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open discussion of the manuscript entitled:

Refining Remote Sensing precipitation Datasets in the South Pacific:
An Adaptive Multi-Method Approach for Calibrating the TRMM Product
by Mirones et al. 2023

We would like to express our sincere gratitude to the reviewer for his/her time and effort in
reviewing our manuscript. We appreciate the constructive feedback and the valuable
suggestions for improving the quality and clarity of our work. We appreciate the reviewers’
comments and have revised the manuscript accordingly. We provide a point-by-point response
to all the issues raised below. We have also attached a “diff” file to this response to facilitate the
revision process. We hope that the reviewer will find the revised version satisfactory and worthy
of publication.

Major comments:

1. The TMPA product was used as a calibration object. The reasons for choosing
TMPA should be provided. In particular, its successor. i.e., IMERG, has been
released to the public and is better than TMPA in multiple aspects such as
resolution, covering period, and quality. Moreover, the TMPA products have
stopped updating. I am confused that this study selected TMPA instead of IMERG.

We appreciate the reviewer’s feedback and concur that this issue deserves a mention in
the paper. The main objective of our study is essentially methodological, and therefore a
great part of our analysis can be undertaken with different products, and it is therefore
not an exclusive or ad-hoc methodology for the TRMM-TMPA product. Furthermore, in
this case our interest is to evaluate the performance of different calibration methods for
precipitation data, and TMPA is an adequate baseline as a challenging case to this aim,
given its good overall performance but loss of accuracy in the representation of some
critical extremes. However, we respectfully disagree with the referee’s assessment that
choosing this dataset “does not make much sense”. We believe that this dataset is
relevant and appropriate for our research question, which is the introduction of a novel
methodology for calibration. In our opinion, just because it is not the newest and most
accurate product does not mean that a study that uses it as a reference to analyze a
new calibration technique does not make sense. It is precisely its known lack of accuracy
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in representing certain precipitation events that makes it particularly interesting for this
purpose, given that the need for its adjustment has been addressed in many previous
studies, often in a suboptimal manner (see Mirones et al. 2023 for an overview, and
some references therein, e.g.: Aghakouchak et al. 2009, Almazroui 2011). On the other
hand, although we are aware of the improvements introduced in the new IMERG
product, the study of its possible errors and limitations is beyond our scope in this article,
although we hope that the methodological aspects that we introduce in this work can
serve as a reference for other authors in the future to analyze in more depth the
characteristics of this more recent product or others. Therefore, far from being
inappropriate, it opens the door for new applications using different and improved
datasets.

In response to the reviewer’s comments, we have added a new paragraph in the
introduction to explain why TRMM data is suitable for our study and how our calibration
methodology can be applied to other satellite precipitation products. Furthermore, to
avoid giving a misleading idea of exclusivity of the methodology for a specific product,
we have removed the TRMM reference in the title (the term has been included in the
keywords, though, to facilitate indexing). We hope that our modifications address the
reviewer’s concerns and demonstrate that our study is relevant, novel, and
generalizable, regardless of the dataset choice.

2. Methodology: the method section is one of the important content, but the current
descriptions are too concise. Based on five weather types, the paper proposed an
“adaptive calibration approach” to take advantage of the complementary
strengths for four methods and further improve the accuracy of the TMPA product.
However, the weighting method was not described well, especially its standards
and rules. In addition, could the weighting method used in this paper provide
optimal weights? In other words, whether this weighting method can maximize the
advantages of different error adjustment methods. In addition, the classification of
weather types was not provided. I understand the authors gave the related
literature, but this is not enough. A detailed classification scheme should be
provided as it is an important component for the “adaptive calibration approach”.

We thank the referee for this comment. In order not to be excessively long, in the initial
manuscript we have omitted most of the methodology related to weather typing, citing a
previous article where the same methodology is applied. However, we understand the
reviewer’s point of view and have added a new paragraph giving some key details about
the clustering methodology used, the rationale for the choices made and its suitability for
conditioned calibration. In addition, we include in the supplementary material (New
dedicated Appendix A) a new additional figure in order to summarize the main clustering
results. It also provides some additional information regarding the frequency of tropical
cyclone occurrence, that will aid in the discussion of the results.
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Figure A1. (a): Daily time series classification of weather types for the extended 41-year
period 1979-2020. Tropical Cyclone (TC) occurrences are represented by the white dots.
(b): Absolute number of days affected by TCs by year and WT.

We thank the referee for this insightful comment regarding the potential of the adaptive
calibration approach for optimization. However, as we have already emphasized in the
manuscript, there is no such a thing as an “optimal” tuning. In this study, we have
selected a battery of validation indices suitable for the characterization of the most
important marginal aspects of local precipitation relevant for hydrological/impact
applications, but this is not comprehensive and may lack some other characteristics
relevant in specific research contexts (e.g. temporal validation of annual/seasonal
cycles, autocorrelation function, dry-wet or wet-wet transition probabilities, spell
durations etc…). Furthermore, the importance given to each of these aspects (for
example, giving priority to extreme events rather than mean precipitation) may also
determine the calibration method choice, as we illustrate here. That is the main reason
we have avoided the term “optimization” in the title and focused more on “refinement”, in
the sense that the end-user priorities may alter the final method combination choice.
However, and following the reasoning of the reviewer, it is possible to use the validation
framework to test for different validation measure sets and weighting schemes searching
for a minimization of the overall error. Due to the possibility of combining so many
measures of performance, we introduce in this study the RF score, that makes possible
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the integration of their combined performance into one single descriptor. However, it
would be possible to search for the minimization/maximization of one single
error/performance measure using the same approach, and following the reference code
included as supplementary material to this aim. In order to clarify these aspects we have
introduced a major modification of the validation method section, providing further details
on the methodology and its justification. We hope that with these changes the rationale
behind the proposed validation framework is clearer. Regarding the specification of
“standards”, we have used a subset of precipitation indices used in the international
initiative VALUE. The main advantage of using a set of indices already used in an
international intercomparison project is that it allows for a consistent, objective, and
shareable assessment. We have also emphasized this aspect and provided further
details on this validation framework.

3. Results and discussion: The analysis has many subjective descriptions, which is
not recommended for scientific writing. I suggest the analysis provides some
specific metric values and strengthens in-depth interpretations on the results.

Thanks for this comment. We have made an effort to remove all statements that may
sound “subjective” and provide a more thorough explanation of the results based on the
specific measures introduced in the study.

Other comments:

1. Lines 36-37: this conclusion is true only in some areas, not all regions. I suggest
revising this sentence to avoid misleading the readers.

Thanks for this point, it can certainly be misleading. We have clarified it in the sentence

2. The differences between the four methods (i.e., scaling, eQM, pQM, and gpQM)
should be provided and discussed, especially for their advantages and limitations.
Due to their respective advantages, the adaptive calibration approach, which
could consider their advantages, is necessary. Meanwhile, the adaptive calibration
approach is not the best in all cases, which is worth analyzing.

We have included two new paragraphs in the Results and Discussion section of the
revised version of the manuscript addressing the results obtained in relation to the
specific properties of the methods tested. Advantages and limitations of the various
methods tested are presented and illustrated with the results obtained at diverse study
locations.

3. Weather typing is important in this study. So, which five types? The description
lacks detail.

We have expanded the explanation regarding the weather typing. Now it should be
clearer all the methodological aspects regarding the weather typing and why finally 5
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weather types have been used in this study. In addition, some supplementary material
has been added to give additional context information, as previously detailed in
response to major comment 2.

4. Lines 159-161: could the authors provide some literature to support this point?

Thanks for pointing to this sentence. We have rephrased the whole sentence and
included some references supporting this claim.

5. Lines 161-162: can the authors provide some study results (e.g., specific metric
values) to support this point？

Thanks. Yes, the text already indicates Fig. 1, that supports this finding. However, we
have expanded the explanation to be more explicit and provide further detail.

6. Lines 166-167: what results?

The sentence makes reference to the results presented in Mirones et al 2023. We have
rephrased and extended the sentence to be more explicit.

7. Why did the adaptive calibration method not improve the accuracy at the
Rarotonga and Nu’uuli stations?

In the case of Rarotonga, this statement is not completely true, since the adaptive
calibration method is able to improve the performance using the weighted RF score. This
particular result emphasizes the fact that model assessment is sensitive to user choices,
such as the set of indices and measures used for validation and, as in this case, the
weights assigned to each of them. As a result, when more weight is assigned to the
performance of extreme precipitation indices, the adaptive calibration approach performs
better than the standard calibration (PQM). Also, when considering the standard
unconditioned calibration method (one single technique for the entire calibration period),
the best performing method under the unweighted validation scheme is PQM, while
when using the weighted RF score scheme, favoring the good performance of extreme
indicators, it is the GPQM95 method. Therefore, it is important to remark that under this
validation framework, the ranking of calibration methods is sensitive to arbitrary
decisions in i) the battery of validation indices used and ii) the weight assigned to each
measure to compute the overall score. This is now explicitly explained in the revised
manuscript.

In the case of Nu’uli station, the adaptive calibration did not improve the performance,
although it also attained a similar high RF score (~0.85/0.75 unweighted/weighted RF
scores, Fig. 2a-b). Compared to other locations in Figs C1-C5 (Appendix C) and Fig.1
(Kolopelu), Nu’uli has moderate raw TRMM biases that are effectively corrected by both
empirical and parametric quantile mapping, as reflected in Fig. C6 (Appendix C). GPQM
performs similarly in general, but fails in reproducing distributional skewness and
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RV20_max in the case of the adaptive approach. This is in connection with the
limitations of the GPQM method for higher percentile thresholds, due to limitations in the
sample size, which are accentuated in the case of the adaptive approach, as
commented in relation with previous minor Comment 2. Thus, the adaptive calibration
does not offer any advantage over the single-technique approach in this particular case.
However, as we stress in the article, it also does not degrade the performance, but
matches it. In fact, the adaptive approach enhances most indices, except RV20_max,
P98Wet and SDII, albeit slightly, as indicated in the right column of Fig. C6.

Citation: https://doi.org/10.5194/egusphere-2023-1402-RC2
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Abstract.

Calibration techniques are gaining popularity in climate research for refining
::::
refine

:
numerical model outputs , favored for

their relative simplicity and fitness-for-purpose
::
for

:::::::
climate

:::::::
research,

:::::
often

::::::::
preferred

::
for

:::::
their

::::::::
simplicity

:::
and

:::::::::
suitability in many

climate impact applications. Their range of applicability goes beyond numerical model outputs and can be applied to calibrate

remote sensing datasets that can exhibit important biases as
:::::::::::
Atmospheric

::::::
pattern

::::::::::::
classifications

:::
for

:::::::::::
conditioned

:::::::
transfer5

:::::::
function

:::::::::
calibration,

::::::::
common

::
in

::::::
climate

:::::::
studies,

:::
are

::::::
seldom

:::::::
explored

:::
for

:::::::
satellite

:::::::
product

:::::::::
calibration,

::::::
where

::::::::
significant

::::::
biases

:::
may

:::::
occur

:
compared to in situ meteorological observations. This study presents an adaptivecalibration approach specifically

designed for calibrating
:::::::
proposes

:
a
::::

new
:::::::::
‘adaptive’

:::::::::
calibration

::::::::
approach,

:::::::
applied

::
to

:
the Tropical Rainfall Measuring Mission

(TRMM) precipitation product across multiple stations in the South Pacific. The methodology involves the daily classification

of the target series into five distinct Weather Types (WTs) capturing the diverse spatio-temporal precipitation patterns in the10

region. Various quantile mapping (QM) techniques, including empirical (eQM), parametric (pQM), and Generalized Pareto

Distribution (gpQM), as well as an ordinary scaling, are applied for
::
to

:
each WT. We perform a comprehensive validation by

evaluating 10 specific precipitation-related indices that hold significance in impact studies, which are then combined into a sin-

gle Ranking Framework (RF) score, which offers a comprehensive evaluation of the performance of each calibration method

for every Weather Type (WT). These indices are assigned user-defined weights, allowing for a customized assessment of their15

relative importance to the overall RF score. Our ‘adaptive ’
:::::
Thus,

:::
the

:::::::
adaptive approach selects the best performing method for

each WT based on the RF score, yielding an optimally calibrated series.

Our findings indicate that the adaptive calibration methodology surpasses standard and weather-type conditioned methods

based on a single technique, yielding more accurate calibrated series in terms of mean a
:::
and

:
extreme precipitation indices

:
,

consistently across locations. Moreover, this methodology provides the flexibility to customize the calibration process based20

on user preferences, thereby allowing for specific indices, such as extreme rainfall indicators, to be assigned higher weights.

This ability enables the calibration to effectively address the influence of intense rainfall events on the overall distribution.

Furthermore, the proposed adaptive method is highly versatile and can be applied to different scenarios, datasets, and regions,

1



provided that a prior weather typing exists to capture the pertinent processes related to regional precipitation patterns. Open-

source code and illustrative examples are freely accessible to facilitate the application of the method.25

Keywords —
:
– weather types, quantile mapping, extreme precipitation, precipitation indices, bias adjustment,

:::::::
TRMM

:

1 Introduction

Satellite rainfall products serve as crucial sources of information for various hydrological applications, offering continuous

temporal coverage and consistent spatial estimates of precipitation in regions lacking sufficient rain gauge data. However,

unlike direct observations, satellite measurements are prone to systematic errors originating from uncertainties in estimating30

precipitation amounts from radar reflectivity measurements (Simpson et al., 1996; Sekaranom and Masunaga, 2019) or the

irregular timing of satellite overpass (Aghakouchak et al., 2009), among others. Consequently, these products
::::
often

:
deviate

significantly from the statistical properties of observed series, particularly concerning extreme precipitation events (Mirones

et al., 2023), thus requiring calibration before their application in impact studies.

::
In

::::::::
particular,

::::
the

:::::::
Tropical

:::::::
Rainfall

::::::::::
Measuring

:::::::
Mission

::::::::
(TRMM)

::::
was

:
a
::::::::

research
:::::::
satellite

::::::::
launched

::
by

::::::
NASA

:::
in

::::
1997

:::
to35

:::::::
improve

:::
the

::::::::::::
understanding

:::
of

:::
the

::::::::::
distribution

::::
and

:::::::::
variability

::
of

:::::::::::
precipitation

::
in
::::

the
::::::
tropics

::::
and

:::::::::
subtropics.

:::::::
TRMM

:::::
used

::::::
several

::::::::::
space-borne

::::::::::
instruments

::
to

:::::::
measure

:::::::
rainfall

:::
and

:::
its

:::::::::
associated

::::
heat

::::::
release

:::
for

:::
the

::::
first

::::
time,

::::::::
essential

:::
for

:::::::::
regulating

::::::
Earth’s

:::::::
climate.

:::::::
TRMM

:::::
ended

:::
its

::::::::
operation

:::
in

:::::
2015,

::::
after

:::::::::
providing

:::::::::::
precipitation

::::
data

:::
for

:::
17

:::::
years,

:::::
with

:
a
:::::::

derived
:::::
daily

::::::::::
accumulated

:::::::::::
precipitation

:::::::
product

::::::::
(TRMM

::::::::::::
Multi-satellite

:::::::::::
Precipitation

::::::::
Analysis,

:::::::
TMPA)

::::
that

:::::
have

::::
been

:::::::::::
discontinued

:::
as

::
of

::::
Dec.

::::
31,

::::
2019

:::::::::::::::::::
(Huffman et al., 2016)

:
.
:::
To

:::::::
continue

::::
and

::::::
extend

:::
the

::::::
legacy

:::
of

:::::::
TRMM,

:::::::
NASA

:::::::::
developed

:::
the

:::::::::
Integrated40

::::::::::::
Multi-satellitE

::::::::
Retrievals

:::
for

:::::
GPM

:::::::::
(IMERG)

:::::::::
algorithm,

::::::
which

::::::::
combines

::::::::::
information

:::::
from

:::
the

:::::
GPM

:::::::
satellite

:::::::::::
constellation

:::
and

::::
other

:::::::
sources

::
to

:::::::
estimate

:::::::::::
precipitation

::::
over

::::
most

::
of

:::
the

:::::
globe

::
in

:
a
::::
very

:::::::
flexible

:::::::::
framework

::::::::::::::::::
(Huffman et al., 2020)

:
.
:::::::
IMERG

:::
also

:::::::::::
incorporates

::::::::::
TRMM-era

::::
data,

:::::::
creating

::
a
:::::::::
continuous

:::::::::::
precipitation

::::::
dataset

::::::::
spanning

::::
over

::::
two

:::::::
decades.

:::
In

:::
this

::::::
study,

:::
we

::::
focus

:::
on

:::::::
TRMM

:::
due

::
to

::::
this

::::
long

::::::
history

::
of

::::::
usage.

::::::
TRMM

::::
had

:
a
:::::::::::
low-altitude

:::::
(402.5

:::::
km),

:::::::::::::::::
non-sun-synchronous

:::::
orbit,

::::::
which

::::::
allowed

::
it
:::
to

::::::
sample

:::
the

:::::::
diurnal

:::::
cycle

::
of

:::::::::::
precipitation

::::
and

::::::
capture

:::
the

:::::::::
variability

:::
of

::::::
rainfall

:::
at

:::::::
different

:::::
times

:::
of

:::
the

::::
day45

::::::::::::::::::::::::::::
(National Research Council, 2006).

::::::::
IMERG,

:::
on

:::
the

:::::
other

:::::
hand,

::::
uses

::::
data

:::::
from

:::::::
multiple

::::::::
satellites

::::
with

::::::::
different

:::::
orbits

::::
and

::::::
sensors,

::::::
which

::::
may

::::::::
introduce

:::::::::::
uncertainties

::::
and

:::::::::::::
inconsistencies

::
in

:::
the

:::::::
diurnal

::::::::
sampling

:::::::::::::::
(Zhou et al., 2023)

:
.
:::::
Thus,

::::::::
although

:::
new

::::::::
products

::::
have

::::::::
emerged

:::
that

:::::
offer

:::::
better

:::::::::::
performance

::::
than

::::::
TRMM

:::
for

::::::
many

::::::::::
hydrological

:::::::::::
applications,

:::::::
TRMM

:::
still

::::
has

::::
some

:::::::::
advantages

::
in
:::::::
specific

::::::::
contexts.

::::::::::
Furthermore,

:::
the

:::::::::::
methodology

::::::::
proposed

::
in

:::
this

:::::
study,

::::::
which

::::::::
calibrates

:::
the

:::
data

:::::::::
according

::
to

:::::::::::
regional-scale

:::::::::::
atmospheric

::::::::
processes

:::
and

::::::::
validates

:::
the

::::::
results,

:::
can

::
be

:::::::
applied

::
to

:::
any

:::::
other

::::::
dataset

::
as

:::::
well.50

Essentially, the calibration process entails adjusting a transfer function that relates the parameters of raw satellite pre-

cipitation distribution to observed rain gauge time series. The effectiveness of bias reduction through post-processing de-

pends on the underlying mechanisms producing the bias (see e.g. Maraun et al., 2017), as well as the appropriateness and

accurate implementation of the chosen technique. Moreover, it is crucial to accompany this process with a proper estima-

tion of the associated uncertainty. In particular, the TRMM biases are not constant but associated with specific meteoro-55

logical conditions,
::::
often exhibiting a systematic overestimation during wet periods and underestimation during dry periods

2



(Islam et al., 2010; Almazroui, 2011)
:
in

:::::
some

::::::
regions

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Islam et al., 2010; Almazroui, 2011; As-syakur et al., 2016; Giarno et al., 2018)

. Hence, it is reasonable to anticipate that incorporating explicit information regarding the synoptic-scale meteorological con-

ditions into the calibration process would enhance the fitting of the transfer function. In this context, weather typing techniques

(see Huth et al., 2008, for a comprehensive review), prove helpful in defining relevant weather patterns by summarizing distinct60

atmospheric configurations associated with different precipitation regimes (Baltaci et al., 2015; Hay et al., 1991; Riediger and

Gratzki, 2014; Trigo and DaCamara, 2000). This approach would
::
can

:
effectively situate the calibration within the context of

significant atmospheric circulation processes that impact the target variable , as previously shown (Mirones et al., 2023), con-

sidering that the biases may be different depending on the prevailing atmospheric processes at each moment (Jury et al., 2019),

so that a generalist adjustment may not allow to solve them efficiently in all cases. Moreover, although conditioning reduces65

the sample size, it has been shown that the calibration with adequate sub-samples can significantly enhance the reliability of the

corrected seriesReiter et al. (2018),
::
as

::::::
shown

::::
with

::::
some

:::::::
popular

:::::::::
calibration

:::::::
methods

:::
like

:::::::
quantile

::::::::
mapping

::::::::::::::::
(Reiter et al., 2018)

.

While atmospheric
::::::::::
Atmospheric

:
pattern classifications for conditioned transfer function calibration have been already used

in statistical downscaling for climate change studies (Stehlik and Bardossy, 2002; Wetterhall et al., 2007, 2012) as well as in70

seasonal forecasting applications (Manzanas and Gutiérrez, 2019) and short-term forecast calibration refinement (Vuillaume

and Herath, 2017).
::::::::
However, they have seldom been explored

::::
rarely

:::::
been

::::::::::
investigated in the context of satellite product cal-

ibration. In a recent study, Mirones et al. (2023) proposed an innovative
:
a
:::::
novel approach for calibrating TRMM data in the

South Pacific region. The methodology incorporates scaling and empirical quantile mapping techniques, conditioned to the

dominant modes of interannual variability captured by specific precipitation types. This region encompasses the South Pa-75

cific Convergence Zone (SPCZ), characterized by a distinct band of low-level convergence and enhanced cloudiness extending

across the South Pacific (Australian Bureau of Meteorology and CSIRO, 2011). The SPCZ is associated with notable mete-

orological phenomena such as heavy rainfall, convective storms, and the displacement of the intertropical convergence zone

(ITCZ, Waliser and Gautier, 1993). The defined weather types were thus designed to capture the key characteristics of the

regional precipitation regime while ensuring a sufficient sample size for robust conditional model fitting.80

Building upon this methodological frameworkpresented by Mirones et al. (2023), this study aims to further explore the

potential of conditioned calibration for improving the quality of TRMM precipitation data. As a result, the new calibration

method presented relies on a weather type classification designed for the synoptic characterization of regional precipitation. Its

::
In

:::
this

:::::
study,

:::
we

:::::
built

::::
upon

:::
an

::::::
already

::::::::::
constructed

:::::::::::
classification

:::
for

:::
the

:::::
study

::::
area

::::::::::::::::::
(Mirones et al., 2023);

:::
its

:
applicability to

new regions is therefore constrained by a previous weather typing able to capture the main regional features, as illustrated in this85

work. We expand the range of calibration techniques by incorporating a broader selection of commonly used parametric and

non-parametric methods, including
:::::
linear scaling, empirical quantile mapping (eQM), parametric quantile mapping (pQM),

and generalized Pareto Distribution quantile mapping (gpQM), the latter adapted for a more specific treatment of extreme

values in the quantile adjustment. Furthermore, we investigate
:::::::::
Moreover,

:::
we

:::::::
examine

:
the feasibility of combining different

calibration techniques for the same location, taking into account
:::::::::
considering

::::
the various weather types . Next, we optimize90

:::
and

::::::::
applying

:
a
:::::::

specific
::::::::
statistical

:::::::::
correction

:::::::
method

:::
for

:::::
each

:::
WT

:::::::::::
individually.

::::::
Then,

:::
we

:::::
assess

:
the performance of these

3



calibration techniques by employing
::::
using

:
user-defined validation indices . These indices are globally assessed

:::
and

:::::::
suitable

::::::::
validation

::::::::
measures.

::::
The

:::::::::
validation

:::::
results

:::
for

::::
each

:::::
index

:::
are

:::::::
globally

::::::::
evaluated

:
using a weighted Ranking Framework score,

enabling
:::::
which

::::::
allows us to identify the optimal combination of techniques for site-based calibration.

2 Data and methods95

2.1 Data

The reference observations used as the predictand for calibration were obtained from the Pacific Rainfall Database (PACRAIN,

Greene et al., 2008). The PACRAIN Database comprises daily and monthly rainfall records from a comprehensive collection

of rain gauge stations situated across atolls and islands in the South Pacific region. These records are sourced from various

institutions, including the National Institute of Water and Atmospheric Research of New Zealand (NIWA, www.niwa.cri.nz),100

the US National Centers for Environmental Information (NCEI, https://www.ncei.noaa.gov/), the French Polynesian Meteoro-

logical Service (https://meteo.pf), the Schools of the Pacific Rainfall Climate Experiment (SPaRCE, https://sparce.ou.edu), and

the Atlas of Pacific Rainfall (Taylor, 1973). Despite the seemingly ample raw samples within the database, an examination of

missing data reveals a significantly reduced number of suitable data points. Two critical considerations arise in this context: .
::
i)

Bias Correction Requirements: Achieving
::::::::
achieving robust fits for the various statistical methods employed in bias correction105

demands a relatively large sample size. This is especially true for effectively characterizing extreme events, a main point in

our study due to their paramount importance in numerous hydrological applications.
::
ii) Representativity of Locations: The

chosen locations must encompass a representative spectrum of variability within the region. In our study, these locations are

strategically distributed across the entire domain, offering a sensible representation of diverse precipitation regimes

As a result, we used the final subset of suitable rain gauge stations presented in Table 1.110

The calibrated dataset in this study is the Tropical Rainfall Measuring Mission 3B42 Daily product (TRMM TMPA Precipitation L3 1 day 0.25 × 0.25 degree V7, Huffman et al., 2016, https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(TRMM TMPA Precipitation L3 1 day 0.25 × 0.25 degree V7, Huffman et al., 2016)1. This dataset provides measurements of

daily accumulated precipitation, covering the period from January 1, 1998, to January 1, 2020, with a temporal resolution of

one day
::::
daily

::::::::
temporal

::::::::
resolution. The spatial coverage of the dataset ranges from 50.0◦N to 50.0◦S and 180.0◦E to 180.0◦W.

For the calibration process, the TRMM data were extracted at the nearest grid point to each rain gauge location.115

2.2 Weather typing

:::
We

::::
used

:::::
PCA

:::::::
analysis

::
to

::::::
obtain

::::::::::::
representative

::::::::::
precipitation

::::::::
patterns

:::
and

::::
then

:::::::::
performed

::
a
:::::::::
clustering

::::::::
approach.

:::
We

::::::
chose

::::::::
K-means,

::
a

::::::::
traditional

:::::::
method

::::
that

::::::
divides

:::
the

::::::
feature

:::::
space

::::
into

:
a
:::::
fixed

:::
(K)

:::::::
number

::
of

:::::::
clusters

:::
by

::::::::
iteratively

::::::
finding

::::::
group

:::::::
centroids

::::
that

::::::::
maximize

::::::
cluster

::::::::
distances

:::
and

::::::::
minimize

::::::::::::
within-cluster

:::::::::
dispersion

:::::::::::::::::::::::
(e.g. Pike and Lintner, 2020)

:
.

The adaptive calibration approachin this study utilizes five weather types (WTs) derived from the study conducted by120

Mirones et al. (2023), based on principal component analysis and k-means clustering , and using precipitationand atmospheric

1https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
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Table 1. Final set of rain gauge stations from the PACRAIN database used in this study. The columns provide information such as the

PACRAIN ID, indicating the data source (NZ for NIWA, US for NCEI, and SP for SPaRCE), station name and location, longitude and

latitude coordinates in degrees, time coverage of the time series (start and end dates; an asterisk indicates data outside the TRMM period,

which were discarded in this study), percentage of missing data within the start-end period, and elevation in meters above sea level.

Station ID Station Name Longitude Latitude Start End
Data

% Missing
Altitude

NZ75400

Futuna)

(Wallis and

Kolopelu

178.12 ◦ W 14.32◦ S 1998-01-01 2012-01-01 9.74 36

NZ82400
(Niue)

Alofi
169.93◦ W 19.07◦ S 1998-01-01* 2010-09-02 2.68 59

NZ84317
(Cook Islands)

Rarotonga
159.80◦ W 21.20◦ S 1999-09-28 2012-01-02 11.36 4

NZ99701
(New Zealand)

Raoul Island
177.93◦ W 29.23◦ S 1998-01-01* 2012-01-01 0.72 49

SP00646
(Vanuatu)

Port Vila
168.30◦ E 17.72◦ S 2000-01-26 2013-06-01 18.13 24

US14000

Samoa)

(American

Aoloau

170.77◦ W 14.30◦ S 1998-01-01* 2019-12-31* 21.72 408

US14690

Samoa)

(American

Nu’uuli

170.70◦ W 14.32◦ S 1998-01-01* 2019-12-31* 0.037 3

circulation variables derived from
:::
The

:::::::
variables

:::::
used

:::
for

::::::::
clustering

::::
were

::::::::::::
precipitation,

:::::::
sea-level

::::::::
pressure,

:::
the

:::::::::
day-to-day

:
sea-

level pressure and wind reanalysis fields, over
::::::::
difference

:::
and

::::::::
eastward

:::
and

:::::::::
northward

:::::
wind

::::::::::
components,

:::
all

:::::::
extracted

:::::
from

:::
the

:::::
ERA5

::::::::
reanalysis

:::::::::::::::::::
(Hersbach et al., 2020)

:
.
::::::::
Sea-level

:::::::
pressure

:::
and

::
its

:::::::::
difference

:::
was

:::::::
chosen

::
in

::::
order

:::::::
provide

::::::
suitable

::::::::::
descriptors

::
of the South Pacific Convergence Zone (SPCZ) . The weather typing employed in this study offers a valuable representation125

of the dominant synoptic patterns observed in the study region in relation to precipitation
::::
state

::::
and

:::
the

:::::::::
occurrence

::
of

:::::::
tropical

:::::::
cyclones

::::::::::
respectively,

::::
that

::::
have

:
a
:::::
major

:::::
effect

::
on

:::::::::::
precipitation

:::::::
patterns

:::::
within

:::
this

::::::
region

::::::::::::::::::::::::::::::::::
(Vincent et al., 2011; Mirones et al., 2023)

:
.
::::
Since

:::
the

::::::::::
geostrophic

::::::::::::
approximation

::
is

:::
not

::::
valid

::::
near

:::
the

::::::
equator,

:::
we

::::
also

::::::
include

:::
the

::::
wind

::::::::::
components

::
in

:::::
order

::
to

::::::::::
characterize

:::::::::
circulation.

::
In

:::::
order

:::
to

::::::::
eliminate

::::::::::
redundance

:::
and

:::::
linear

:::::::::::
dependence

::::::
among

::::::::
variables

::
to

::
be

:::::::::
clustered,

:::
we

:::::::::
performed

:
a
:::::

joint

:::::::
Principal

::::::::::
Component

::::::::
Analysis

:::::
(PCA)

:::
of

::
all

:::
the

:::::::::
variables,

:::::::
retaining

:::
all

::::
PCs

:::::::::
explaining

::
up

::
to

::::
80%

:::
of

::::
total

:::::::
variance

:::::::::
(summing130

::
up

::
to

:::
45

:::::
PCs),

::::
prior

::
to

:::::::::
clustering.

:::
We

:::::
chose

::::
k=5

::::::::
different

:::::::
weather

::::
types

::::::
(WTs)

::
as

::
a
:::::::
trade-off

::::::::
between

:::
the

::::::::::::
representativity

:::
of

::::
each

:::::
group

::
(at

:::::
least

:
2
:::::
years

::
of

::::
data

::
in

::::
each

::::::
group)

:::
and

:::
the

:::::::::::
minimization

:::
of

::
the

:::::
total

:::::::::::
within-cluster

::::::::
variance.

:::::::::
Additional

::::::
groups

:::
did

:::
not

::::
lead

::
to

:::::::::
significant

::::::::
reductions

:::
of

:::::::::::
within-group

:::::::
variance

:::
and

:::::::
resulted

::
in

::::
less

:::::::::::
representative

:::::
WTs

::::
(less

::::
than

::::
600

::::
days

:::
for
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::
the

:::::::
21-year

::::::
period

::::::::::
1998-2019),

::::
thus

:::::::::
potentially

:::::::
affecting

:::
the

:::::::::
robustness

::
of

:::
the

::::::::::
conditioned

::::::::
statistical

::::::::::
calibration.

:::::::::::
Furthermore,

::
we

::::::::
assessed

:::
the

::::::::
robustness

:::
of

:::
the

:::::::
obtained

:::::::::::
classification

::::::::
following

::
a

:::::
4-fold

:::::::::::::
cross-validation

:::::::::
approach,

::
by

::::::::::
partitioning

:::
the

::::
data135

::
in

::::
four

:::::::
temporal

::::::
blocks

:::::::::::
(1979-1988,

::::::::::
1989-1998,

:::::::::
1999-2008

:::
and

:::::::::::
2009-2019).

:::::
PCA

:::
was

:::::::::
iteratively

::::::
trained

:::
on

::::
each

::::
fold

::::
and

::
the

::::::::
resulting

::::
EOF

::::
was

::::::::
projected

::::
onto

::::
the

::::::::
remaining

:::::
folds.

:::
At

::::
each

::::::::
iteration,

:::
the

::::::::
resulting

:::::::
weather

::::::
typing

::::::
yielded

:::::::::
consistent

:::::
results

::
in

:::::
terms

:::
of

:::::::::::
climatologies

:::
and

:::::::::::
precipitation

:::::::::
seasonality. The identification of five distinct daily weather types

::::
WTs

:
and

their relatively balanced sample sizes ensures a robust conditioning of the calibration process, thereby enhancing the reliability

and stability of the calibration results.
:::
We

::::::
provide

::
a

::::::::
summary

::
of

:::
the

:::::::
resulting

:::::::
weather

::::
type

:::::::::::
classification

::
in

:::::::::
Appendix

::
A.

::::
The140

:::::::::::
methodology

:::
and

::::
main

:::::::
features

::
of

:::
the

:::::::::::
classification

:::
are

::::::
further

::::::::
explained

:::
in

:::::::::::::::::
Mirones et al. (2023).

:

2.3 Bias correction techniques

The calibration techniques used for the adaptive methodology include scaling, empirical quantile mapping (eQM), parametric

quantile mapping (pQM), and generalized Pareto distribution quantile mapping (gpQM). A more detailed description of the

methods is provided in Appendix B.145

The scaling technique is applied to the raw TRMM data by multiplying it with a correction factor. This factor is computed

as the ratio between the mean of the predictand (PACRAIN rain gauge measurements) and the mean of the raw TRMM

measurements during the training period.

The eQM method is an adaptation of the approach presented in Themeßl et al. (2011), which utilizes empirical cumulative

distribution functions (eCDFs) for calibration. In its parametric version (pQM), the QM method relies on the theoretical dis-150

tribution rather than the empirical one, whose parameters are estimated based on the observed and TRMM data. In particular,

here it is assumed that both the observed and simulated intensity distributions can be well approximated by the biparametric

gamma distribution (Piani et al., 2010), and therefore both shape and scaling parameters need to be estimated for transfer

function fitting.

The gpQM approach also utilizes quantile mapping but incorporates the generalized Pareto distribution (GPD) above a155

certain threshold (Gutjahr and Heinemann, 2013). The threshold, denoted as u, represents the percentile above which the GPD

is used to adjust the wet-day distribution. Below the threshold, the distribution is adjusted to a gamma distribution following

the pQM method. This method aims to improve the performance of pQM in the upper tail of the distribution, specifically for

extreme events. In this work, two different thresholds are selected: the 95th and the 75th percentiles, resulting in the methods

named gpQM-95 and gpQM-75, respectively.160

2.4 Adaptive calibration methodology

Here, we introduce an adaptive methodology developed for the calibration of various calibration methods, namely

2.4.1
::::::::::
Calibration

::::::
model

:::::
fitting
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:::
The

:::::::
adaptive

:::::::::
calibration

:::::::::::
methodology

:::::::
involves

:::
the

:::::::::
application

::
of

:
scaling, eQM, pQM, gpQM-95, and gpQM-75 . This methodology

involves applying the calibration methods
::::
(Sec.

::::
2.3) individually to each weather type (WT,

::::
Sec.

:::
2.2). Subsequently, the best165

calibration method for each WT is selected, and the calibrated series are combined to form a unified time series spanning the

entire calibration period. For each model fit, the calibrated series are obtained following a cross validation scheme. Afterwards,

a
::::::::::::
cross-validation

::::::::
scheme,

:::::
aimed

:::
at

:::::::
avoiding

::::::
model

::::::::::
overfitting,

::::::::
allowing

::
us

::
to
::::::

obtain
::

a
:::::
more

:::::::
realistic

:::::::
measure

:::
of

::::::
model

::::::::::
performance

::::::::::::::::::::
(Efron and Gong, 1983).

::::::
Under

::::
this

:::::::
scheme,

:::
the

:::::::::
calibration

::::::::
methods

:::
are

::
fit

::::
and

:::::::
validated

::
k
::::::
times,

::::::::::
considering

::
in

::::
turn

::::
each

::
of

::::
the

::::
folds

:::
as

::
a

:::
test

:::
set

::::
and

:::::::
training

:::
the

:::::::
method

::::
with

:::
the

:::::::::
remaining

:::::
k− 1

:::::
ones.

::::
The

::::::::
resulting

:::::
k-test

::::::
series170

::
are

::::::
finally

::::::
joined

:::
and

::::::::
validated

:::::::
together

:::
in

:
a
::::::
single

:::::
series

::::::::
spanning

:::
the

:::::
whole

::::::::::
calibration

::::::
period.

::
In

:::
the

::::::::
adaptive

:::::::::
calibration

::::::::
approach,

:::
the

:
k
:::::
folds

:::
are

::::::::
randomly

::::::
chosen

:::::
from

::::
each

:::
WT

:::::::::
separately,

::
k
:::::::
ranging

::::
from

:
2
:::

to
:
6
:::::
folds

::::::::
depending

:::
on

:::
the

:::::::
number

::
of

::::::::::
observations

::::::
falling

:::::
within

:::::
each

::::
WT,

::
in

:::::
order

::
to

:::::
ensure

:::
an

::::::::::
approximate

:::::::
sample

:::
size

::
of

::::::
∼300

::
in

::::
each

::::
fold

::
in

::::
order

:::
to

:::::
ensure

::
a

:::::
robust

:::
fit.

2.4.2
::::::::::
Calibration

::::::
model

:::::::::
assessment175

::
In

:::
this

:::::
work,

:::
we

::::
focus

:::
on

::::::
general

::::::::
validation

::::::
aspects

::::::::
involving

:::
the

::::::::
observed

:::
and

:::::::::::::::
calibrated-TRMM

::::::::
marginal

::::::::::
distributions.

::
In

::::
this

::::::
context,

:::
the

:::::::::
validation

::::::::
ultimately

::::::
entails

:::::::
deriving

::::::
specific

:::::::::::
precipitation

::::::
indices

::::::::
calculated

::::
from

::::
both

::::
rain

:::::
gauge

::::::::::
observations

::::
and

::::::::
calibrated

::::::
TRMM

::::
time

:::::
series

::::
and

:::::::::
quantifying

:::
the

::::::::
mismatch

::::
with

:::
the

::::
help

::
of

::::::
suitable

:::::::::::
performance

::::::::
measures

::::::::::::::::::::::::
(see e.g. Maraun et al., 2015)

:
.

:::::
There

:::
are

:::::::
different

::::
types

:::
of

::::::::::
precipitation

::::::
indices

::::
that

:::
can

::
be

::::
used

::
to

:::::::
validate

:
a
:::::::::::
precipitation

::::::
model,

:::::::::
depending

::
on

:::
the

:::::::
purpose180

:::
and

::::
scale

:::
of

:::
the

::::::
model.

:::
The

::::::
criteria

:::::
used

::
in

:::
this

:::::
study

:::
for

::::::::
choosing

::::::::::
precipitation

::::::
indices

:::
for

:::::::::
validation

:::
are:

::
i)

:::
the

::::::
ability

::
of

:::
the

::::
index

:::
set

::
to
:::::::

capture
:::
the

:::::::
relevant

:::::::
aspects

::
of

:::::::::::
precipitation

::::::::
variability

::::
and

::::::::
extremes,

:::::
such

::
as

:::::::::
frequency,

:::::::
intensity

::::
and

::::::::
duration,

:::
and

::
ii)

:::
an

:::::
index

::
set

::::
that

::
is

::::::::::
comparable

:::::
across

:::
the

::::::::
different

:::::::
locations

::::
and

:::::::
weather

::::
types

::::
and

:::::
across

::::::::
different

::::
time

:::::
scales

::::::
within

::
the

:::::
study

:::::
area.

::
A number of precipitation-derived indices are computed

:
to

::::
this

::::
aim, following the validation framework of the

Action Cost VALUE (Maraun et al., 2015, see Table 2),
:::
thus

:::::::
enabling

::
a
:::::::::
consistent,

::::::::
objective,

::::
and

::::::::
shareable

:::::::::
evaluation

::
of

:::
the185

::::::
quality

:::
and

::::::::::
performance

:::
of

:::::::
different

:::::::::
calibration

:::::::
methods

:::::
(note

:::
that

:::::
here,

:::
the

::::
term

:::::
index

:::
can

:::
also

:::::
refer

::
to

:
a
::::
time

::::::
series,

::
as

::
in

:::
the

:::
case

:::
of

:::::::::
correlation

::
as

::::::::
validation

::::::::
measure,

::::
that

:::::::
receives

::
as

::::
input

:::
the

::::
raw

::::::::::
precipitation

:::::
times

::::::
series,

:::::
Table

::
2).

:

::::::::
However,

::::::::
validation

::
is

::
a

:::::::::::
multi-faceted

::::::
process

::::
and

:::::::
ranking

:::
the

:::::::
different

:::::::
methods

:::::
using

::::::::
different

::::::::
measures

::
of

:::::::::::
performance

:
is
:::::::

difficult
::::::::

because
::::
there

:::
is

::
no

::::::
single,

::::::::
universal

::::::::
criterion

::::
that

:::
can

:::::::
capture

:::
all

:::::::
aspects

::
of

::
a

::::::::
method’s

:::::::::::
effectiveness.

:::
As

::::
the

:::::::
different

::::::::
measures

:::::::::
emphasize

::::::::
different

::::::::::
dimensions

::
of

:::::::::::
performance

:::::
(Table

:::
2),

:::::
such

::
as

:::::::::::
distributional

:::::
(e.g.

::::::::
Skewness and the190

TRMM-calibrated indices are then compared against the reference observations using simple measures such as relative/absolute

bias or correlation
:::::
Mean

:
),
:::::::
average

::::::::::
precipitation

:::::::
intensity

::::
(e.g.

::::::
Simple

:::::
Daily

::::::::
Intensity

::::
Index

:
-
::::
SDII

::
-),

::::::
higher

::::::::
percentile

::::::::::
precipitation

::::::
amount

:
(
:::::::::::::
P98WetAmount)

::
or

:::::::
extreme

:::::::::::
precipitation

::::::
values

:::
for

::::::
specific

::::::::::::
return-periods

::::
(e.g.

:::::::::
RV20_max

::
),

::::
some

::::::::
measures

::::
may

:::
be

::::
more

:::::::
relevant

::
or

::::::::
important

::::
than

::::::
others,

::
or

:::::
attain

:::::::
different

:::::::
rankings

:::::::::
depending

::
on

:::
the

:::::::
method,

:::::::::
potentially

:::::::
yielding

::::::::::
inconsistent

::
or

:::::::::
conflicting

::::::::
outcomes. In order to facilitate a comprehensive evaluation and inter-comparison of these methods

::::
each

:::::::::
calibration195

::::::
method

:::
and

::::
WT, we have employed a standardized score calculation methodology able to integrate into one single

::::::::
composite

score the different aspects of the validation, for each calibration method and WT
:
.
:::::::::::
Furthermore,

:::::::
specific

::::::::::
user-defined

:::::::
weights
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:::
can

::
be

::::::::
assigned

::
to
:::::

each
:::::::::
validation

:::::::
measure

::
to

::::::
reflect

:::::
their

::::::
relative

::::::::::
importance

::
or

:::::::::
relevance

:::
for

:::
the

:::::::::
evaluation

:::::::
process, as

outlined next.

To determine the best method for each WT, we utilize a Ranking Framework (RF) score, which is based on the methodology200

described in Kotlarski et al. (2019). The computation of this score involves several steps. Firstly, we calculate the bias of each

calibration method with respect to the reference observations by taking the absolute differences between each of the index

values (Table 2) of the reference observations (Xi) and the calibrated TRMM series for each method (Yi,j):

Zi,j = |Xi −Yi,j |. (1)

Next, we normalize the bias values obtained from all calibrations (j) for a given index (i), such that lower values are205

considered better by the normalization:

Z ′
i,j = 1− Zi,j −Zi,min

Zi,max −Zi,min
. (2)

Finally, the RF score for each method is calculated as the average of the normalized values for all indices:

RFj =
1

N

N∑
i=1

wi ·Z ′
i,j where

N∑
i=1

wi = 1 (3)

and N represents the total number of indices evaluated (N = 10, see Table 2). Thus, in the calculation of the score, it is possible210

to incorporate arbitrary (unit normalized) weights wi for the normalized climate indices. This allows for explicit consideration

of validation aspects that may carry greater importance, with higher weights assigned to those aspects to determine the final

score. A common example in many hydrological applications is the significance of accurately representing extreme precipita-

tion events following calibration. Therefore, specific extreme indices (e.g., P98Wet or P98WetAmount, as shown in Table 2)

can be given a higher relative weight in their contribution to the overall score, thereby reflecting their increased relevance in215

the calibration method ranking process.

To ensure robustness and avoid artificial skill, we employ a cross-validation scheme for model fitting. This scheme enables

us to assess the consistency of the calibration results beyond the training period by using a separate test period for prediction

(Efron and Gong, 1983). Specifically, we employ the classical k-fold cross-validation, ensuring that each fold contains a

minimum of 275 samples for a robust training
:
It

::
is

::::::::
important

:::
to

::::
note

::::
that

:::::
under

::::
this

::::::::
validation

::::::::::
framework,

:::
the

:::::::
ranking

:::
of220

:::::::::
calibration

:::::::
methods

::
is

:::::::
sensitive

::
to

::::::::
arbitrary

::::::::
decisions

::
in

:
i)
:::
the

:::::::
battery

::
of

::::::::
validation

::::::
indices

:::::
used

:::
and

::
ii)

:::
the

::::::
weight

::::::::
assigned

::
to

::::
each

:::::::
measure

::
to

:::::::
compute

:::
the

:::::::
overall

:::::
score.

:::
We

::::::
present

::
a
::::::
flexible

:::::::::
validation

:::::::::
framework

::::
that

:::
can

::
be

:::::::
adapted

::
to

:::::::
various

::::::
impact

::::::::::
applications

:::
and

:::::::
research

:::::::::
objectives.

:::::::::::
Nevertheless,

::::::::
end-users

:::
can

::::
also

:::::
define

::::
their

::::
own

::::::::
validation

::::
sets

::::::::
according

::
to

::::
their

:::::::
specific

:::::::
research

::::::::
questions.

All the calibration methods have been run using the implementation available in the package downscaleR (Bedia et al., 2020)225

from the open-source climate4R framework for climate data analysis and visualization (Iturbide et al., 2019). The different

evaluation indices presented in Table 2 have been computed using the standard definitions of the VALUE Framework (Maraun

et al., 2015), which are implemented in the R package VALUE2.
2https://github.com/SantanderMetGroup/VALUE
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Table 2. Summary of the validation indices and measures used in the study, along with their corresponding codes as defined in the VALUE

reference list (http://www.value-cost.eu/validationportal/app/#!indices). The indices and measures serve as evalu-

ation metrics for assessing the performance and accuracy of the calibration techniques in the study.

Code Description Type

Skewness Skewness index

Mean Mean index

SDII Mean wet-day (≥ 1mm) precipitation index

R10 Relative frequency of days with precip ≥ 10mm index

R10p Precipitation amount falling in days with precip ≥ 10mm index

R20 As R10, but considering a 20mm threshold index

R20p As R10p, but considering a 20 mm threshold index

P98Wet 98th percentile of wet (≥1 mm) days index

P98WetAmount Total amount above 98th percentile of wet (≥1 mm) days index

RV20_max Maximum Daily precipitation for a 20-year Return Value index

absolute bias measure

relative bias measure

Spearman’s rank correlation measure

3 Results and discussion

3.1 Standard and weather-type conditioned calibration method intercomparison230

To obtain a comprehensive evaluation of the method’s overall performance, we initially focus on an unconditioned intercom-

parison, referred to as “standard calibration” hereafter. This evaluation involves assessing the method across the entire time

series without considering different weather types. The preliminary findings indicate the presence of low to moderate (negative)

biases in the TRMM product. As an illustrative example, we present the results obtained at the Kolopelu station in Fig. 1 (the

upper triangle represents the standard calibration results), which are representative of the overall outcomes observed at other235

locations (the corresponding plots for the remaining rain gauge locations are included in the Appendix
::::::::
Appendix

::
B). While

certain TRMM indices show negligible biases compared to the rain gauge stations (such as skewness and SDII
:::::::
Skewness

:::
and

::::
SDII), others exhibit significant relative biases, particularly for representing high precipitation events (such as R10p, R20p, or

P98WetAmount
::::
R10p

:
,
::::
R20p

:
,
::
or

::::::::::::::
P98_WetAmount). These findings highlight the necessity of applying some form of calibration

to enhance the accuracy of TRMM for impact studies. In the same vein, we include the ERA5 precipitation series to highlight240

the strong biases associated with this reanalysis product.

In contrast to expectations, scaling , which is a common and straightforward technique
:::::
Under

:::
the

::::::::::
assumption

:::
that

::::
the

::::::
satellite

::::
and

:::::
radar

::::
error

::::
may

:::
be

::::::::::
proportional

:::
to

:::
the

:::::::::
magnitude

::
of

:::
the

::::
rain

::::
rate

::::::::::::::::::::::
(Aghakouchak et al., 2009)

:
,
::::::
scaling

:::
has

:::::
been

::::::::
previously

:::::
used for TRMM correction ,

::::::::::::::::::::::::::::::::::::
(see e.g. Islam et al., 2010; Almazroui, 2011)

:
.
::::::::
However,

::
it was found to be ineffective

in mitigating biases in most specific indices related to intense precipitation events and some others related to mean precipitation245

such as SDII
::::
SDII. Instead of improving the situation

:::::::
yielding

:::
and

::::::::::::
improvement, scaling had an overall deleterious effect,
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underscoring the critical importance of considering alternative calibration techniques better suited to TRMM adjustment(
:
.
:::
As

:::::
shown

::
in
:

Fig. 1). ,
::::

the
::::::
scaling

::::
step

:::::::::
introduces

:::::::::
additional

::::
bias

::
to

:::
the

::::
raw

:::::::
TRMM

::::
data,

::::::::
specially

:::
for

:::::
SDII,

:::::
R10p

::::
R20p

:::
and

::::::
P98Wet

:
.
:::
The

::::::
scaling

::::
step

::::
also

:::::::
changes

:::
the

::::
sign

::
of

:::
the

::::
bias

::
in

::::
these

::::::
cases,

:::
but

::::::::::
consistently

::::::::
increases

::
its

:::::::
absolute

::::::
value,

::::
both

::
in

::
the

::::::::
standard

:::
(not

:::::::::::
conditioned)

:::
and

:::
the

::::::::::::::
WT-conditioned

::::::::::
approaches.250

In the analysis of the remaining (
::
As

::::::
Figure

:
1
::::::
shows,

::::::
overall

:::
the

:
quantile-mapping based) techniques, Figure 1 illustrates that

there are no significant variations in their
::::
based

:::::::::
techniques

:::::
attain

::::::
similar

:
performance, although this may depend on the specific

::::
vary

::
by index or techniquebeing analyzed. Likewise, the .

::::
The relative bias of the indices between the standard calibration and

the conditioned calibrationgenerally exhibits minimal to moderate differences. This finding confirms and extends the results

previously reported by Mirones et al. (2023)for scalingand eQM, to include
:
is

::::
also

::::::
similar

:::
for

::::
both

:::::::
standard

::::
and

::::::::::
conditioned255

:::::::::
calibration.

::::
This

::::::::
supports

::::::::::::::::::
Mirones et al. (2023)

:
’s
:::::::

finding
::::
that

:::::
EQM

::::::::::
outperforms

:::::::
scaling,

:::::
with

::::::
minor

:::::::::
differences

::::::::
between

:::::::::::
unconditioned

::::
and

::::::::::::::
WT-conditioned

:::::::::
calibration

::
in

:::::
bias.

::::
This

::::
also

::::::
applies

:::
to the parametric quantile mapping variants pQM

or gpQM
:::
and

::::::
gpQM,

:::
for

::::::::
different

:::::::::
exceedance

::::::::::
thresholds,

:::::
which

:::
are

::::::::
additional

::::::::
methods

:::::::::
introduced

::
in

:::
this

:::::
study.

The final column in Figure 1 compares the best-performing conditioned technique in each case with the newly developed

adaptive methodologyin this study, which combines
:::::::
adaptive

:::::::::::
methodology,

:::::::::
combining

:
the optimal calibration technique for260

each weather type individually. In general, the adaptive methodology surpasses the results achieved by the best-conditioned

calibration. The most notable reduction in relative bias is observed in indices that measure high rainfall amounts, such as R10p,

R20p, or P98WetAmount
::::
R10p

:
,
:::::
R20p,

:::
or

:::::::::::::
P98WetAmount. This improvement is significant because conditioned calibration

alone did not exhibit substantial enhancements, except for specific cases involving techniques like gpQM. However, only three

indices (mean, SDII, and P98Wet
:::::
Mean,

:::::
SDII,

:::
and

:::::::
P98Wet) did not show improvement with the adaptive approach and remained265

nearly unchanged. In summary, the overall results indicate that the adaptive calibration method offers improved adjustment in

the upper tail of the distribution, which is where TRMM exhibits the most significant biases. This calibration methodology

facilitates enhanced adjustment for extreme precipitation events, with a specific focus on high precipitation indices. Next, in

Sec. 3.2, we present a more in-depth analysis of the detailed results obtained from the adaptive calibration approach.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75 Adapt

RV20_max
357.1

P98WetAmount
6217.0

P98Wet
90.08

R20p
27580.0

R20
0.15

R10p
33999.0

R10
0.28

SDII
16.12

Skewness
5.29

Mean
10.68

WT-Cvs

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Relative Bias

WT-Cond

Adaptive

Standard

WT-Cond

Figure 1. Relative Biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Kolopelu

Station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation

data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sec. 2.3). For each method

plot cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned

approach. The last column presents shows a comparison between the relative bias of the best
::::::::
performing WT-conditioned technique (eQM at

the Kolopelu site) vs
:
vs. the ‘adaptive

:
‘ calibration. The circle indicates the best-performing approach with the lowest relative bias. The Y-axis

labels show the actual index values from the rain gauge observations beneath the index names.
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3.2 Adaptive calibration270

To evaluate the performance of the adaptive approach in comparison to the WT-conditioned method, we
:::
We introduce the RF

score as a comprehensive measure that accounts for the various indicators
:::::
indices

:
described earlier (Table 2) . This global

performance
:
to

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
adaptive

:::::::
approach

::
in
::::::::::
comparison

::
to

:::
the

:::::::
standard

::::::::::::::
WT-conditioned

:::::::
method.

::::
This

measure allows for an easier ranking of methods. The
:::::
Figure

:
2
:::::::
presents

:::
the

:
summarized results, considering both unweighted

and weighted RF values(the latter emphasizing
:
.
:::
The

:::::
latter

::::::::::
emphasizes the significance of extreme indicators in the evaluation275

process,
:
as discussed in Section 2.4), are presented in Figure 2.

:
.

First of all, we undertake a method intercomparison using the unweighted RF score as a ranking measure (Fig. 2a). In most

stations the adaptive calibration outperforms the standard and WT-conditioned techniques, with some exceptions (Port Vila

and Nuu’uli), in which the adaptive approach has a similar performance than the simpler ones. On the other hand
::::::
contrary, the

adaptive method is clearly superior at some other locationslike
::::::::::
outperforms

:::
the

:::::::
standard

::::
and

:::::::::::::
WT-conditioned

::::::::::
calibration

::
at280

::::
other

::::::::
locations,

::::
such

:::
as Kolopelu, Alofi, or Raoul Island, where the RF scores obtained with

:
.
:::::
Here, the adaptive calibration are

significantly higher
:::::
yields

:::::
much

:::::
higher

:::
RF

::::::
scores than the best scores obtained with standard and WT-conditioned calibration

:::::::
achieved

:::
by

:::
the

:::::
other methods. While the score for the best standard technique at these stations exceeds 0.60, the adaptive

calibration achieves values between 0.80 and 0.90, representing an improvement of 33-50%. This significant enhancement in

calibration, based on the climate indices utilized in the adaptive approach, demonstrates an overall improvement that justifies285

the application of the adaptive method. Furthermore, it is important to note
::::::::::
noteworthy that in the worst-case scenario, the

adaptive approach will nearly match (and never significantly impair) the performance of the calibration.
:::::::::::
Furthermore,

:::
the

::::::
limited

:::::
spatial

:::::::::
variability

:::::
across

::::::::
locations

::::::::
observed

::
in

::
the

::::::::
adaptive

::::::
method

::::
(Fig.

::
2,

::::::::
boxplots)

:::::::::
underpins

::
its

:::::::
potential

:::
for

:
a
::::::
robust

:::::::::
application

::::::
across

:::::::
different

::::::::
locations.

::::
This

::::::::::::
characteristic

:::::
holds

:::::::::
importance

:::
in

::::::::::
hydrological

::::::
studies

::::::
where

::::::
spatial

::::::::::
consistency

:::::::
between

:::::::
locations

::
at
:::
the

:::::
basin

::::
level

::
is
::::::::
typically

::::::
desired.

:
290

As mentioned earlier, it is also possible to assign arbitrary weights to the indices involved in the RF score, giving more

importance to specific precipitation characteristics, such as the representation of extremes. In this study, we selected index

weights that prioritize high rainfall
::::::
extreme

:::::::::::
precipitation indices (Table A2). This weighting aims to guide the calibration

towards better adjustment in the upper tail of the distribution, thereby achieving improved correction for extreme precipitation

events beyond a certain threshold. In this way, the influence of high rainfall indices benefits
:::::::
increased

::::::::
influence

:::
of

:::::::
extreme295

::::::
indices

:::::
favors

:
methods like gpQM, which specialize in adjusting the upper tail using a GPD (Generalized Pareto Distribution).

The findings are illustrated through the boxplots presented in Figure 2. It is evident
:
,
:::::::
showing

:
that the scores of gpQM95 and

gpQM75 exhibit higher values in the weighted version (Figure 2b) compared to the unweighted version (Figure 2a).
:::::::::
Moreover,

::
the

::::::::::
differences

::
in

::::
their

:::::::::::
performance

:::
can

::
be

:::::::::
visualized

::
in

::::
Fig.

::
3.

The analysis of the RF weighting configuration demonstrates its dual impact: not only does it affect the overall score, but it300

also influences the selection of techniques for each weather type
::::
(Fig.

::
3). In our weighting scheme, which prioritizes superior

performance in extreme precipitation indices, the gpQM approaches emerge sometimes as the favored choiceafter applying

these weights
::::
often

::::::
appear

::
as

::
the

::::
best

::::::
choice, for instance at Aoloau site for WTs 1 to 3(,

::::::::
Kolopelu

:::::
(WTs

:
1
:::
and

::
2)
:::
or

::::
Alofi

::::::
(WT1,
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Fig. 3). This outcome establishes the superiority
:::::::
indicates

:::
the

::::::::
suitability

:
of the gpQM technique over the conventional quantile

mapping methods, namely eQM and pQM
:::::::
methods when the representation of extreme indices is prioritized. Consequently,305

the adaptive calibration score at this station
:::
For

:::::::
instance,

::
at
:::::::
Aoloau

:::
the

::::::
overall

:::::::
adaptive

:::::::::
calibration

:::
RF

:::::
score

:
improves from

approximately 0.65 to 0.85, representing a 30% increase, with the best standard calibration method changing from eQM and

::
or pQM to gpQM75 in this particular case

::::
WT1,

:::::
WT2

:::
and

:::::
WT3

::::
(Fig.

::
3).
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Figure 2. (a): Ranking Framework (RF) score results of the adaptive calibration for each WT and site. The red dots indicate the best method

for the corresponding WT, while the white stars represent the best method for the standard calibration (the same technique applied over the

entire period without conditioning). On the right side, the standard approach score for each method is represented in the box plot (their mean

represented by the color of the boxes). (b): Similar to (a), but with the addition of different weights (refer to A2) in the computation of

climate indices for the RF score.

At
:
In

:::
the

:::::
same

:::::
vein,

::
at

:
the Port Vila station , we observe another interesting situation. In Figure

:
in

::::
Fig.

:
2a, the adaptive

calibration score is lower compared to the score of gpQM75. However, when applying weighting with a focus on high rainfall310
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indices (Figure 2b), the adaptive calibration undergoes enhancements and achieves a competitive score higher than the un-

weighted version. It is worth noting that while the inclusion of weights leads to changes and improvements in the adaptive cali-

bration for certain stations, it has no effect on others. For instance, stations like Rarotonga or Nu’uuli exhibit no changes in the

composition of the adaptive calibration, regardless of the weighting applied.
::::
The

::::::::
particular

::::
case

::
of

:::::::::
Rarotonga

:::
site

::::::::::
emphasizes

::
the

::::
fact

::::
that

:::::
model

::::::::::
assessment

:
is
::::::::
sensitive

::
to

::::
user

:::::::
choices,

::::
such

::
as

:::
the

:::
set

::
of

:::::::
indices

:::
and

::::::::
measures

::::
used

:::
for

:::::::::
validation

::::
and,

::
as315

::
in

:::
this

:::::
case,

:::
the

::::::
weights

::::::::
assigned

::
to

::::
each

:::
of

:::::
them.

::
As

::
a
:::::
result,

:::::
when

:::::
more

::::::
weight

::
is

::::::::
assigned

::
to

:::
the

::::::::::
performance

:::
of

:::::::
extreme

::::::::::
precipitation

::::::
indices

:::::::::
(weighted

:::
RF

::::::::::
evaluation),

:::
the

:::::::
adaptive

:::::::::
calibration

::::::::
approach

:::::::
performs

:::::
better

::::
than

:::
the

::::::::
standard

:::::::::
calibration

::::
with

:::
the

:::::::::::::
best-performing

:::::::
method

::::::
(PQM,

:::::::::
RF∼0.75).

:::
On

:::
the

::::::::
contrary,

:::
the

:::::::
standard

:::::::::::::
unconditioned

:::::::::
calibration

:::::
using

:::
the

:::::
PQM

::::::
method

::::::::
performs

::::::::::
(marginally)

:::::
better

:::::
under

:::
the

:::::::::
unweighted

:::
RF

:::::::
scheme.

::
In

:::
the

::::
case

::
of

::::::
Nu’uli

::::::
station,

:::
the

:::::::
adaptive

:::::::::
calibration

:::
did

:::
not

:::::::
improve

:::
the

:::::::::::
performance,

::::::::
although

:
it
::::
also

:::::::
attained

:
a
:::::::
similar

::::
high

:::
RF

::::
score

:::::::::::
(∼0.85/0.75

::::::::::::::::::
unweighted/weighted

:::
RF

::::::
scores,320

:::
Fig.

:::::
2a/b).

:::::::::
Compared

::
to

:::::
other

::::::::
locations

::
in

::::
Figs.

::::::
C1-C6

:::::::::
(Appendix

::
C)

::::
and

::::
Fig.

:
1
::::::::::
(Kolopelu),

::::::
Nu’uli

:::
has

::::::::
moderate

:::
raw

:::::::
TRMM

:::::
biases

:::
that

:::
are

:::::::::
effectively

::::::::
corrected

:::
by

::::
both

::::::::
empirical

::::
and

:::::::::
parametric

:::::::
quantile

:::::::
mapping

::::
Fig.

:::
C6.

::::::
gpQM

::::::::
performs

::::::::
similarly

::
in

::::::
general,

:::
but

::::
fails

::
in
:::::::::::
reproducing

:::::::::::
distributional

::::::::
skewness

:::
and

:::::::::
RV20_max

:
in

:::
the

::::
case

::
of

:::
the

::::::::
adaptive

::::::::
approach.

Therefore, the results show that adaptive method consistently performs better than the rest
:::::
attains

::
an

::::::
overall

:::::
better

:::::::::::
performance

in all stations, as highlighted in the boxplots in Figure 2, attaining higher scores. Additionally, the adaptive calibration demon-325

strates a narrower interquartile range (IQR) compared to the other methods in Figure 2a, indicating lower variability. Only

gpQM95 calibration shows a narrower IQR range, but with
::::::::
obtaining

:
significantly lower scores. We attribute this poor result

to the limited robustness of the fit of the extreme function due to the high percentile threshold, which greatly reduces the

sample size (see Table A1). The other methods individually considered exhibit wider RF variability ranges and lower values as

compared to the adaptive approach.330

In conclusion, the adaptive calibration method improves upon the results obtained with the WT-conditioned methodology

presented in Mirones et al. (2023) or at least, in the worst case, it maintains the calibration performance. The adaptive calibration

method showcases competitive performance in effectively calibrating the TRMM data at the target stations, thereby promoting

consistency in the results across diverse locations. Furthermore,
:::::::
Quantile

::::::::
mapping

:::
can

:::::::
preserve

::::
the

::::::
relative

:::::::
changes

:::
in

:::
the

::::::::
simulated

::::
data,

:::::
such

::
as

::::::
trends

:::
and

:::::::
patterns

:::::::::::::::::::::::::::
(see e.g. Casanueva et al., 2018),

::::::
while

::::::
scaling

::::
may

::::::
distort

:::::
them

::
by

::::::::
applying

::
a335

:::::::
constant

:::::
factor.

:::
As

:
a
::::::
result,

::::::
scaling

:::::
shows

:::::::::
limitation

::
in

::::::::::
representing

:::::
some

::
of

:::
the

:::::::
extreme

:::::::::::
precipitation

::::::
indices

::::
such

::
as

:::::::
p98Wet

:::
and

:::::::::
RV20_max

:
in

:::::
most

::
of

:::
the

::::::::
locations,

::
as

::::
well

:::
as

:::
the

::::
SDII

::::
(see

::::
Figs.

::::::
C1-C6

:::
and

::::
Fig.

::
1

::::::::::
-Kolopelu-).

:::
On

:::
the

:::::
other

::::
hand

:::::
eQM

:::
and

:::::
pQM

:::::
show

::
an

::::::
overall

:::::
good

:::::::::::
performance

::
in

:::::
most

::::::::::
precipitation

:::::::
indices,

::::
and

:::::
eQM

::
is

::::
most

:::::
often

:::
the

::::
best

:::::::
method

:::
for

:::
the

:::::::::
“standard”

:::::::::
calibration

::::
(Fig.

:::
2).

:::
The

::::::
gpQM

:::::::
method

:::
has

:::
the

::::::::
potential

::
to

:::::::
improve

::::
the

::::::::
modeling

::
of

:::::
local

:::::::
extreme

:::::::::::
precipitation

::
by

::::::
better

::::::::
adjusting

:::::::
extreme340

:::::
events

:::::
above

:
a
:::::
given

::::::::
percentile

:::
(75

::::
and

::
95

::
in

:::
this

::::::
study),

:::
by

:::::
fitting

:
a
::::::::::
generalized

:::::
Pareto

::::::::::
Distribution

::
on

:::
the

::::::::
threshold

::::::::::
exceedances

::
as

:::
the

::::::
transfer

::::::::
function

::
for

:::::
these

::::::
points

:::::::::::::::::::::::::::
(see e.g. Vrac and Naveau, 2007).

::::
This

::::
may

:::::::
happen,

:::
for

::::::::
instance,

::
in

:::::::
Weather

:::::
Types

::
1

:::
and

::
2,

:::::
which

:::
are

:::::::::
associated

::::
with

::::::::
enhanced

:::::::
tropical

::::::
cyclone

:::::::::
frequency

:::
and

:::::::
extreme

:::::::::::
precipitation

:::::
events

::::::::::::::::::
(Mirones et al. (2023)

:
,

:::
and

::::
Fig.

:::
A),

:::
and

:
it
::
is
::::::
shown

::
at

::::::::
Kolopelu

::::
(Fig.

::::
2a/b

::
for

::::::::::::::::::
unweighted/weighted

:::
RF

:::::
score)

::::
and

::::::
Aoloau

::::
(Fig.

::::
2b),

:::::
where

::::::::
gpQM75

::
is

::
the

::::::::::::::
best-performing

:::::::::
calibration

:::::::
method,

::
or

:::::
WT1

:
at
:::::
Alofi

:::::
(with

:::::::::
gpQM95).

:::
The

:::::::::
limitation,

::::::::
however,

:::::
arises

::::
from

:::
the

::::::
sample

::::
size345
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:::::::
required

::
to

:::::::
perform

:
a
::::::
robust

:::
fit;

:::
this

::
is
::
a
:::::
major

::::::::
challenge

::
in
:
the capability to customize the calibration by applying arbitrary

weights to specific indices offers increased flexibility in determining the optimal combination of methods that align with the

unique characteristics of each site. This adaptability further enhances the overall calibration process.
:::::::
adaptive

::::::::
approach,

:::::
since

::::
only

:::
the

::::::::::
observations

:::
of

:::
the

:::::
given

::::
WT

:::
are

:::::
used,

:::
and

::
it
::
is

::::::::::
exacerbated

:::
for

::::::
higher

::::::::
percentile

:::::::::
thresholds

::::
that

::::::
further

:::::
limit

:::
the

::::::
number

::
of

::::::
points

:::
for

:
a
::::::
robust

::
fit.

:::::
This

::::::::
limitation

::::
also

:::::
exists

:::
for

:::
the

::::
other

:::::::
quantile

::::::::
mapping

::::::::::
techniques,

::::::::
although,

::
in

:::
this

:::::
case,350

::
the

:::::::
number

::
of

:::::::::::
observations,

:::::
even

:::
for

::
the

::::
less

:::::::
frequent

:::::::
weather

::::
type

:::::::::::::
(approximately

:::
300

:::::
days

::
for

:::
the

::::::::::
calibration

:::::
period

::
in

::::
this

:::::
study,

:::
see

::::
Sec.

:::::
2.4.1),

::::
can

::::::
ensure

:
a
:::::
robust

:::
fit.

:::::::::::
Nevertheless,

:::::::
scaling

:::::::
requires

:::
less

::::
data

:::
and

::
is
::::::
easier

::
to

:::::::::
implement

::::
than

:::::::
quantile

::::::::
mapping.

::::
The

::::::::::
assumption

::
of

::::::
scaling

::
of

:
a
:::::
linear

::::::::::
relationship

:::::::
between

::::
raw

:::::::
satellite

:::
and

::::::::
observed

:::::::::::
precipitation,

::::
even

::::::
though

::::
may

:::
not

::::
hold

::::
true

::
in

::::
most

:::::::::
occasions,

::::
can

::::
still

::
be

:::::::::
reasonable

:::::::::::::::::::::::
(Aghakouchak et al., 2009)

:::::::
yielding

::
a

::::
good

:::::::::::::
approximation

::
in

:::::
some

::::::::
occasions

:::
(see

::::
e.g.

:::
the

::::::
overall

:::
RF

:::::
results

::::::::
obtained

::
in

::::
Port

::::
Vila

::
in

:::
Fig.

:::
2).355
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GPQM95
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0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0 0.6 0.8 1.0
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Figure 3. Differences between unweighted and weighted RF scores attained for each weather type at each of the target locations. The

technique associated to the highest score is also indicated by the key of symbols.

4 Conclusions

We intercompare

:::
We

::::::::::::
intercompared a range of bias-adjustment techniques for the calibration of daily Tropical Rainfall Measuring Mission

(TRMM) precipitation data, building upon a set of rain-gauge stations scattered across the South Pacific region, spanning the
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period 1998–2019. The calibration techniques evaluated in this study include empirical quantile mapping (eQM), parametric360

quantile mapping (pQM), generalized Pareto distribution quantile mapping (gpQM) and scaling, the latter used as a benchmark

since it is the most common
:::
and

:::::
simple

:
approach for this task. An adaptive calibration methodology has been developed based

on weather type (WT) conditioning, which selects the best-performing calibration technique for each specific WT .

Building upon the methodology proposed by Mirones et al. (2023), we extend it to encompass an expanded set of calibration

techniques and adopt a more adaptable approach to suit the distinct characteristics of each weather type (WT). This extension365

results in a calibrated series that capitalizes on the individual strengths of each technique, tailored to specific situations. The

methodology entails the selection of an optimal method for each WT, guided by a comprehensive performance measure (RF

score) that encompasses various precipitation indices . The minimal spatial variability observed in
::::::::
according

::
to

:
a
:::::::::::
user-defined

:::::::
weighted

:::
set

::
of

:::::::::::
precipitation

::::::
indices

:::
for

:::::::::
validation.

:::
The

::::::::
adaptive

:::::::::
calibration

:::::::
method

::::::::
improves

::::
upon

:
the results obtained through the adaptive method enhances its potential370

for a robust application across different locations. This characteristic holds importance in hydrological studies where spatial

consistency between locations at the basin level is typically desired. Moreover, the adaptive approach allows users to define and

configure the weights assigned to different indices, affording flexibility in the assessment of each method. This comprehensive

approach ensures the utilization of the most suitable techniques for each WT, resulting in an enhanced final calibrated series.

Our findings unequivocally establish the superiority of the adaptive calibration methodology over the best WT-conditioned375

calibration technique in terms of relative bias
::::
with

:::
the

:::::::
standard

:::::::::::::
WT-conditioned

:::::::::::
methodology

::::::::
presented

::
in

::::::::::::::::::
Mirones et al. (2023)

::
or

::
at

::::
least,

::
in

:::
the

:::::
worst

::::
case,

::
it

::::::::
maintains

:::
the

:::::::::
calibration

::::::::::
performance. Notably, the most substantial improvements are observed

in accumulated precipitation indices, specifically R10p, R20p, and P98WetAmount
:::::
R10p,

:::::
R20p

:::
and

:::::::::::::
P98WetAmount. These in-

dices hold great significance within the realm of
::::::::::
significance

::
in

:
hydrological modeling and climate impact studies, making

the observed enhancements
::::::
attained

::::::::::::
improvements

::
in
::::

the
:::::::::
calibration particularly relevant. The

:::::
Thus,

:::
the

:::::::
method

:::::::::
showcases380

:::::::::
competitive

:::::::::::
performance

::
in
::::::::::

effectively
:::::::::
calibrating

:::
the

:::::::
TRMM

::::
data

::
at

:::
the

:::::
target

::::::::
stations,

::::::
thereby

:::::::::
promoting

::::::::::
consistency

:::
in

::
the

::::::
results

::::::
across

::::::
diverse

:::::::::
locations.

::::
This

::::::::::
adaptability

::::::
further

::::::::
enhances

:::
the

::::::
overall

::::::::::
calibration

::::::::
accuracy,

::
by

::::::::
adjusting

:::
its

::::
bias

::::::::
according

::
to

:::
the

:::::::
specific

:::::::::::
precipitation

:::::::
regimes

::::::::
prevalent

::
in

::::
each

:::::::
weather

:::::
type.

:::::::::::
Furthermore,

:::
the

:::::::::
capability

::
to

:::::::::
customize

:::
the

:::::::::
calibration

::
by

:::::::
applying

::::::::
arbitrary

:::::::
weights

::
to

::::::
specific

::::::
indices

:::::
offers

::::::::
increased

:::::::::
flexibility

::
in

::::::::::
determining

:::
the

::::::
optimal

:::::::::::
combination

::
of

:::::::
methods

:::
that

:::::
align

::::
with

:::
the

::::::
unique

::::::::::::
characteristics

::
of

::::
each

:::
site

::::
and

:::::::
research

:::::::::
objectives.

::
In

::::::::::
conclusion,

:::
this

::::
new

:
adaptive cal-385

ibration methodology offers a promising avenue for refining and improving
:::::
refines

::::
and

:::::::
improves

:
the accuracy of precipitation

data from indirect measures
::::::
sources,

:
such as the TRMM database , thereby enhancing

::
or

::::::
similar

::::::::
products.

::::
This

::::::::
enhances the

reliability of subsequent hydrological and climate impact assessments .
:::::
based

::
on

:::::
these

::::
data.

::
In

:::
the

::::::::::::
supplementary

::::::::
material,

:::
we

::::::
provide

:::
the

::::
data

:::
and

::
a

::::::::::
reproducible

:::::::::::
documented

::::::::
notebook,

::
to

:::
aid

::
in

:::
the

:::::::::
application

:::
of

::
the

:::::::
method.

:

Code and data availability. An interactive notebook associated with this study is available at the following link: https://github.com/390

SantanderMetGroup/notebooks/tree/2023_TRMM_adaptiveCal/2023_adaptiveCalibration. This notebook provides a comprehensive illus-
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tration of the entire adaptive calibration process, including available data download from an open repository and the computation of both

standard and adaptive calibration RF scores.
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Appendix A:
:::::::
Weather

::::::
typing

::::::
results

::::
Next,

:::
we

:::::::
provide

::
a

:::::
visual

::::::::
summary

::
of

:::
the

:::::::
weather

::::::
typing

:::::::::::
classification

::::::::::
undertaken

:::::
using

:::::
ERA5

:::::::::
reanalysis

::::
(Sec.

:::::
2.2).

:::::
Here,

::
we

:::::::
include

:
a
::::::::
summary

:::::
figure

::
of

:::
the

::::::::
resulting

:::::::::::
classification

::::
(Fig.

::::
A1)

::
in

::::
order

::
to
:::::::
include

::::::::
additional

:::::::
relevant

::::::::::
information

:::
for

:::
the

::::::
analysis

:::::::::
presented

:
in
::::
this

:::::
study,

::::
such

::
as

:::
the

:::::::::
occurrence

::
of

:::::::
tropical

:::::::
cyclones

::::::
(TCs),

::
as

:::::::
relevant

::::::
features

:::::::::::
significantly

::::::::::
contributing

::
to

::::
total

::::::
annual

::::::::::
precipitation

::::
and

:::::::
directly

::::::
related

::::
with

:::::::
extreme

:::::::::::
precipitation

:::::
events

::
in

:::
the

:::::::
region.

:::
The

:::
TC

:::::
track

::::::
record

:::
for

:::
the515

::::
study

::::
area

::::
has

::::
been

:::::::
obtained

:::::
from

:::
the

:::::::::::
International

::::
Best

:::::
Track

:::::::
Archive

:::
for

:::::::
Climate

::::::::::
Stewardship

:::::::::
(IBTrACS

:
-
:::::

v4.0)
::::::::
database

::::::::::::::::
(Knapp et al., 2010)3.

:

:::::
While

:::
the

:::::::
seasonal

::::::
pattern

::
of

:::
the

::::::::::
classification

::
is
::::::::
depicted,

:::::::::
interannual

:::::::::
variability

::::::::::
fluctuations

:::
also

::::::
emerge

::
in

::::
this

:::::::::::
visualization.

:
A
::::
few

::::
years

::::::::
stand-out

::
as

::::::::::
particularly

:::::::
cyclonic

::::
(e.g.

:::::
1981,

:::::
1997,

:::::
1998)

:::::
being

::::
most

::
of

::::
these

:::
TC

::::::
events

::::::::
associated

::
to
:::::::
weather

:::::
types

:
1
:::
and

::
4
::::
(e.g.

:::::
years

:::::
1983,

::::
2003

::::
and

:::::
2010)

:::
and

::::::
mostly

::::::::
restricted

::
to

:::
the

::::::
period

:::::::::::::
December-April

::::
(Fig.

::::::
A1b).

:::
The

::::::::::
exceptional

::::
year520

::::
1997

:::::::
extends

:::
the

:::
TC

::::::
activity

::
to

::::::::
May-July

::::
and

:::::
starts

::::::
earlier,

::
in

:::::::
October,

:::::
while

:::
the

::::::
second

::::::::
strongest

::::::
(1981)

::::
does

:::
not

::::::
extend

:::
the

:::::
season

:::
but

:::::::
exhibits

:::
an

::::::::
increased

:::
TC

::::::
activity

:::
in

:::
the

:::::
period

:::::::::::::::
December-March

::::
(Fig.

:::::
A1a).

::::::::
Notably,

::::
both

:::::
years

:::
are

:::::::::::
characterized

::
by

:::::::::::
experiencing

:::
the

:::
two

::::::::
strongest

:::::::
El-Niño

:::::
events

:::
of

:::::
recent

:::::::
decades4,

:::::::
together

::::
with

::::::::::
2015-2016,

:::
that

::::
also

:::::::
exhibits

:
a
::::::::::
remarkable

:::
TC

::::::::
frequency

:::::
(Fig.

:::::
A1b).

:::
The

:::::::::
interested

:::::
reader

::
is
:::::::

referred
:::
to

:::
the

::::::
weather

::::::
typing

:::::::::::
methodology

::::
and

::::
main

::::::
results

:::::::::
presented

::
in

::::
more

:::::
detail

::
in

:::::::::::::::::
Mirones et al. (2023)

:
.525

Appendix B: Bias correction methods formulas and complementary information

Here we provide a detailed description of the correction methods used in the study. These methods aim to improve the accuracy

of the TRMM rainfall data by incorporating information from PACRAIN rain gauge measurements, used as predictand. The

calibration techniques are next described:

Equation B1 presents the scaling method, where p̂trmm represents the corrected TRMM rainfall, prg and ptrmm denote the530

PACRAIN rain gauge and raw TRMM measurements, respectively, and P̄rg and P̄trmm are the means of the prg and ptrmm

series.

p̂trmm = ptrmm
P̄rg

P̄trmm
(B1)

Equation B2 describes the empirical quantile mapping (eQM) method. Here, X̂t,i represents the corrected value for a specific

day and grid, F̂ trmm
doy,i and F̂ rg

doy,i are the empirical cumulative distribution functions (eCDFs) for TRMM and PACRAIN,535

3
::
All

:::
data

::
are

::::
open

::::
access

::::::
through

:
a
::::::
dedicated

::::
URL

:
(https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access

:
)

4
:
El
::::
Nino

:::
and

::
La

:::
Nina

:::::
Years:

:::::
NOAA

::::::
Physical

::::::
Sciences

:::::::
Laboratory [

:::::
WWW

:::::::
Document]

:
,
::
n.d.

::::
URL https://psl.noaa.gov/enso/climaterisks/years/top24enso.

html
::::::
(accessed

:::::::
2.12.24).
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Figure A1.
::

(a):
::::
Daily

::::
time

:::::
series

:::::::::
classification

::
of

::::::
weather

:::::
types

::
for

:::
the

::::::
extended

::::::
41-year

:::::
period

:::::::::
1979-2020.

:::
TCs

:::::::::
occurrences

:::
are

:::::::::
represented

::
by

::
the

:::::
white

::::
dots.

:::
(b):

:::::::
Absolute

::::::
number

::
of

:::
days

:::::::
affected

::
by

:::
TCs

:::
by

:::
year

:::
and

::::
WT.

respectively, corresponding to the given day of the year (doy), and Xt,i is the uncorrected value.

X̂t,i = F̂ rg−1

doy,i (F̂
trmm
doy,i (Xt,i)), (B2)

Equation B3 presents the parametric quantile mapping (pQM) method. F trmm
doy,i and F rg

doy,i represent the assumed theoretical

distributions for TRMM and PACRAIN, respectively, and Xt,i is the uncorrected value.

X̂t,i = F rg−1

doy,i (F
trmm
doy,i (Xt,i)), (B3)540

Lastly, Equation B4 outlines the generalized parametric quantile mapping (gpQM) method. It uses a combination of gamma

and generalized Pareto distribution (GPD) to correct the TRMM rainfall values based on their percentiles. F trmm,gamma
doy,i and

F rg,gamma
doy,i are the gamma cumulative distributions for TRMM and PACRAIN, while F trmm,GPD

doy,i and F rg,GPD
doy,i represent the

22



GPDs for TRMM and PACRAIN, respectively. The threshold of the 95th percentile is used to differentiate between the two

distributions.545

X̂t,i =

 F rg,gamma−1

doy,i (F trmm,gamma
doy,i (Xt,i)) if Xt,i < 95th percentile

F rg,GPD−1

doy,i (F trmm,GPD
doy,i (Xt,i)) if Xt,i ≥ 95th percentile

(B4)

Table A1. Overview of observations (days) for each WT across multiple stations. Each row corresponds to a specific station, while the

columns represent different WTs. The table displays the total number of observations recorded for each WT, along with the corresponding

75th and 95th percentiles.

Station
WT1 WT2 WT3 WT4 WT5

N P75 P95 N P75 P95 N P75 P95 N P75 P95 N P75 P95

Kolopelu 966 242 48 775 194 39 851 213 43 826 206 41 306 76 15

Alofi 1140 285 57 932 233 47 1023 256 51 917 229 46 437 109 22

Rarotonga 1105 276 55 916 229 46 1055 264 53 957 239 48 391 98 20

Raoul Island 1327 332 66 1058 264 53 1158 290 58 1076 269 54 458 114 23

Port Vila 1084 271 54 884 221 44 1010 252 50 849 212 42 370 92 18

Aoloau 1091 273 55 874 218 44 999 250 50 826 206 41 428 107 21

Nu’uuli 2076 519 104 1721 430 86 1846 462 92 1570 392 78 820 205 41

Table A2. Index weights wi (see Eq. 3) for the weighted RF score calculation in the adaptive calibration technique selection.

Code Weight

Skewness 0.05

Mean 0.05

SDII 0.05

R10 0.05

R10p 0.05

R20 0.15

R20p 0.15

P98Wet 0.15

P98WetAmount 0.2

RV20_max 0.1
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
319.38

P98WetAmount
4291.5

P98Wet
82.12

R20p
18579.1

R20
0.09

R10p
22490.9

R10
0.16

SDII
14.61

Skewness
5.68

Mean
6.13

Standard

WT-Cond

WT-CvsAdapt

WT-Cond

Adaptive

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Relative Bias

Figure C1. Relative Biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Alofi

Station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation

data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sec. 2.3). For each method plot

cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned approach.

The last column presents shows a comparison between the relative bias of the best WT-conditioned technique vs. the adaptive calibration.

The circle indicates the best-performing approach with the lowest relative bias. The Y-axis labels show the actual index values from the rain

gauge observations beneath the index names.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
192.05

P98WetAmount
3274.2

P98Wet
72.51

R20p
13928.2

R20
0.07

R10p
17262.6

R10
0.13

SDII
13.07

Skewness
5.85

Mean
4.84

WT-Cvs Adapt

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Relative Bias

Standard

WT-Cond

WT-Cond

Adaptive

Figure C2. Same as Fig. C1, but for the Rarotonga rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
173.95

P98WetAmount
3429.1

P98Wet
57.61

R20p
11011.1

R20
0.05

R10p
14819.9

R10
0.11

SDII
10.51

Skewness
6.74

Mean
3.91

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Relative Bias

Standard

WT-Cond

WT-Cond

Adaptive
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Figure C3. Same as Fig. C1, but for the Raoul Island rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
240.93

P98WetAmount
4507.3

P98Wet
75.38

R20p
17052.8

R20
0.09

R10p
21265.6
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14.2

Skewness
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Relative Bias

WT-Cond

Adaptive
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Figure C4. Same as Fig. C1, but for the Port Vila rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
325.02

P98WetAmount
9617.2

P98Wet
106.7

R20p
50127.8

R20
0.24

R10p
60776.5

R10
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SDII
20.66

Skewness
4.3

Mean
16.08

WT-CvsAdapt

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Relative Bias

WT-Cond

Adaptive

Standard

WT-Cond

Figure C5. Same as Fig. C1, but for the Aoloau rain gauge location.
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TRMM ERA5 Scaling EQM PQM GPQM95 GPQM75

RV20_max
245.27

P98WetAmount
10471.3

P98Wet
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R20
0.13

R10p
59093.5

R10
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Standard
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Figure C6. Same as Fig. C1, but for the Nuu’uli rain gauge location.
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