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Abstract 13 

 Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places 14 

across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point 15 

sources, including coal-fired power plants. In this study, we made observations with the PRecursore 16 

IperSpettrale della Missione Applicativa (PRISMA) satellite imaging spectrometer and the Orbiting 17 

Carbon Observatory-3 (OCO-3) instrument onboard the International Space Station at over 30 coal-18 

fired power plants routinely between 2021-2022. CO2 plumes were detected in 50% of acquired 19 

PRISMA scenes, which is consistent with the combined influence of viewing parameters on detection 20 

(solar illumination, surface reflectance) and unknown factors (like daily operational status). We 21 

compare satellite-derived emission rates to in situ stack emission observations and find average 22 

agreement to within 27% for PRISMA and 30% for OCO-3, though more observations are needed to 23 

robustly characterize the error. We highlight two examples of fusing PRISMA with OCO-2 and 24 

OCO-3 observations in South Africa and India. For India, we acquired PRISMA and OCO-3 25 
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observations on the same day and use the high spatial resolution capability of PRISMA (30 m 26 

spatial/pixel resolution) to partition relative contributions of two distinct emitting power plants to the 27 

net emission. Though an encouraging start, two years of observations from these satellites did not 28 

produce sufficient observations to estimate annual average emission rates within low (<15%) 29 

uncertainties. However, as the constellation of CO2-observing satellites is poised to significantly 30 

improve in the coming decade, this study offers an approach to leverage multiple observation 31 

platforms to better quantify and characterize uncertainty for large anthropogenic emission sources. 32 

 33 

1 Introduction 34 

 Anthropogenic carbon dioxide (CO2) emissions are dominated by strong discrete point 35 

sources: power and other industrial combustion are estimated to make up 59% of global 36 

anthropogenic CO2 emissions with transport, buildings, and other sources making up the remaining 37 

20%, 9%, and 12%, respectively (Crippa et al., 2022). Fossil fuel combustion is the largest 38 

contributor to warming trends globally since the pre-industrial era (IPCC, 2021). However, there 39 

remains uncertainty in the total magnitude of emissions from these sectors as bottom-up emission 40 

estimates rely on reported emission factors and activity data, which may vary in granularity and 41 

quality across countries and provinces (Hong et al., 2017; Guan et al., 2017). Accurate CO2 emission 42 

quantification is important in light of the Paris Agreement, as participating countries must develop 43 

plans and report progress to reduce their country’s greenhouse gas (GHG) emissions (UN, 2015). 44 

Leveraging atmospheric measurements, particularly satellite remote sensing, can help reduce 45 

uncertainty in facility-level CO2 emission estimates, provided that the observations are accurate and 46 

sufficiently sample the facility in time (Hill and Nassar, 2019). Deployed systematically with robust 47 

error characterization, this system could be an anchor towards assessing and verifying anticipated 48 
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CO2 emission reductions as part of national and global GHG emission reduction plans and 49 

agreements.   50 

 Several studies have shown that atmospheric sounding satellites can accurately quantify some 51 

point source CO2 emissions from large individual coal-fired power plants. First, the Orbiting Carbon 52 

Observatory-2 (OCO-2; Crisp et al., 2017) is a space-based instrument that observes solar 53 

backscattered near-infrared radiance in the oxygen A band (758-772 nm; 0.04 nm spectral resolution), 54 

the weak CO2 band (1594-1619 nm; 0.08 nm spectral resolution), and strong CO2 band (2042-2082 55 

nm; 0.10 nm spectral resolution). OCO-2 views in nadir mode over land, while sun glint mode 56 

increases the signal over water giving measurements both land and water, and target mode to target 57 

specific validation or calibration sites. With its 10-km wide swath, ≤1.3x2.25  km2 pixel resolution, 58 

and better than 1.0 ppm precision for retrievals of the column-mean dry-air mole fraction of CO2 59 

(XCO2) (Taylor et al., 2023), OCO-2 is sensitive to single CO2 point sources that emit sufficiently 60 

close to an OCO-2 orbital track and are spatially isolated from other major CO2 sources. Using 61 

satellite observations from OCO-2, Nassar et al. (2017) detected strong CO2 enhancements in the 62 

near vicinity of seven large coal-fired power plants and employed a Gaussian plume model emission 63 

quantification technique to estimate emission rates for these facilities. Further study expanded the set 64 

of facilities that could be quantified by OCO-2 (Nassar et al., 2021). Other studies have leveraged 65 

the nitrogen dioxide (NO2) retrieval capability and wide swath of the TROPOspheric Monitoring 66 

Instrument (TROPOMI; van Geffen et al., 2020) to attribute and corroborate strong CO2 signals seen 67 

in OCO-2 observations (Hakkarainen et al., 2021; Reuter et al., 2019). The Orbiting Carbon 68 

Observatory-3 (OCO-3; Eldering et al., 2019), the flight spare of OCO-2, has been on board the 69 

International Space Station (ISS) since May 2019. Like OCO-2, it has been shown capable of 70 

quantifying CO2 power plant emissions. Nassar et al. (2022) analyzed nine successful OCO-3 71 
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acquisitions of the Bełchatów Power Station and found the variability in satellite-based emission 72 

estimates agreed well with the variability in independently reported hourly power generation. Guo et 73 

al., (2023) estimated emissions at Chinese power plants using OCO-2/3 and found close agreement 74 

with emission inventories. OCO-3 is different than OCO-2 in that it has a two-axis Pointing Mirror 75 

Assembly (PMA) for more agile pointing, allowing it to rapidly point off-nadir and take Snapshot 76 

Area Mapping (SAM) mode observations over the course of two minutes. These SAMs are 77 

approximately 80´80 km2 collections of measurements and are typically over sites of interest 78 

including cities, power plants, volcanoes, and flux towers. 79 

 Another class of remote sensing imaging spectrometers – sometimes also referred to as 80 

hyperspectral imagers – also have been shown capable of detecting and quantifying strong CO2 81 

signals from large point sources. Thorpe et al. (2017) flew the Next-Generation Airborne/Infrared 82 

Imaging Spectrometer (AVIRIS-NG) over a coal-fired power plant in Four Corners, New Mexico, 83 

and detected strong CO2 plumes. AVIRIS-NG observes a large range of solar backscattered radiance 84 

(380-2500 nm), but at much coarser spectral resolution (5 nm), and high spatial resolution (e.g., 3 m 85 

when flown at 3 km altitude). The much finer spatial resolution of AVIRIS-NG allows for improved 86 

visualization of the origin of a CO2 plume, but at the expense of fine precision for a single observed 87 

CO2 column. Still, Cusworth et al. (2021) analyzed a combination of AVIRIS-NG and the identically 88 

built Global Airborne Observatory (GAO) at over 20 power plants in the U.S., quantified emission 89 

rates, and found close agreement with continuous emissions monitoring (CEMS) hourly emission 90 

observations. From space, the PRecursore IperSpettrale della Missione Applicativa (PRISMA), 91 

launched in 2019, like AVIRIS-NG and GAO is sensitive to a large range of solar backscattered 92 

radiance (400-2500 nm), albeit at coarser spectral and spatial resolution (10 nm spectral resolution; 93 

30 m spatial resolution; Loizzo et al., 2018). PRISMA is a tasked satellite instrument potentially 94 
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capable of hundreds of 30 ´ 30 km2 observations per day, with equatorial crossing time of 10:30am, 95 

and target revisit of seven days, though true revisit depends on tasking priorities of the system. 96 

Cusworth et al. (2021) showed a few examples of CO2 plumes detected and quantified with  97 

PRISMA, with quantified emissions similar in magnitude to reported CEMS emissions.. 98 

 The capacity for satellites to be leveraged as useful tools for reducing uncertainty in the global 99 

CO2 anthropogenic emission sector requires synthesis and routine observations (i.e., tasking) of a 100 

critical number of facilities. Therefore, in this study, we made observations at a subset of global coal-101 

fired power plants routinely over the course of two years to probe detection limits, emission 102 

quantification uncertainty, and data yields. We observed these facilities with both OCO-3 and 103 

PRISMA. To our knowledge to date, this study represents the largest satellite-based facility scale 104 

investigation of direct CO2 emission quantification across a diverse set of global power plants, and 105 

the first investigation to assess the capability of PRISMA to reliably detect and quantify CO2 point 106 

sources. The results, though not sufficient by themselves to reduce uncertainty relative to bottom-up 107 

inventories significantly on an annual basis, show a path forward for data fusion and synthesis of 108 

observations from the growing constellation of planned CO2 sensing satellites. 109 

 110 

2 Methods 111 

Table 1 lists the locations of all power plants we targeted during this study between 2021-112 

2022 with PRISMA. OCO-3 includes a subset of these sites as well as other fossil fuel combustion 113 

sites as part of its list of possible targets. We identified coal-fired power plants to routinely target 114 

using a combination of bottom-up and top-down information. Bottom-up coal-fired power plant CO2 115 

emission estimates rely on activity data, that usually includes permitted capacity of a power plant 116 

and its operational state; and emission factors, usually estimated from the composition of the coal 117 



 
 
 
 

6 

that is combusted. Inventories, like the Global Energy Monitor (GEM), include this data for a large 118 

set of coal-fired power plants across the globe (GEM, 2023). From the GEM database, we gathered 119 

the top 10 largest bottom-up coal-fired power plants globally. We then gathered a list of top-down 120 

TROPOMI NO2 combustion hotspots, as inferred by Beirle et al. (2021). We included an additional  121 

seven unique power plants using this dataset. Because the imaging scene size of PRISMA is 30 ´ 30 122 

km2, some adjacent smaller power plants were imaged simultaneously along with these larger power 123 

plants. In total, outside of the U.S., we made PRISMA observations at 27 power plants. In the U.S., 124 

we chose 10 power plants to routinely target using reported EPA CEMS information 125 

(campd.epa.gov): five of the top 30 emitting power plants, and five progressively lower emitters, 126 

chosen so that we could assess satellite detection capabilities.  127 

 128 

Table 1. Power plants that were targeted specifically by PRISMA in this study. 129 

Power Plant 
Name 

Countr
y Latitude Longitude 

Number 
clear-sky 

observatio
ns 

Number 
plume 

detections 

Minimum 
quantified 

CO2 
emission 
(kt CO2 

h-1) 

Mean 
quantified 

CO2 
emission 
(kt CO2 

h-1) 

Maximum 
quantified 

CO2 emission 
(kt CO2 h-1) 

Mundra-
Adani 

India 22.82 69.55 12 7 0.49±0.07 1.09±0.19 1.76±0.32 

Korba-Balco India 22.40 82.74 5 1 NA* NA NA 
PLN Paiton 

Baru 
Indoneis

a -7.71 113.57 4 2 NA NA NA 

Craig USA 40.46 -107.59 5 5 0.56±0.11 0.69±0.16 0.8±0.22 

Cumberland USA 36.39 -87.65 1 0 NA NA NA 

Dry Fork USA 44.39 -105.46 6 3 0.61±0.09 0.65±0.13 0.69±0.16 

H L Spurlock USA 38.70 -83.82 5 3 1.15±0.32 1.26±0.39 1.37±0.45 
Ulsan Hanju 

(1) 
South 
Korea 35.49 129.33 1 0 NA NA NA 

Hasdeo India 22.41 82.69 5 0 NA NA NA 

Hekinan Japan 34.83 136.96 6 4 0.72±0.47 3.88±1.09 8.35±2.14 

Baotou-1 China 40.66 109.66 5 2 0.19±0.07 0.27±0.07 0.35±0.07 

Kendal South 
Africa -26.09 28.97 7 2 0.85±0.13 0.85±0.13 0.85±0.13 

NTPC Korba India 22.39 82.68 6 1 1.28±0.27 1.28±0.27 1.28±0.27 
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Kriel South 
Africa -26.25 29.18 8 3 0.74±0.15 0.82±0.15 0.95±0.16 

Labadie USA 38.56 -90.84 4 4 0.73±0.18 0.73±0.18 0.73±0.18 

Martin Lake USA 32.26 -94.57 8 8 1.45±0.31 2±0.59 2.6±0.98 

Matimba South 
Africa -23.67 27.61 11 8 0.33±0.05 0.72±0.16 1.14±0.32 

Matla South 
Africa -26.28 29.14 8 3 0.33±0.05 0.77±0.15 1.37±0.27 

Medupi South 
Africa -23.71 27.56 15 12 0.33±0.06 0.83±0.19 1.47±0.34 

Mundra-Tata India 22.82 69.53 12 5 0.38±0.09 0.74±0.13 1.32±0.21 
Niederausse

m 
German

y 51.00 6.67 1 0 NA NA NA 

Oregon USA 41.67 -83.44 5 1 NA NA NA 

Paiton-3 Indonesi
a -7.71 113.58 4 4 1.54±0.37 3.16±0.69 4.78±1.02 

Rihand India 24.03 82.79 8 5 0.83±0.17 0.99±0.26 1.36±0.38 

Sanfeng China 40.66 109.76 6 0 NA NA NA 

Sasan India 23.98 82.63 9 7 0.65±0.15 1.01±0.24 1.51±0.31 

Sooner USA 36.45 -97.05 6 3 1.05±0.22 1.05±0.22 1.05±0.22 

Togtoh China 40.20 111.36 2 2 0.25±0.06 0.91±0.17 1.58±0.27 
Ulsan Hanju 

(2) 
South 
Korea 35.47 129.38 1 0 NA NA NA 

Vindhyachal India 24.10 82.68 9 7 0.33±0.1 0.72±0.15 1.24±0.23 

Waigaoqiao China 31.36 121.60 6 1 NA NA NA 
Yeosu 

Hanwha 
South 
Korea 34.84 127.69 2 0 NA NA NA 

Yosu South 
Korea 34.83 127.67 2 0 NA NA NA 

Al Zour Kuwait 28.71 48.37 12 0 NA NA NA 

*A value of “NA” indicates that no plumes were detected at this power plant or that the emission quantification 130 
algorithm (described in Methods) failed to quantify an emission rate. 131 
 132 

2.1 PRISMA observations and quantification 133 

 PRISMA is a tasked satellite instrument, capable of collecting around 200 30 ́  30 km2 targets 134 

per day and has 20° pointing capability off nadir. Authenticated users can program single observation 135 

requests through PRISMA’s web portal (prisma.asi.it), which currently allows for 13 concurrent 136 

requests at a time per user. We specified two-week observing windows for each request, and 137 

configured requests to collect if the scene-averaged solar zenith angle (SZA) was less than 70° and 138 
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forecast meteorology anticipated less than 20% cloud cover. If the orbital configuration, weather, 139 

SZA align and there are no other conflicting or higher priority requests, PRISMA images a target. 140 

 For each acquired PRISMA image, we performed XCO2 retrievals on all pixels within a 2.5 141 

km radius around the power plant. We retrieve XCO2 using the Iterative Maximum A Posteriori – 142 

Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm, as implemented in 143 

Cusworth et al. (2021). This approach estimates XCO2 by decomposing an observed radiance 144 

spectrum into high and low frequency features between 1900-2100 nm. For high-frequency features, 145 

we simulate atmospheric transmission of CO2, H2O, and N2O using a Beer-Lambert approximation. 146 

For low-frequency features (e.g., surface reflectance, aerosol scattering), we use an 8-degree 147 

polynomial. The forward model that drives IMAP-DOAS therefore has the following form: 148 

𝐹!(𝐱) = 	 𝐼"(𝜆)	exp	 ,−.𝑠#.𝐴$τ#,$ 	
&'

$()

*

#()

2.𝑎+𝜆+
,

+("

					(1) 149 

Where Fh is simulated backscattered radiance at wavelength l, I0 is incident solar intensity, 𝐴$ is the 150 

airmass factor at vertical level l Î [1,72], τn,l is the optical depth for each trace gas element, sn is the 151 

scaling factor applied to the optical depth, and ak is a polynomial coefficient (K=8). Optical depths 152 

are computed by querying meteorological information for pressure and temperature from the 153 

MERRA-2 reanalysis (Gelaro et al., 2017), and using that information to select proper HITRAN 154 

absorption cross sections for each trace gas (Kochanov et al., 2016). To compare the model from 155 

Equation 1 against PRISMA observed radiance (𝐲), we compute 𝐹!(𝐱) between 1900-2100 nm at 156 

0.02 nm resolution, then convolve the output using the PRISMA full-width half maximum, and 157 

sample at PRISMA wavelength positions. This results in vector 𝐅(𝐱) that is comparable to 𝐲. The 158 

vector 𝐱, also called the state vector, includes scale factors for CO2, H2O, N2O, and polynomial 159 

coefficients: 𝐱 = (𝑠-.', 𝑠/'. , 𝑠0'. , 𝑎1 , … , 𝑎2). 160 
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 XCO2 is retrieved from PRISMA radiance using a Bayesian optimal estimation approach 161 

(Rodgers, 2000). Here, the optimized state vector solution, or posterior, is solved through Gauss-162 

Newton iteration: 163 

𝐱34) =	𝐱𝐀 + (	𝐊3𝑻𝐒𝐎8𝟏𝐊3 +	𝐒𝐀8𝟏)8)𝐊3𝑻𝐒𝐎8𝟏[𝑦 − 𝐅(𝐱3) +	𝐊𝒊(𝐱𝒊 −	𝐱𝐀)]						(2) 164 

Where SO = [εεT] is the observation error covariance matrix defined by the instrument signal to noise 165 

ratio (SNR), xA is the prior estimate of the state vector, and SA is the prior error covariance matrix. 166 

The matrix K, or Jacobian matrix, represents the first derivative of the 𝐅(𝐱) with respect to the state 167 

vector:  168 

𝐊3 =	
𝜕𝐅
𝜕𝐱A𝐱(𝐱!

							(3) 169 

The posterior error covariance matrix can be computed explicitly to quantify retrieval precision: 170 

𝐒C = 	 D𝐊3<𝐒=8)𝐊3 +	𝐒>8)E
8)							(4) 171 

Across the scenes we acquired with PRISMA, using this retrieval approach, we quantify an 172 

average 3.3 ppm precision for an XCO2 column. Absolute biases in PRISMA XCO2 retrievals are 173 

less important for CO2 plume detection and quantification: systematic retrieval biases are removed 174 

from a scene through the quantification and removal of a local background, as described below. To 175 

characterize bias in emission quantification, we compare emission rates derived from PRISMA to 176 

stack-level CEMS measurements (Section 3.2).  177 

We quantified emissions for each PRISMA plume detection using the Integrated Mass 178 

Enhancement (IME) approach (Cusworth et al., 2021). However, we updated the masking scheme 179 

for this analysis to produce more reliable masks for each CO2 plume. Figure 1 shows the plume 180 

masking procedure for a plume detected at the Hekinan, Japan power plant on July 19, 2021. First, 181 

we apply a background threshold to differentiate candidate plume pixels from the background 182 
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(method to quantify background threshold described in Section 3.2). We then group enhanced XCO2 183 

pixels into clusters of at least 20 connected pixels. These groups are then buffered with a one-pixel 184 

dilation filter to smooth edges and any gaps that exist in a group (Dougherty, 1992). Finally, each 185 

cluster is considered part of the plume if at least one of its pixels is within 500 m of an exhaust stack.  186 

 187 

Figure 1. Example of the plume delineation and masking process performed on XCO2 retrievals 188 

derived from PRISMA observations. Panel (a) shows the simultaneously observed RGB PRISMA 189 

imagery, panel (b) shows retrieved XCO2 above the background, panels (c)-(e) show the plume 190 

masking procedure to isolate enhanced pixels and remove noise, and panel (f) shows the resulting 191 

CO2 plume superimposed on the RGB imagery. 192 
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 193 

IME is calculated for a plume using the following equation: 194 

IME = 	.ΔΩ3

0

3()

Λ3 		(5) 195 

where ΔΩ3 is the XCO2 mass enhancement in pixel i relative to background (kg m-2),  Λ3 is the pixel 196 

area (900 m2), and N is the number of pixels in the plume. The CO2 emission rate Q is estimated from 197 

the IME using the following relationship: 198 

𝑄 =
𝑈?@@
𝐿 	IME		(6) 199 

where 𝐿 = 	R∑ Λ0
3() 3 is the plume length and 𝑈?@@ is the effective wind speed. The effective wind 200 

speed relates IME and plume length parameterizations to true emission rates. This relationship can 201 

be empirically estimated through large eddy simulations using the 10-m wind speed (U10). Here we  202 

apply the Ueff  relationship derived  from Varon et al., 2018:  203 

𝑈?@@ = 1.1 log𝑈)" + 0.6.					(7)	204 

where Ueff and U10 are in units of [m s-1]. We query the ERA5-Land reanalysis using the Open-Meteo 205 

Application Programming Interface (open-meteo.com), which provides hourly wind information 206 

globally at 0.1° spatial resolution (Muñoz-Sabater et al., 2021). Uncertainty due to winds is calculated 207 

by generating an ensemble of U10 values assuming 50% error (Cusworth et al., 2021). Uncertainty 208 

due to the CO2 background is calculated by generating many emission estimates and calculating a 209 

standard deviation using an ensemble of background thresholds. Background thresholds are set to 210 

vary with scene-averaged CO2 retrieval precision. Total emission uncertainty is estimated by adding 211 

in quadrature the contribution of wind and background uncertainties. 212 

 213 
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2.2 OCO-3 observations and quantification 214 

 OCO-3 is also a tasked mission: it can take SAMs over any place of interest within the latitude 215 

range of the ISS orbit (about 52° S to 52° N). In addition to the SAM locations we supplied to OCO-216 

3 to overlap with PRISMA targets, there are many other power plant and fossil fuel combustion 217 

sources that make up its set of mission targets. However, unlike PRISMA, OCO-3 does not consider 218 

cloud forecasts, snow cover, or viewing geometry when planning SAMs and thus the majority of 219 

observations fail to produce useful maps of XCO2. Additionally, aerosol- and albedo-induced XCO2 220 

artifacts are present in many SAMs (Bell et al., 2023) and thus make the detection of plumes even 221 

more difficult.  222 

For all cloud-free soundings, OCO-3 XCO2 concentrations are derived using the 223 

Atmospheric Carbon Observations from Space (ACOS; O’Dell et al., 2012; Crisp et al., 2012; O’Dell 224 

et al., 2018) v10 optimal estimation retrieval, which employs the Levenberg-Marquardt modification 225 

of the Gauss-Newton method. In this work, bias corrected XCO2 from the OCO-3 Lite files is used 226 

but the official data quality flag is not applied. This was done because often the quality flag removes 227 

XCO2 retrievals within the plume and makes emission estimation more difficult or impossible 228 

(Nassar et al., 2022). For SAMs where we visually identified CO2 plumes (e.g., Figure 2), emission 229 

rates are estimated using two approaches: (1) a Gaussian plume model and (2) the IME method. For 230 

the Gaussian plume model approach, we follow the algorithm outlined in Nassar et al. (2022): 231 

𝑉(𝑥, 𝑦) =
𝑄

√2𝜋𝜎A(𝑥)𝑢
𝑒
8()')(

A
D"(E)

)#
					(8)	232 

𝜎A(𝑥) = 𝑎 ⋅ 	c
𝑥
𝑥1
d
".2GH

				(9)	233 

Where V represents the vertical columns within the plume (g/m2), Q is the CO2 emission rate (g/s),  234 

y is the wind direction perpendicular to the plume (m), u is the wind speed at the height of the plume 235 
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at its midline (m/s) assuming plume rise of 250 m above the stack height,  𝜎A(𝑥) is the standard 236 

deviation of the y-direction, 𝑥1  is a characteristic plume length (1000 m), and a is a stability 237 

parameter (Nassar et al., 2021). Following Nassar et al. (2022), wind speed and direction inputs are 238 

estimated by taking the average of ERA-5 (Bell et al., 2020) and MERRA-2 reanalysis data. The 239 

wind direction is optimized by rotating the plume, typically between -30° to 30° away from the mean 240 

ERA-5/MERRA-2 direction, and calculating the correlation coefficient (R) of the modeled and 241 

observed XCO2. The optimized wind direction is the direction that produces the largest R. The 242 

background is typically estimated by averaging OCO-3 footprints within a radius of 30 km, excluding 243 

the plume itself and a narrow 3 km buffer zone.  However, if there are visible artifacts in the XCO2 244 

background that are unrelated to the power plant plume, the background field is modified to avoid 245 

them. For example, decreasing the radius of footprints used from 30 km to 20 km. The uncertainty 246 

in wind speed is calculated by taking the difference of the emission estimate using two different 247 

models (ERA-5 and MERRA2). The background concentration uncertainty is calculated by 248 

estimating Q using three different background radii of 30, 40, and 50 km. Q is also calculated for a 249 

30 km radius background but only using the left and right halves of the background, relative to the 250 

direction of the plume. The standard deviation of both these methods is calculated and the larger of 251 

the two is the background uncertainty. The plume rise uncertainty is calculated by estimating Q using 252 

plume rise values of 100, 200, 250, 300, and 400 m and taking the standard deviation of those values. 253 

Total uncertainty on the emission rate Q using the Gaussian plume method is estimated by adding in 254 

quadrature the contribution of wind speed, background concentration, and plume rise uncertainties. 255 

 To obtain another estimate of emission rate, we also apply an IME quantification approach to 256 

the CO2 plumes, which to our knowledge is the first time the IME method has been applied to OCO-257 

3 SAMS at coal power plants. We first interpolate the XCO2 retrievals in a SAM to a uniform 2 ´ 2 258 
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km2 grid to account for occasional OCO-3 footprint overlap. Similar to Varon et al. (2018), 3 ´ 3 259 

pixel neighborhoods are sampled and the distributions are compared to the background using a 260 

Student’s t-test. The default confidence level for the t test is 95% but this is often lowered to visually 261 

capture most of the plume. The plume is then smoothed using a 3 ´ 3 pixel median filter and a 262 

Gaussian filter with a standard deviation of 0.5. The Ueff calculation is done using an equation 263 

approximately equal to Equation 7 (Ueff  = 1.0 log𝑈)" + 0.55). Other recent studies have used various 264 

methods (Lin et al., 2023; Brunner et al., 2023), but further research is needed to determine the most 265 

accurate way to estimate Ueff for an OCO-3-like instrument. The wind direction is the optimized 266 

direction determined by the Gaussian plume model. The background XCO2 estimate is taken from 267 

the Gaussian plume model methodology and the plume is typically required to be within 50 km 268 

downwind and 8 km crosswind of the source, although these parameters are modified if the plume 269 

curves outside of the 8 km crosswind threshold or there are XCO2 artifacts that should be avoided.  270 

The uncertainty for the IME method is estimated similarly to the Gaussian plume model 271 

method. The uncertainty in wind speed is calculated by taking the standard deviation of the emission 272 

estimates using wind speed from two different models (ERA-5 and MERRA2). The background 273 

concentration uncertainty is calculated by estimating Q using the different backgrounds calculated in 274 

the Gaussian plume model method: a 20 km radius, 30 km radius, 40 km radius, left half, full circle, 275 

and right half. The standard deviation of the three radii estimates and left half, full circle, and right 276 

half estimates are calculated and the larger of the two is the background uncertainty. Uncertainty of 277 

the Student's t-test confidence level is also estimated. The confidence level and -10% and +10% of 278 

the confidence level are used to find Q. For example, if the confidence level needed to visually 279 

capture the XCO2 plume is 85%, Q is calculated for 75%, 85%, and 95% and the standard deviation 280 

of those three values represents the confidence level uncertainty. Total uncertainty on the emission 281 
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rate Q using the IME method is estimated by adding in quadrature the contribution of wind speed, 282 

background concentration, and Student's t-test confidence level uncertainties. 283 

Figure 2 shows IME methodology successfully identifying an XCO2 plume from an OCO-3 284 

SAM taken over the Colstrip power plant. 285 

 286 

 287 

Figure 2. IME plume identification approach applied to an example OCO-3 SAM at the Colstrip 288 

power plant on 18 August 2021. Left panel: OCO-3 SAM bias corrected XCO2. Right panel: yellow 289 

pixels indicate the final plume mask. 290 

 291 

3 Results 292 

3.1 Global yields from two years of observations 293 

 Figure 3a shows a global map of power plants we targeted with PRISMA, with the marker 294 

for each power plant’s location (latitude, longitude) scaled to represent the number of successful 295 

acquisitions between 2021-2022. In total, we acquired 181 PRISMA images, which corresponds to 296 

314 unique power plant observation scenes. Of these scenes, 210 were of sufficient quality to attempt 297 

CO2 retrieval and plume detection, with quality mostly determined by visual inspection for clouds 298 

and haze. Of these 210 scenes, 104 were determined to have CO2 plumes (Figure 3b). Scenes were 299 
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marked as containing CO2 plumes through inspection of XCO2 and visible imagery: if a large cluster 300 

of pixels with elevated XCO2 above the background were also in the vicinity of a power plant exhaust 301 

stack, an analyst would mark the scene as containing a CO2 plume. Routine tasking observations with 302 

PRISMA resulted in an average of 6 acquisitions for each power plant (maximum 15), roughly one 303 

image acquired per quarter. Of these acquisitions, plumes were detected on average four times per 304 

facility (maximum 12).  305 

 For OCO-3, 1363 power plant SAMs were taken during September 2019 to December 2022. 306 

Of these, 139 XCO2 plumes emanating from power plants were visually identified. However, only 307 

14 were for power plants that were also observed by PRISMA and have CEMS validation (nine 308 

Colstrip cases, two Martin Lake cases, and three Craig cases). The acquisition rates are low relative 309 

to PRISMA because OCO-3 does not account for scene favorability when planning its SAMs.  For 310 

example, OCO-3 took 66 Colstrip SAMs from 2019-2022 yet only yielded nine high-quality XCO2 311 

plume cases. 312 

 313 

Figure 3. Data yields from PRISMA continually between 2021-2022. Panel (a) shows the number 314 

of clear-sky acquisitions for each power plant. Panel (b) shows the number of plumes detected by an 315 

analyst for each of the observed power plants. 316 

 317 
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 The low observed average detection rate of CO2 plumes is a result of three primary factors: 318 

(1) observing conditions at each facility including solar zenith angle (SZA) and surface reflectance; 319 

(2) local meteorology; and (3) operational status at each power plant at the time of acquisition. To 320 

test how well these factors predict the presence of a plume for PRISMA, we fit a logistic regression 321 

classification function with a sparse (L1) penalty to our dataset (Fan et al., 2008). This algorithm fits 322 

a logit function to the plume detection outcome of each scenes (i.e., detected plume = TRUE, no 323 

detected plume = FALSE) using a set of predictor variables that are likely candidates to explain 324 

prediction results.  In this setup, the statistical model is fit using the following predictor variables – 325 

SZA, U10, average single-sounding retrieval precision across the scene, annual bottom-up emission 326 

estimate for the power plant using GEM, and average observed radiance between 1900-2100 nm 327 

within the scene normalized by the cosine of the SZA. This last factor is a simple proxy for surface 328 

reflectance, although it does not take into account other factors that influence radiance observations 329 

(e.g., water vapor, aerosols, other atmospheric constituents). We split the data so that 50% was used 330 

to train the model and 50% was reserved as a test set. The predictor variables were all standardized 331 

by their mean and standard deviation before the model was fit. The results of classification can be 332 

summarized using two statistics: precision (ratio of true positives to sum of true positives and false 333 

positives) and recall (ratio of true positives to sum of true positives and false negatives). The results 334 

of fitting a logistic regression model to the data show minor prediction performance, with precision 335 

= 0.60 and recall = 0.69 for positive plume detection. The regression coefficients are shown in Figure 336 

4a. The coefficient with the highest weight is normalized radiance. Figure 4b shows SZA against 337 

normalized radiance, with red dots indicating no plume detection and blue dots representing positive 338 

plume detection. Though no clear separation exists, there is a cluster of no plume detection at high 339 

SZA and low normalized radiance. This is a consistent and expected relationship, as SZA and surface 340 
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reflectance are principal drivers of the quantity of light that is observed by the satellite, and therefore 341 

SNR of the observation. 342 

  343 

 344 

Figure 4. CO2 plume prediction using various atmospheric, retrieval, and bottom-up information. 345 

Panel (a) shows the results of fitting a logistic regression classification model to the set of PRISMA 346 

acquisitions where an analyst identified the presence or lack of a plume. Panel (b) shows the top two 347 

explanatory variables (SZA and normalized radiance) along with plume classification. 348 

 349 

 The logistic regression model performed better on the test data set than predictions made at 350 

random, though the prediction performance was still low. Missing from the model is sub-annually 351 

resolved information regarding operating status. For most of the power plants outside the U.S., we 352 

do not have information on daily operations of a power plant. In many cases of non-detects, we could 353 

simply be observing a power plant temporarily not in operation. Another possibility is that at the time 354 

of acquisition, some power plants were operating at reduced capacity, meaning that CO2 emission 355 

rates were lower than those predicted by annual emission factors or activity data. If the true CO2 356 

emission rate was below the minimum detection limit (MDL) possible by the PRISMA satellite, then 357 
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it would show as a non-detect. However, even if the emission were near or slightly above the 358 

PRISMA MDL, the probability of detection would still be low as slight variations in atmospheric 359 

properties, as seen in Figure 4, would then influence the ability to detection a CO2 plume. 360 

 361 

3.2 Validation of PRISMA and OCO-3 emission rates against CEMS  362 

 For each power plant where a CO2 plume was identified, we quantify emissions using the 363 

IME approach described by Equations 5-7. In order to estimate the XCO2 mass enhancement (ΔΩ in 364 

Equation 1), a local background must be quantified and subtracted from total XCO2 retrievals across 365 

the scene. To do this, we apply a concentration threshold b to initiate the plume masking and 366 

segmentation process (described in Methods section). Once we have a plume mask, we apply another 367 

concentration threshold g  to the remaining XCO2 pixels that exist outside of the plume. This value g 368 

represents the XCO2 background that we use to calculate the XCO2 enhancement that is used in the 369 

IME formulation of Equation 1. Thresholds b and g largely influence the magnitude of the emission 370 

rate and are not known a priori. For global generalizability, we wish to estimate b and g such that 371 

they do not vary across power plants, seasons, regions, etc. Therefore, we parameterize b and g as 372 

percentiles under the assumption that the local contrast between enhanced CO2 plume pixels and the 373 

background should be similar across PRISMA scenes.  374 

To estimate values for b and g, we compare EPA CEMS data for power plants in the U.S. 375 

with estimated emission rates from PRISMA. In total, we have 12 scenes in the U.S. with CEMS 376 

information that pertain to 5 power plants. We then optimize b and g such that the output of an 377 

ordinary least squares regression produces a slope near unity. Figure 5a shows the results of this 378 

optimization which produces an optimal b percentile of 94% and a g percentile of 62%. The results 379 

also show decent correlation between CEMS data and PRISMA-derived emission rates (R2 = 0.43). 380 
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A single outlier at the Labadie power plant (imaged July 10, 2022) shows the largest discrepancy 381 

from CEMS data (69%), but the remaining plumes show average 27% relative difference from CEMS 382 

data. If we remove the one data point at Labadie, the R2 improves to 0.75. Though a limited sample 383 

size, between PRISMA and OCO-3, these scenes represent variability in solar geometries (20-40° 384 

SZA), surface reflectance (0.09-0.90 normalized radiance), and reported emission rates (0.51 – 2.39 385 

kt CO2 h-1). Therefore, we use these optimal parameters and apply them to our global dataset of 386 

PRISMA detections. These emission rates are reported in Table 1. There are some instances when 387 

performing IME emission calculations using these thresholds and plume masking technique do not 388 

result in emission rates (e.g., the plume masking procedure produces a mask with no pixels). In these 389 

cases, we report a detection but not an emission quantification. 390 

Figures 5b and 5c shows the comparison between OCO-3 and CEMS at some power plants 391 

that overlap with PRISMA observations (14 scenes total). OCO-3 Gaussian plume model emission 392 

rates (Fig. 5b) have an improved correlation compared to PRISMA (R2 = 0.51), although with greater 393 

bias (average 47% relative difference from CEMS).  The OCO-3 IME estimates (Fig. 5c) have worse 394 

R2 (0.32) but a better RMSE (0.45 kt CO2/hr) compared to the Gaussian plume model estimates (0.84 395 

kt CO2/hr), with 9 of the 14 cases being within 30% of the reported CEMS emission and an average 396 

relative difference of 30% for all 14 cases. Additionally, the least squares fit for IME is closer to the 397 

1-to-1 line than for the Gaussian plume model.  398 

 399 
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 400 

Figure 5. Comparison of emission rates in the U.S. between satellite-derived estimates and CEMS 401 

information. Panel (a) shows a comparison between PRISMA derived emission rates and CEMS (R2 402 

= 0.43), panel (b) shows a comparison between OCO-3 and CEMS using the Gaussian plume model 403 

(R2 = 0.51), and panel (c) shows a comparison between OCO-3 and CEMS using IME (R2 = 0.32). 404 

 405 

Unique sources of error for OCO-3 emission estimates include geolocation errors in the 406 

XCO2 product. These errors are typically less than 1 km, but can be up to 2 km (Taylor et al., 2023). 407 

Errors of this magnitude, about the size of an OCO-3 footprint (~2´2 km2), may mean that an entire 408 

footprint is not included when estimating emissions using the Gaussian plume method, which 409 

assumes that the plume only extends downwind of the known source location. The Gaussian plume 410 

model is also susceptible to wind direction errors, and requires the plume to be Gaussian in shape, 411 

which is often not true. IME, while not suffering from wind direction or geolocation-induced errors, 412 

assumes that the entire plume is captured in a given SAM, which is sometimes not true and results in 413 

an underestimation of emissions. IME is also sensitive to errors in Ueff parameterization. 414 

 415 
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3.3 Comparison and fusion of PRISMA and OCO  416 

 Outside the U.S., PRISMA observed the Matimba power station in South Africa 11 times and 417 

quantified emission rates 7 times. Emissions from Matimba have previously been quantified and 418 

validated using OCO-2 (Hakkarainen et al., 2021). This station does not report hourly emission rates, 419 

but does report daily power generation (Eskom, 2023). Though not a direct comparison, we can use 420 

this information to check if the emission quantification approach we describe above captures some 421 

variability in activity at this power plant. Figure 6a shows the emission rates we quantified compared 422 

against reported power generation. We see rough agreement in variability – the high power 423 

generation reported between Apr to July 2021 (70000-85000 MWh) drop for subsequent dates 424 

(47000-66000 MWh) between Sep 2021 to Sep 2022, a drop which is also seen in the PRISMA-425 

derived CO2 emission rate. Across all observations, we estimate an emission rate range of 0.30-1.04 426 

kt CO2 h-1 (average 0.66 kt CO2 h-1). This average emission rate is substantially lower than the 427 

average 2.50 kt CO2 h-1 emission rate estimated from OCO-2 and TROPOMI between 2018-2020, 428 

but within the range of emissions estimates directly quantified with OCO-2 (0.30-7.20 kt CO2 h-1; 429 

Hakkarainen et al., 2021). However, this discrepancy could be result of (1) changes in activity or 430 

variability or (2) existence of other nearby emission sources. For changes in activity, during August 431 

2020, the Matimba reported a large range of power generation (65000-94000 MWh) and emission 432 

estimates derived directly from OCO-2 were also highly variable (0.88-4.33 kt CO2 h-1). Given that 433 

maximum power generation at the time of a PRISMA observation was 85000 MWh, some of the 434 

discrepancy in maximum CO2 quantification between PRISMA and OCO-2 could be due to activity.  435 

 Nearby (7 km) the Matimba Power Station is the Medupi Power Plant (Figure 6b). Figure 6c 436 

show the Medupi CO2 plume observed during the same PRISMA overpass on Apr 5, 2021. The 437 

PRISMA derived emission rate for Medupi is 0.64 ± 0.26 kt CO2 h-1 and for Matimba is 0.73 ± 0.30 438 
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kt CO2 h-1. Given the proximity of the two power plants, the higher derived emission rate reported 439 

for Matimba from previous studies could actually be a result of a net emission from these two 440 

facilities. The OCO-2 flight track is located tens of kilometers downwind from Matimba and Medupi, 441 

making a clear delineation between potentially co-emitted distinct emission plumes near impossible. 442 

If we sum emission rates from both Medupi and Matimba, we quantify a range of 0.89-1.73 kt CO2 443 

h-1 (1.30 ± 0.28 kt CO2 h-1), which is still lower, but closer to the average emissions quantified by 444 

OCO-2.  445 

 446 

Figure 6. Emission rates and reported power generation at the Matimba and Medupi power plants in 447 

South Africa. Panel (a) shows the CO2 emission rates derived from PRISMA and the reported daily 448 
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power generation for the day of PRISMA overpass. Panel (b) shows the locations of the Medupi and 449 

Matimba power plants (base imagery provided by Google Earth; © Google Earth 2023). Panels (c) 450 

and (d) show plume imagery and emission rates for a PRISMA overpass on Apr 5, 2021. 451 

 452 

 The ability to differentiate the contribution of unique point sources to a regional total is an 453 

application made possible by joint observing of imaging spectrometers and atmospheric sounders. 454 

Figure 7 shows observations that were made at the Tata Mundra Ultra Mega Power Plant and the 455 

Adani Mundra Thermal Power Project: two power plants less than 3 km apart. Both OCO-3 and 456 

PRISMA imaged the power plants on Apr 9, 2022. Figure 7b shows the OCO-3 SAM (taken 04:41 457 

UTC) – large CO2 enhancements appear along the coastline likely associated with emission from 458 

these power plants. PRISMA imaged the power plants less than two hours later (06:02 UTC) and 459 

detected CO2 plumes at each facility (Figure 7b-c). The OCO-3 derived emission rate using Gaussian 460 

plume approaches is 5.5 ± 0.7 kt CO2 h-1, but the emission rate derived using the IME approach is 461 

much lower (3.0 kt CO2 h-1). For this case, the IME approach may be more appropriate as the shape 462 

of the OCO-3 plume (Figure 7b) is more diffuse in nature and does not visibly resemble a Gaussian 463 

structure. The PRISMA emission rate for the Adani plant is 1.07 ± 0.17 kt CO2 h-1 and for the Tata 464 

Mundra plant is 0.53 ± 0.08 kt CO2 h-1. We can use this information to estimate that 67% of the net 465 

CO2 emission came from Adani, and the remaining 33% came from the Tata plant. The combined 466 

emission rate (1.60 ± 0.25 kt CO2 h-1) is lower than the OCO-3 IME emission rate. Like the Matimba 467 

power plant, some of this discrepancy may partially be explained by bias or uncertainty in retrievals, 468 

background, and wind information. Also, lower estimates of CO2 emissions from PRISMA are 469 

consistent with the fact that PRISMA is only sensitive to emissions at two exhaust stacks, while the 470 

OCO-3 observation includes all CO2 sources in the industrial area around Mundra. Continued 471 
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validation of retrieved emission rates against ground standards (e.g., CEMS) will help better quantify 472 

bias and uncertainty. However, even with lingering uncertainty, the near simultaneous observations 473 

of OCO-3 and PRISMA can help us disentangle the relative contributions from each power plant. 474 

 475 

 476 

Figure 7. Near-simultaneous observation of two power plants in Mundra, India on Apr 9, 2022. Panel 477 

(a) shows the locations of two power plants spaced less than 3 km apart: Tata Mundra and Adani 478 

Mundra Power Stations (base imagery provided by Google Earth; © Google Earth 2023). Panel (b) 479 
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shows the OCO-3 SAM with a red dot showing the location of the power plants. Panel (c) and (d) 480 

show the PRISMA acquisition (less than 2 hours after OCO-3) over the two power plants with 481 

associated emission rates.  482 

 483 

Conclusion 484 

 We observed a global set of power plants for two years between 2021-2022 with both 485 

PRISMA and OCO-3 to test the ability of these satellite platforms to do routine operational 486 

monitoring of CO2 emissions. When PRISMA observations were of sufficient quality to perform 487 

XCO2 retrievals, we detected CO2 plumes nearly half of the time. We fit a logistic regression 488 

classification using plume detections and find that there is some relationship between SZA and 489 

surface reflectance that partially explains plume prediction; consistent given that these factors are 490 

major drivers of SNR. The remaining non-plume detections may be due to operational status of a 491 

power plant at the time of observation. We compared emission rates from both PRISMA and OCO-492 

3 to power plants in the U.S. where we have access to hourly in situ CEMS emission information. 493 

We find significant correlation between satellite and in situ estimates, though some significant biases 494 

may exist for some of the observations for both PRISMA and OCO-3. Also, the quantity of CEMS 495 

observations was limited (~10 for each instrument), so robust calibration is not yet possible. Still, 496 

early results show that under the right conditions, satellites can provide reliable estimates of CO2 497 

emissions at discrete point source locations. This is consistent with the close agreement between 498 

airborne imaging spectrometer emissions and CEMS information (Cusworth et al., 2021). 499 

 Fusion of information from atmospheric sounders like OCO-3 and imaging spectrometers 500 

like PRISMA is valuable for cross-validation and source attribution. We see this particularly for our 501 

examples at the Matimba and Medupi power plants in South Africa and the Tata and Adani power 502 
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plants in Mundra, India. In these cases, and particularly at Mundra where near-simultaneous 503 

PRISMA and OCO-3 observations were taken, OCO-2/3 provides a local, but coarse resolution 504 

emission constraint for a complex of facilities that emit large CO2 quantities. PRISMA, with its 30 505 

m pixel resolution, then can help refine relative contributions of single emitters against the net 506 

emission flux. More work is needed to refine cross-validation between instruments, but initial 507 

observation shows one avenue for data from multiple observing systems to be complementary 508 

aggregated and analyzed.  509 

Even when combining information from both satellites, there is still too little sampling to 510 

constrain facility emissions within low uncertainties. Cusworth et al. (2021), using arguments from 511 

Hill and Nassar (2019), suggested that nearly 30 unbiased observations from a PRISMA-class 512 

instrument is needed per year at each power plant to reduce annual uncertainties below 14% (i.e., 513 

reduce emission uncertainty from Non-Annex I countries below 1 Gt CO2 per year). No power plant 514 

in this study met this minimum sampling requirement. However, there will be a significant increase 515 

in data volumes and observation performance of satellite remote sensing capabilities for CO2, from 516 

both recently launched and planned imaging spectrometers including EMIT (launched 2022; Thorpe 517 

et al., in revision); EnMAP (launched 2022; Guanter et al., 2015); Carbon Mapper/Tanager 1-2 518 

(Planned launch 2024; Duren et al., 2021), and atmospheric sounders including CO2M (Sierk et al., 519 

2019). Improved observation of global power plants and emission quantification with robust error 520 

characterization will be vital to reduce global uncertainty of anthropogenic emissions from fossil fuel 521 

combustion sources. 522 

  523 

Data Availability.  524 
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The OCO-3 XCO2 and other retrieval properties are publicly available at the NASA Goddard Earth 525 

Science Data and Information Services Center (GES-DISC). The full suite of retrieval products in 526 

the standard per-orbit format can be obtained at OCO Science Team et al., 2021, 527 

https://doi.org/10.5067/D9S8ZOCHCADE. The lightweight per-day format data (Lite files), which 528 

includes the bias corrected estimates of XCO2, can be obtained at OCO Science Team et al., 2022, 529 

https://doi.org/10.5067/970BCC4DHH24. PRISMA data including radiance for each scene and 530 

XCO2 retrievals is available at https://doi.org/10.5281/zenodo.8083596. 531 
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