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Abstract.

Calibration techniques refine numerical model outputs for climate research, often preferred for their simplicity and suit-

ability in many climate impact applications. Atmospheric pattern classifications for conditioned transfer function calibration,

common in climate studies, are seldom explored for satellite product calibration, where significant biases may occur compared

to in situ meteorological observations. This study proposes a new ‘adaptive’ calibration approach, applied to the Tropical Rain-5

fall Measuring Mission (TRMM) precipitation product across multiple stations in the South Pacific. The methodology involves

the daily classification of the target series into five distinct Weather Types (WTs) capturing the diverse spatio-temporal precip-

itation patterns in the region. Various quantile mapping (QM) techniques, including empirical (eQM), parametric (pQM), and

Generalized Pareto Distribution (gpQM), as well as an ordinary scaling, are applied to each WT. We perform a comprehen-

sive validation by evaluating 10 specific precipitation-related indices that hold significance in impact studies, which are then10

combined into a single Ranking Framework (RF) score, which offers a comprehensive evaluation of the performance of each

calibration method for every Weather Type (WT). These indices are assigned user-defined weights, allowing for a customized

assessment of their relative importance to the overall RF score. Thus, the adaptive approach selects the best performing method

for each WT based on the RF score, yielding an optimally calibrated series.

Our findings indicate that the adaptive calibration methodology surpasses standard and weather-type conditioned methods15

based on a single technique, yielding more accurate calibrated series in terms of mean and extreme precipitation indices,

consistently across locations. Moreover, this methodology provides the flexibility to customize the calibration process based

on user preferences, thereby allowing for specific indices, such as extreme rainfall indicators, to be assigned higher weights.

This ability enables the calibration to effectively address the influence of intense rainfall events on the overall distribution.

Furthermore, the proposed adaptive method is highly versatile and can be applied to different scenarios, datasets, and regions,20

provided that a prior weather typing exists to capture the pertinent processes related to regional precipitation patterns. Open-

source code and illustrative examples are freely accessible to facilitate the application of the method.

Keywords – weather types, quantile mapping, extreme precipitation, precipitation indices, bias adjustment, TRMM
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1 Introduction

Satellite rainfall products serve as crucial sources of information for various hydrological applications, offering continuous25

temporal coverage and consistent spatial estimates of precipitation in regions lacking sufficient rain gauge data. However,

unlike direct observations, satellite measurements are prone to systematic errors originating from uncertainties in estimating

precipitation amounts from radar reflectivity measurements (Simpson et al., 1996; Sekaranom and Masunaga, 2019) or the

irregular timing of satellite overpass (Aghakouchak et al., 2009), among others. Consequently, these products often deviate

significantly from the statistical properties of observed series, particularly concerning extreme precipitation events (Mirones30

et al., 2023), thus requiring calibration before their application in impact studies.

In particular, the Tropical Rainfall Measuring Mission (TRMM) was a research satellite launched by NASA in 1997 to im-

prove the understanding of the distribution and variability of precipitation in the tropics and subtropics. TRMM used several

space-borne instruments to measure rainfall and its associated heat release for the first time, essential for regulating Earth’s

climate. TRMM ended its operation in 2015, after providing precipitation data for 17 years, with a derived daily accumulated35

precipitation product (TRMM Multi-satellite Precipitation Analysis, TMPA) that have been discontinued as of Dec. 31, 2019

(Huffman et al., 2016). To continue and extend the legacy of TRMM, NASA developed the Integrated Multi-satellitE Retrievals

for GPM (IMERG) algorithm, which combines information from the GPM satellite constellation and other sources to estimate

precipitation over most of the globe in a very flexible framework (Huffman et al., 2020). IMERG also incorporates TRMM-era

data, creating a continuous precipitation dataset spanning over two decades. In this study, we focus on TRMM due to this long40

history of usage. TRMM had a low-altitude (402.5 km), non-sun-synchronous orbit, which allowed it to sample the diurnal

cycle of precipitation and capture the variability of rainfall at different times of the day (National Research Council, 2006).

IMERG, on the other hand, uses data from multiple satellites with different orbits and sensors, which may introduce uncertain-

ties and inconsistencies in the diurnal sampling (Zhou et al., 2023). Thus, although new products have emerged that offer better

performance than TRMM for many hydrological applications, TRMM still has some advantages in specific contexts. Further-45

more, the methodology proposed in this study, which calibrates the data according to regional-scale atmospheric processes and

validates the results, can be applied to any other dataset as well.

Essentially, the calibration process entails adjusting a transfer function that relates the parameters of raw satellite precip-

itation distribution to observed rain gauge time series. The effectiveness of bias reduction through post-processing depends

on the underlying mechanisms producing the bias (see e.g. Maraun et al., 2017), as well as the appropriateness and accurate50

implementation of the chosen technique. Moreover, it is crucial to accompany this process with a proper estimation of the

associated uncertainty. In particular, the TRMM biases are not constant but associated with specific meteorological conditions,

often exhibiting a systematic overestimation during wet periods and underestimation during dry periods in some regions (Islam

et al., 2010; Almazroui, 2011; As-syakur et al., 2016; Giarno et al., 2018). Hence, it is reasonable to anticipate that incorporat-

ing explicit information regarding the synoptic-scale meteorological conditions into the calibration process would enhance the55

fitting of the transfer function. In this context, weather typing techniques (see Huth et al., 2008, for a comprehensive review),

prove helpful in defining relevant weather patterns by summarizing distinct atmospheric configurations associated with differ-
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ent precipitation regimes (Baltaci et al., 2015; Hay et al., 1991; Riediger and Gratzki, 2014; Trigo and DaCamara, 2000). This

approach can effectively situate the calibration within the context of significant atmospheric circulation processes that impact

the target variable (Mirones et al., 2023), considering that the biases may be different depending on the prevailing atmospheric60

processes at each moment (Jury et al., 2019), so that a generalist adjustment may not allow to solve them efficiently in all cases.

Moreover, although conditioning reduces the sample size, it has been shown that the calibration with adequate sub-samples

can significantly enhance the reliability of the corrected series, as shown with some popular calibration methods like quantile

mapping (Reiter et al., 2018).

Atmospheric pattern classifications for conditioned transfer function calibration have been already used in statistical down-65

scaling for climate change studies (Stehlik and Bardossy, 2002; Wetterhall et al., 2007, 2012) as well as in seasonal forecasting

applications (Manzanas and Gutiérrez, 2019) and short-term forecast calibration refinement (Vuillaume and Herath, 2017).

However, they have rarely been investigated in the context of satellite product calibration. In a recent study, Mirones et al.

(2023) proposed a novel approach for calibrating TRMM data in the South Pacific region. The methodology incorporates

scaling and empirical quantile mapping techniques, conditioned to the dominant modes of interannual variability captured by70

specific precipitation types. This region encompasses the South Pacific Convergence Zone (SPCZ), characterized by a distinct

band of low-level convergence and enhanced cloudiness extending across the South Pacific (Australian Bureau of Meteorology

and CSIRO, 2011). The SPCZ is associated with notable meteorological phenomena such as heavy rainfall, convective storms,

and the displacement of the intertropical convergence zone (ITCZ, Waliser and Gautier, 1993). The defined weather types were

thus designed to capture the key characteristics of the regional precipitation regime while ensuring a sufficient sample size for75

robust conditional model fitting. Building upon this methodological framework, this study aims to further explore the potential

of conditioned calibration for improving the quality of TRMM precipitation data. As a result, the new calibration method pre-

sented relies on a weather type classification designed for the synoptic characterization of regional precipitation. In this study,

we built upon an already constructed classification for the study area (Mirones et al., 2023); its applicability to new regions

is therefore constrained by a previous weather typing able to capture the main regional features. We expand the range of cali-80

bration techniques by incorporating a broader selection of commonly used parametric and non-parametric methods, including

linear scaling, empirical quantile mapping (eQM), parametric quantile mapping (pQM), and generalized Pareto Distribution

quantile mapping (gpQM), the latter adapted for a more specific treatment of extreme values in the quantile adjustment. More-

over, we examine the feasibility of combining different calibration techniques for the same location, considering the various

weather types and applying a specific statistical correction method for each WT individually. Then, we assess the performance85

of these calibration techniques by using user-defined validation indices and suitable validation measures. The validation results

for each index are globally evaluated using a weighted Ranking Framework score, which allows us to identify the optimal

combination of techniques for site-based calibration.
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2 Data and methods

2.1 Data90

The reference observations used as the predictand for calibration were obtained from the Pacific Rainfall Database (PACRAIN,

Greene et al., 2008). The PACRAIN Database comprises daily and monthly rainfall records from a comprehensive collection

of rain gauge stations situated across atolls and islands in the South Pacific region. These records are sourced from various

institutions, including the National Institute of Water and Atmospheric Research of New Zealand (NIWA, www.niwa.cri.nz),

the US National Centers for Environmental Information (NCEI, https://www.ncei.noaa.gov/), the French Polynesian Meteo-95

rological Service (https://meteo.pf), the Schools of the Pacific Rainfall Climate Experiment (SPaRCE, https://sparce.ou.edu),

and the Atlas of Pacific Rainfall (Taylor, 1973). Despite the seemingly ample raw samples within the database, an examination

of missing data reveals a significantly reduced number of suitable data points. Two critical considerations arise in this context.

i) Bias Correction Requirements: achieving robust fits for the various statistical methods employed in bias correction demands

a relatively large sample size. This is especially true for effectively characterizing extreme events, a main point in our study100

due to their paramount importance in numerous hydrological applications. ii) Representativity of Locations: The chosen loca-

tions must encompass a representative spectrum of variability within the region. In our study, these locations are strategically

distributed across the entire domain, offering a sensible representation of diverse precipitation regimes

As a result, we used the final subset of suitable rain gauge stations presented in Table 1. The calibrated dataset in this study

is the Tropical Rainfall Measuring Mission 3B42 Daily product (TRMM TMPA Precipitation L3 1 day 0.25 × 0.25 degree105

V7, Huffman et al., 2016)1. This dataset provides measurements of daily accumulated precipitation, covering the period from

January 1, 1998, to January 1, 2020, with a daily temporal resolution. The spatial coverage of the dataset ranges from 50.0◦N

to 50.0◦S and 180.0◦E to 180.0◦W. For the calibration process, the TRMM data were extracted at the nearest grid point to each

rain gauge location.

2.2 Weather typing110

We used PCA analysis to obtain representative precipitation patterns and then performed a clustering approach. We chose

K-means, a traditional method that divides the feature space into a fixed (K) number of clusters by iteratively finding group

centroids that maximize cluster distances and minimize within-cluster dispersion (e.g. Pike and Lintner, 2020).

The variables used for clustering were precipitation, sea-level pressure, the day-to-day sea-level pressure difference and east-

ward and northward wind components, all extracted from the ERA5 reanalysis (Hersbach et al., 2020). Sea-level pressure and115

its difference was chosen in order provide suitable descriptors of the South Pacific Convergence Zone state and the occurrence

of tropical cyclones respectively, that have a major effect on precipitation patterns within this region (Vincent et al., 2011;

Mirones et al., 2023). Since the geostrophic approximation is not valid near the equator, we also include the wind components

in order to characterize circulation. In order to eliminate redundance and linear dependence among variables to be clustered,

1https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
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Table 1. Final set of rain gauge stations from the PACRAIN database used in this study. The columns provide information such as the

PACRAIN ID, indicating the data source (NZ for NIWA, US for NCEI, and SP for SPaRCE), station name and location, longitude and

latitude coordinates in degrees, time coverage of the time series (start and end dates; an asterisk indicates data outside the TRMM period,

which were discarded in this study), percentage of missing data within the start-end period, and elevation in meters above sea level.

Station ID Station Name Longitude Latitude Start End
Data

% Missing
Altitude

NZ75400

Futuna)

(Wallis and

Kolopelu

178.12 ◦ W 14.32◦ S 1998-01-01 2012-01-01 9.74 36

NZ82400
(Niue)

Alofi
169.93◦ W 19.07◦ S 1998-01-01* 2010-09-02 2.68 59

NZ84317
(Cook Islands)

Rarotonga
159.80◦ W 21.20◦ S 1999-09-28 2012-01-02 11.36 4

NZ99701
(New Zealand)

Raoul Island
177.93◦ W 29.23◦ S 1998-01-01* 2012-01-01 0.72 49

SP00646
(Vanuatu)

Port Vila
168.30◦ E 17.72◦ S 2000-01-26 2013-06-01 18.13 24

US14000

Samoa)

(American

Aoloau

170.77◦ W 14.30◦ S 1998-01-01* 2019-12-31* 21.72 408

US14690

Samoa)

(American

Nu’uuli

170.70◦ W 14.32◦ S 1998-01-01* 2019-12-31* 0.037 3

we performed a joint Principal Component Analysis (PCA) of all the variables, retaining all PCs explaining up to 80% of total120

variance (summing up to 45 PCs), prior to clustering. We chose k=5 different weather types (WTs) as a trade-off between the

representativity of each group (at least 2 years of data in each group) and the minimization of the total within-cluster variance.

Additional groups did not lead to significant reductions of within-group variance and resulted in less representative WTs (less

than 600 days for the 21-year period 1998-2019), thus potentially affecting the robustness of the conditioned statistical calibra-

tion. Furthermore, we assessed the robustness of the obtained classification following a 4-fold cross-validation approach, by125

partitioning the data in four temporal blocks (1979-1988, 1989-1998, 1999-2008 and 2009-2019). PCA was iteratively trained

on each fold and the resulting EOF was projected onto the remaining folds. At each iteration, the resulting weather typing

yielded consistent results in terms of climatologies and precipitation seasonality. The identification of five distinct daily WTs

and their relatively balanced sample sizes ensures a robust conditioning of the calibration process, thereby enhancing the reli-

ability and stability of the calibration results. We provide a summary of the resulting weather type classification in Appendix130

A. The methodology and main features of the classification are further explained in Mirones et al. (2023).
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2.3 Bias correction techniques

The calibration techniques used for the adaptive methodology include scaling, empirical quantile mapping (eQM), parametric

quantile mapping (pQM), and generalized Pareto distribution quantile mapping (gpQM). A more detailed description of the

methods is provided in Appendix B.135

The scaling technique is applied to the raw TRMM data by multiplying it with a correction factor. This factor is computed

as the ratio between the mean of the predictand (PACRAIN rain gauge measurements) and the mean of the raw TRMM

measurements during the training period.

The eQM method is an adaptation of the approach presented in Themeßl et al. (2011), which utilizes empirical cumulative

distribution functions (eCDFs) for calibration. In its parametric version (pQM), the QM method relies on the theoretical dis-140

tribution rather than the empirical one, whose parameters are estimated based on the observed and TRMM data. In particular,

here it is assumed that both the observed and simulated intensity distributions can be well approximated by the biparametric

gamma distribution (Piani et al., 2010), and therefore both shape and scaling parameters need to be estimated for transfer

function fitting.

The gpQM approach also utilizes quantile mapping but incorporates the generalized Pareto distribution (GPD) above a145

certain threshold (Gutjahr and Heinemann, 2013). The threshold, denoted as u, represents the percentile above which the GPD

is used to adjust the wet-day distribution. Below the threshold, the distribution is adjusted to a gamma distribution following

the pQM method. This method aims to improve the performance of pQM in the upper tail of the distribution, specifically for

extreme events. In this work, two different thresholds are selected: the 95th and the 75th percentiles, resulting in the methods

named gpQM-95 and gpQM-75, respectively.150

2.4 Adaptive calibration methodology

2.4.1 Calibration model fitting

The adaptive calibration methodology involves the application of scaling, eQM, pQM, gpQM-95, and gpQM-75 (Sec. 2.3)

individually to each weather type (WT, Sec. 2.2). Subsequently, the best calibration method for each WT is selected, and the

calibrated series are combined to form a unified time series spanning the entire calibration period. For each model fit, the155

calibrated series are obtained following a cross-validation scheme, aimed at avoiding model overfitting, allowing us to obtain

a more realistic measure of model performance (Efron and Gong, 1983). Under this scheme, the calibration methods are fit

and validated k times, considering in turn each of the folds as a test set and training the method with the remaining k−1 ones.

The resulting k-test series are finally joined and validated together in a single series spanning the whole calibration period.

In the adaptive calibration approach, the k folds are randomly chosen from each WT separately, k ranging from 2 to 6 folds160

depending on the number of observations falling within each WT, in order to ensure an approximate sample size of ∼300 in

each fold in order to ensure a robust fit.
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2.4.2 Calibration model assessment

In this work, we focus on general validation aspects involving the observed and calibrated-TRMM marginal distributions. In this

context, the validation ultimately entails deriving specific precipitation indices calculated from both rain gauge observations165

and calibrated TRMM time series and quantifying the mismatch with the help of suitable performance measures (see e.g.

Maraun et al., 2015).

There are different types of precipitation indices that can be used to validate a precipitation model, depending on the purpose

and scale of the model. The criteria used in this study for choosing precipitation indices for validation are: i) the ability of the

index set to capture the relevant aspects of precipitation variability and extremes, such as frequency, intensity and duration,170

and ii) an index set that is comparable across the different locations and weather types and across different time scales within

the study area. A number of precipitation-derived indices are computed to this aim, following the validation framework of the

Action Cost VALUE (Maraun et al., 2015, see Table 2), thus enabling a consistent, objective, and shareable evaluation of the

quality and performance of different calibration methods (note that here, the term index can also refer to a time series, as in the

case of correlation as validation measure, that receives as input the raw precipitation times series, Table 2).175

However, validation is a multi-faceted process and ranking the different methods using different measures of performance is

difficult because there is no single, universal criterion that can capture all aspects of a method’s effectiveness. As the different

measures emphasize different dimensions of performance (Table 2), such as distributional (e.g. Skewness and Mean), average

precipitation intensity (e.g. Simple Daily Intensity Index -SDII-), higher percentile precipitation amount (P98WetAmount) or

extreme precipitation values for specific return-periods (e.g. RV20_max), some measures may be more relevant or important180

than others, or attain different rankings depending on the method, potentially yielding inconsistent or conflicting outcomes. In

order to facilitate a comprehensive evaluation and inter-comparison of each calibration method and WT, we have employed a

standardized score calculation methodology able to integrate into one single composite score the different aspects of the valida-

tion. Furthermore, specific user-defined weights can be assigned to each validation measure to reflect their relative importance

or relevance for the evaluation process, as outlined next.185

To determine the best method for each WT, we utilize a Ranking Framework (RF) score, which is based on the methodology

described in Kotlarski et al. (2019). The computation of this score involves several steps. Firstly, we calculate the bias of each

calibration method with respect to the reference observations by taking the absolute differences between each of the index

values (Table 2) of the reference observations (Xi) and the calibrated TRMM series for each method (Yi,j):

Zi,j = |Xi −Yi,j |. (1)190

Next, we normalize the bias values obtained from all calibrations (j) for a given index (i), such that lower values are

considered better by the normalization:

Z ′
i,j = 1− Zi,j −Zi,min

Zi,max −Zi,min
. (2)
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Finally, the RF score for each method is calculated as the average of the normalized values for all indices:

RFj =
1

N

N∑
i=1

wi ·Z ′
i,j where

N∑
i=1

wi = 1 (3)195

and N represents the total number of indices evaluated (N = 10, see Table 2). Thus, in the calculation of the score, it is possible

to incorporate arbitrary (unit normalized) weights wi for the normalized climate indices. This allows for explicit consideration

of validation aspects that may carry greater importance, with higher weights assigned to those aspects to determine the final

score. A common example in many hydrological applications is the significance of accurately representing extreme precipita-

tion events following calibration. Therefore, specific extreme indices (e.g., P98Wet or P98WetAmount, as shown in Table 2)200

can be given a higher relative weight in their contribution to the overall score, thereby reflecting their increased relevance in

the calibration method ranking process. It is important to note that under this validation framework, the ranking of calibration

methods is sensitive to arbitrary decisions in i) the battery of validation indices used and ii) the weight assigned to each measure

to compute the overall score. We present a flexible validation framework that can be adapted to various impact applications

and research objectives. Nevertheless, end-users can also define their own validation sets according to their specific research205

questions.

All the calibration methods have been run using the implementation available in the package downscaleR (Bedia et al., 2020)

from the open-source climate4R framework for climate data analysis and visualization (Iturbide et al., 2019). The different

evaluation indices presented in Table 2 have been computed using the standard definitions of the VALUE Framework (Maraun

et al., 2015), which are implemented in the R package VALUE2.210

Table 2. Summary of the validation indices and measures used in the study, along with their corresponding codes as defined in the VALUE

reference list (http://www.value-cost.eu/validationportal/app/#!indices). The indices and measures serve as evalu-

ation metrics for assessing the performance and accuracy of the calibration techniques in the study.

Code Description Type

Skewness Skewness index

Mean Mean index

SDII Mean wet-day (≥ 1mm) precipitation index

R10 Relative frequency of days with precip ≥ 10mm index

R10p Precipitation amount falling in days with precip ≥ 10mm index

R20 As R10, but considering a 20mm threshold index

R20p As R10p, but considering a 20 mm threshold index

P98Wet 98th percentile of wet (≥1 mm) days index

P98WetAmount Total amount above 98th percentile of wet (≥1 mm) days index

RV20_max Maximum Daily precipitation for a 20-year Return Value index

absolute bias measure

relative bias measure

Spearman’s rank correlation measure

2https://github.com/SantanderMetGroup/VALUE
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3 Results and discussion

3.1 Standard and weather-type conditioned calibration method intercomparison

To obtain a comprehensive evaluation of the method’s overall performance, we initially focus on an unconditioned intercom-

parison, referred to as “standard calibration” hereafter. This evaluation involves assessing the method across the entire time

series without considering different weather types. The preliminary findings indicate the presence of low to moderate (negative)215

biases in the TRMM product. As an illustrative example, we present the results obtained at the Kolopelu station in Fig. 1 (the

upper triangle represents the standard calibration results), which are representative of the overall outcomes observed at other

locations (the corresponding plots for the remaining rain gauge locations are included in Appendix B). While certain TRMM

indices show negligible biases compared to the rain gauge stations (such as Skewness and SDII), others exhibit significant rel-

ative biases, particularly for representing high precipitation events (such as R10p, R20p, or P98_WetAmount). These findings220

highlight the necessity of applying some form of calibration to enhance the accuracy of TRMM for impact studies. In the same

vein, we include the ERA5 precipitation series to highlight the strong biases associated with this reanalysis product.

Under the assumption that the satellite and radar error may be proportional to the magnitude of the rain rate (Aghakouchak

et al., 2009), scaling has been previously used for TRMM correction (see e.g. Islam et al., 2010; Almazroui, 2011). However, it

was found to be ineffective in mitigating biases in most specific indices related to intense precipitation events and some others225

related to mean precipitation such as SDII. Instead of yielding and improvement, scaling had an overall deleterious effect,

underscoring the critical importance of considering alternative calibration techniques better suited to TRMM adjustment. As

shown in Fig. 1, the scaling step introduces additional bias to the raw TRMM data, specially for SDII, R10p R20p and P98Wet.

The scaling step also changes the sign of the bias in these cases, but consistently increases its absolute value, both in the

standard (not conditioned) and the WT-conditioned approaches.230

As Figure 1 shows, overall the quantile-mapping based techniques attain similar performance, although this may vary by

index or technique. The relative bias of the indices is also similar for both standard and conditioned calibration. This sup-

ports Mirones et al. (2023)’s finding that EQM outperforms scaling, with minor differences between unconditioned and WT-

conditioned calibration in bias. This also applies to the parametric quantile mapping variants pQM and gpQM, for different

exceedance thresholds, which are additional methods introduced in this study.235

The final column in Figure 1 compares the best-performing conditioned technique in each case with the adaptive method-

ology, combining the optimal calibration technique for each weather type individually. In general, the adaptive methodology

surpasses the results achieved by the best-conditioned calibration. The most notable reduction in relative bias is observed

in indices that measure high rainfall amounts, such as R10p, R20p, or P98WetAmount. This improvement is significant be-

cause conditioned calibration alone did not exhibit substantial enhancements, except for specific cases involving techniques240

like gpQM. However, only three indices (Mean, SDII, and P98Wet) did not show improvement with the adaptive approach

and remained nearly unchanged. In summary, the overall results indicate that the adaptive calibration method offers improved

adjustment in the upper tail of the distribution, which is where TRMM exhibits the most significant biases. This calibration

methodology facilitates enhanced adjustment for extreme precipitation events, with a specific focus on high precipitation in-
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dices. Next, in Sec. 3.2, we present a more in-depth analysis of the detailed results obtained from the adaptive calibration245

approach.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75 Adapt

RV20_max
357.1

P98WetAmount
6217.0

P98Wet
90.08

R20p
27580.0

R20
0.15

R10p
33999.0

R10
0.28

SDII
16.12

Skewness
5.29

Mean
10.68

WT-Cvs

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Relative Bias

WT-Cond

Adaptive

Standard

WT-Cond

Figure 1. Relative Biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Kolopelu

Station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation

data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sec. 2.3). For each method plot

cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned approach.

The last column shows a comparison between the relative bias of the best performing WT-conditioned technique (eQM at the Kolopelu site)

vs. the ‘adaptive‘ calibration. The circle indicates the best-performing approach with the lowest relative bias. The Y-axis labels show the

actual index values from the rain gauge observations beneath the index names.
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3.2 Adaptive calibration

We introduce the RF score as a comprehensive measure that accounts for the various indices described earlier (Table 2) to

evaluate the performance of the adaptive approach in comparison to the standard WT-conditioned method. This measure allows

for an easier ranking of methods. Figure 2 presents the summarized results, considering both unweighted and weighted RF250

values. The latter emphasizes the significance of extreme indicators in the evaluation process, as discussed in Section 2.4.

First of all, we undertake a method intercomparison using the unweighted RF score as a ranking measure (Fig. 2a). In most

stations the adaptive calibration outperforms the standard and WT-conditioned techniques, with some exceptions (Port Vila

and Nuu’uli), in which the adaptive approach has a similar performance than the simpler ones. On the contrary, the adaptive

method outperforms the standard and WT-conditioned calibration at other locations, such as Kolopelu, Alofi, or Raoul Island.255

Here, the adaptive calibration yields much higher RF scores than the best scores achieved by the other methods. While the score

for the best standard technique at these stations exceeds 0.60, the adaptive calibration achieves values between 0.80 and 0.90,

representing an improvement of 33-50%. This significant enhancement in calibration, demonstrates an overall improvement

that justifies the application of the adaptive method. Furthermore, it is noteworthy that in the worst-case scenario, the adaptive

approach will nearly match (and never significantly impair) the performance of the calibration. Furthermore, the limited spatial260

variability across locations observed in the adaptive method (Fig. 2, boxplots) underpins its potential for a robust application

across different locations. This characteristic holds importance in hydrological studies where spatial consistency between

locations at the basin level is typically desired.

As mentioned earlier, it is also possible to assign arbitrary weights to the indices involved in the RF score, giving more im-

portance to specific precipitation characteristics, such as the representation of extremes. In this study, we selected index weights265

that prioritize extreme precipitation indices (Table A2). This weighting aims to guide the calibration towards better adjustment

in the upper tail of the distribution, thereby achieving improved correction for extreme precipitation events beyond a certain

threshold. In this way, the increased influence of extreme indices favors methods like gpQM, which specialize in adjusting the

upper tail using a GPD (Generalized Pareto Distribution). The findings are illustrated through the boxplots presented in Figure

2, showing that the scores of gpQM95 and gpQM75 exhibit higher values in the weighted version (Figure 2b) compared to the270

unweighted version (Figure 2a). Moreover, the differences in their performance can be visualized in Fig. 3.

The analysis of the RF weighting configuration demonstrates its dual impact: not only does it affect the overall score,

but it also influences the selection of techniques for each weather type (Fig. 3). In our weighting scheme, which prioritizes

performance in extreme precipitation indices, the gpQM approaches often appear as the best choice, for instance at Aoloau site

for WTs 1 to 3, Kolopelu (WTs 1 and 2) or Alofi (WT1, Fig. 3). This outcome indicates the suitability of the gpQM technique275

over the conventional eQM and pQM methods when the representation of extreme indices is prioritized. For instance, at Aoloau

the overall adaptive calibration RF score improves from approximately 0.65 to 0.85, representing a 30% increase, with the best

standard calibration method changing from eQM or pQM to gpQM75 in WT1, WT2 and WT3 (Fig. 3).
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Figure 2. (a): Ranking Framework (RF) score results of the adaptive calibration for each WT and site. The red dots indicate the best method

for the corresponding WT, while the white stars represent the best method for the standard calibration (the same technique applied over the

entire period without conditioning). On the right side, the standard approach score for each method is represented in the box plot (their mean

represented by the color of the boxes). (b): Similar to (a), but with the addition of different weights (refer to A2) in the computation of

climate indices for the RF score.

In the same vein, at the Port Vila station in Fig. 2a, the adaptive calibration score is lower compared to the score of gpQM75.

However, when applying weighting with a focus on high rainfall indices (Figure 2b), the adaptive calibration undergoes en-280

hancements and achieves a competitive score higher than the unweighted version. It is worth noting that while the inclusion

of weights leads to changes and improvements in the adaptive calibration for certain stations, it has no effect on others. For

instance, stations like Rarotonga or Nu’uuli exhibit no changes in the composition of the adaptive calibration, regardless of the

weighting applied. The particular case of Rarotonga site emphasizes the fact that model assessment is sensitive to user choices,

such as the set of indices and measures used for validation and, as in this case, the weights assigned to each of them. As a285
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result, when more weight is assigned to the performance of extreme precipitation indices (weighted RF evaluation), the adap-

tive calibration approach performs better than the standard calibration with the best-performing method (PQM, RF∼0.75). On

the contrary, the standard unconditioned calibration using the PQM method performs (marginally) better under the unweighted

RF scheme. In the case of Nu’uli station, the adaptive calibration did not improve the performance, although it also attained

a similar high RF score (∼0.85/0.75 unweighted/weighted RF scores, Fig. 2a/b). Compared to other locations in Figs. C1-C6290

(Appendix C) and Fig. 1 (Kolopelu), Nu’uli has moderate raw TRMM biases that are effectively corrected by both empirical

and parametric quantile mapping Fig. C6. gpQM performs similarly in general, but fails in reproducing distributional skewness

and RV20_max in the case of the adaptive approach.

Therefore, the results show that adaptive method attains an overall better performance in all stations, as highlighted in the

boxplots in Figure 2. Additionally, the adaptive calibration demonstrates a narrower interquartile range (IQR) compared to the295

other methods in Figure 2a, indicating lower variability. Only gpQM95 calibration shows a narrower IQR range, but obtaining

significantly lower scores. We attribute this result to the limited robustness of the fit of the extreme function due to the high

percentile threshold, which greatly reduces the sample size (see Table A1). The other methods individually considered exhibit

wider RF variability ranges and lower values as compared to the adaptive approach.

Quantile mapping can preserve the relative changes in the simulated data, such as trends and patterns (see e.g. Casanueva300

et al., 2018), while scaling may distort them by applying a constant factor. As a result, scaling shows limitation in representing

some of the extreme precipitation indices such as p98Wet and RV20_max in most of the locations, as well as the SDII (see

Figs. C1-C6 and Fig. 1 -Kolopelu-). On the other hand eQM and pQM show an overall good performance in most precipitation

indices, and eQM is most often the best method for the “standard” calibration (Fig. 2).

The gpQM method has the potential to improve the modeling of local extreme precipitation by better adjusting extreme305

events above a given percentile (75 and 95 in this study), by fitting a generalized Pareto Distribution on the threshold ex-

ceedances as the transfer function for these points (see e.g. Vrac and Naveau, 2007). This may happen, for instance, in Weather

Types 1 and 2, which are associated with enhanced tropical cyclone frequency and extreme precipitation events (Mirones et al.

(2023), and Fig. A), and it is shown at Kolopelu (Fig. 2a/b for unweighted/weighted RF score) and Aoloau (Fig. 2b), where

gpQM75 is the best-performing calibration method, or WT1 at Alofi (with gpQM95). The limitation, however, arises from the310

sample size required to perform a robust fit; this is a major challenge in the adaptive approach, since only the observations of

the given WT are used, and it is exacerbated for higher percentile thresholds that further limit the number of points for a robust

fit. This limitation also exists for the other quantile mapping techniques, although, in this case, the number of observations,

even for the less frequent weather type (approximately 300 days for the calibration period in this study, see Sec. 2.4.1), can

ensure a robust fit. Nevertheless, scaling requires less data and is easier to implement than quantile mapping. The assumption315

of scaling of a linear relationship between raw satellite and observed precipitation, even though may not hold true in most

occasions, can still be reasonable (Aghakouchak et al., 2009) yielding a good approximation in some occasions (see e.g. the

overall RF results obtained in Port Vila in Fig. 2).
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Figure 3. Differences between unweighted and weighted RF scores attained for each weather type at each of the target locations. The

technique associated to the highest score is also indicated by the key of symbols.

4 Conclusions

We intercompared a range of bias-adjustment techniques for the calibration of daily Tropical Rainfall Measuring Mission320

(TRMM) precipitation data, building upon a set of rain-gauge stations scattered across the South Pacific region, spanning the

period 1998–2019. The calibration techniques evaluated in this study include empirical quantile mapping (eQM), parametric

quantile mapping (pQM), generalized Pareto distribution quantile mapping (gpQM) and scaling, the latter used as a benchmark

since it is the most common and simple approach for this task. An adaptive calibration methodology has been developed based

on weather type (WT) conditioning, which selects the best-performing calibration technique for each specific WT according325

to a user-defined weighted set of precipitation indices for validation.

The adaptive calibration method improves upon the results obtained with the standard WT-conditioned methodology pre-

sented in Mirones et al. (2023) or at least, in the worst case, it maintains the calibration performance. Notably, the most sub-

stantial improvements are observed in accumulated precipitation indices, specifically R10p, R20p and P98WetAmount. These

indices hold significance in hydrological modeling and climate impact studies, making the attained improvements in the cali-330

bration particularly relevant. Thus, the method showcases competitive performance in effectively calibrating the TRMM data

at the target stations, thereby promoting consistency in the results across diverse locations. This adaptability further enhances

the overall calibration accuracy, by adjusting its bias according to the specific precipitation regimes prevalent in each weather

type. Furthermore, the capability to customize the calibration by applying arbitrary weights to specific indices offers increased
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flexibility in determining the optimal combination of methods that align with the unique characteristics of each site and re-335

search objectives. In conclusion, this new adaptive calibration methodology refines and improves the accuracy of precipitation

data from indirect sources, such as the TRMM database or similar products. This enhances the reliability of hydrological

and climate impact assessments based on these data. In the supplementary material, we provide the data and a reproducible

documented notebook, to aid in the application of the method.

Code and data availability. An interactive notebook associated with this study is available at the following link: https://github.com/340

SantanderMetGroup/notebooks/tree/2023_TRMM_adaptiveCal/2023_adaptiveCalibration. This notebook provides a comprehensive illus-

tration of the entire adaptive calibration process, including available data download from an open repository and the computation of both

standard and adaptive calibration RF scores.
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Appendix A: Weather typing results

Next, we provide a visual summary of the weather typing classification undertaken using ERA5 reanalysis (Sec. 2.2). Here,

we include a summary figure of the resulting classification (Fig. A1) in order to include additional relevant information for the

analysis presented in this study, such as the occurrence of tropical cyclones (TCs), as relevant features significantly contributing

to total annual precipitation and directly related with extreme precipitation events in the region. The TC track record for the465

study area has been obtained from the International Best Track Archive for Climate Stewardship (IBTrACS - v4.0) database

(Knapp et al., 2010)3.

While the seasonal pattern of the classification is depicted, interannual variability fluctuations also emerge in this visual-

ization. A few years stand-out as particularly cyclonic (e.g. 1981, 1997, 1998) being most of these TC events associated to

weather types 1 and 4 (e.g. years 1983, 2003 and 2010) and mostly restricted to the period December-April (Fig. A1b). The470

exceptional year 1997 extends the TC activity to May-July and starts earlier, in October, while the second strongest (1981) does

not extend the season but exhibits an increased TC activity in the period December-March (Fig. A1a). Notably, both years are

characterized by experiencing the two strongest El-Niño events of recent decades4, together with 2015-2016, that also exhibits

a remarkable TC frequency (Fig. A1b). The interested reader is referred to the weather typing methodology and main results

presented in more detail in Mirones et al. (2023).475

Appendix B: Bias correction methods formulas and complementary information

Here we provide a detailed description of the correction methods used in the study. These methods aim to improve the accuracy

of the TRMM rainfall data by incorporating information from PACRAIN rain gauge measurements, used as predictand. The

calibration techniques are next described:

Equation B1 presents the scaling method, where p̂trmm represents the corrected TRMM rainfall, prg and ptrmm denote the480

PACRAIN rain gauge and raw TRMM measurements, respectively, and P̄rg and P̄trmm are the means of the prg and ptrmm

series.

p̂trmm = ptrmm
P̄rg

P̄trmm
(B1)

Equation B2 describes the empirical quantile mapping (eQM) method. Here, X̂t,i represents the corrected value for a specific

day and grid, F̂ trmm
doy,i and F̂ rg

doy,i are the empirical cumulative distribution functions (eCDFs) for TRMM and PACRAIN,485

3All data are open access through a dedicated URL (https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access)
4El Nino and La Nina Years: NOAA Physical Sciences Laboratory [WWW Document], n.d. URL https://psl.noaa.gov/enso/climaterisks/years/top24enso.

html (accessed 2.12.24).
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Figure A1. (a): Daily time series classification of weather types for the extended 41-year period 1979-2020. TCs occurrences are represented

by the white dots. (b): Absolute number of days affected by TCs by year and WT.

respectively, corresponding to the given day of the year (doy), and Xt,i is the uncorrected value.

X̂t,i = F̂ rg−1

doy,i (F̂
trmm
doy,i (Xt,i)), (B2)

Equation B3 presents the parametric quantile mapping (pQM) method. F trmm
doy,i and F rg

doy,i represent the assumed theoretical

distributions for TRMM and PACRAIN, respectively, and Xt,i is the uncorrected value.

X̂t,i = F rg−1

doy,i (F
trmm
doy,i (Xt,i)), (B3)490

Lastly, Equation B4 outlines the generalized parametric quantile mapping (gpQM) method. It uses a combination of gamma

and generalized Pareto distribution (GPD) to correct the TRMM rainfall values based on their percentiles. F trmm,gamma
doy,i and

F rg,gamma
doy,i are the gamma cumulative distributions for TRMM and PACRAIN, while F trmm,GPD

doy,i and F rg,GPD
doy,i represent the

21



GPDs for TRMM and PACRAIN, respectively. The threshold of the 95th percentile is used to differentiate between the two

distributions.495

X̂t,i =

 F rg,gamma−1

doy,i (F trmm,gamma
doy,i (Xt,i)) if Xt,i < 95th percentile

F rg,GPD−1

doy,i (F trmm,GPD
doy,i (Xt,i)) if Xt,i ≥ 95th percentile

(B4)

Table A1. Overview of observations (days) for each WT across multiple stations. Each row corresponds to a specific station, while the

columns represent different WTs. The table displays the total number of observations recorded for each WT, along with the corresponding

75th and 95th percentiles.

Station
WT1 WT2 WT3 WT4 WT5

N P75 P95 N P75 P95 N P75 P95 N P75 P95 N P75 P95

Kolopelu 966 242 48 775 194 39 851 213 43 826 206 41 306 76 15

Alofi 1140 285 57 932 233 47 1023 256 51 917 229 46 437 109 22

Rarotonga 1105 276 55 916 229 46 1055 264 53 957 239 48 391 98 20

Raoul Island 1327 332 66 1058 264 53 1158 290 58 1076 269 54 458 114 23

Port Vila 1084 271 54 884 221 44 1010 252 50 849 212 42 370 92 18

Aoloau 1091 273 55 874 218 44 999 250 50 826 206 41 428 107 21

Nu’uuli 2076 519 104 1721 430 86 1846 462 92 1570 392 78 820 205 41

Table A2. Index weights wi (see Eq. 3) for the weighted RF score calculation in the adaptive calibration technique selection.

Code Weight

Skewness 0.05

Mean 0.05

SDII 0.05

R10 0.05

R10p 0.05

R20 0.15

R20p 0.15

P98Wet 0.15

P98WetAmount 0.2

RV20_max 0.1
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
319.38

P98WetAmount
4291.5

P98Wet
82.12

R20p
18579.1

R20
0.09

R10p
22490.9

R10
0.16

SDII
14.61

Skewness
5.68

Mean
6.13

Standard

WT-Cond

WT-CvsAdapt

WT-Cond

Adaptive

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Relative Bias

Figure C1. Relative Biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Alofi

Station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation

data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sec. 2.3). For each method plot

cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned approach.

The last column presents shows a comparison between the relative bias of the best WT-conditioned technique vs. the adaptive calibration.

The circle indicates the best-performing approach with the lowest relative bias. The Y-axis labels show the actual index values from the rain

gauge observations beneath the index names.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
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Figure C2. Same as Fig. C1, but for the Rarotonga rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75
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Figure C3. Same as Fig. C1, but for the Raoul Island rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75
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Figure C4. Same as Fig. C1, but for the Port Vila rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75
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Figure C5. Same as Fig. C1, but for the Aoloau rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75
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Figure C6. Same as Fig. C1, but for the Nuu’uli rain gauge location.
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