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Abstract. The Maritime Continent (MC) regularly experiences powerful convective storms that produce intense 

rainfall, flooding and landslides, which numerical weather prediction models struggle to forecast. Nowcasting 

uses observations to make more accurate predictions of convective activity over short timescales (~0-6 hours). 

Optical flow algorithms are effective nowcasting methods as they are able to accurately track clouds across 15 
observed image series and predict forward trajectories. Optical flow is generally applied to weather radar 

observations, however, the radar coverage network over the MC is not complete and the signal cannot penetrate 

the high mountainous regions. In this research, we apply optical flow algorithms from the pySTEPS nowcasting 

library to satellite imagery to generate both deterministic and probabilistic nowcasts over the MC. The 

deterministic algorithm shows skill up to 4 hours on spatial scales of 10 km and coarser, and outperforms a 20 
persistence nowcast for all lead times. Lowest skill is observed over the mountainous regions during the early 

afternoon and highest skill is seen during the night over the sea. A key feature of the probabilistic algorithm is its 

attempt to reduce uncertainty in the lifetime of small scale convection. Composite analysis of 3-hour lead time 

nowcasts, initialised in the morning and afternoon, produces reliable ensembles but with an under-dispersive 

distribution, and produced area under the curve scores (i.e. ratio of hit rate to false alarm rate across all probability 25 
thresholds) of 0.80 and 0.71 over the sea and land, respectively. When directly comparing the two approaches, 

the probabilistic nowcast shows greater skill at ≤ 60 km spatial scales, whereas the deterministic nowcast shows 

greater skill at larger spatial scales ~200 km. Overall, the results show promise for the use of pySTEPS and satellite 

retrievals as an operational nowcasting tool over the MC.  

Keywords: Nowcasting, Maritime Continent, convection, pySTEPS, satellite data 30 

 

 

1 Introduction  

The “Early Warnings For All Initiative” was launched by the United Nations in November 2022 and calls for the 

whole world to be covered by early warning systems by the end of 2027 (“World Meteorological Organization,” 35 
2023). It focuses on poorer countries in Asia, Africa, South and Central America and the Pacific, and motivates 

the development of early warning weather systems for these regions. 

The Maritime Continent (MC) is a region of Southeast Asia that includes the countries of Indonesia, Malaysia, 

Philippines, Papua New Guinea, Brunei and East Timor. It is a complex mix of land and ocean with major islands 

such as Sumatra, Java, Borneo and New Guinea making it the largest archipelago on Earth (Figure 1a). It is also 40 
one of the wettest places on Earth with its complex topography and location across the equator making it a hotspot 

for extreme weather. The region often experiences natural disasters such as flooding and landslides that have 

disastrous effects on already very poor areas. Easterly trade winds blow warm water across the Pacific into the 

MC creating a ‘warm pool’ around the region (Dayem et al., 2007), which, when combined with its proximity to 

the equator and the inter-tropical convergence zone, provides favourable conditions for deep convection. The 45 
large amounts of latent heat released from this convection means that the region is often referred to as the ‘boiler 

box’ of the tropics as it plays a crucial role in contributing to the global atmospheric circulations (the Hadley and 

Walker Cells), in turn affecting both local and global weather systems (Ramage, 1968).   
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The MC’s strong diurnal cycle (shown in Figure 1b by the spatial variation in timings of peak rainfall) is one of 70 
its dominant drivers of convective activity (Yamanaka, 2016). It has typical characteristics of most diurnal cycles 

across the tropics (Yang and Slingo, 2001), starting with peak solar insolation around midday. This starts to form 

a land-sea temperature contrast due to the lower heat capacity of the land. A sea breeze then develops blowing on 

land, often triggering convection which builds into the late afternoon and evening. Many islands in the MC also 

contain mountains close to the coast with altitudes of over 2000 m (e.g. Sumatra). Orographic lifting driven by 75 
the mountains can further enhance the convection (Mori et al., 2004). Into the late evening and overnight this 

convection propagates offshore until the early morning the following day, leaving clear skies over land in the 

morning for strong solar insolation to restart the process.  

Numerical weather prediction (NWP) models struggle to represent the moist convection that dominates weather 

in the MC, with coarser resolution models often initiating convection too early in the day (Porson et al., 2019) or 80 
under-estimating the amount of rainfall (Qian, 2008). Ferrett et al., (2021) shows that the skill of ensemble 

forecasts from a higher-resolution, convective-scale configuration of the Met Office Unified Model, with 4.5 km 

horizontal grid spacing over Indonesia, only start to show skill (during the first day after initialisation) when 

coarsened up to spatial scales of ~150 km. Mesoscale convective systems are defined as having spatial scales of 

at least ~100 km and so convective-scale models cannot be relied upon to skilfully resolve impactful storms over 85 
the MC.  

Nowcasting is the process of obtaining current observations of the atmosphere and using them to generate rapid, 

short-term (typically ~0-6 hours ahead) predictions of the future atmospheric state (Roberts et al., 2022). It 

requires real time observations (e.g. from weather radar) as an input and the application of predictive techniques 

Figure 1. a) Orographic map of the Maritime Continent showing the domain over which the nowcasts were generated and 

the domain over which they were evaluated (red dotted line). b) The diurnal cycle of peak rainfall within the evaluation region 

(interpolated to local solar time) using the Global Precipitation Measurement dataset (Hou et al., 2014) from December, 

January and February 2001 – 2020.  
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to forward propagate these observations. Unlike NWP models, nowcasting tools do not use large sets of complex 90 
numerical equations in order to model the atmosphere. Instead, they use cutting edge computational techniques 

such as optical flow and artificial intelligence algorithms, enabling them to generate useful output at near-

instantaneous timescales (Ayzel et al., 2020; Han et al., 2019; Gijben and de Coning, 2017). 

Currently, there are a number of state-of-the-art nowcasting systems in operation around the world, typically based 

in developed countries, which take advantage of large weather radar networks to provide near-instant, wide spread 95 
data coverage of precipitation. There are, of course, many operational systems in use globally but Table 1 covers 

some of the most advanced ones. 

 

 

 100 

Weather radar networks are expensive to implement, maintain and often not suitable for regions with mountainous 

terrain (e.g. the MC), meaning the types of nowcasting systems listed in Table 1 cannot always be implemented. 

There is, therefore, a widespread interest within nowcasting research in the use of satellite data as the main source 

of input, especially in the tropics, which can provide constant, widespread coverage of the Earth’s atmosphere 

from space. The advancement of satellite technology in recent years has given us access to data on increasingly 105 
higher spatial and temporal resolutions (e.g. Line et al., (2016) use 1-minute retrievals of 1 km resolution imagery 

for forecasting), allowing finer detail of cloud structures to be observed and more accurate tracking of weather 

systems (Sieglaff et al., 2013). This provides the basis for extrapolation nowcasting methods that use the tracked 

history of weather features (e.g. storms) to calculate motion vectors, which the features are then propagated along 

to create future predictions (Burton et al., 2022; Vila et al., 2008; Line et al., 2016). The vast volume of satellite 110 
data also makes nowcasting a suitable candidate for the application of machine learning methods to make future 

predictions of the atmosphere. Most commonly, studies have trained machine learning models to take in 

Nowcasting system Input sources Region of 

application  

Reference 

Short-Term Ensemble 

Prediction System (STEPS)  

Weather radar, NWP UK (Bowler et al., 2006) 

Integrated Nowcasting 

System through 

Comprehensive Analysis 

(INCA) 

Weather radar, NWP, 

satellite, surface station 

observations 

Europe (Alpine 

regions) 

(Haiden et al., 2011) 

Short-range Warning of 

Intense Rainstorms in 

Localised Systems 

(SWIRLS) 

Weather radar, NWP China (Srivastava et al., 2021) 

Auto-Nowcast System 

(ANC) 

Weather radar, NWP, 

satellite, surface station 

observations, wind profiler, 

atmospheric sounding, 

lightning detector 

US (Mueller et al., 2003) 

McGill Algorithm for 

Precipitation nowcasting 

using Lagrangian 

Extrapolation (MAPLE) 

Weather radar Canada, US (Germann and 

Zawadzki, 2002) 

Spectral-Prognosis (S-

PROG) 

Weather radar Australia (Seed, 2003) 

Global Synthetic Weather  

Radar (GSWR) 

Satellite, lightning, NWP US (Reen et al., 2020) 

Support to Nowcasting and 

Very Short Range 

Forecasting (NWC SAF) 

Satellite Europe (Marcos, 2015) 

Table 1. Information on some of the state-of-the-art nowcasting systems that are currently in operational use around the 

world. 
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consecutive satellite images as input and then output (nowcast) the future consecutive images (Lebedev et al., 

2019; Lagerquist et al., 2021).  

The MC itself has received little attention in the field of nowcasting, despite the region experiencing regular 115 
intense convective activity affecting the lives of millions. The Indonesian network consists of 42 weather radars 

(Permana et al., 2019) but is sparse relative to the size of the country, the country is highly mountainous, and 

experiences communication issues between sites, meaning real-time full radar coverage of the region is not 

possible (Permana et al., 2019). One of the radars within the network was used by Ali et al., (2021) to nowcast 

two rainfall events over southern Borneo. On the other hand, satellite data was used by Harjupa et al., (2022) to 120 
apply The Rapidly Developing Cumulus Area algorithm (Sobajima, 2012) to a region of western Java to predict 

heavy rainfall for 77 events. The limited sample size and domain of these studies makes it difficult to understand 

how effective the methods are for other regions of the MC. There is, therefore, a need to test nowcasting tools that 

can be applied and evaluated across the entire MC domain.  

pySTEPs (Pulkkinen et al., 2019) is a free, open-source Python library that provides modules for a variety of 125 
optical flow-based nowcasting methods (see section 2.1a for optical flow description). The library is designed for 

use on radar data and has been used to show skilful prediction of stratiform precipitation in the mid-latitudes (Han 

et al., 2022; Imhoff et al., 2020). To the best of the authors’ knowledge, the only study that has applied pySTEPs 

to satellite data over the tropics is Burton et al., (2022), who produced nowcast skill up to a 4 hour lead time over 

West Africa. It is this result that motivates the application of pySTEPS to the MC. 130 

This paper presents the evaluation of both deterministic and probabilistic nowcasts produced by applying 

pySTEPS to satellite data over the MC. The aim is to highlight their strengths and weaknesses and demonstrate 

their potential use as an operational nowcasting system. 

 

2 Data and Methods  135 

2.1 Data 

This study uses brightness temperature (BT; the temperature a black body would need in order to emit the radiance 

detected by a satellite) data from the Himawari-8/9 satellites as input to the nowcasting algorithms. Himawari-8 

and -9 are passive geostationary satellites with 16 band channels ranging from 0.47 µm to 13.3 µm, covering parts 

of the visible, near-infrared and infrared (IR) spectrum (Bessho et al., 2016). Hourly BT data from channel 13 on-140 
board Himawari-8/9 has been used, which detects IR radiation with a wavelength of 10.4 µm. The full-disc images 

are transformed to a Cartesian grid with a grid spacing of 2 km, using the gdalwarp command from the Geospatial 

Data Abstraction Library (Rouault et al., 2023). Convective clouds can be clearly identified in BT maps as they 

have cold tops relative to the surface of the Earth. The data is selected from the December, January and February 

(DJF) season, which is the peak season for convection over the MC (Birch et al., 2016), for five seasons from 145 
2015/16 – 2019/20 (data retrievals of Himawari-8 began in 2015 (Bessho et al., 2016)). 
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 155 

Initialisation time (LT) Number of nowcasts 

0000 441 

0300 422 

0600 422 

0900 441 

1200 440 

1500 429 

1800 441 

2100 440 

Table 2. The number of nowcasts that were produced at each initialisation time throughout the day. 
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In this study, nowcasts were produced using three BT maps as input, spaced evenly apart by 1 hour, starting with 

the latest observation. 3,476 nowcasts were produced for initialisation times every 3 hours from 0000 LT to 2100 

LT to incorporate the diurnal variability of weather over the MC, with the number of nowcasts at each initialisation 

time shown in Table 2. In order to avoid issues of new convection entering the edge of the domain, which cannot 

be reproduced (optical flow can only propagate convection that exists in the domain at the nowcast initialisation 160 
time), the nowcasts were first produced using BT data on a 15°S – 15°N, 90°E – 153°E domain, and then evaluated 

on a 10°S – 10°N, 94°E – 149°E domain, which still includes the major islands of the MC (Figure 1a). 

 

2.2 Methods 

2.2.1 pySTEPS/optical flow 165 

pySTEPS provides a well-documented framework that allows users to employ optical flow algorithms for both 

deterministic and probabilistic nowcasting approaches, as well as a range of verification techniques. Optical flow 

is a computer vision technique that generates velocity fields to describe the apparent motion of objects across 

consecutive images (Horn and Schunck, 1981). The key assumption of optical flow is that each pixel intensity 

remains constant across all images as it is advected. Given 𝐼(𝑥, 𝑦, 𝑡) is the intensity of a pixel at time 𝑡 = 0, this 170 
results in: 

 

               𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡 + ∆𝑡) ,                      (1) 

 

where ∆𝑡 is the time between image frames. Applying a Taylor series expansion to equation (1) leads to: 175 

 

𝜕𝐼

𝜕𝑥
𝑈 +

𝜕𝐼

𝜕𝑦
𝑉 + 

𝜕𝐼

𝜕𝑡
= 0 ,         (2) 

 

where 𝑈 =
𝑑𝑥

𝑑𝑡
  and 𝑉 =

𝑑𝑦

𝑑𝑡
 are the velocity components of the motion field. (2) is known as the optical flow 

equation. 
𝜕𝐼

𝜕𝑥
, 

𝜕𝐼

𝜕𝑦
 and 

𝜕𝐼

𝜕𝑡
 can be calculated as they represent the image gradients over space and time, whereas 𝑈 180 

and 𝑉 are unknown meaning (2) represents an underdetermined system that cannot be solved directly. Optical 

flow methods attempt to get round this by applying various spatial constraints to 𝑈 and 𝑉. Section b) and c) will 

describe the two optical flow methods within pySTEPS that were used in this study. 

2.2.2 Lucas-Kanade deterministic algorithm 

The Lucas-Kanade algorithm (LK; Lucas and Kanade, 1981) is an optical flow method that assumes, for a given 185 
pixel, the eight immediately surrounding pixels move along with that given pixel. This assumption results in nine 

separate versions of (2) (eight from the surrounding pixels and one from the given pixel itself), representing an 

overdetermined system. A least squares fit method is then applied to the nine equations to obtain the optimum 

solution for the given pixel. To create a motion field the algorithm first identifies the key features within an image  

 190 

 

 

 

 

 195 

 

T - 2 T - 1 T - 0 Sparse motion field Dense motion field 

Figure 2. An example (using BT over Sumatra) of how a motion field is generated using the LK method. Features are 

identified and tracked across the three input images (T-0, T-1 and T-2) to generate the sparse motion field. The sparse motion 

field is then interpolated onto the rest of the domain to produce the dense motion field. 
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by using the Shi-Tomasi corner detection algorithm (Jianbo Shi and Tomasi, 1994). The velocity field components 

are then calculated for each feature within the image (using the LK assumption) to create a sparse motion field, 

which is then interpolated onto the rest of the image (where there are no velocity vectors) to generate a dense 

motion field. Once the motion field has been determined, the latest observation needs to be advected along the 200 
motion field. pySTEPS implements the backward-in-time semi-Lagrangian advection scheme (Germann and 

Zawadzki, 2002). The nowcast is the resulting advected field. In this study, three consecutive images (the current 

BT observation and the two images prior) are inputted into the LK algorithm, as shown in Figure 2.  Sparse motion 

vectors are generated from each successive image pair (T-2/T-1 and T-1/T-0) and then combined together onto 

one field (sparse motion field). If a pixel in the sparse motion field has two motion vectors associated with it, they 205 
are averaged together to produce one motion vector. 

The LK algorithm is a deterministic optical flow nowcasting approach that describes the evolution of a field (in 

this study BT fields) by moving current observations along motion fields. However, this simplistic approach also 

means it is unable to predict the initiation/growth/decay (IGD) of convection within BT fields. 

2.2.3 Short Term Ensemble Prediction System algorithm 210 

The pySTEPS library also contains modules for more advanced, probabilistic nowcasting approaches that attempt 

to address the IGD problem. The Short Term Ensemble Prediction System (STEPS; Bowler et al., 2006) was 

jointly developed by the Met Office, UK and the Bureau of Meteorology Research Centre, Australia, and aims to 

address the issue of unpredictability in the lifetime of convection by injecting fields of varying stochastic noise. 

It does this by applying a fast Fourier Transform to the current BT field (T-0) to decompose it into cascades of 215 
different length scales. Varying intensities of Gaussian noise fields are then injected into each cascade field 

depending on the length scale. Cascades containing the small length scale features will receive greater intensity 

of noise injection, as these features represent the greatest uncertainty in growth and decay of convection. In 

contrast, the large length scale features receive a lower intensity of noise, as these features represent the least 

uncertainty in growth and decay. The cascades are then recomposed to produce the new BT field, which is ready 220 
for extrapolation. In this work the motion field for extrapolation is generated using the LK algorithm (as in Figure 

2, by using T-0, T-1 and T-2 BT fields). Stochastic noise perturbations are also applied to the motion fields to try 

to capture the uncertainty in the extrapolation of the BT fields. The magnitude of the perturbation increases with 

respect to lead time as the motion field increases in uncertainty. Finally, the new BT field is extrapolated along 

the motion field to create one ensemble member of the nowcast. Ensemble members are generated by using new 225 
realizations of the noise perturbations to create multiple versions of the nowcast. 

2.2.4 Verification methods 

The stochastic nature of convection in the MC makes it extremely challenging to nowcast the precise location 

(pixel-to-pixel) of convective activity. When evaluating a nowcasts’ ability to predict convection on a pixel-to-

pixel basis, the nowcast may be broadly correct but slightly misaligned in location. If we simply take the difference 230 
between the nowcast and the verification, this leads to the Double Penalty Problem: firstly, the model is penalised 

for a miss and secondly it is penalised for a false alarm in the slightly misaligned location. To overcome this 

problem Roberts and Lean (2008) developed a method known as the Fractional Skill Score (FSS), which enables 

a forecast to be verified on a range of spatial scales as opposed to a pixel-by-pixel basis, allowing leeway for 

minor misalignments. The FSS firstly creates two binary fields from the nowcast field and the observation field 235 
by using a threshold value of 235 K - any pixel with a value below this is set to 1 and any pixel with a value above 

this is set to 0. This threshold was chosen based on previous convection tracking studies in the tropics (most of 

which use a threshold in the range 233 K to 241 K) and aims to include the entirety of the convective system in 

the BT image (Goyens et al., 2012; Fiolleau and Roca, 2013; Roca et al., 2017; Feng et al., 2021). A 𝑛 × 𝑛 kernel 

is then convolved with both binary fields, where 𝑛 is the desired spatial scale set by the user, and the fraction of 240 
pixels within the kernel that have a value of 1 is calculated. The mean squared error (MSE) between the fraction 

of 1’s in the observation kernel, 𝑂(𝑛), and the fraction of 1’s in the nowcast kernel, 𝑀(𝑛), is then calculated: 

 

𝑀𝑆𝐸(𝑛) =
1

𝑁𝑥𝑁𝑦
∑ ∑ [𝑂(𝑛)𝑖,𝑗 −  𝑀(𝑛)𝑖,𝑗] 2

𝑁𝑦

𝑗=1

𝑁𝑥
𝑖=1  ,       (3) 

 245 
where 𝑁𝑥 and 𝑁𝑦 are the number of pixels in the longitude and latitude direction.  Because 𝑀𝑆𝐸(𝑛) is highly 

dependent upon the frequency of the event it must be compared to the MSE of a relatively low-skill reference 

nowcast in order to provide any usefulness, which is defined in Murphy and Epstein, 1989 by: 
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𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓 =
1

𝑁𝑥𝑁𝑦
∑ ∑ [𝑂(𝑛)𝑖,𝑗

2 + 𝑀(𝑛)𝑖,𝑗
2 ] 

𝑁𝑦

𝑗=1

𝑁𝑥
𝑖=1 .                                 (4)250 

                        

The final FSS is then calculated as:  

 

𝐹𝑆𝑆 = 1 −
𝑀𝑆𝐸(𝑛)

𝑀𝑆𝐸(𝑛) 𝑟𝑒𝑓
  .        (5) 

 255 
The nowcast can be evaluated at different spatial scales by changing the value of n. In this study 10 km, 20 km, 

60 km, 100 km and 200 km were chosen as the spatial scales. This range of scales allows a nowcast to be evaluated 

in its ability to predict convection on a range of scales. An FSS of 1 can be interpreted as a perfect score whereas 

an FSS of 0 can be interpreted as a nowcast with no skill. A threshold value for FSS above which a nowcast is 

useful is given by:  260 
 

𝐹𝑆𝑆(𝑢𝑠𝑒𝑓𝑢𝑙) ≥ 0.5 +
𝑓

2
  ,                     (6) 

 

where f is the fractional coverage of pixels with a value of 1 over the entire domain. As f becomes small 

then 𝐹𝑆𝑆(𝑢𝑠𝑒𝑓𝑢𝑙) can be approximated by:  265 
 

𝐹𝑆𝑆(𝑢𝑠𝑒𝑓𝑢𝑙)  ≥ 0.5 .        (7) 

 

This is the basic approach to the FSS, which calculates a single score for each nowcast to describe the skill over 

the whole domain. However, often the skill of a nowcast will vary across the domain due to differences in 270 
environments (e.g. land, sea and mountains) and the different interactions that result from these changing 

environments. Woodhams et al., (2018) developed an adapted version of FSS known as the localised fractional 

skill score (LFSS), which enables the skill of a nowcast to be evaluated at each pixel across the domain, resulting 

in a spatial map of FSSs. The LFSS is calculated by adapting (3) and (4) so that instead of dividing the sum of the 

squared error between 𝑂(𝑛) and 𝑀(𝑛) over the spatial domain, it is divided over the time domain (i.e. the number 275 
of time steps). This results in replacing (3) and (4) with, 

 

 

𝑀𝑆𝐸(𝑛) =
1

𝑁𝑡
∑ [𝑂(𝑛)𝑡 − 𝑀(𝑛)𝑡] 2 

𝑁𝑡
𝑗=1 ,      (8)

   280 
 

and, 

 

𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓 =
1

𝑁𝑡
∑ [𝑂(𝑛)𝑡

2 + 𝑀(𝑛)𝑡
2 ]

𝑁𝑡
𝑗=1  ,      (9) 

  285 
     

where 𝑁𝑡 is the number of time steps.  

 

The skill of a given ensemble nowcast produced by the STEPS algorithm is evaluated by generating the 

probabilistic nowcast from the ensemble members and then comparing it to the observations at different 290 
probability thresholds. At each probability threshold, any pixel in the probabilistic nowcast with a value equal to 

or greater than the threshold is assigned a value of 1 and any pixel with a value less than the threshold is assigned 

a value of 0 (creating a binary field). The observation field is then converted into a binary field in the same way 

except using a threshold value of 235 K. The two binary fields are compared at each corresponding pixel to obtain 

the number of hits (both pixel values equal 1), misses (nowcast pixel value is equal to 0 but observation pixel 295 
value is equal to 1), false alarms (nowcast pixel value is equal to 1 but observation pixel value is equal to 0) and 

correct negatives (both pixel values equal 0). These metrics are then used to calculate the probability of detection 

(POD)  [hits/(hits + misses)] and the probability of false detection (POFD) [false alarms/(correct negatives + false 

alarms)]. This is repeated at multiple probability thresholds and the PODs are plotted against the POFDs to 

produce a receiver operating characteristic (ROC) curve. The nowcasts with highest skill will minimise the POFD 300 
and maximise the POD, resulting in a ROC curve in the top left corner of the diagram with a large area under the 

curve (AUC) score.  
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Reliability diagrams are used to evaluate how well STEPS’s probabilistic predictions compare to the actual 

observed frequency of events (in this work an event counts as a pixel with a value less than or equal to 235 K). 

For a given ensemble forecast, the predicted event probabilities are first evenly binned, creating a sub-group of 305 
nowcasts for each bin. The frequency for which events are observed is then calculated for each sub-group. The 

mean event probability within each bin is plotted against the observed event frequency to create a reliability 

diagram. A perfectly reliable nowcast will predict event likelihoods consistent with the observed frequency i.e. a 

diagonal X = Y line. 

In order to gain a useful understanding of the optical flow nowcast skill, a persistence nowcast is used for 310 
comparison. A persistence nowcast is considered as having the baseline of minimum skill and is produced by 

using the latest observation as the next prediction i.e. it assumes that the current weather will persist and be 

identical at the next nowcast lead time. 

 

3 Results 315 

3.1 Deterministic nowcasting - Lucas-Kanade algorithm 

Figure 3e–g shows an example of a nowcast (each lead time is produced using the same T-0, T-1 and T-2 

observations) produced by the LK algorithm for a qualitative assessment of the skill against observations (Figure 

3a–d), whilst Figure 3h–j provides the LFSS (evaluated on a 20 km scale to show clearly defined differences in 

skill) at each timestep of the nowcast (where 𝑁𝑡 = 1) for a quantitative assessment. This particular set of 320 
observations contains convection on a range of scales, with regions of propagation and regions of initiation, 

providing a good example to evaluate the LK algorithm on a range of capabilities (for this reason the same example 

is used throughout the paper). At T-0, the observed organised, large scale convection e.g. north of Borneo, 

approximately maintains its shape through T+1 and T+3 and then starts to change in structure at T+6 e.g. east of 

Sumatra. There is also the development of relatively smaller scale convection observed during the T+3 and T+6 325 
hour lead times e.g. over New Guinea.  

 

 

 

 330 

 

 

 

 

 335 

 

 

 

 

 340 

 

 

 

Figure 3. a)-d) are maps of BT observations showing convection propagating across the MC on 11 December 2019 starting 

from the initial observation at 0900 LT (T-0), followed by the observation at 1 hour (T+1), 3 hours (T+3) and 6 hours (T+6) 

later. e)-g) are the nowcasts produced by the LK algorithm at each of the corresponding observations, and the green lines show 

the contour of the corresponding persistence nowcast. h)-j) are the LFSS maps produced by evaluating each nowcast against 

the corresponding observation on a 20 km spatial scale.  
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Visually, the deterministic LK approach appears to predict the propagation of large scale, organised convection 

well. The T+1 nowcast best resembles the corresponding observation due to the least amount of new convection 345 
developing during this time, as well as little propagation of the organised convection (the nowcast at T+1 closely 

matches the persistence nowcast). This is seen in Figure 3h, which shows high skill in the organised convective 

regions over the majority of the domain. As the lead time increases, westward propagation of the large scale 

convection is observed, which appears to be effectively tracked by the LK nowcast at T+3 e.g. east of Sumatra. 

This is confirmed in Figure 3i, which shows the skill of the nowcast at T+3 remaining high over the regions of 350 
organised convection. There is, however, a clear increase in areas of low skill at T+3 and T+6 due to the LK 

nowcast being unable to reproduce the IGD of convection. At T+6, the change in structure of convection also 

contributes to the majority of the domain experiencing low skill. The nowcast at this lead time shows the least 

resemblance to the observations with only the largest regions of predicted convection providing any skill (Figure 

3j).  355 

Figure 3 highlights some of the key advantages and disadvantages of the LK algorithm. Overall, it does well at 

predicting the propagation of large scale, organised convection. However, because of the principle that underlies 

optical flow, that each pixel maintains its intensity between timesteps, it is unable to capture the IGD of 

convection. Smaller scale convection exhibits higher rates of change in its evolution (Venugopal et al., 1999) and 

so has the greatest uncertainty associated with it. Initially, this justifies why the majority of low skill is seen at 360 
smaller scales (Figure 3h-i). However, at T+6 the difference in small scale features between the observations and 

the nowcast becomes more widespread and so the low skill spreads further across the domain (Figure 3j). 

Figure 4 shows the mean FSSs for all 3,467 LK nowcasts (Table 2) and their corresponding persistence nowcasts, 

evaluated at spatial scales of 10 km, 20 km, 60 km, 100 km and 200 km. The 10 km spatial scale is the smallest 

scale of evaluation, hence it consistently produces the lowest scores. However, the model still shows good skill 365 
on this scale (𝐹𝑆𝑆 ≥ 0.5) at a lead time of 4 hours. Doubling the spatial scale to 20 km increases the skilful lead 

time by ~1 hour. At the 60 km, 100 km and 200 km spatial scales, the LK nowcasts show skill across all lead 

times with FSS scores of ~0.54, ~0.61 and ~0.75, respectively at the 6 hour lead time. 

Skill reduces with lead time for all spatial scales, and increases with spatial scale at all lead times. On average,  

 370 
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 385 
Figure 4. Composite FSSs against lead time for 3,457 nowcasts LK nowcasts (solid line) and persistence nowcasts (dashed 

line), evaluated at a threshold of 235 K for 20 km, 50 km, 60 km, 100 km and 200 km spatial scales. The grey horizontal line 

marks the 0.5 FSS line, which is considered the cut-off for nowcast skill.  
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the LK nowcasts outperform the persistence nowcasts at all lead times and for all spatial scales. Both the 

persistence and the LK nowcasts maintain the same structure and intensity at each lead time (hence relatively 

smaller skill difference at 1–2 hour lead time), however, the LK nowcasts propagate the convection across the 

domain whereas the persistence nowcasts remains stationary. This explains the increasing added value of the LK 

nowcast with lead time, as the observations move further from the persistence nowcast and the skill difference 390 
increases. Greater added value of the LK nowcast over persistence is also seen at smaller spatial scales e.g. the 

skill gap between the persistence nowcasts and the LK nowcasts at the 6 hour lead time is greater for 10 km spatial 

scale compared to 200 km spatial scale. The trend of FSSs across the shown lead times also varies for different 

spatial scales. At smaller spatial scales the nowcast is being evaluated on its ability to predict smaller scale  
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Figure 5. a-g) Composite LFSS maps for 3-hour lead time nowcasts that were initialised at 0000 LT, 0300 LT, 0900 LT, 1200 

LT, 1500 LT, 1800 LT and 2100 LT, respectively. The LFSS was evaluated on a 100 km scale and the local time is with 

reference to Sulawesi (the vertical dotted lines show the time difference across the domain). i) The mean LFSS scores at each 

initialisation time for sea only, land only and the whole domain. 
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convection, which changes most rapidly/unpredictably, resulting in a higher rate of decrease in skill. The FSS 

evaluation on higher spatial scales smooths out these smaller scale convection changes and so a much lower rate 

of decrease in skill is seen. The rate of decrease of the FSS evaluated on the 10 km spatial scale appears to show 425 
its largest rate of skill decrease at 1 – 2 hours and then decelerates over the following time intervals. On the other 

hand the rate of skill decrease for the 200 km spatial scale increases with lead time.  

Figure 5 shows the mean LFSS for 3 hour lead time nowcasts over the MC, evaluated at a 100 km spatial scale. 

Evaluation on this scale has been used as it is able to clearly highlight the variations of skill across the domain. 

For all nowcast initialisation times there is consistent noise in the skill over the sea. This may be representative of 430 
the stochastic nature of convection initiation over the sea. It would therefore be expected that, if the period of 

evaluation was extended beyond 2015–2020 (i.e. increasing the number of nowcasted events used in the averaging 

in equations (8) and (9)), the LFSS noise field would become smoother over the sea. During the overnight and 

morning initialisation times (Figures 5a–d) there is, on average, high skill over the majority of the domain (Figure 

5i). This is to be expected as at these times the majority of convection has formed large-scale, organised cloud 435 
systems with very few small-scale convection initiations occurring. These larger-scale systems will most often be 

propagating offshore of the islands (as part of the diurnal cycle), which the LK algorithm is most effective at 

capturing. Furthermore, overnight and during the morning there is, on average, relatively less convective activity 

than during the day meaning that reduced skill from inaccurate propagation predictions is minimised. 

Between 0900 LT and 1200 LT there is a significant drop in the mean skill over land (Figure 5i). Figures 5e–f 440 
show these distinct regions of low skill over land, which are tightly constrained to the coastal and mountainous 

regions of the islands and are closely tied to the diurnal cycle of convection over the MC. Convection begins to 

initiate and develop over the coastal and mountainous regions of the islands in the early afternoon, which is not 

present at 1200 LT. The LK nowcast is unable to capture this new convection, resulting in low overland skill for 

the 1200 LT initialisation. Over these locations at this time of day, the LK algorithm would not be a skilful 445 
nowcasting tool. The low skill is still seen at 1500 LT but to a lesser extent. At this initialisation time the T–0 

observations that are inputted into the LK algorithm will, on average, contain the majority of the convection that 

has initiated over the early afternoon. This convection will likely remain stationary over this time but will be 

growing in size. Therefore the persisting low skill at 1500 LT is representative of the LK nowcasts inability to 

predict the growth of convection. 450 

The development of convection starts to slow as storms reach their mature stage in the evening. Less growth 

results in higher skill over the land. At 2100 LT the LFSS map looks similar to the overnight LFSS maps with 

high skill across the entire domain. Over this 3 hour forecast period the LK algorithm has shown good skill at 

being able to nowcast the propagation of mesoscale convective systems offshore, which developed overland 

during the afternoon. 455 

Understanding that the LK algorithm is unable to predict the IGD of convection means that, by identifying 

anomalous regions of low skill, LFSS maps can be a useful tool for identifying local effects due to land-sea 

interactions. An example of this is seen in a region of low skill over the Northeast coast of Borneo at 1800 LT. 

On average, at this time of the day a land breeze begins to develop along the entire concave shaped coastline, 

potentially causing convergence near the middle. This convergence may then lead to the initiation of convection 460 
that the LK algorithm is unable to predict. 

3.2 Ensemble nowcasting - STEPS algorithm 

Figure 6a provides an example of a 20-member ensemble nowcast (generated using the same T-2, T-1 and T-0 set 

as for the LK algorithm example in Figure 3), with a lead time of 3 hours, produced by pySTEPS’s implementation 

of STEPS. Over the 3 hour period the main differences between the T-0 and T+3 observations are around New 465 
Guinea where new convection develops over the land and the convection north of the island becomes more 

scattered (Figure 6b–c). Visually, each ensemble member provides a good prediction of the large scale convection 

e.g. north of Borneo, with little difference between the members in the predicted shape and structure. The main 

differences between the ensemble members come from differences in the stochastic fields injected for each 

member. This is seen in the varying levels of BT intensities in the large scale convection in each member. For 470 
example, the BT intensity over northern Borneo in ensemble member 13 is greater than in ensemble member 2. 

Differences are also seen between each ensemble member in the distribution of the predicted small scale 

convection e.g. over the Philippine Sea. Over Borneo, some members have predicted small scale convection which 
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approximately aligns with the new convection observed at T+3 e.g. ensemble member 18, whereas some members 

have predicted no convection here at all e.g. ensemble member 17.  475 

One of the key aims of STEPS is to address the uncertainty in the evolution of small scale convection. In all 

members the convection northwest of New Guinea appears much noisier than in the T-0 observation. STEPS has 

recognized this as a region of uncertainty and addressed it by injecting noise at this scale. When compared to the 

T+3 observation, it can be seen that the convection does in fact become more scattered and dissipated and so, 

although STEPS has not been able to precisely predict the new shape of the scattered convection, it has been able 480 
to capture the unpredictable nature of the evolution of this small scale convection.  

The 20 member ensemble in Figure 6 has been used to produce the probabilistic nowcast in Figure 7 (extended to 

1, 3 and 6 hour lead times). This probabilistic nowcast uses a threshold of 235 K, therefore including all the pixels 

that were used to produce each ensemble nowcast. At T+1 the probabilistic nowcast shows a high degree of 

certainty in its prediction of the shape and location of convection, meaning that there is little variance between 485 
ensemble members. The T+1 lead time is the first timestep prediction that the algorithm makes and so it contains 

the least amount of stochastic noise in the extrapolation motion field, hence the least amount of member variance. 

As the lead time increases more stochastic noise is injected into the extrapolation motion fields and so the 

uncertainty of the probabilistic nowcast increases. This can be seen in the reduction in high probabilities over the 

regions enclosed within the 20% contour. A reduction of high uncertainties within the 20% contour is also matched 490 
with a greater spread of low ensemble probability across the entire domain (outside the 20% contour) at T+3 and 

T+6.  
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Figure 6. a) An example of a 20 member ensemble, 3-hour lead time BT nowcast produced by the STEPS implementation of 

pySTEPS on 11 December 2019. b) The observation at the nowcast initialisation time and c) the observation 3 hours later.  
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Figure 7 also shows the number of small scale features in the probabilistic nowcast reducing at longer lead times. 

For example, at T+1 the convection northwest of New Guinea appears scattered in small blobs, whereas at T+6 515 
STEPS has smoothed out this small scale convection into a larger region. Again, this is evidence of the algorithm’s 

attempt to address the uncertainty in the evolution of small scale convection by replacing it with stochastic noise. 

Figure 8a and b show the mean ROC and reliability curves for STEPS nowcasts initialised in the morning (0900 

LT) and afternoon (1500 LT), evaluated over the sea and the land. For both surface types and initialisation times, 

the POD increases at each threshold meaning that, even as more uncertain regions enter the evaluation, the 520 
proportion of hits to misses increases. Furthermore, the POD exceeds the POFD at each threshold indicating that 

STEPS has skill in predicting regions < 235 K BT over the MC. The greatest POD – POFD difference, which is 

considered the optimum threshold for a probabilistic nowcast, is shown at the ≥10% likelihood threshold for all 

of the curves.  
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For both initialisation times in Figure 8a, STEPS produces higher Area Under the Curve (AUC) scores over the 545 
sea (0.80 and 0.78 for 0900 LT and 1500 LT, respectively) than over the land (0.71 and 0.68 for 0900 LT and 

1500 LT, respectively), meaning that STEPS has more skill over the sea at these times. This can be explained by 

lower POD scores over the land, which is due to the STEPS algorithm being unable to capture the new convection 

that most often develops there (increasing the number of misses). Furthermore, a comparison of each region within 

initialisation times suggests that STEPS is slightly more skilful in the morning (average AUC of 0.76) than in the 550 
afternoon (average AUC of 0.73). The morning – afternoon difference in POFD is also much greater over the land 

than the sea. This is likely due to a greater decrease in correct negative scores over the land, caused by new 

convection initiating where there was previously none, which STEPS is unable to predict.  

 

Figure 7. An example of a probabilistic BT nowcast for lead times of 1, 3 and 6 hours produced by the STEPS implementation 

of pySTEPS on 11 December 2019. A BT threshold of < 235 K is used in order to include all pixels in the nowcast. 
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The positive slope between all the points for each reliability curve in Figure 8b means that, over both surface 

types, as the observed frequency of events increases, STEPS predicts a higher likelihood of that event occurring. 

This shows that overall STEPS is able to produce a reliable nowcast for these initialisation times. However, for 

both regions and times of day, STEPS presents a lower probability than the observed frequency for probabilities 570 
< ~0.35, and a higher probability than the observed frequency for probabilities > ~0.65. The distribution of 

ensemble predictions is therefore under-dispersive, meaning that the spread of predictions falls within the spread 

of observations i.e. it does not provide an optimum estimate of uncertainty.  

When comparing the two surface types it can be seen that the under-prediction at lower nowcast probabilities is 

greater over the land, meaning the ensemble distribution has less variance and STEPS is better at capturing 575 
uncertainty over the sea for these initialisation times. However, at higher nowcast probabilities, more over-

prediction is seen over the sea compared to over the land, meaning that STEPS becomes too confident at predicting 

higher likelihood events over the sea.  

The under-dispersive feature of STEPS over the MC is due to low ensemble member variance, which (as 

previously mentioned) can be exemplified by visually assessing the lack of diversity between the ensemble 580 
members in Figure 6. The main source of ensemble member variance comes from the differences in the stochastic 

noise fields that STEPS injects into the nowcasts, and so, increasing the range of noise field intensities, or simply 

adding more members, would likely help to reduce this under-dispersive feature.   

3.3 Comparison of STEPS, LK and persistence 

By applying a threshold to a probabilistic STEPS nowcast, it is possible to produce a deterministic STEPS nowcast 585 
(in the form of a binary field) that can be evaluated using the FSS and directly compared to the corresponding LK 

and persistence nowcast. Figure 9 shows the mean FSSs for 3,467 LK nowcasts (solid), persistence nowcasts 

(dashed) and STEPS deterministic nowcasts produced using a threshold of ≥10% (dotted; STEPS10). The choice 

of threshold was based on the results of Figure 8, which show that, for both the morning and evening initialisation 

times, the optimum likelihood threshold was ≥10%. 590 

At 10 km spatial scale, STEPS10 shows skill up to ~5 hours and has the highest skill across all lead times, 

outperforming LK and persistence. At 60 km scales STEPS10 still outperforms persistence across all lead times 

but approximately equals the skill of LK from 1 – 3 hours lead time. Onwards of 3 hours lead time, STEPS10 

shows higher skill than LK.  

The added value of STEPS10 over both LK and persistence decreases between the 10 km and 60 km spatial scales 595 
and, by the 200 km scale, STEPS10 shows the least skill out of all the nowcasts. This is likely due to less of the 

propagation being detected within the 200 km scale evaluation compared to the 10 km and 60 km scales – hence 

LK tends towards persistence at greater scales. Unlike LK, STEPS changes the internal structure of the convection  

Figure 8. Composite a) ROC and b) reliability curves over the sea and land for STEPS 3-hour lead time nowcasts, initialised 

at 9am (441 nowcasts) and 3pm (405 nowcasts), with a threshold of < 235 K. The numbers next to the green points in a) 

represent the thresholds used to evaluate the nowcast at different likelihoods.  
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 615 

through the injection of stochastic noise. This change in the internal structure of convection (as opposed to change 

due to propagation) will be detected on the 200 km spatial scale and may contribute to a drop in performance 

relative to LK and persistence.  

 

4 Conclusion 620 

A deterministic (LK algorithm) and probabilistic (STEPS algorithm) implementation of the pySTEPS optical flow 

nowcasting library have been applied to satellite data over the MC to produce nowcasts with lead times of up to 

6 hours.  

Overall, the LK algorithm predicts the propagation of convection across the domain with skill (FSS≥0.5) up to 4 

hours on the 10 km scale (the smallest scale of evaluation) and up to at least 6 hours on the 60 km scale. Similarly, 625 
Burton et al., (2022) used the LK algorithm to nowcast convective rain rates over West Africa using retrievals of 

BTs. Although it is difficult to precisely compare the two sets of results (rainfall retrievals likely have more fine-

scale variability and errors in rainfall retrievals will affect nowcast skill (Hill et al., 2020)) they are nevertheless 

comparable. Burton et al., (2022) show skill up to about 3 hours on the 64 km scale whereas we would expect 

somewhat higher skill for BT nowcasts over the MC. 630 

Similar to the findings in Burton et al., (2022), the LK algorithm was unable to predict the initiation/growth/decay 

of convection, which is a manifestation of the optical flow assumption – each pixel maintains its intensity across 

all timesteps. This inability to predict IGD of convection is clearly seen when analysing maps of LFSS over the 

MC. Over the sea the LK algorithm shows, on average, good skill at all nowcast initialisation times due to 

convection being mostly propagating in nature. Over land, however, the model shows high skill in the morning 635 
and evening but much lower skill in the afternoon. In the early afternoon this is due to the initiation of convection, 

which is closely constrained to the mountains. Later in the afternoon the low skill is due to the growth of the 

convection that initiated earlier on and persists over the mountains. Over the mountainous regions of the MC 

during the afternoon, the LK algorithm would not be a useful nowcasting tool.  

Figure 9. Composite FSSs against lead time for 3,457 LK (solid line), STEPS10 (dotted line) and persistence (dashed line) 

nowcasts, evaluated at a threshold of 235 K for 10 km, 60 km and 200 km spatial scales. The grey horizontal line marks the 

0.5 FSS line, which is considered the cut-off for nowcast skill. 
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The STEPS algorithm aims to address the issue of unpredictability in the initiation/growth/decay of convection 640 
by injecting varying intensities of stochastic noise at different length scales to produce an ensemble nowcast. 

When analysing a probabilistic nowcast produced by a STEPS ensemble, it can be seen that the injection of noise 

has a smoothing effect, removing small scale convection and maintaining the shape of the larger, more predictable 

convective regions. 

A composite analysis of STEPS nowcasts was performed using ROC and reliability curves for 3 lead time 645 
predictions. The ROC curve is a measure of a nowcast’s ability to discriminate between convective events that 

happened and convective events that did not (the higher the area under a ROC curve the more efficient it is at 

this), whereas the reliability curve measures how well the probabilistic predictions compare to observations. 

Overall, the analysis showed that STEPS can produce both skilful and reliable ensemble predictions for 3 hour 

lead times. When comparing land and sea at different times of day, it was shown that STEPS has highest skill 650 
over the sea during the morning (0900 LT initialisation time) with an AUC score of 0.8 (compared to an AUC 

score of 0.71 over the land). Imhoff et al., (2020) also applied the pySTEPS implementation of STEPS to radar 

data over the Netherlands to produce nowcasts for a range of lead times. In their work they produced composite 

ROC curves for nowcasts with a lead time of 95–120 minutes, which had an AUC score of 0.81. The Netherlands 

experiences far less convective activity than the MC with the majority of its weather coming from propagating 655 
frontal clouds. This, therefore, further highlights the effectiveness of STEPS for the MC as it tries to predict 

convective clouds, which have a more unpredictable nature. However, the disadvantages of STEPS were revealed 

when analysing the reliability curves. A common feature across both times and regions was the under-dispersive 

ensemble distributions, which were more extreme over land. This highlights STEPS’s inability to predict the low 

likelihood events e.g. new initiations, and capture the whole uncertainty of the observed system.  660 

To compare STEPS with LK and persistence, a deterministic version of STEPS was produced by thresholding the 

probabilistic nowcasts at ≥10% (STEPS10). When evaluated, the STEPS10 nowcasts had higher skill at spatial 

scales of 10 km (across all lead times) and 60 km (from 3 – 6 hours). Therefore, not only does STEPS provide 

insight into the uncertainty of a convective system, but it can also derive a better single deterministic nowcast than 

LK and persistence at these scales. However, at a higher spatial scale of 200 km (where relatively less convection 665 
propagation is detected), LK nowcasts had the highest overall skill and the injection of stochastic noise produced 

by STEPS likely caused the STEPS10 nowcasts to have the lowest overall skill.  

Continuous nowcasting over the entire MC is a requirement for early-warning systems, which does not currently 

exist. By providing both nowcast examples and composite nowcast analysis, this paper has shown the effective 

application of a deterministic (LK) and probabilistic (STEPS) algorithm to satellite data, showing their potential 670 
to be used operationally over the whole of the MC. The work highlights the key strengths and weaknesses of both 

algorithms, providing important information to a potential forecaster using these tools.      
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