in climate models.
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