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Abstract
Ozone (O3) has become one of the most concerning air pollutants in China in recent
decades. In this study, based on surface observations, reanalysis data, arnd-global atmospheric

chemistry model simulations_ and multi-model future predictions, meteorological

characteristics conducive to severe O3 pollution in various regions of China are investigated,

and their historical changes and future trends are analyzed. During the most severe O3 pellution

polluted months—ever—the North-ChinaPlain-(INCP)-and Yangtze River Pelta(YRD), the

chemical production of Os is enhanced under the hot and dry conditions over the North China

Plain (NCP) in June 2018 and Yangtze River Delta (YRD) in July 2017, while the regional

transport is the main reason causing the severe O3z pollution over Sichuan Basin (SCB) July

2015 and Pearl River Delta (PRD) in September 2019-during the severe peluted-menths. Over

the last four decades, the frequencies of high temperature and low relative humidity conditions
increased in 2000-2019 relative to 1980-1999, indicating that O3 pollution in both NCP and
YRD became more frequent under the historical climate change. In SCB and PRD, the
occurrence of atmospheric circulation patterns similar to those during the polluted months
increased, together with the more frequent hot and dry conditions, contributing to the increases
in severe O3 pollution in SCB and PRD during 1980-2019. In the future (by 2100), the
frequencies of months with anomalous high temperature show stronger increasing trends in the
high forcing scenario (SSP5-8.5) compared to the sustainable scenario (SSP1-2.6) in China. It
suggests that high anthropogenic forcing will not only lead to slow economic growth and

climate warming, but also likely result in environmental pollution issues.
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1. Introduction

Tropospheric ozone (O3), one major air pollutant, is formed in photochemical reactions of
nitrogen oxides (NOx) and volatile organic compounds (VOCs) when exposed to sunlight
(Finlayson-Pitts and Pitts, 1997; Silman, 1999). Enhanced O; pollution harms ecosystems and
human health (Fleming et al., 2018; Maji et al., 2019) by reducing crop yields (Ainsworth et
al., 2012; Mills et al., 2018) and aggravating cardiopulmonary disease (Ebi and McGregor,
2008; Liu et al. 2018). In recent years, near-surface ozone concentrations in many regions of
China have been increasing considerably (Verstraeten et al., 2015; Cheng et al., 2019; Zhang
etal., 2020, Lietal., 2019; Lu et al., 2018; Silver et al., 2018; Yin et al., 2019, Lu et al., 2020).
Lu et al. (2020) revealed that the daily maximum of 8-h average O3 concentration (MDAS-0O3)
in China increased by 2.4 ppb per year (5.0% relative to the average) during April-September
over 2013-2019.

In addition to emissions, O3 concentrations are influenced by meteorological factors such
as temperature, relative humidity, solar radiation, and winds (Mott et al., 2005; Fu and Tian,
2019; Gong and Liao, 2019; Li et al., 2019, 2020; Le et al., 2020; Zhao et al., 2020). Typically,
strong solar radiation, high surface air temperatures, and low relative humidity are conducive
to photochemical production of O3, causing a raise of O3 concentration (Peterson and Flowers,
1977; Xu, et al., 2011; Coates et al., 2016; Li et al., 2020; Dang et al., 2021). Wind speed is
negatively correlated with surface Oz because low wind speed facilitates the accumulation of
Os upon production (Zhang et al., 2015; Wang et al., 2017; Liu and Wang, 2020). Han et al.
(2020) explored the impacts of various meteorological factors on the daily variation of summer

surface O3 in eastern China based on a multiple linear regression method and suggested that
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relative humidity is the primary factor affecting O3 concentration in central and south parts of
eastern China, while temperature is the most important factor governing O3 concentration in
north of eastern China. Gong and Liao (2019) reported that the meteorological characteristics
of O3 pollution events in North China during 2014-2017 were the high daily maximum
temperature, low relative humidity, abnormal southerly winds and high pressure at 500 hPa.
These findings emphasize that meteorological factors play a crucial role in regulating O3
pollution in China.

Atmospheric circulation patterns affect O3 concentrations over China through changing
meteorological factors (Yang et al, 2014, 2022; Zhao and Wang, 2017; Shu et al., 2019; Dong
et al., 2020; Zhou et al., 2022). Zhao and Wang (2017) examined the influence of the Western
Pacific Subtropical high (WPSH) on Os; over eastern China based on observations and
reanalysis data from 2014 to 2016. They found that stronger WPSH enhanced the moisture
transport to southern China, which was detrimental to the photochemical reaction of Os,
leading to a decrease in surface O3 concentration in southern China, whereas O3 concentrations
in northern China increased under the stronger WPSH related to the dry and hot conditions
favoring O3 production. On the basis of observational O3 data and ERAS reanalysis data during
2014-2018, Dong et al. (2019) analyzed the impact of synoptic patterns on summertime O3
pollution in the North China Plain and revealed that the most severe O3z pollution weather
pattern is associated with anomalous southwesterly winds, which carry dry, warm air from
inland southern China to the North China Plain and favor the chemical production of Os. Zhou
et al. (2022) explored the impacts of Asian summer monsoon on the interannual variation of

O3 concentrations based on surface measurements and GEOS-Chem model simulations. They
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showed that the East Asian summer monsoon strength was positively correlated with Os
concentration in south-central China and South Asian summer monsoon has complex effects
on O3 pollution in China, mainly through changing transboundary transport related to large-
scale circulations.

As mentioned above, many previous studies have examined the meteorological

characteristics of O3 pollution in China-in-timitedregionsin-China. However, they focused on

O3 pollution over limited regions in China in each study (e.g., the North China Plain, southern

China). These studies only examined the meteorological characteristics— of O3 pollution in a

short time period due to the lack of observational data and did not consider the historical and

future trends of these meteorological factors. In this study, the meteorological characteristics

conducive to severe O3 pollution in several polluted areas of China, including the North China
Plain (NCP), Yangtze River Delta (YRD), Sichuan Basin (SCB), and Pearl River Delta (PRD),
are respectively investigated based on the observed surface Oz concentrations, reanalysis data,
and GEOS-Chem model simulations. Besides, the contributions from various chemical and
physical processes inducing regional O3 pollution are quantified using an integrated process

rate (IPR) analysis method. The historical changes in these meteorological factors favoring

severe O3 pollution over 1980-2019 are provided. Moreover, variations ef—in future

meteorological patterns during 2021-2100 leading to severe O3z pollution in China are

presented under the sustainable and high forcing scenarios according to the multi-model data
from the Coupled Model Intercomparison Project Phase 6 (CMIP6).

2. Methods

2.1 Surface ozone observations and meteorological reanalysis
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Hourly surface O3 concentrations are obtained from the Ministry of Ecology and
Environment (MEE) of China. The observational network was established in 2013 with 450
monitoring sites and increased to 1,500 monitoring sites by 2019, covering about 360 cities in
China. MDAS8-O; are calculated based on hourly O3 concentrations from April-September
during 2013 to 2020. In this study, O3 pollution days are defined as the days when MDAS8-O3
exceeds 160 pg m™ according to the China National Ambient Air Quality Standard (GB3095-
2012).

The meteorological fields are taken from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERAS monthly reanalysis dataset during 1980-2020, with a
horizontal resolution of 0.25° x 0.25°. To explore the meteorological characteristics that are
conducive to O3 pollution, sea level pressure (SLP), geopotential height (GPH) at 500 hPa,
wind fields at 850 hPa and 500 hPa, temperature at 2m (T2m) and surface relative humidity
(RH) are adopted, which can have significant impacts on O3 variations in China (Jiang et al.,
2020; Dong et al., 2020; Le et al., 2020).

2.2 GEOS-Chem model simulations

O3 concentrations and the related chemical and physical processes causing O3 variations
over 1981-2020 are simulated in the global atmospheric chemistry model GEOS-Chem
(version V12.9.3), driven by the Modern-Era Retrospective analysis for Research and
Application, Version 2 (MERRA-2). Simulations are performed on 47 vertical layers from
surface to 0.01 hPa, and a horizontal grid of 2° latitude X 2.5° longitude. GEOS-Chem model
incorporates a fully coupled O3-NOx-hydrocarbon-aerosol chemical mechanism (Pye et al.,

2009; Mao et al., 2013; Sherwen et al., 2016). Boundary-layer mixing uses a non-local scheme
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(Lin and McElroy, 2010), and stratospheric O3 chemistry employs the linearized O3
parameterization (LINOZ) (McLinden et al., 2000).

Global anthropogenic aerosol and precursor gas emissions driving the simulations are
from the Community Emissions Data System (CEDS, Hoesly et al., 2018) and biomass burning
emissions are from the Global Fire Emissions Database, Edition 4 (GFED4, Van der Werf et
al., 2017). VOCs emissions from biogenic sources are provided offline by the Model of
Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN V2.1, Guenther et al.,
2012). Lightning and soil emissions are specified in the model (Hudman et al., 2012; Ott et al.,
2010). Anthropogenic emissions in China are updated with the Multi-resolution Emission
Inventory (MEIC), a localized emission dataset for China. Anthropogenic, biomass burning,
biological and other natural emissions are kept at 2017 levels during the simulations, so as to
eliminate the influence of emission changes on the interannual variation and trends of Os.
Simulated O3 distributions with the same configuration in GEOS-Chem have been extensively
evaluated in many studies, and the model has been reported to capture O3 concentrations well
in China (e.g., Liet al., 2019; Lu et al., 2019; Ni et al., 2018).

2.3 CMIP6 multi-model simulations

The multi-model simulations from historical and the Scenario Model Intercomparison
Project (ScenarioMIP) in CMIP6 are used to analyze the historical variations and future trends
of meteorological conditions conducive to severe O3 pollution. Two different future scenarios
of the Shared Socioeconomic Path (SSPs) are applied, including the sustainable scenario
(SSP1-2.6) and the high forcing scenario (SSP5-8.5). Totally simulations from 13 models

(ACCESS-CM2, ACCESS-ESM1-5, CAS-ESM2-0, CMCC-CM2-SRS5, CMCC-ESM2,
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FGOALS-f3-L, FGOALS-g3, GFDL-ESM4, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MPI-ESM1-2-LR) are analyzed in this study.
3. Results
3.1 Meteorological characteristics conductive to regional ozone pollution

To investigate the relationship between meteorological conditions and regional O
pollution in China, the frequencies of O3z pollution days from April to September-October
during 2013-2020 are calculated for Beijing, Shanghai, Chengdu and Guangzhou, representing
the typical four polluted regions in China (i.e., NCP, YRD, SCB and PRD) (Figure 1).
Observational data show the highest frequencies of O3z pollution days in June 2018, July 2017
and September 2019 in Beijing, Shanghai and Guangzhou, with pollution days up to 22, 20 and

19 days per month, respectively. The top three highest frequencies of O3z pollution days in

Chengdu are in July 2016, July 2015 and July 2018 (16, 15 and 15 days per month,

respectively). Variations in Oz concentration in the real world are driven by changes in both
meteorological factors and emissions. With fixed emissions, the positive anomalies of near-
surface O3 concentrations over NCP, YRD and PRD during their most polluted months can also
be reproduced by the GEOS-Chem model (Figure 2), suggesting that the O3 pollutions during
the most polluted months over NCP, YRD and PRD are likely attributable to the anomalies of
meteorological conditions. In the top three O3 polluted months in Chengdu, only in July 2015
the higher concentrations than the long-term averages can be captured by the
sstmulationssimulations with fixed emissions. Therefore, in this study, we focus on the
meteorological characteristics in June 2018, July 2017, July 2015 and September 2019, that

were conducive to the severe Oz pollution over NCP, YRD, SCB and PRD, respectively.
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When O3 pollution was the most severe over NCP in June 2018, an anomalous high
pressure occurred at 500 hPa over NCP (Fig. 3b), relative to the 40-year climatological
averages from 1980 to 2019, leading to positive T2m anomalies near the surface (Fig. 3c).
Anomalous lows located over northeastern China and northwestern Pacific (Fig. 3a) and the
associated anomalous northerly winds prevent the moisture moving from the ocean to NCP,
causing negative RH anomalies over NCP (Fig. 3d). The meteorological conditions with the
high T2m and low RH are favorable for the photochemical production of O3. When the most
severe O3 pollution occurred in July 2017, YRD was dominated by anomalous high pressure
in the lower and middle troposphere (Figs. 4a and 4b). Under the control of high pressure, the
meteorological conditions (e.g., high T2m and low RH) enhance the photochemical production
of O3 (Figs. 4c and 4d). In the O3 pollution event of SCB in July 2015, the negative T2m
anomaly is not conducive to the O3 production (Fig. 5c), although the RH was low (Fig. 5d).
Meanwhile, the anomalous low over eastern China and northwestern Pacific in the middle
troposphere favors regional O3 transport from the polluted source region over eastern China to
SCB (Fig. 5b) and the anomalous high over central-western China is conducive to the vertical
transport of upper tropospheric O3 down to the lower troposphere (Fig. 5a). For the PRD in
September 2019, the anomalous high covering almost the entire China along with the
anomalous low over East China Sea generates northerly wind anomalies in the lower
troposphere over eastern China, which tend to transport polluted air from northern China and
weaken the inflow of oceanic clean air (Fig. 6). The temperature increase is much more
significant in the upwind regions as compared to PRD, suggesting that the strong regional

transport could be the primary reason causing this severe O3 pollution event of PRD.
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3.2 Physical and chemical mechanisms leading to regional ozone pollution

To further explore the mechanisms of meteorological changes leading to the severe O3
pollution over the four typical polluted regions in China, contributions of individual chemical
and physical processes to O3 variations are quantified based on the IPR analysis from GEOS-
Chem simulations and summarized in Table 1.

Consistent with the meteorological anomalies analyzed above, high temperature and low
RH meteorological conditions in NCP are conducive to the photochemical production of Os.
During the polluted month over NCP, the chemical production of tropospheric O3 is higher than
the long-term average by 2.36 Gg day!, while the horizontal transport also contributes to the
increase in O3 mass by 1.58 Gg day™! (Table 1). Due to the enhanced northwesterly winds, the
import of O3 mass from the north and east-west of NCP was increased by 1.80 and 0.62 Tg,
respectively (Table 2). In YRD, the chemical production (2.38 Gg day™') is also the dominant
process that drives the O3 concentration increase during the severe polluted month, associated
with the warm and dry conditions. Therefore, the anomalous chemical production is the major
process that induced O; pollution in NCP and YRD during the severe polluted months.

Different from NCP and YRD, horizontal transport is the main process that caused O3
pollution in SCB and PRD during the severe polluted months. It contributes to the rate of
increase in O3 mass by 5.10 and 6.67 Gg day’!, respectively, over SCB and PRD, while other
processes tend to decrease the O3 mass (Table 1). Due to the anomalous northerly winds over
SCB, more O; is transported into SCB from north (by 4.02 Tg), and the anomalous
northeasterly winds enhance the O3 transport from the north and east of PRD by 1.97 and 1.09

Tg, respectively, leading to the increase in O3 concentrations over SCB and PRD during the

10
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severe polluted months relative to the climatological averages (Table 2). Note that, the chemical

production of tropospheric O3 decreased in SCB and PRD during the severe polluted months.

It could have been biased by the relatively coarse model resolution in this study (2° latitude

X 2.5° longitude), since that the SCB and PRD for calculating the chemical and physical

processes only cover limited grid boxes. Further studies should be performed using a model

with finer resolution or a nested simulation method.

3.3 Historical and future changes in the meteorological conditions

O3 pollution has deteriorated in China during recent decades, which could be related to
the changes in meteorological conditions. Time series of T2m and RH anomalies in the polluted
months during the 1980-2019 and frequencies of high T2m and low RH months during 1980—
1999 and 20002019 over the four polluted regions in China based on ERAS5 reanalysis data
are shown in Figure 7. Due to climate change, both the high temperature and low RH conditions
in NCP, YRD, SCB and PRD all increased during the past four decades (2000-2019 versus
1980-1999). Based on the analysis showing that chemical production is the dominant process
of severe O3 pollution in NCP and YRD, the increases in the frequency of high temperature
and low RH indicate that severe O3 pollution in both NCP and YRD has become more frequent
under the historical climate change. In SCB and PRD, the severe O3 pollution is more related

to changes in regional transport. Similar to the analyzing method used in previous studies (Li

etal.,2018: Yang et al.. 2021), tFhe SLP and 500 hPa GPH over East Asia and Western Pacific

in the same month of each year —similar to those during the severe polluted months in both

SCB and PRD have increased (2000-2019 versus 1980-1999) (Figure 8), together with the

more frequent hot and dry conditions (Figure 7), leading to the increases in severe O3 pollution

11
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in SCB and PRD during 1980-2019.

Many studies have reported that future climate change will have significant influences
on O3 pollution in China through changing meteorological factors (e.g., Li et al., 2023; Wang
et al., 2022). Here, the frequencies of extreme months with high T2m and low RH and the
frequencies of extreme months with SLP and 500 hPa GPH that have moderate to high
correlation to those in the polluted months in the four regions of China, under the sustainable
(SSP1-2.6) and high forcing (SSP5-8.5) scenarios during 2021-2100 from CMIP6 multi-model

results, are presented in Figures 9 and 10, respectively. Unlike the historical changes in the

meteorological conditions that caused the severe O3 pollution through chemical production and

regional transport, future variations in meteorological conditions conducive to the severe O3

pollution are more related to the global warming process that enhances the O3 production in

China. The frequencies of months with anomalous high temperature show obvious upward
trends in both SSP1-2.6 and SSP5-8.5 scenarios over the four regions, and the increasing trends
in SSP5-8.5 are much more significant than in SSP1-2.6. Frequencies of low RH months show
downward trends in NCP, YRD and SCB, especially under SSP5-8.5, while there is an upward
trend in PRD. Note that the trends in frequencies of low RH months are much less significant
than in high temperature months. The frequencies of extreme months with SLP and 500 hPa
GPH that are similar to those in the severe O3 pollution months in the four regions do not show
significant trends in the SSPs. Hence, the future climate change may aggregate O3 pollution in
China by enhancing the chemical production related to temperature increases. The O3 pollution
exacerbation is projected to be less significant in the sustainable scenario due to the moderate

temperature increase than in the high forcing scenario, suggesting that the sustainable scenario
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is the optimal path to retaining clean air in China. High anthropogenic radiative forcing will
not only lead to slow economic growth and climate warming, but also result in the
environmental pollution.

4. Conclusions and Discussions

O3 pollution harms ecosystems and human health. In recent years, near-surface O3
concentrations in many regions of China have been increasing considerably. Base on
observational O; data, ERAS5 reanalysis data and GEOS-Chem model simulations,
meteorological characteristics conducive to severe O3 pollution in different regions of China
are investigated in this study. Contributions from various chemical and physical processes
inducing O3 pollution are quantified using an integrated process rate (IPR) analysis method.
Furthermore, historical changes and future trends of meteorological conditions leading to
severe O3 pollution in China are explored based on the meteorological reanalysis and CMIP6
multi-model future predictions, which is of great implication for the mitigation and prevention
of O3 pollution over China.

In this study, June 2018, July 2017, July 2015 and September 2019 are identified as the
most severe O3z pollution months influenced by meteorological factors over NCP, YRD, SCB
and PRD, respectively. Severe O3 pollution in June 2018 over NCP and in July 2017 over YRD
is mainly due to enhanced chemical production related to hot and dry conditions. The chemical
production of O3 in the severe polluted months over NCP and YRD are 2.36 Gg day™! and 2.38
Gg day!, respectively, higher than the climatological averages. Different from NCP and YRD,
regional transport is the main process leading to the high O3 concentration in SCB and PRD

during the respective severely polluted months, which contributes to the rate of increase in O3
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mass by 5.10 and 6.67 Gg day™!, respectively, over SCB and PRD. During the severely polluted
months, related to large-scale circulation patterns, anomalous northerly winds transport more
O3 into SCB from north, and anomalous northeasterly winds enhance the O3 transport from the
north and east into PRD.

Over the last four decades (2000-2019 versus 1980-1999), the frequencies of high
temperature and low RH increased, indicating that O3 pollution in both NCP and YRD has
become more frequent under the historical climate change. In SCB and PRD, the occurrence
of atmospheric circulation patterns similar to those during the polluted months in both SCB
and PRD has increased, together with the more frequent hot and dry conditions, leading to the
increases in severe O3 pollution in SCB and PRD during 1980-2019. In the future (by 2100),
the frequencies of months with anomalous high temperature show obvious upward trends in
both sustainable (SSP1-2.6) and high forcing (SSP5-8.5) scenarios over the four regions, and
the increasing trends in SSP5-8.5 are much more significant than in SSP1-2.6. This suggests
that high anthropogenic radiative forcing will not only lead to slow economic growth and
climate warming, but also likely result in environmental pollution issues. The sustainable
scenario is the optimal path to retaining clean air in China.

There are some limitations and uncertainties in this work that can be further addressed in

future studies. For example, the model only captures the high O3 concentrations in July 2015

in Chengdu among its top three polluted months. It is probably because the emissions are kept

at 2017 levels during the simulations. The high O3 anomalies in July 2016 and July 2018 are

more likely influenced by the interannual changes in local precursor emissions in the

background of country-level increases in O3 concentration in recent years. However, we also
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can not rule out the possible inaccuracy in the model simulations to interpret severe O3

pollution events in the SCB, which deserves further investigation with multi-model simulations.

In addition, this study focuses on the most extreme O3 pollution in several polluted areas of

China. However, many other meteorological conditions can also cause O3 pollution, although

they may not be as extreme as the cases analyzed in this study, which requires comprehensive

analysis for individual regions in future studies. Although the historical changes in the

meteorological patterns causing severe O3 pollution are in accordance with the elevated O3

levels in China in the recent decade, the quantitative analysis of meteorological impacts needs

full consideration of factors leading to O3z pollution, including changes in anthropogenic and

natural emissions of'its precursors, O3 chemical regime, other meteorological factors conducive

to O3 pollution, and stratosphere-troposphere exchange.
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Table 1. Anomalies in net rate of changes in tropospheric Oz mass (Gg day ') over NCP (115°—
120°E, 38°—44°N), YRD (120°-125°E, 28°-32°N), SCB (102.5°-105°E, 30°-32°N) and PRD
(110°=115°E, 22°-26°N) due to physical and chemical processes in the most polluted months
(June 2018, July 2017, July 2015 and September 2019, respectively) relative to the same
months averaged during 1981-2019.

Beijing Shanghai Chengdu  Guangzhou

Chemical reaction 2.36 2.38 -2.80 -1.52
Horizontal transport 1.58 —-1.18 5.10 6.67
Diffusion and dry deposition 0.29 0.24 -0.73 -0.93
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Table 2. Horizontal mass transport (Tg) of O3 from the surface to 500 hPa over NCP (115°—
120°E, 38°—44°N), YRD (120°-125°E, 28°-32°N), SCB (102.5°-105°E, 30°-32°N) and PRD
(110°-115°E, 22°-26°N) areas in the severe polluted months (June 2018, July 2017, July 2015
and September 2019, respectively) and averaged over the same months of a year during 1981—
2019, as well as their differences. Positive values indicate incoming fluxes and negative values
indicate outgoing fluxes.

Polluted month Average Anomalies
NCP
North 4.43 2.62 1.80
South -2.22 -1.42 -0.81
East -12.30 -11.31 -0.99
West 11.83 11.20 0.62
YPD
North -4.13 -3.88 -0.25
South 3.58 3.20 0.37
East -2.05 -3.90 1.85
West 2.03 4.04 -2.01
SCB
North 4.15 0.13 4.02
South -2.30 0.48 -2.78
East -1.10 -1.15 0.05
West 1.73 1.84 -0.11
PRD
North 2.70 0.72 1.97
South -2.87 -0.90 -1.96
East 2.24 1.15 1.09
West -2.32 -1.55 -0.76
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Figure 1. Time series of frequencies of severe O3 pollution days (defined by daily maximum
of 8-h average ozone (MDAS8-O3) concentration greater than 160 pg m™>) in Beijing, Shanghai,
Chengdu and Guangzhou (a—d) from April to SeptemberOctober during 2013-2020. The dark-
colored bars represent the most severe month (second most for Chengdu) that has the highest
frequency of O3 pollution days for the individual cities.
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(a) Beijing (anomaly in June 2018) (b) Shanghai (anomaly in July 2017) (c) Chengdu (anomaly in July 2016)
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Figure 2. Spatial distribution of monthly O3 concentration anomalies (part per billion, ppb) in
June 2018 (a), July 2017 (b), July 2016 (c), July 2015 (d), July 2018 (e) and September 2019
(f).relative to 40-year (1980-2019) monthly average for June (a), July (b, c. d, e) and September
(f), simulated in the GEOS Chem model The green boxes mark NCP (a) YRD (b) SCB (c, d
e) and PRD ().
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Figure 3. Anomalies in sea level pressure (SLP, Pa, shaded) and +000-850 hPa winds (m s !,
vector) (a), geopotential height (GPH, m, shaded) and winds at 500 hPa (m s™!, vector) (b), 2-
meter air temperature (T2m, K) (c) and surface relative humidity (RH, %) (d) in June 2018
relative to the 40-year (1980-2019) monthly average for June. The green boxes mark NCP.
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(a) SLP and 850hpa wind anomalles in JuIy 2017
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(b) GPH and wind anomalies at 500hpa in July 2015 3
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627  Figure 5. Same as Figure 3 but for the monthly anomalies in July 2015. The green boxes mark
628 SCB.
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631  Figure 6. Same as Figure 3 but for the monthly anomalies in September 2019. The green boxes
632  mark PRD.
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Figure 7. Time series of anomalies of T2m (K, left) and surface RH at-1600-hPa-(%, middle)
over (a) NCP (115°-120°E, 38°—44°N), (b) YRD (120°-125°E, 28°-32°N), (c) SCB (102.5°—
105°E, 30°-32°N) and (d) PRD (110°-115°E, 22°-26°N) in the most polluted months during
1980-2019. The dotted lines mark the 80th percentile of the distributions for T2m and 20th
percentile for RH. The bar charts (right) represent the frequency of T2m above the 80th
percentile and RH anomalies below the 20th percentile during 1980—-1999 (blue) and 2000—
2019 (orange).
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Figure 8. Time series of spatial correlation in SLP (left) and 500 hPa GPH (middle) anomalies
over East Asia and Western Pacific (EAWP, 90°-160°E, 20°-60°N) in June 2018 (a), July 2017
(b), July 2015 (c) and September 2019 (d) and those in the same targeted month of each year
during 1980-2019. The dotted lines mark the correlation coefficient of +0.3, which is used as
a threshold to define “moderate to high correlation”. The bar chart (right) represents the
frequency of SLP and 500 hPa GPH anomalies in the same months during 1980-1999 (blue)
and 20002019 (orange) that have moderate to high correlation (>0.3) with those in June 2018,
July 2017, July 2015 and September 2019.
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Figure 9. Frequencies of extreme months with T2m or RH anomalies exceeding the 80th
percentile or below the 20th percentile of the distributions over NCP (115°-120°E, 38°—44°N)
(a, b), YRD (120°-125°E, 28°-32°N) (c, d), SCB (102.5°-105°E, 30°-32°N) (e, f) and PRD
(110°-115°E, 22°-26°N) (g, h) in each 10-year interval during 2021-2100 under two SSPs
future scenarios of 13 CMIP6 models. The two SSPs are SSP1-2.6 and SSP5-8.5. The slope

and P values of the linear regression during 2021-2100 are shown in the upper right of each
panel.
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Figure 10. Frequencies of extreme months with SLP and 500 hPa GPH that have moderate to
high correlation (>0.3) to those in June 2018 (a, b), July 2017 (c, d), July 2015 (e, f) and
September 2019 (g, h) in each 10-year interval during 2021-2100 under two SSPs future
scenarios of 13 CMIP6 models. The two SSPs are SSP1-2.6 and SSP5-8.5. The slope and P
values of the linear regression during 2021-2100 are shown in the upper right of each panel.
The linear trends of SLP and GPH in each model grid were removed before the correlation

coefficient is calculated.

34



