Two years of satellite-based carbon dioxide emission quantification at the world's largest coal-fired power plants

- 3 Daniel H. Cusworth^{1,2}, Andrew K. Thorpe³, Charles E. Miller³, Alana K. Ayasse¹, Ralph Jiorle¹,
- 4 Riley M. Duren^{1,2,3}, Ray Nassar⁴, Jon-Paul Mastrogiacomo⁵, and Robert R. Nelson³
- ¹Carbon Mapper, Pasadena, CA, USA
- 6 ²Arizona Institutes for Resilience, University of Arizona, Tucson, AZ, USA
- ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- 8 ⁴Environment & Climate Change Canada, Toronto, ON, Canada
- 9 ⁵University of Toronto, Toronto, ON, Canada
- 10

12

13 Abstract

14 Carbon dioxide (CO₂) emissions from combustion sources are uncertain in many places 15 across the globe. Satellites have the ability to detect and quantify emissions from large CO₂ point 16 sources, including coal-fired power plants. In this study, we made observations with the PRecursore 17 IperSpettrale della Missione Applicativa (PRISMA) satellite imaging spectrometer and the Orbiting 18 Carbon Observatory-3 (OCO-3) instrument onboard the International Space Station at over 30 coal-19 fired power plants routinely between 2021-2022. CO₂ plumes were detected in 50% of acquired 20 PRISMA scenes, which is consistent with the combined influence of viewing parameters on detection 21 (solar illumination, surface reflectance) and unknown factors (like daily operational status). We 22 compare satellite-derived emission rates to in situ stack emission observations and find average agreement to within 27% for PRISMA and 30% for OCO-3, though more observations are needed to 23 robustly characterize the error. We highlight two examples of fusing PRISMA with OCO-2 and 24 OCO-3 observations in South Africa and India. For India, we acquired PRISMA and OCO-3 25

¹¹ Corresponding Author: Daniel H. Cusworth (dan@carbonmapper.org)

observations on the same day and use the high spatial resolution capability of PRISMA (30 m spatial/pixel resolution) to partition relative contributions of two distinct emitting power plants to the net emission. Though an encouraging start, two years of observations from these satellites did not produce sufficient observations to estimate annual average emission rates within low (<15%) uncertainties. However, as the constellation of CO_2 -observing satellites is poised to significantly improve in the coming decade, this study offers an approach to leverage multiple observation platforms to better quantify and characterize uncertainty for large anthropogenic emission sources.

33

34 **1 Introduction**

35 Anthropogenic carbon dioxide (CO_2) emissions are dominated by strong discrete point 36 sources: power and other industrial combustion are estimated to make up 59% of global 37 anthropogenic CO₂ emissions with transport, buildings, and other sources making up the remaining 38 20%, 9%, and 12%, respectively (Crippa et al., 2022). Fossil fuel combustion is the largest 39 contributor to warming trends globally since the pre-industrial era (IPCC, 2021). However, there 40 remains uncertainty in the total magnitude of emissions from these sectors as bottom-up emission 41 estimates rely on reported emission factors and activity data, which may vary in granularity and 42 quality across countries and provinces (Hong et al., 2017; Guan et al., 2017). Accurate CO₂ emission 43 quantification is important in light of the Paris Agreement, as participating countries must develop plans and report progress to reduce their country's greenhouse gas (GHG) emissions (UN, 2015). 44 45 Leveraging atmospheric measurements, particularly satellite remote sensing, can help reduce uncertainty in facility-level CO₂ emission estimates, provided that the observations are accurate and 46 47 sufficiently sample the facility in time (Hill and Nassar, 2019). Deployed systematically with robust 48 error characterization, this system could be an anchor towards assessing and verifying anticipated 49 CO₂ emission reductions as part of national and global GHG emission reduction plans and 50 agreements.

51 Several studies have shown that atmospheric sounding satellites can accurately quantify some 52 point source CO₂ emissions from large individual coal-fired power plants. First, the Orbiting Carbon 53 Observatory-2 (OCO-2; Crisp et al., 2017) is a space-based instrument that observes solar 54 backscattered near-infrared radiance in the oxygen A band (758-772 nm; 0.04 nm spectral resolution), 55 the weak CO2 band (1594-1619 nm; 0.08 nm spectral resolution), and strong CO2 band (2042-2082 56 nm; 0.10 nm spectral resolution). OCO-2 views in nadir mode over land, while sun glint mode 57 increases the signal over water giving measurements both land and water, and target mode to target 58 specific validation or calibration sites. With its 10-km wide swath, $\leq 1.3 \times 2.25$ km² pixel resolution, 59 and better than 1.0 ppm precision for retrievals of the column-mean dry-air mole fraction of CO_2 60 (XCO_2) (Taylor et al., 2023), OCO-2 is sensitive to single CO₂ point sources that emit sufficiently 61 close to an OCO-2 orbital track and are spatially isolated from other major CO₂ sources. Using 62 satellite observations from OCO-2, Nassar et al. (2017) detected strong CO₂ enhancements in the 63 near vicinity of seven large coal-fired power plants and employed a Gaussian plume model emission 64 quantification technique to estimate emission rates for these facilities. Further study expanded the set 65 of facilities that could be quantified by OCO-2 (Nassar et al., 2021). Other studies have leveraged the nitrogen dioxide (NO₂) retrieval capability and wide swath of the TROPOspheric Monitoring 66 67 Instrument (TROPOMI; van Geffen et al., 2020) to attribute and corroborate strong CO₂ signals seen 68 in OCO-2 observations (Hakkarainen et al., 2021; Reuter et al., 2019). The Orbiting Carbon 69 Observatory-3 (OCO-3; Eldering et al., 2019), the flight spare of OCO-2, has been on board the 70 International Space Station (ISS) since May 2019. Like OCO-2, it has been shown capable of 71 quantifying CO₂ power plant emissions. Nassar et al. (2022) analyzed nine successful OCO-3

72 acquisitions of the Belchatów Power Station and found the variability in satellite-based emission 73 estimates agreed well with the variability in independently reported hourly power generation. Guo et 74 al., (2023) estimated emissions at Chinese power plants using OCO-2/3 and found close agreement 75 with emission inventories. OCO-3 is different than OCO-2 in that it has a two-axis Pointing Mirror 76 Assembly (PMA) for more agile pointing, allowing it to rapidly point off-nadir and take Snapshot 77 Area Mapping (SAM) mode observations over the course of two minutes. These SAMs are approximately 80×80 km² collections of measurements and are typically over sites of interest 78 79 including cities, power plants, volcanoes, and flux towers.

80 Another class of remote sensing imaging spectrometers – sometimes also referred to as 81 hyperspectral imagers – also have been shown capable of detecting and quantifying strong CO₂ 82 signals from large point sources. Thorpe et al. (2017) flew the Next-Generation Airborne/Infrared 83 Imaging Spectrometer (AVIRIS-NG) over a coal-fired power plant in Four Corners, New Mexico, 84 and detected strong CO₂ plumes. AVIRIS-NG observes a large range of solar backscattered radiance 85 (380-2500 nm), but at much coarser spectral resolution (5 nm), and high spatial resolution (e.g., 3 m 86 when flown at 3 km altitude). The much finer spatial resolution of AVIRIS-NG allows for improved visualization of the origin of a CO₂ plume, but at the expense of fine precision for a single observed 87 88 CO₂ column. Still, Cusworth et al. (2021) analyzed a combination of AVIRIS-NG and the identically 89 built Global Airborne Observatory (GAO) at over 20 power plants in the U.S., quantified emission 90 rates, and found close agreement with continuous emissions monitoring (CEMS) hourly emission 91 observations. From space, the PRecursore IperSpettrale della Missione Applicativa (PRISMA), 92 launched in 2019, like AVIRIS-NG and GAO is sensitive to a large range of solar backscattered 93 radiance (400-2500 nm), albeit at coarser spectral and spatial resolution (10 nm spectral resolution; 94 30 m spatial resolution; Loizzo et al., 2018). PRISMA is a tasked satellite instrument potentially capable of hundreds of 30×30 km² observations per day, with equatorial crossing time of 10:30am, and target revisit of seven days, though true revisit depends on tasking priorities of the system. Cusworth et al. (2021) showed a few examples of CO₂ plumes detected and quantified with PRISMA, with quantified emissions similar in magnitude to reported CEMS emissions..

99 The capacity for satellites to be leveraged as useful tools for reducing uncertainty in the global 100 CO₂ anthropogenic emission sector requires synthesis and routine observations (i.e., tasking) of a 101 critical number of facilities. Therefore, in this study, we made observations at a subset of global coal-102 fired power plants routinely over the course of two years to probe detection limits, emission 103 quantification uncertainty, and data yields. We observed these facilities with both OCO-3 and 104 PRISMA. To our knowledge to date, this study represents the largest satellite-based facility scale 105 investigation of direct CO₂ emission quantification across a diverse set of global power plants, and 106 the first investigation to assess the capability of PRISMA to reliably detect and quantify CO₂ point 107 sources. The results, though not sufficient by themselves to reduce uncertainty relative to bottom-up 108 inventories significantly on an annual basis, show a path forward for data fusion and synthesis of 109 observations from the growing constellation of planned CO₂ sensing satellites.

110

111 **2 Methods**

Table 1 lists the locations of all power plants we targeted during this study between 2021-2022 with PRISMA. OCO-3 includes a subset of these sites as well as other fossil fuel combustion sites as part of its list of possible targets. We identified coal-fired power plants to routinely target using a combination of bottom-up and top-down information. Bottom-up coal-fired power plant CO₂ emission estimates rely on activity data, that usually includes permitted capacity of a power plant and its operational state; and emission factors, usually estimated from the composition of the coal 118 that is combusted. Inventories, like the Global Energy Monitor (GEM), include this data for a large 119 set of coal-fired power plants across the globe (GEM, 2023). From the GEM database, we gathered 120 the top 10 largest bottom-up coal-fired power plants globally. We then gathered a list of top-down 121 TROPOMI NO₂ combustion hotspots, as inferred by Beirle et al. (2021). We included an additional 122 seven unique power plants using this dataset. Because the imaging scene size of PRISMA is 30×30 123 km², some adjacent smaller power plants were imaged simultaneously along with these larger power 124 plants. In total, outside of the U.S., we made PRISMA observations at 27 power plants. In the U.S., 125 we chose 10 power plants to routinely target using reported EPA CEMS information 126 (campd.epa.gov): five of the top 30 emitting power plants, and five progressively lower emitters, 127 chosen so that we could assess satellite detection capabilities.

128

Power Plant Name	Countr y	Latitude	Longitude	Number clear-sky observatio ns	Number plume detections	Minimum quantified CO2 emission (kt CO2 h ⁻¹)	Mean quantified CO2 emission (kt CO2 h ⁻¹)	Maximum quantified CO2 emission (kt CO2 h ⁻¹)
Mundra- Adani	India	22.82	69.55	12	7	0.49±0.07	1.09±0.19	1.76±0.32
Korba-Balco	India	22.40	82.74	5	1	NA*	NA	NA
PLN Paiton Baru	Indoneis a	-7.71	113.57	4	2	NA	NA	NA
Craig	USA	40.46	-107.59	5	5	0.56±0.11	0.69±0.16	0.8 ± 0.22
Cumberland	USA	36.39	-87.65	1	0	NA	NA	NA
Dry Fork	USA	44.39	-105.46	6	3	0.61±0.09	0.65±0.13	0.69±0.16
H L Spurlock	USA	38.70	-83.82	5	3	1.15±0.32	1.26±0.39	1.37 ± 0.45
Ulsan Hanju (1)	South Korea	35.49	129.33	1	0	NA	NA	NA
Hasdeo	India	22.41	82.69	5	0	NA	NA	NA
Hekinan	Japan	34.83	136.96	6	4	0.72 ± 0.47	3.88±1.09	8.35±2.14
Baotou-1	China	40.66	109.66	5	2	0.19±0.07	0.27±0.07	0.35±0.07
Kendal	South Africa	-26.09	28.97	7	2	0.85±0.13	0.85±0.13	0.85±0.13
NTPC Korba	India	22.39	82.68	6	1	1.28±0.27	1.28±0.27	1.28±0.27

129 Table 1. Power plants that were targeted specifically by PRISMA in this study.

Kriel	South Africa	-26.25	29.18	8	3	0.74±0.15	0.82±0.15	0.95±0.16
Labadie	USA	38.56	-90.84	4	4	0.73±0.18	0.73±0.18	0.73±0.18
Martin Lake	USA	32.26	-94.57	8	8	1.45±0.31	2±0.59	2.6±0.98
Matimba	South Africa	-23.67	27.61	11	8	0.33±0.05	0.72±0.16	1.14±0.32
Matla	South Africa	-26.28	29.14	8	3	0.33±0.05	0.77±0.15	1.37±0.27
Medupi	South Africa	-23.71	27.56	15	12	0.33±0.06	0.83±0.19	1.47±0.34
Mundra-Tata	India	22.82	69.53	12	5	0.38±0.09	0.74±0.13	1.32±0.21
Niederausse m	German y	51.00	6.67	1	0	NA	NA	NA
Oregon	USA	41.67	-83.44	5	1	NA	NA	NA
Paiton-3	Indonesi a	-7.71	113.58	4	4	1.54±0.37	3.16±0.69	4.78±1.02
Rihand	India	24.03	82.79	8	5	0.83±0.17	0.99±0.26	1.36±0.38
Sanfeng	China	40.66	109.76	6	0	NA	NA	NA
Sasan	India	23.98	82.63	9	7	0.65±0.15	1.01±0.24	1.51±0.31
Sooner	USA	36.45	-97.05	6	3	1.05±0.22	1.05±0.22	1.05±0.22
Togtoh	China	40.20	111.36	2	2	0.25±0.06	0.91±0.17	1.58±0.27
Ulsan Hanju (2)	South Korea	35.47	129.38	1	0	NA	NA	NA
Vindhyachal	India	24.10	82.68	9	7	0.33±0.1	0.72±0.15	1.24±0.23
Waigaoqiao	China	31.36	121.60	6	1	NA	NA	NA
Yeosu Hanwha	South Korea	34.84	127.69	2	0	NA	NA	NA
Yosu	South Korea	34.83	127.67	2	0	NA	NA	NA
Al Zour	Kuwait	28.71	48.37	12	0	NA	NA	NA

*A value of "NA" indicates that no plumes were detected at this power plant or that the emission quantification
 algorithm (described in Methods) failed to quantify an emission rate.

132

133 2.1 PRISMA observations and quantification

PRISMA is a tasked satellite instrument, capable of collecting around $200 \ 30 \times 30 \ \text{km}^2$ targets per day and has 20° pointing capability off nadir. Authenticated users can program single observation requests through PRISMA's web portal (prisma.asi.it), which currently allows for 13 concurrent requests at a time per user. We specified two-week observing windows for each request, and configured requests to collect if the scene-averaged solar zenith angle (SZA) was less than 70° and forecast meteorology anticipated less than 20% cloud cover. If the orbital configuration, weather,
SZA align and there are no other conflicting or higher priority requests, PRISMA images a target.

141 For each acquired PRISMA image, we performed XCO₂ retrievals on all pixels within a 2.5 142 km radius around the power plant. We retrieve XCO₂ using the Iterative Maximum A Posteriori – 143 Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm, as implemented in 144 Cusworth et al. (2021). This approach estimates XCO_2 by decomposing an observed radiance 145 spectrum into high and low frequency features between 1900-2100 nm. For high-frequency features, 146 we simulate atmospheric transmission of CO₂, H₂O, and N₂O using a Beer-Lambert approximation. 147 For low-frequency features (e.g., surface reflectance, aerosol scattering), we use an 8-degree 148 polynomial. The forward model that drives IMAP-DOAS therefore has the following form:

149
$$F^{h}(\mathbf{x}) = I_{0}(\lambda) \exp\left(-\sum_{n=1}^{6} s_{n} \sum_{l=1}^{72} A_{l} \tau_{n,l}\right) \sum_{k=0}^{K} a_{k} \lambda^{k} \quad (1)$$

Where F^h is simulated backscattered radiance at wavelength λ , I_0 is incident solar intensity, A_l is the 150 151 airmass factor at vertical level $l \in [1,72]$, $\tau_{n,l}$ is the optical depth for each trace gas element, s_n is the 152 scaling factor applied to the optical depth, and a_k is a polynomial coefficient (K=8). Optical depths 153 are computed by querying meteorological information for pressure and temperature from the 154 MERRA-2 reanalysis (Gelaro et al., 2017), and using that information to select proper HITRAN 155 absorption cross sections for each trace gas (Kochanov et al., 2016). To compare the model from Equation 1 against PRISMA observed radiance (y), we compute $F^{h}(\mathbf{x})$ between 1900-2100 nm at 156 157 0.02 nm resolution, then convolve the output using the PRISMA full-width half maximum, and 158 sample at PRISMA wavelength positions. This results in vector F(x) that is comparable to y. The 159 vector \mathbf{x} , also called the state vector, includes scale factors for CO₂, H₂O, N₂O, and polynomial fficients: V - (c c 160

160 coefficients:
$$\mathbf{x} = (s_{CO2}, s_{H2O}, s_{N2O}, a_0, ..., a_8).$$

161 XCO₂ is retrieved from PRISMA radiance using a Bayesian optimal estimation approach 162 (Rodgers, 2000). Here, the optimized state vector solution, or posterior, is solved through Gauss-163 Newton iteration:

164
$$\mathbf{x}_{i+1} = \mathbf{x}_{A} + (\mathbf{K}_{i}^{T} \mathbf{S}_{0}^{-1} \mathbf{K}_{i} + \mathbf{S}_{A}^{-1})^{-1} \mathbf{K}_{i}^{T} \mathbf{S}_{0}^{-1} [y - \mathbf{F}(\mathbf{x}_{i}) + \mathbf{K}_{i} (\mathbf{x}_{i} - \mathbf{x}_{A})]$$
(2)

Where $\mathbf{S}_{O} = [\mathbf{\epsilon}\mathbf{\epsilon}^{T}]$ is the observation error covariance matrix defined by the instrument signal to noise ratio (SNR), \mathbf{x}_{A} is the prior estimate of the state vector, and \mathbf{S}_{A} is the prior error covariance matrix. The matrix \mathbf{K} , or Jacobian matrix, represents the first derivative of the $\mathbf{F}(\mathbf{x})$ with respect to the state vector:

169
$$\mathbf{K}_{i} = \frac{\partial \mathbf{F}}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}_{i}}$$
(3)

170 The posterior error covariance matrix can be computed explicitly to quantify retrieval precision:

171
$$\widehat{\mathbf{S}} = \left(\mathbf{K}_i^T \mathbf{S}_0^{-1} \mathbf{K}_i + \mathbf{S}_A^{-1}\right)^{-1} \quad (4)$$

Across the scenes we acquired with PRISMA, using this retrieval approach, we quantify an average 3.3 ppm precision for an XCO_2 column. Absolute biases in PRISMA XCO_2 retrievals are less important for CO_2 plume detection and quantification: systematic retrieval biases are removed from a scene through the quantification and removal of a local background, as described below. To characterize bias in emission quantification, we compare emission rates derived from PRISMA to stack-level CEMS measurements (Section 3.2).

We quantified emissions for each PRISMA plume detection using the Integrated Mass Enhancement (IME) approach (Cusworth et al., 2021). However, we updated the masking scheme for this analysis to produce more reliable masks for each CO₂ plume. Figure 1 shows the plume masking procedure for a plume detected at the Hekinan, Japan power plant on July 19, 2021. First, we apply a background threshold to differentiate candidate plume pixels from the background (method to quantify background threshold described in Section 3.2). We then group enhanced XCO₂ pixels into clusters of at least 20 connected pixels. These groups are then buffered with a one-pixel dilation filter to smooth edges and any gaps that exist in a group (Dougherty, 1992). Finally, each cluster is considered part of the plume if at least one of its pixels is within 500 m of an exhaust stack.

Figure 1. Example of the plume delineation and masking process performed on XCO₂ retrievals derived from PRISMA observations. Panel (a) shows the simultaneously observed RGB PRISMA imagery, panel (b) shows retrieved XCO₂ above the background, panels (c)-(e) show the plume masking procedure to isolate enhanced pixels and remove noise, and panel (f) shows the resulting CO₂ plume superimposed on the RGB imagery.

193

194 IME is calculated for a plume using the following equation:

$$IME = \sum_{i=1}^{N} \Delta \Omega_i \Lambda_i$$
 (5)

196 where $\Delta \Omega_i$ is the XCO₂ mass enhancement in pixel *i* relative to background (kg m⁻²), Λ_i is the pixel 197 area (900 m²), and *N* is the number of pixels in the plume. The CO₂ emission rate *Q* is estimated from 198 the IME using the following relationship:

199
$$Q = \frac{U_{eff}}{L} \text{ IME (6)}$$

where $L = \sqrt{\sum_{i=1}^{N} \Lambda_i}$ is the plume length and U_{eff} is the effective wind speed. The effective wind speed relates IME and plume length parameterizations to true emission rates. This relationship can be empirically estimated through large eddy simulations using the 10-m wind speed (U_{10}). Here we apply the U_{eff} relationship derived from Varon et al., 2018:

204 $U_{eff} = 1.1 \log U_{10} + 0.6.$ (7)

where U_{eff} and U_{10} are in units of [m s⁻¹]. We query the ERA5-Land reanalysis using the Open-Meteo 205 206 Application Programming Interface (open-meteo.com), which provides hourly wind information 207 globally at 0.1° spatial resolution (Muñoz-Sabater et al., 2021). Uncertainty due to winds is calculated 208 by generating an ensemble of U_{10} values assuming 50% error (Cusworth et al., 2021). Uncertainty 209 due to the CO₂ background is calculated by generating many emission estimates and calculating a 210 standard deviation using an ensemble of background thresholds. Background thresholds are set to 211 vary with scene-averaged CO_2 retrieval precision. Total emission uncertainty is estimated by adding 212 in quadrature the contribution of wind and background uncertainties.

214 2.2 OCO-3 observations and quantification

215 OCO-3 is also a tasked mission: it can take SAMs over any place of interest within the latitude 216 range of the ISS orbit (about 52° S to 52° N). In addition to the SAM locations we supplied to OCO-217 3 to overlap with PRISMA targets, there are many other power plant and fossil fuel combustion 218 sources that make up its set of mission targets. However, unlike PRISMA, OCO-3 does not consider 219 cloud forecasts, snow cover, or viewing geometry when planning SAMs and thus the majority of 220 observations fail to produce useful maps of XCO₂. Additionally, aerosol- and albedo-induced XCO₂ 221 artifacts are present in many SAMs (Bell et al., 2023) and thus make the detection of plumes even 222 more difficult.

223 For all cloud-free soundings, OCO-3 XCO2 concentrations are derived using the 224 Atmospheric Carbon Observations from Space (ACOS; O'Dell et al., 2012; Crisp et al., 2012; O'Dell 225 et al., 2018) v10 optimal estimation retrieval, which employs the Levenberg-Marquardt modification 226 of the Gauss-Newton method. In this work, bias corrected XCO₂ from the OCO-3 Lite files is used 227 but the official data quality flag is not applied. This was done because often the quality flag removes 228 XCO₂ retrievals within the plume and makes emission estimation more difficult or impossible 229 (Nassar et al., 2022). For SAMs where we visually identified CO₂ plumes (e.g., Figure 2), emission 230 rates are estimated using two approaches: (1) a Gaussian plume model and (2) the IME method. For 231 the Gaussian plume model approach, we follow the algorithm outlined in Nassar et al. (2022):

232
$$V(x,y) = \frac{Q}{\sqrt{2\pi}\sigma_y(x)u} e^{-(\frac{1}{2})(\frac{y}{\sigma_y(x)})^2}$$
(8)

233
$$\sigma_y(x) = a \cdot \left(\frac{x}{x_o}\right)^{0.894} \tag{9}$$

Where *V* represents the vertical columns within the plume (g/m²), *Q* is the CO₂ emission rate (g/s), *y* is the wind direction perpendicular to the plume (m), *u* is the wind speed at the height of the plume 236 at its midline (m/s) assuming plume rise of 250 m above the stack height, $\sigma_v(x)$ is the standard deviation of the y-direction, x_o is a characteristic plume length (1000 m), and a is a stability 237 238 parameter (Nassar et al., 2021). Following Nassar et al. (2022), wind speed and direction inputs are 239 estimated by taking the average of ERA-5 (Bell et al., 2020) and MERRA-2 reanalysis data. The 240 wind direction is optimized by rotating the plume, typically between -30° to 30° away from the mean ERA-5/MERRA-2 direction, and calculating the correlation coefficient (R) of the modeled and 241 242 observed XCO₂. The optimized wind direction is the direction that produces the largest R. The 243 background is typically estimated by averaging OCO-3 footprints within a radius of 30 km, excluding 244 the plume itself and a narrow 3 km buffer zone. However, if there are visible artifacts in the XCO₂ 245 background that are unrelated to the power plant plume, the background field is modified to avoid 246 them. For example, decreasing the radius of footprints used from 30 km to 20 km. The uncertainty in wind speed is calculated by taking the difference of the emission estimate using two different 247 248 models (ERA-5 and MERRA2). The background concentration uncertainty is calculated by 249 estimating Q using three different background radii of 30, 40, and 50 km. Q is also calculated for a 250 30 km radius background but only using the left and right halves of the background, relative to the 251 direction of the plume. The standard deviation of both these methods is calculated and the larger of 252 the two is the background uncertainty. The plume rise uncertainty is calculated by estimating Q using 253 plume rise values of 100, 200, 250, 300, and 400 m and taking the standard deviation of those values. 254 Total uncertainty on the emission rate O using the Gaussian plume method is estimated by adding in 255 quadrature the contribution of wind speed, background concentration, and plume rise uncertainties. 256 To obtain another estimate of emission rate, we also apply an IME quantification approach to 257 the CO_2 plumes, which to our knowledge is the first time the IME method has been applied to OCO-

258 3 SAMS at coal power plants. We first interpolate the XCO₂ retrievals in a SAM to a uniform 2×2

259 km^2 grid to account for occasional OCO-3 footprint overlap. Similar to Varon et al. (2018), 3×3 260 pixel neighborhoods are sampled and the distributions are compared to the background using a 261 Student's *t*-test. The default confidence level for the *t* test is 95% but this is often lowered to visually 262 capture most of the plume. The plume is then smoothed using a 3×3 pixel median filter and a Gaussian filter with a standard deviation of 0.5. The U_{eff} calculation is done using an equation 263 approximately equal to Equation 7 ($U_{eff} = 1.0 \log U_{10} + 0.55$). Other recent studies have used various 264 265 methods (Lin et al., 2023; Brunner et al., 2023), but further research is needed to determine the most accurate way to estimate Ueff for an OCO-3-like instrument. The wind direction is the optimized 266 267 direction determined by the Gaussian plume model. The background XCO₂ estimate is taken from 268 the Gaussian plume model methodology and the plume is typically required to be within 50 km 269 downwind and 8 km crosswind of the source, although these parameters are modified if the plume 270 curves outside of the 8 km crosswind threshold or there are XCO₂ artifacts that should be avoided.

271 The uncertainty for the IME method is estimated similarly to the Gaussian plume model 272 method. The uncertainty in wind speed is calculated by taking the standard deviation of the emission 273 estimates using wind speed from two different models (ERA-5 and MERRA2). The background 274 concentration uncertainty is calculated by estimating Q using the different backgrounds calculated in 275 the Gaussian plume model method: a 20 km radius, 30 km radius, 40 km radius, left half, full circle, 276 and right half. The standard deviation of the three radii estimates and left half, full circle, and right 277 half estimates are calculated and the larger of the two is the background uncertainty. Uncertainty of 278 the Student's *t*-test confidence level is also estimated. The confidence level and -10% and +10% of 279 the confidence level are used to find Q. For example, if the confidence level needed to visually capture the XCO₂ plume is 85%, Q is calculated for 75%, 85%, and 95% and the standard deviation 280 281 of those three values represents the confidence level uncertainty. Total uncertainty on the emission rate *Q* using the IME method is estimated by adding in quadrature the contribution of wind speed,
background concentration, and Student's *t*-test confidence level uncertainties.

Figure 2 shows IME methodology successfully identifying an XCO₂ plume from an OCO-3

- 285 SAM taken over the Colstrip power plant.
- 286

Figure 2. IME plume identification approach applied to an example OCO-3 SAM at the Colstrip
power plant on 18 August 2021. Left panel: OCO-3 SAM bias corrected XCO₂. Right panel: yellow
pixels indicate the final plume mask.

291

292 **3 Results**

293 3.1 Global yields from two years of observations

Figure 3a shows a global map of power plants we targeted with PRISMA, with the marker for each power plant's location (latitude, longitude) scaled to represent the number of successful acquisitions between 2021-2022. In total, we acquired 181 PRISMA images, which corresponds to 314 unique power plant observation scenes. Of these scenes, 210 were of sufficient quality to attempt CO₂ retrieval and plume detection, with quality mostly determined by visual inspection for clouds and haze. Of these 210 scenes, 104 were determined to have CO₂ plumes (Figure 3b). Scenes were marked as containing CO_2 plumes through inspection of XCO2 and visible imagery: if a large cluster of pixels with elevated XCO₂ above the background were also in the vicinity of a power plant exhaust stack, an analyst would mark the scene as containing a CO_2 plume. Routine tasking observations with PRISMA resulted in an average of 6 acquisitions for each power plant (maximum 15), roughly one image acquired per quarter. Of these acquisitions, plumes were detected on average four times per facility (maximum 12).

For OCO-3, 1363 power plant SAMs were taken during September 2019 to December 2022. Of these, 139 XCO₂ plumes emanating from power plants were visually identified. However, only 14 were for power plants that were also observed by PRISMA and have CEMS validation (nine Colstrip cases, two Martin Lake cases, and three Craig cases). The acquisition rates are low relative to PRISMA because OCO-3 does not account for scene favorability when planning its SAMs. For example, OCO-3 took 66 Colstrip SAMs from 2019-2022 yet only yielded nine high-quality XCO₂ plume cases.

Figure 3. Data yields from PRISMA continually between 2021-2022. Panel (a) shows the number of clear-sky acquisitions for each power plant. Panel (b) shows the number of plumes detected by an analyst for each of the observed power plants.

318 The low observed average detection rate of CO_2 plumes is a result of three primary factors: 319 (1) observing conditions at each facility including solar zenith angle (SZA) and surface reflectance; 320 (2) local meteorology; and (3) operational status at each power plant at the time of acquisition. To 321 test how well these factors predict the presence of a plume for PRISMA, we fit a logistic regression 322 classification function with a sparse (L1) penalty to our dataset (Fan et al., 2008). This algorithm fits 323 a logit function to the plume detection outcome of each scenes (i.e., detected plume = TRUE, no 324 detected plume = FALSE) using a set of predictor variables that are likely candidates to explain 325 prediction results. In this setup, the statistical model is fit using the following predictor variables -326 SZA, U_{10} , average single-sounding retrieval precision across the scene, annual bottom-up emission 327 estimate for the power plant using GEM, and average observed radiance between 1900-2100 nm 328 within the scene normalized by the cosine of the SZA. This last factor is a simple proxy for surface 329 reflectance, although it does not take into account other factors that influence radiance observations 330 (e.g., water vapor, aerosols, other atmospheric constituents). We split the data so that 50% was used 331 to train the model and 50% was reserved as a test set. The predictor variables were all standardized 332 by their mean and standard deviation before the model was fit. The results of classification can be 333 summarized using two statistics: precision (ratio of true positives to sum of true positives and false 334 positives) and recall (ratio of true positives to sum of true positives and false negatives). The results 335 of fitting a logistic regression model to the data show minor prediction performance, with precision 336 = 0.60 and recall = 0.69 for positive plume detection. The regression coefficients are shown in Figure 337 4a. The coefficient with the highest weight is normalized radiance. Figure 4b shows SZA against 338 normalized radiance, with red dots indicating no plume detection and blue dots representing positive 339 plume detection. Though no clear separation exists, there is a cluster of no plume detection at high 340 SZA and low normalized radiance. This is a consistent and expected relationship, as SZA and surface reflectance are principal drivers of the quantity of light that is observed by the satellite, and thereforeSNR of the observation.

343

Figure 4. CO₂ plume prediction using various atmospheric, retrieval, and bottom-up information. Panel (a) shows the results of fitting a logistic regression classification model to the set of PRISMA acquisitions where an analyst identified the presence or lack of a plume. Panel (b) shows the top two explanatory variables (SZA and normalized radiance) along with plume classification.

349

350 The logistic regression model performed better on the test data set than predictions made at 351 random, though the prediction performance was still low. Missing from the model is sub-annually 352 resolved information regarding operating status. For most of the power plants outside the U.S., we 353 do not have information on daily operations of a power plant. In many cases of non-detects, we could 354 simply be observing a power plant temporarily not in operation. Another possibility is that at the time 355 of acquisition, some power plants were operating at reduced capacity, meaning that CO₂ emission 356 rates were lower than those predicted by annual emission factors or activity data. If the true CO₂ emission rate was below the minimum detection limit (MDL) possible by the PRISMA satellite, then 357

358 it would show as a non-detect. However, even if the emission were near or slightly above the 359 PRISMA MDL, the probability of detection would still be low as slight variations in atmospheric 360 properties, as seen in Figure 4, would then influence the ability to detection a CO₂ plume.

361

362 3.2 Validation of PRISMA and OCO-3 emission rates against CEMS

363 For each power plant where a CO₂ plume was identified, we quantify emissions using the 364 IME approach described by Equations 5-7. In order to estimate the XCO₂ mass enhancement ($\Delta\Omega$ in 365 Equation 1), a local background must be quantified and subtracted from total XCO₂ retrievals across 366 the scene. To do this, we apply a concentration threshold β to initiate the plume masking and 367 segmentation process (described in Methods section). Once we have a plume mask, we apply another 368 concentration threshold γ to the remaining XCO₂ pixels that exist outside of the plume. This value γ 369 represents the XCO₂ background that we use to calculate the XCO₂ enhancement that is used in the 370 IME formulation of Equation 1. Thresholds β and γ largely influence the magnitude of the emission rate and are not known a priori. For global generalizability, we wish to estimate β and γ such that 371 372 they do not vary across power plants, seasons, regions, etc. Therefore, we parameterize β and γ as 373 percentiles under the assumption that the local contrast between enhanced CO₂ plume pixels and the 374 background should be similar across PRISMA scenes.

To estimate values for β and γ , we compare EPA CEMS data for power plants in the U.S. with estimated emission rates from PRISMA. In total, we have 12 scenes in the U.S. with CEMS information that pertain to 5 power plants. We then optimize β and γ such that the output of an ordinary least squares regression produces a slope near unity. Figure 5a shows the results of this optimization which produces an optimal β percentile of 94% and a γ percentile of 62%. The results also show decent correlation between CEMS data and PRISMA-derived emission rates ($R^2 = 0.43$). 381 A single outlier at the Labadie power plant (imaged July 10, 2022) shows the largest discrepancy 382 from CEMS data (69%), but the remaining plumes show average 27% relative difference from CEMS data. If we remove the one data point at Labadie, the R^2 improves to 0.75. Though a limited sample 383 size, between PRISMA and OCO-3, these scenes represent variability in solar geometries (20-40° 384 385 SZA), surface reflectance (0.09-0.90 normalized radiance), and reported emission rates (0.51 - 2.39)386 kt CO2 h⁻¹). Therefore, we use these optimal parameters and apply them to our global dataset of 387 PRISMA detections. These emission rates are reported in Table 1. There are some instances when 388 performing IME emission calculations using these thresholds and plume masking technique do not 389 result in emission rates (e.g., the plume masking procedure produces a mask with no pixels). In these 390 cases, we report a detection but not an emission quantification.

391 Figures 5b and 5c shows the comparison between OCO-3 and CEMS at some power plants 392 that overlap with PRISMA observations (14 scenes total). OCO-3 Gaussian plume model emission 393 rates (Fig. 5b) have an improved correlation compared to PRISMA ($R^2 = 0.51$), although with greater bias (average 47% relative difference from CEMS). The OCO-3 IME estimates (Fig. 5c) have worse 394 395 R^2 (0.32) but a better RMSE (0.45 kt CO₂/hr) compared to the Gaussian plume model estimates (0.84) 396 kt CO2/hr), with 9 of the 14 cases being within 30% of the reported CEMS emission and an average 397 relative difference of 30% for all 14 cases. Additionally, the least squares fit for IME is closer to the 398 1-to-1 line than for the Gaussian plume model.

Figure 5. Comparison of emission rates in the U.S. between satellite-derived estimates and CEMS information. Panel (a) shows a comparison between PRISMA derived emission rates and CEMS (R^2 = 0.43), panel (b) shows a comparison between OCO-3 and CEMS using the Gaussian plume model (R^2 = 0.51), and panel (c) shows a comparison between OCO-3 and CEMS using IME (R^2 = 0.32).

406 Unique sources of error for OCO-3 emission estimates include geolocation errors in the 407 XCO2 product. These errors are typically less than 1 km, but can be up to 2 km (Taylor et al., 2023). 408 Errors of this magnitude, about the size of an OCO-3 footprint ($\sim 2 \times 2 \text{ km}^2$), may mean that an entire 409 footprint is not included when estimating emissions using the Gaussian plume method, which 410 assumes that the plume only extends downwind of the known source location. The Gaussian plume 411 model is also susceptible to wind direction errors, and requires the plume to be Gaussian in shape, 412 which is often not true. IME, while not suffering from wind direction or geolocation-induced errors, 413 assumes that the entire plume is captured in a given SAM, which is sometimes not true and results in 414 an underestimation of emissions. IME is also sensitive to errors in U_{eff} parameterization.

415

416 *3.3 Comparison and fusion of PRISMA and OCO*

417 Outside the U.S., PRISMA observed the Matimba power station in South Africa 11 times and 418 quantified emission rates 7 times. Emissions from Matimba have previously been quantified and 419 validated using OCO-2 (Hakkarainen et al., 2021). This station does not report hourly emission rates, 420 but does report daily power generation (Eskom, 2023). Though not a direct comparison, we can use 421 this information to check if the emission quantification approach we describe above captures some 422 variability in activity at this power plant. Figure 6a shows the emission rates we quantified compared 423 against reported power generation. We see rough agreement in variability - the high power generation reported between Apr to July 2021 (70000-85000 MWh) drop for subsequent dates 424 425 (47000-66000 MWh) between Sep 2021 to Sep 2022, a drop which is also seen in the PRISMA-426 derived CO2 emission rate. Across all observations, we estimate an emission rate range of 0.30-1.04 427 kt CO2 h⁻¹ (average 0.66 kt CO₂ h⁻¹). This average emission rate is substantially lower than the average 2.50 kt CO₂ h⁻¹ emission rate estimated from OCO-2 and TROPOMI between 2018-2020, 428 429 but within the range of emissions estimates directly quantified with OCO-2 (0.30-7.20 kt CO_2 h⁻¹; 430 Hakkarainen et al., 2021). However, this discrepancy could be result of (1) changes in activity or 431 variability or (2) existence of other nearby emission sources. For changes in activity, during August 432 2020, the Matimba reported a large range of power generation (65000-94000 MWh) and emission 433 estimates derived directly from OCO-2 were also highly variable (0.88-4.33 kt CO₂ h⁻¹). Given that 434 maximum power generation at the time of a PRISMA observation was 85000 MWh, some of the 435 discrepancy in maximum CO₂ quantification between PRISMA and OCO-2 could be due to activity. 436 Nearby (7 km) the Matimba Power Station is the Medupi Power Plant (Figure 6b). Figure 6c 437 show the Medupi CO₂ plume observed during the same PRISMA overpass on Apr 5, 2021. The 438 PRISMA derived emission rate for Medupi is 0.64 ± 0.26 kt CO2 h⁻¹ and for Matimba is 0.73 ± 0.30 439 kt CO₂ h⁻¹. Given the proximity of the two power plants, the higher derived emission rate reported 440 for Matimba from previous studies could actually be a result of a net emission from these two 441 facilities. The OCO-2 flight track is located tens of kilometers downwind from Matimba and Medupi, 442 making a clear delineation between potentially co-emitted distinct emission plumes near impossible. 443 If we sum emission rates from both Medupi and Matimba, we quantify a range of 0.89-1.73 kt CO₂ 444 h⁻¹ (1.30 ± 0.28 kt CO2 h⁻¹), which is still lower, but closer to the average emissions quantified by 445 OCO-2.

446

447 **Figure 6**. Emission rates and reported power generation at the Matimba and Medupi power plants in

448 South Africa. Panel (a) shows the CO₂ emission rates derived from PRISMA and the reported daily

- power generation for the day of PRISMA overpass. Panel (b) shows the locations of the Medupi and
 Matimba power plants (base imagery provided by Google Earth; © Google Earth 2023). Panels (c)
 and (d) show plume imagery and emission rates for a PRISMA overpass on Apr 5, 2021.
- 452

453 The ability to differentiate the contribution of unique point sources to a regional total is an 454 application made possible by joint observing of imaging spectrometers and atmospheric sounders. 455 Figure 7 shows observations that were made at the Tata Mundra Ultra Mega Power Plant and the 456 Adani Mundra Thermal Power Project: two power plants less than 3 km apart. Both OCO-3 and 457 PRISMA imaged the power plants on Apr 9, 2022. Figure 7b shows the OCO-3 SAM (taken 04:41 458 UTC) – large CO₂ enhancements appear along the coastline likely associated with emission from 459 these power plants. PRISMA imaged the power plants less than two hours later (06:02 UTC) and 460 detected CO2 plumes at each facility (Figure 7b-c). The OCO-3 derived emission rate using Gaussian plume approaches is 5.5 ± 0.7 kt CO₂ h⁻¹, but the emission rate derived using the IME approach is 461 462 much lower (3.0 kt CO_2 h⁻¹). For this case, the IME approach may be more appropriate as the shape 463 of the OCO-3 plume (Figure 7b) is more diffuse in nature and does not visibly resemble a Gaussian structure. The PRISMA emission rate for the Adani plant is 1.07 ± 0.17 kt CO₂ h⁻¹ and for the Tata 464 Mundra plant is 0.53 ± 0.08 kt CO₂ h⁻¹. We can use this information to estimate that 67% of the net 465 466 CO₂ emission came from Adani, and the remaining 33% came from the Tata plant. The combined 467 emission rate $(1.60 \pm 0.25 \text{ kt CO}_2 \text{ h}^{-1})$ is lower than the OCO-3 IME emission rate. Like the Matimba 468 power plant, some of this discrepancy may partially be explained by bias or uncertainty in retrievals, background, and wind information. Also, lower estimates of CO2 emissions from PRISMA are 469 470 consistent with the fact that PRISMA is only sensitive to emissions at two exhaust stacks, while the 471 OCO-3 observation includes all CO₂ sources in the industrial area around Mundra. Continued validation of retrieved emission rates against ground standards (e.g., CEMS) will help better quantify
bias and uncertainty. However, even with lingering uncertainty, the near simultaneous observations
of OCO-3 and PRISMA can help us disentangle the relative contributions from each power plant.

Figure 7. Near-simultaneous observation of two power plants in Mundra, India on Apr 9, 2022. Panel
(a) shows the locations of two power plants spaced less than 3 km apart: Tata Mundra and Adani
Mundra Power Stations (base imagery provided by Google Earth; © Google Earth 2023). Panel (b)

480 shows the OCO-3 SAM with a red dot showing the location of the power plants. Panel (c) and (d) 481 show the PRISMA acquisition (less than 2 hours after OCO-3) over the two power plants with 482 associated emission rates.

483

484 Conclusion

485 We observed a global set of power plants for two years between 2021-2022 with both PRISMA and OCO-3 to test the ability of these satellite platforms to do routine operational 486 487 monitoring of CO₂ emissions. When PRISMA observations were of sufficient quality to perform 488 XCO₂ retrievals, we detected CO₂ plumes nearly half of the time. We fit a logistic regression 489 classification using plume detections and find that there is some relationship between SZA and 490 surface reflectance that partially explains plume prediction; consistent given that these factors are 491 major drivers of SNR. The remaining non-plume detections may be due to operational status of a 492 power plant at the time of observation. We compared emission rates from both PRISMA and OCO-3 to power plants in the U.S. where we have access to hourly in situ CEMS emission information. 493 494 We find significant correlation between satellite and *in situ* estimates, though some significant biases 495 may exist for some of the observations for both PRISMA and OCO-3. Also, the quantity of CEMS 496 observations was limited (~ 10 for each instrument), so robust calibration is not yet possible. Still, 497 early results show that under the right conditions, satellites can provide reliable estimates of CO₂ emissions at discrete point source locations. This is consistent with the close agreement between 498 499 airborne imaging spectrometer emissions and CEMS information (Cusworth et al., 2021).

500 Fusion of information from atmospheric sounders like OCO-3 and imaging spectrometers 501 like PRISMA is valuable for cross-validation and source attribution. We see this particularly for our 502 examples at the Matimba and Medupi power plants in South Africa and the Tata and Adani power plants in Mundra, India. In these cases, and particularly at Mundra where near-simultaneous PRISMA and OCO-3 observations were taken, OCO-2/3 provides a local, but coarse resolution emission constraint for a complex of facilities that emit large CO_2 quantities. PRISMA, with its 30 m pixel resolution, then can help refine relative contributions of single emitters against the net emission flux. More work is needed to refine cross-validation between instruments, but initial observation shows one avenue for data from multiple observing systems to be complementary aggregated and analyzed.

510 Even when combining information from both satellites, there is still too little sampling to 511 constrain facility emissions within low uncertainties. Cusworth et al. (2021), using arguments from 512 Hill and Nassar (2019), suggested that nearly 30 unbiased observations from a PRISMA-class 513 instrument is needed per year at each power plant to reduce annual uncertainties below 14% (i.e., 514 reduce emission uncertainty from Non-Annex I countries below 1 Gt CO₂ per year). No power plant 515 in this study met this minimum sampling requirement. However, there will be a significant increase in data volumes and observation performance of satellite remote sensing capabilities for CO2, from 516 517 both recently launched and planned imaging spectrometers including EMIT (launched 2022; Thorpe 518 et al., in revision); EnMAP (launched 2022; Guanter et al., 2015); Carbon Mapper/Tanager 1-2 519 (Planned launch 2024; Duren et al., 2021), and atmospheric sounders including CO2M (Sierk et al., 520 2019). Improved observation of global power plants and emission quantification with robust error 521 characterization will be vital to reduce global uncertainty of anthropogenic emissions from fossil fuel 522 combustion sources.

523

524 Data Availability.

525	The OCO-3 XCO2 and other retrieval properties are publicly available at the NASA Goddard Earth
526	Science Data and Information Services Center (GES-DISC). The full suite of retrieval products in
527	the standard per-orbit format can be obtained at OCO Science Team et al., 2021,
528	https://doi.org/10.5067/D9S8ZOCHCADE. The lightweight per-day format data (Lite files), which
529	includes the bias corrected estimates of XCO2, can be obtained at OCO Science Team et al., 2022,
530	https://doi.org/10.5067/970BCC4DHH24. PRISMA data including radiance for each scene and
531	XCO2 retrievals is available at https://doi.org/10.5281/zenodo.8083596.
532	
533	Acknowledgments. This work was supported by the Orbiting Carbon Observatory Science Team.

We thank the Italian Space Agency for the PRISMA satellite targets. Portions of this work were
undertaken at the Jet Propulsion Laboratory, California Institute of Technology, under contract with
NASA.

537

538 Author Contributions. DHC designed the study. DHC, AKA, RJ tasked and acquired PRISMA 539 data. DHC performed PRISMA emission quantification and validation. RRN performed OCO-3 540 quantification and validation. RN and JPM helped implement OCO-3 quantification algorithms. All 541 authors provided feedback on results and the manuscript.

542

543

544 **Competing interests**. The authors declare no conflicts of interest.

⁵⁴⁶ **References**

547	Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A. and Wagner, T., 2021. Catalog
548	of NOx emissions from point sources as derived from the divergence of the NO2 flux for
549	TROPOMI. Earth System Science Data, 13(6), pp.2995-3012. DOI https://doi.org/10.5194/essd-13-
550	2995-2021
551	
552	Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A., Sabater, M., et al.
553	(2020). ERA5 hourly data on pressure levels from 1950 to 1978 (preliminary
554	version). Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS). AvaliableAt:
555	https://cds.climate.copernicus-climate.eu/cdsapp#!/dataset/reanalysis-era5-
556	pressure-levels-preliminary-back-extension?tab=overview.
557	
558	Bell, E., O'Dell, C.W., Taylor, T.E., Merrelli, A., Nelson, R.R., Kiel, M., Eldering, A., Rosenberg,
559	R. and Fisher, B., 2023. Exploring bias in the OCO-3 snapshot area mapping mode via geometry,
560	surface, and aerosol effects. Atmospheric Measurement Techniques, 16(1), pp.109-133. DOI
561	https://doi.org/10.5194/amt-16-109-2023
562	
563	Brunner, D., Kuhlmann, G., Henne, S., Koene, E., Kern, B., Wolff, S., Voigt, C., Jöckel, P.,
564	Kiemle, C., Roiger, A. and Fiehn, A., 2023. Evaluation of simulated CO2 power plant plumes from
565	six high-resolution atmospheric transport models. Atmospheric Chemistry and Physics, 23(4),
566	pp.2699-2728. DOI https://doi.org/10.5194/acp-23-2699-2023
567	
568	Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., Pagani, F., Monforti-
569	Ferrario, F., Olivier, J., Quadrelli, R., Risquez Martin, A., Taghavi-Moharamli, P., Grassi, G.,

570	Rossi, S., Jacome Felix	Oom, D.	Branco. A.,	San-Miguel-A	vanz. J. and V	Vignati, E.,	CO ₂
		,	,		,, - ·		

- 571 emissions of all world countries 2022 Report, EUR 31182 EN, Publications Office of the
- 572 European Union, Luxembourg, 2022, doi:10.2760/730164, JRC130363
- 573 Crisp, D., Fisher, B.M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L.R., Castano,
- 574 R., Connor, B., Deutscher, N.M. and Eldering, A., 2012. The ACOS CO2 retrieval algorithm-part
- 575 II: global XCO2 data characterization. *Atmospheric Measurement Techniques*, 5(4), pp.687-707.
- 576 DOI https://doi.org/10.5194/amt-5-687-2012
- 577
- 578 Cusworth, D.H., Duren, R.M., Thorpe, A.K., Eastwood, M.L., Green, R.O., Dennison, P.E.,
- 579 Frankenberg, C., Heckler, J.W., Asner, G.P. and Miller, C.E., 2021. Quantifying global power plant
- 580 carbon dioxide emissions with imaging spectroscopy. *AGU Advances*, 2(2), p.e2020AV000350.

581 DOI https://doi.org/10.1029/2020AV000350

- 582
- 583 Dougherty, E.R., 1992. An introduction to morphological image processing. In *SPIE*. Optical
 584 Engineering Press.
- 585
- 586 Duren, R., Cusworth, D., Ayasse, A., Herner, J., Thorpe, A., Falk, M., Heckler, J., Guido, J.,
- 587 Giuliano, P., Chapman, J. and Green, R., 2021, December. Carbon Mapper: on-orbit performance
- 588 predictions and airborne prototyping. In AGU Fall Meeting Abstracts (Vol. 2021, pp. A53F-05).
- 589
- 590 Eldering, A., Taylor, T.E., O'Dell, C.W. and Pavlick, R., 2019. The OCO-3 mission: measurement
- 591 objectives and expected performance based on 1 year of simulated data. Atmospheric Measurement
- 592 Techniques, 12(4), pp.2341-2370. DOI https://doi.org/10.5194/amt-12-2341-2019

594	Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R. and Lin, C.J., 2008. LIBLINEAR: A library for
595	large linear classification. the Journal of machine Learning research, 9, pp.1871-1874. DOI
596	https://doi.org/10.5555/1390681.1442794
597	
598	Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A.,
599	Darmenov, A., Bosilovich, M.G., Reichle, R. and Wargan, K., 2017. The modern-era retrospective
600	analysis for research and applications, version 2 (MERRA-2). Journal of climate, 30(14), pp.5419-
601	5454. https://doi.org/10.1175/JCLI-D-16-0758.1
602	
603	GEM, Global Energy Monitor's Global Coal Plant Tracker, URL
604	https://globalenergymonitor.org/projects/global-coal-plant-tracker/tracker/, last accessed May 24,
605	2023
606	
607	Guan, D., Liu, Z., Geng, Y., Lindner, S. and Hubacek, K., 2012. The gigatonne gap in China's
608	carbon dioxide inventories. Nature Climate Change, 2(9), pp.672-675. DOI
609	https://doi.org/10.1038/nclimate1560
610	
611	Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Hollstein,
612	A., Rossner, G., Chlebek, C. and Straif, C., 2015. The EnMAP spaceborne imaging spectroscopy
613	mission for earth observation. Remote Sensing, 7(7), pp.8830-8857. DOI
614	https://doi.org/10.3390/rs70708830
615	

- 616 Guo, W., Shi, Y., Liu, Y. and Su, M., 2023. CO2 emissions retrieval from coal-fired power plants
- 617 based on OCO-2/3 satellite observations and a Gaussian plume model. Journal of Cleaner
- 618 Production, 397, p.136525. DOI https://doi.org/10.1016/j.jclepro.2023.136525
- 619
- Hakkarainen, J., Szeląg, M.E., Ialongo, I., Retscher, C., Oda, T. and Crisp, D., 2021. Analyzing
- 621 nitrogen oxides to carbon dioxide emission ratios from space: A case study of Matimba Power
- 622 Station in South Africa. Atmospheric Environment: X, 10, p.100110. DOI
- 623 https://doi.org/10.1016/j.aeaoa.2021.100110
- 624
- 625 Hill, T. and Nassar, R., 2019. Pixel size and revisit rate requirements for monitoring power plant
- 626 CO2 emissions from space. *Remote Sensing*, 11(13), p.1608. DOI
- 627 https://doi.org/10.3390/rs11131608
- 628
- Hong, C., Zhang, Q., He, K., Guan, D., Li, M., Liu, F. and Zheng, B., 2017. Variations of China's
- 630 emission estimates: response to uncertainties in energy statistics. *Atmospheric Chemistry and*

631 *Physics*, 17(2), pp.1227-1239. DOI https://doi.org/10.5194/acp-17-1227-2017

- 632
- 633 IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I
- 634 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-
- 635 Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb,
- 636 M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O.
- 637 Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and
- 638 New York, NY, USA, In press, doi:<u>10.1017/9781009157896</u>.

639

- 640 J. Muñoz-Sabater, Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G.,
- 641 Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
- 642 Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: A state-
- 643 of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383,
- 644 2021. <u>https://doi.org/10.5194/essd-13-4349-2021</u>.

645

- 646 Kochanov, R.V., Gordon, I.E., Rothman, L.S., Wcisło, P., Hill, C. and Wilzewski, J.S., 2016.
- 647 HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with
- 648 spectroscopic data. Journal of Quantitative Spectroscopy and Radiative Transfer, 177, pp.15-30.
- 649 DOI https://doi.org/10.1016/j.jqsrt.2016.03.005

650

- Lin, X., van der A, R., de Laat, J., Eskes, H., Chevallier, F., Ciais, P., Deng, Z., Geng, Y., Song, X.,
- Ni, X. and Huo, D., 2023. Monitoring and quantifying CO2 emissions of isolated power plants
- from space. EGUsphere, pp.1-20. DOI https://doi.org/10.5194/egusphere-2022-1490

654

- Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C. and Varacalli, G., 2018,
- 556 July. PRISMA: The Italian hyperspectral mission. In IGARSS 2018-2018 IEEE International
- 657 Geoscience and Remote Sensing Symposium (pp. 175-178). IEEE. DOI https://doi.org/
- 658 10.1109/IGARSS.2018.8518512

- 660 Nassar, R., Hill, T.G., McLinden, C.A., Wunch, D., Jones, D.B. and Crisp, D., 2017. Quantifying
- 661 CO2 emissions from individual power plants from space. *Geophysical Research Letters*, 44(19),

662 pp.10-045. DOI https://doi.org/10.1002/2017GL074702

- 663
- 664 Nassar, R., Mastrogiacomo, J.P., Bateman-Hemphill, W., McCracken, C., MacDonald, C.G., Hill,
- T., O'Dell, C.W., Kiel, M. and Crisp, D., 2021. Advances in quantifying power plant CO2
- 666 emissions with OCO-2. Remote Sensing of Environment, 264, p.112579. DOI
- 667 https://doi.org/10.1016/j.rse.2021.112579
- 668
- Nassar, R., Moeini, O., Mastrogiacomo, J.P., O'Dell, C.W., Nelson, R.R., Kiel, M., Chatterjee, A.,
- 670 Eldering, A. and Crisp, D., 2022. Tracking CO2 emission reductions from space: A case study at
- 671 Europe's largest fossil fuel power plant. *Frontiers in Remote Sensing*, *3*, p.98. DOI
- 672 https://doi.org/10.3389/frsen.2022.1028240
- 673
- O'Dell, C.W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M.,
- 675 Eldering, D., Fisher, B., Gunson, M. and McDuffie, J., 2012. The ACOS CO 2 retrieval algorithm-
- 676 Part 1: Description and validation against synthetic observations. *Atmospheric Measurement*
- 677 *Techniques*, 5(1), pp.99-121. DOI https://doi.org/10.5194/amt-5-99-2012
- 678
- 679 O'Dell, C.W., Eldering, A., Wennberg, P.O., Crisp, D., Gunson, M.R., Fisher, B., Frankenberg, C.,
- 680 Kiel, M., Lindqvist, H., Mandrake, L. and Merrelli, A., 2018. Improved retrievals of carbon dioxide
- from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. *Atmospheric*
- 682 *Measurement Techniques*, 11(12), pp.6539-6576. DOI https://doi.org/10.5194/amt-11-6539-2018

683

Rodgers, C.D., 2000. *Inverse methods for atmospheric sounding: theory and practice* (Vol. 2).
World scientific.

686

- 687 Reuter, M., Buchwitz, M., Schneising, O., Krautwurst, S., O'Dell, C.W., Richter, A., Bovensmann,
- H. and Burrows, J.P., 2019. Towards monitoring localized CO2 emissions from space: co-located
- regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. *Atmospheric*

690 *Chemistry and Physics*, *19*(14), pp.9371-9383. DOI https://doi.org/10.5194/acp-19-9371-2019
691

- 692 Sierk, B., Bézy, J.L., Löscher, A. and Meijer, Y., 2019, July. The European CO2 Monitoring
- 693 Mission: observing anthropogenic greenhouse gas emissions from space. In International
- 694 Conference on Space Optics—ICSO 2018 (Vol. 11180, pp. 237-250). SPIE. DOI https://doi.org/
 695 10.1117/12.2535941
- 696
- Taylor, T.E., O'Dell, C.W., Baker, D., Bruegge, C., Chang, A., Chapsky, L., Chatterjee, A., Cheng,
- 698 C., Chevallier, F., Crisp, D. and Dang, L., 2023. Evaluating the consistency between OCO-2 and
- 699 OCO-3 XCO 2 estimates derived from the NASA ACOS version 10 retrieval
- algorithm. Atmospheric Measurement Techniques Discussions, 2023, pp.1-61. DOI
- 701 https://doi.org/10.5194/amt-16-3173-2023
- 702
- 703 Thorpe, A.K., Frankenberg, C., Thompson, D.R., Duren, R.M., Aubrey, A.D., Bue, B.D., Green,
- R.O., Gerilowski, K., Krings, T., Borchardt, J. and Kort, E.A., 2017. Airborne DOAS retrievals of
- methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to

- 706 AVIRIS-NG. Atmospheric Measurement Techniques, 10(10), pp.3833-3850. DOI
- 707 https://doi.org/10.5194/amt-10-3833-2017
- 708
- Van Geffen, J., Boersma, K.F., Eskes, H., Sneep, M., Ter Linden, M., Zara, M. and Veefkind, J.P.,
- 710 2020. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons
- 711 with OMI. Atmospheric Measurement Techniques, 13(3), pp.1315-1335. DOI
- 712 https://doi.org/10.5194/amt-13-1315-2020
- 713
- Varon, D.J., Jacob, D.J., McKeever, J., Jervis, D., Durak, B.O., Xia, Y. and Huang, Y., 2018.
- 715 Quantifying methane point sources from fine-scale satellite observations of atmospheric methane
- 716 plumes. Atmospheric Measurement Techniques, 11(10), pp.5673-5686. DOI
- 717 https://doi.org/10.5194/amt-11-5673-2018