Response to comment https://doi.org/10.5194/egusphere-2023-1402-RC2

Response to comment RC2 (https://doi.org/10.5194/egusphere-2023-1402-RC2), in open discussion of the manuscript entitled:

We would like to express our sincere gratitude to the reviewer for his/her time and effort in reviewing our manuscript. We appreciate the constructive feedback and the valuable suggestions for improving the quality and clarity of our work. We appreciate the reviewers’ comments and have revised the manuscript accordingly. We provide a point-by-point response to all the issues raised below. We have also attached a “diff” file to this response to facilitate the revision process. We hope that the reviewer will find the revised version satisfactory and worthy of publication.

Major comments:

1. **The TMPA product was used as a calibration object. The reasons for choosing TMPA should be provided. In particular, its successor, i.e., IMERG, has been released to the public and is better than TMPA in multiple aspects such as resolution, covering period, and quality. Moreover, the TMPA products have stopped updating.** I am confused that this study selected TMPA instead of IMERG.

 We appreciate the reviewer’s feedback and concur that this issue deserves a mention in the paper. The main objective of our study is essentially methodological, and therefore a great part of our analysis can be undertaken with different products, and it is therefore not an exclusive or ad-hoc methodology for the TRMM-TMPA product. Furthermore, in this case our interest is to evaluate the performance of different calibration methods for precipitation data, and TMPA is an adequate baseline as a challenging case to this aim, given its good overall performance but loss of accuracy in the representation of some critical extremes. However, we respectfully disagree with the referee’s assessment that choosing this dataset “does not make much sense”. We believe that this dataset is relevant and appropriate for our research question, which is the introduction of a novel methodology for calibration. In our opinion, just because it is not the newest and most accurate product does not mean that a study that uses it as a reference to analyze a new calibration technique does not make sense. It is precisely its known lack of accuracy...
in representing certain precipitation events that makes it particularly interesting for this purpose, given that the need for its adjustment has been addressed in many previous studies, often in a suboptimal manner (see Mirones et al. 2023 for an overview, and some references therein, e.g.: Aghakouchak et al. 2009, Almazroui 2011). On the other hand, although we are aware of the improvements introduced in the new IMERG product, the study of its possible errors and limitations is beyond our scope in this article, although we hope that the methodological aspects that we introduce in this work can serve as a reference for other authors in the future to analyze in more depth the characteristics of this more recent product or others. Therefore, far from being inappropriate, it opens the door for new applications using different and improved datasets.

In response to the reviewer’s comments, we have added a new paragraph in the introduction to explain why TRMM data is suitable for our study and how our calibration methodology can be applied to other satellite precipitation products. Furthermore, to avoid giving a misleading idea of exclusivity of the methodology for a specific product, we have removed the TRMM reference in the title (the term has been included in the keywords, though, to facilitate indexing). We hope that our modifications address the reviewer’s concerns and demonstrate that our study is relevant, novel, and generalizable, regardless of the dataset choice.

2. Methodology: the method section is one of the important content, but the current descriptions are too concise. Based on five weather types, the paper proposed an “adaptive calibration approach” to take advantage of the complementary strengths for four methods and further improve the accuracy of the TMPA product. However, the weighting method was not described well, especially its standards and rules. In addition, could the weighting method used in this paper provide optimal weights? In other words, whether this weighting method can maximize the advantages of different error adjustment methods. In addition, the classification of weather types was not provided. I understand the authors gave the related literature, but this is not enough. A detailed classification scheme should be provided as it is an important component for the “adaptive calibration approach”.

We thank the referee for this comment. In order not to be excessively long, in the initial manuscript we have omitted most of the methodology related to weather typing, citing a previous article where the same methodology is applied. However, we understand the reviewer’s point of view and have added a new paragraph giving some key details about the clustering methodology used, the rationale for the choices made and its suitability for conditioned calibration. In addition, we include in the supplementary material (New dedicated Appendix A) a new additional figure in order to summarize the main clustering results. It also provides some additional information regarding the frequency of tropical cyclone occurrence, that will aid in the discussion of the results.
Figure A1. (a): Daily time series classification of weather types for the extended 41-year period 1979-2020. Tropical Cyclone (TC) occurrences are represented by the white dots. (b): Absolute number of days affected by TCs by year and WT.

We thank the referee for this insightful comment regarding the potential of the adaptive calibration approach for optimization. However, as we have already emphasized in the manuscript, there is no such a thing as an “optimal” tuning. In this study, we have selected a battery of validation indices suitable for the characterization of the most important marginal aspects of local precipitation relevant for hydrological/impact applications, but this is not comprehensive and may lack some other characteristics relevant in specific research contexts (e.g. temporal validation of annual/seasonal cycles, autocorrelation function, dry-wet or wet-wet transition probabilities, spell durations etc…). Furthermore, the importance given to each of these aspects (for example, giving priority to extreme events rather than mean precipitation) may also determine the calibration method choice, as we illustrate here. That is the main reason we have avoided the term “optimization” in the title and focused more on “refinement”, in the sense that the end-user priorities may alter the final method combination choice. However, and following the reasoning of the reviewer, it is possible to use the validation framework to test for different validation measure sets and weighting schemes searching for a minimization of the overall error. Due to the possibility of combining so many measures of performance, we introduce in this study the RF score, that makes possible
the integration of their combined performance into one single descriptor. However, it would be possible to search for the minimization/maximization of one single error/performance measure using the same approach, and following the reference code included as supplementary material to this aim. In order to clarify these aspects we have introduced a major modification of the validation method section, providing further details on the methodology and its justification. We hope that with these changes the rationale behind the proposed validation framework is clearer. Regarding the specification of “standards”, we have used a subset of precipitation indices used in the international initiative VALUE. The main advantage of using a set of indices already used in an international intercomparison project is that it allows for a consistent, objective, and shareable assessment. We have also emphasized this aspect and provided further details on this validation framework.

3. Results and discussion: The analysis has many subjective descriptions, which is not recommended for scientific writing. I suggest the analysis provides some specific metric values and strengthens in-depth interpretations on the results.

Thanks for this comment. We have made an effort to remove all statements that may sound “subjective” and provide a more thorough explanation of the results based on the specific measures introduced in the study.

Other comments:

1. Lines 36-37: this conclusion is true only in some areas, not all regions. I suggest revising this sentence to avoid misleading the readers.

Thanks for this point, it can certainly be misleading. We have clarified it in the sentence

2. The differences between the four methods (i.e., scaling, eQM, pQM, and gpQM) should be provided and discussed, especially for their advantages and limitations. Due to their respective advantages, the adaptive calibration approach, which could consider their advantages, is necessary. Meanwhile, the adaptive calibration approach is not the best in all cases, which is worth analyzing.

We have included two new paragraphs in the Results and Discussion section of the revised version of the manuscript addressing the results obtained in relation to the specific properties of the methods tested. Advantages and limitations of the various methods tested are presented and illustrated with the results obtained at diverse study locations.

3. Weather typing is important in this study. So, which five types? The description lacks detail.

We have expanded the explanation regarding the weather typing. Now it should be clearer all the methodological aspects regarding the weather typing and why finally 5
weather types have been used in this study. In addition, some supplementary material has been added to give additional context information, as previously detailed in response to major comment 2.

4. Lines 159-161: could the authors provide some literature to support this point?

Thanks for pointing to this sentence. We have rephrased the whole sentence and included some references supporting this claim.

5. Lines 161-162: can the authors provide some study results (e.g., specific metric values) to support this point?

Thanks. Yes, the text already indicates Fig. 1, that supports this finding. However, we have expanded the explanation to be more explicit and provide further detail.

6. Lines 166-167: what results?

The sentence makes reference to the results presented in Mirones et al 2023. We have rephrased and extended the sentence to be more explicit.

7. Why did the adaptive calibration method not improve the accuracy at the Rarotonga and Nu’uuli stations?

In the case of Rarotonga, this statement is not completely true, since the adaptive calibration method is able to improve the performance using the weighted RF score. This particular result emphasizes the fact that model assessment is sensitive to user choices, such as the set of indices and measures used for validation and, as in this case, the weights assigned to each of them. As a result, when more weight is assigned to the performance of extreme precipitation indices, the adaptive calibration approach performs better than the standard calibration (PQM). Also, when considering the standard unconditioned calibration method (one single technique for the entire calibration period), the best performing method under the unweighted validation scheme is PQM, while when using the weighted RF score scheme, favoring the good performance of extreme indicators, it is the GPQM95 method. Therefore, it is important to remark that under this validation framework, the ranking of calibration methods is sensitive to arbitrary decisions in i) the battery of validation indices used and ii) the weight assigned to each measure to compute the overall score. This is now explicitly explained in the revised manuscript.

In the case of Nu’uuli station, the adaptive calibration did not improve the performance, although it also attained a similar high RF score (~0.85/0.75 unweighted/weighted RF scores, Fig. 2a-b). Compared to other locations in Figs C1-C5 (Appendix C) and Fig.1 (Kolopelu), Nu’uuli has moderate raw TRMM biases that are effectively corrected by both empirical and parametric quantile mapping, as reflected in Fig. C6 (Appendix C). GPQM performs similarly in general, but fails in reproducing distributional skewness and
RV20_max in the case of the adaptive approach. This is in connection with the limitations of the GPQM method for higher percentile thresholds, due to limitations in the sample size, which are accentuated in the case of the adaptive approach, as commented in relation with previous minor Comment 2. Thus, the adaptive calibration does not offer any advantage over the single-technique approach in this particular case. However, as we stress in the article, it also does not degrade the performance, but matches it. In fact, the adaptive approach enhances most indices, except RV20_max, P98Wet and SDII, albeit slightly, as indicated in the right column of Fig. C6.

Citation: https://doi.org/10.5194/egusphere-2023-1402-RC2
Refining Remote Sensing precipitation Datasets in the South Pacific with An Adaptive Multi-Method Calibration Approach

Óscar Mirones¹, Joaquín Bedía²³, Sixto Herrera², Maialen Iturbide¹, and Jorge Baño Medina¹⁴

¹Santander Meteorology Group. Instituto de Física de Cantabria IFCA, CSIC-UC, 39005 Santander, Spain
²Dept. Matemática Aplicada y Ciencias de la Computación (MACC), Universidad de Cantabria, 39005 Santander, Spain
³Grupo de Meteorología y Computación, Universidad de Cantabria, Unidad Asociada al CSIC, Santander (Spain)
⁴Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA

Correspondence: O. Mirones (oscar.mirones@unican.es)

Abstract. Calibration techniques are gaining popularity in climate research for refining numerical model outputs, favored for their relative simplicity and fitness for purpose for climate research, often preferred for their simplicity and suitability in many climate impact applications. Their range of applicability goes beyond numerical model outputs and can be applied to calibrate remote sensing datasets that can exhibit important biases as Atmospheric pattern classifications for conditioned transfer function calibration, common in climate studies, are seldom explored for satellite product calibration, where significant biases may occur compared to in situ meteorological observations. This study presents an adaptive calibration approach specifically designed for calibrating precipitation data conditioned on specific weather patterns. We propose a new ‘adaptive’ calibration approach, applied to the Tropical Rainfall Measuring Mission (TRMM) precipitation product across multiple stations in the South Pacific. The methodology involves the daily classification of the target series into five distinct Weather Types (WTs) capturing the diverse spatio-temporal precipitation patterns in the region. Various quantile mapping (QM) techniques, including empirical (eQM), parametric (pQM), and Generalized Pareto Distribution (gpQM), as well as an ordinary scaling, are applied for each WT. We perform a comprehensive validation by evaluating 10 specific precipitation-related indices that hold significance in impact studies, which are then combined into a single Ranking Framework (RF) score, which offers a comprehensive evaluation of the performance of each calibration method for every Weather Type (WT). These indices are assigned user-defined weights, allowing for a customized assessment of their relative importance to the overall RF score. Our ‘adaptive’ approach selects the best performing method for each WT based on the RF score, yielding an optimally calibrated series.

Our findings indicate that the adaptive calibration methodology surpasses standard and weather-type conditioned methods based on a single technique, yielding more accurate calibrated series in terms of mean and extreme precipitation indices, consistently across locations. Moreover, this methodology provides the flexibility to customize the calibration process based on user preferences, thereby allowing for specific indices, such as extreme rainfall indicators, to be assigned higher weights. This ability enables the calibration to effectively address the influence of intense rainfall events on the overall distribution. Furthermore, the proposed adaptive method is highly versatile and can be applied to different scenarios, datasets, and regions,
provided that a prior weather typing exists to capture the pertinent processes related to regional precipitation patterns. Open-source code and illustrative examples are freely accessible to facilitate the application of the method.

Keywords — weather types, quantile mapping, extreme precipitation, precipitation indices, bias adjustment, TRMM

1 Introduction

Satellite rainfall products serve as crucial sources of information for various hydrological applications, offering continuous temporal coverage and consistent spatial estimates of precipitation in regions lacking sufficient rain gauge data. However, unlike direct observations, satellite measurements are prone to systematic errors originating from uncertainties in estimating precipitation amounts from radar reflectivity measurements (Simpson et al., 1996; Sekaranom and Masunaga, 2019) or the irregular timing of satellite overpass (Aghakouchak et al., 2009), among others. Consequently, these products often deviate significantly from the statistical properties of observed series, particularly concerning extreme precipitation events (Mirones et al., 2023), thus requiring calibration before their application in impact studies.

In particular, the Tropical Rainfall Measuring Mission (TRMM) was a research satellite launched by NASA in 1997 to improve the understanding of the distribution and variability of precipitation in the tropics and subtropics. TRMM used several space-borne instruments to measure rainfall and its associated heat release for the first time, essential for regulating Earth’s climate. TRMM ended its operation in 2015, after providing precipitation data for 17 years, with a derived daily accumulated precipitation product (TRMM Multi-satellite Precipitation Analysis, TMPA) that have been discontinued as of Dec. 31, 2019 (Huffman et al., 2016). To continue and extend the legacy of TRMM, NASA developed the Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm, which combines information from the GPM satellite constellation and other sources to estimate precipitation over most of the globe in a very flexible framework (Huffman et al., 2020). IMERG also incorporates TRMM-era data, creating a continuous precipitation dataset spanning over two decades. In this study, we focus on TRMM due to this long history of usage. TRMM had a low-altitude (402.5 km), non-sun-synchronous orbit, which allowed it to sample the diurnal cycle of precipitation and capture the variability of rainfall at different times of the day (National Research Council, 2006). IMERG, on the other hand, uses data from multiple satellites with different orbits and sensors, which may introduce uncertainties and inconsistencies in the diurnal sampling (Zhou et al., 2023). Thus, although new products have emerged that offer better performance than TRMM for many hydrological applications, TRMM still has some advantages in specific contexts. Furthermore, the methodology proposed in this study, which calibrates the data according to regional-scale atmospheric processes and validates the results, can be applied to any other dataset as well.

Essentially, the calibration process entails adjusting a transfer function that relates the parameters of raw satellite precipitation distribution to observed rain gauge time series. The effectiveness of bias reduction through post-processing depends on the underlying mechanisms producing the bias (see e.g. Maraun et al., 2017), as well as the appropriateness and accurate implementation of the chosen technique. Moreover, it is crucial to accompany this process with a proper estimation of the associated uncertainty. In particular, the TRMM biases are not constant but associated with specific meteorological conditions, often exhibiting a systematic overestimation during wet periods and underestimation during dry periods.
Hence, it is reasonable to anticipate that incorporating explicit information regarding the synoptic-scale meteorological conditions into the calibration process would enhance the fitting of the transfer function. In this context, weather typing techniques (see Huth et al., 2008, for a comprehensive review), prove helpful in defining relevant weather patterns by summarizing distinct atmospheric configurations associated with different precipitation regimes (Baltaci et al., 2015; Hay et al., 1991; Riediger and Gratzki, 2014; Trigo and DaCamara, 2000). This approach can effectively situate the calibration within the context of significant atmospheric circulation processes that impact the target variable, as previously shown (Mirones et al., 2023), considering that the biases may be different depending on the prevailing atmospheric processes at each moment (Jury et al., 2019), so that a generalist adjustment may not allow to solve them efficiently in all cases. Moreover, although conditioning reduces the sample size, it has been shown that the calibration with adequate sub-samples can significantly enhance the reliability of the corrected series, as shown with some popular calibration methods like quantile mapping (Reiter et al., 2018).

While atmospheric pattern classifications for conditioned transfer function calibration have been already used in statistical downscaling for climate change studies (Stehlik and Bardossy, 2002; Wetterhall et al., 2007, 2012) as well as in seasonal forecasting applications (Manzanas and Gutiérrez, 2019) and short-term forecast calibration refinement (Vuillaume and Herath, 2017). However, they have seldom been explored in the context of satellite product calibration. In a recent study, Mirones et al. (2023) proposed an innovative approach for calibrating TRMM data in the South Pacific region. The methodology incorporates scaling and empirical quantile mapping techniques, conditioned to the dominant modes of interannual variability captured by specific precipitation types. This region encompasses the South Pacific Convergence Zone (SPCZ), characterized by a distinct band of low-level convergence and enhanced cloudiness extending across the South Pacific (Australian Bureau of Meteorology and CSIRO, 2011). The SPCZ is associated with notable meteorological phenomena such as heavy rainfall, convective storms, and the displacement of the intertropical convergence zone (ITCZ, Waliser and Gautier, 1993). The defined weather types were thus designed to capture the key characteristics of the regional precipitation regime while ensuring a sufficient sample size for robust conditional model fitting.

Building upon this methodological framework presented by Mirones et al. (2023), this study aims to further explore the potential of conditioned calibration for improving the quality of TRMM precipitation data. As a result, the new calibration method presented relies on a weather type classification designed for the synoptic characterization of regional precipitation. Its applicability to new regions is therefore constrained by a previous weather typing able to capture the main regional features, as illustrated in this work. We expand the range of calibration techniques by incorporating a broader selection of commonly used parametric and non-parametric methods, including linear scaling, empirical quantile mapping (eQM), parametric quantile mapping (pQM), and generalized Pareto Distribution quantile mapping (gpQM), the latter adapted for a more specific treatment of extreme values in the quantile adjustment. Furthermore, we investigate the feasibility of combining different calibration techniques for the same location, taking into account the various weather types. Next, we optimize and applying a specific statistical correction method for each WT individually. Then, we assess the performance of these...
calibration techniques by employing user-defined validation indices. These indices are globally assessed and suitable validation measures. The validation results for each index are globally evaluated using a weighted Ranking Framework score, enabling which allows us to identify the optimal combination of techniques for site-based calibration.

2 Data and methods

2.1 Data

The reference observations used as the predictand for calibration were obtained from the Pacific Rainfall Database (PACRAIN, Greene et al., 2008). The PACRAIN Database comprises daily and monthly rainfall records from a comprehensive collection of rain gauge stations situated across atolls and islands in the South Pacific region. These records are sourced from various institutions, including the National Institute of Water and Atmospheric Research of New Zealand (NIWA, www.niwa.cri.nz), the US National Centers for Environmental Information (NCEI, https://www.ncei.noaa.gov/), the French Polynesian Meteorological Service (https://meteo.pf), the Schools of the Pacific Rainfall Climate Experiment (SPaRCE, https://sparce.ou.edu), and the Atlas of Pacific Rainfall (Taylor, 1973). Despite the seemingly ample raw samples within the database, an examination of missing data reveals a significantly reduced number of suitable data points. Two critical considerations arise in this context:

- Bias Correction Requirements: Achieving robust fits for the various statistical methods employed in bias correction demands a relatively large sample size. This is especially true for effectively characterizing extreme events, a main point in our study due to their paramount importance in numerous hydrological applications.
- Representativity of Locations: The chosen locations must encompass a representative spectrum of variability within the region. In our study, these locations are strategically distributed across the entire domain, offering a sensible representation of diverse precipitation regimes.

As a result, we used the final subset of suitable rain gauge stations presented in Table 1.

The calibrated dataset in this study is the Tropical Rainfall Measuring Mission 3B42 Daily product (TRMM TMPA Precipitation L3 1 day 0.25 degree V7, Huffman et al., 2016). This dataset provides measurements of daily accumulated precipitation, covering the period from January 1, 1998, to January 1, 2020, with a temporal resolution of one day daily. The spatial coverage of the dataset ranges from 50.0°N to 50.0°S and 180.0°E to 180.0°W. For the calibration process, the TRMM data were extracted at the nearest grid point to each rain gauge location.

2.2 Weather typing

We used PCA analysis to obtain representative precipitation patterns and then performed a clustering approach. We chose K-means, a traditional method that divides the feature space into a fixed (K) number of clusters by iteratively finding group centroids that maximize cluster distances and minimize within-cluster dispersion (e.g. Pike and Lintner, 2020).

The adaptive calibration approach in this study utilizes five weather types (WTs) derived from the study conducted by Mirones et al. (2023), based on principal component analysis and k-means clustering, and using precipitation and atmospheric conditions.
Table 1. Final set of rain gauge stations from the PACRAIN database used in this study. The columns provide information such as the PACRAIN ID, indicating the data source (NZ for NIWA, US for NCEI, and SP for SPaRCE), station name and location, longitude and latitude coordinates in degrees, time coverage of the time series (start and end dates; an asterisk indicates data outside the TRMM period, which were discarded in this study), percentage of missing data within the start-end period, and elevation in meters above sea level.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Start</th>
<th>End</th>
<th>% Missing Data</th>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZ82400</td>
<td>Alofi (Niue)</td>
<td>169.93° W</td>
<td>19.07° S</td>
<td>1998-01-01*</td>
<td>2010-09-02</td>
<td>2.68</td>
<td>59</td>
</tr>
<tr>
<td>NZ84317</td>
<td>Rarotonga (Cook Islands)</td>
<td>159.80° W</td>
<td>21.20° S</td>
<td>1999-09-28</td>
<td>2012-01-02</td>
<td>11.36</td>
<td>4</td>
</tr>
<tr>
<td>NZ99701</td>
<td>Raoul Island (New Zealand)</td>
<td>177.93° W</td>
<td>29.23° S</td>
<td>1998-01-01*</td>
<td>2012-01-01</td>
<td>0.72</td>
<td>49</td>
</tr>
<tr>
<td>SP00646</td>
<td>Port Vila (Vanuatu)</td>
<td>168.30° E</td>
<td>17.72° S</td>
<td>2000-01-26</td>
<td>2013-06-01</td>
<td>18.13</td>
<td>24</td>
</tr>
<tr>
<td>US14690</td>
<td>Nu’uuli (American Samoa)</td>
<td>170.70° W</td>
<td>14.32° S</td>
<td>1998-01-01*</td>
<td>2019-12-31*</td>
<td>0.037</td>
<td>3</td>
</tr>
</tbody>
</table>

The variables used for clustering were precipitation, sea-level pressure, the day-to-day sea-level pressure and wind reanalysis fields, over difference and eastward and northward wind components, all extracted from the ERA5 reanalysis (Hersbach et al., 2020). Sea-level pressure and its difference was chosen in order provide suitable descriptors of the South Pacific Convergence Zone (SPCZ). The weather typing employed in this study offers a valuable representation of the dominant synoptic patterns observed in the study region in relation to precipitation state and the occurrence of tropical cyclones respectively, that have a major effect on precipitation patterns within this region (Vincent et al., 2011; Mirones et al., 2023). Since the geostrophic approximation is not valid near the equator, we also include the wind components in order to characterize circulation. In order to eliminate redundancy and linear dependence among variables to be clustered, we performed a joint Principal Component Analysis (PCA) of all the variables, retaining all PCs explaining up to 80% of total variance (summing up to 45 PCs), prior to clustering. We chose $k=5$ different weather types (WTs) as a trade-off between the representativity of each group (at least 2 years of data in each group) and the minimization of the total within-cluster variance. Additional groups did not lead to significant reductions of within-group variance and resulted in less representative WTs (less than 600 days for
the 21-year period 1998-2019), thus potentially affecting the robustness of the conditioned statistical calibration. Furthermore, we assessed the robustness of the obtained classification following a 4-fold cross-validation approach, by partitioning the data in four temporal blocks (1979-1988, 1989-1998, 1999-2008 and 2009-2019). PCA was iteratively trained on each fold and the resulting EOF was projected onto the remaining folds. At each iteration, the resulting weather typing yielded consistent results in terms of climatologies and precipitation seasonality. The identification of five distinct daily weather types (WTs) and their relatively balanced sample sizes ensures a robust conditioning of the calibration process, thereby enhancing the reliability and stability of the calibration results. We provide a summary of the resulting weather type classification in Appendix A. The methodology and main features of the classification are further explained in Mirones et al. (2023).

2.3 Bias correction techniques

The calibration techniques used for the adaptive methodology include scaling, empirical quantile mapping (eQM), parametric quantile mapping (pQM), and generalized Pareto distribution quantile mapping (gpQM). A more detailed description of the methods is provided in Appendix B.

The scaling technique is applied to the raw TRMM data by multiplying it with a correction factor. This factor is computed as the ratio between the mean of the predictand (PACRAIN rain gauge measurements) and the mean of the raw TRMM measurements during the training period.

The eQM method is an adaptation of the approach presented in Themeßl et al. (2011), which utilizes empirical cumulative distribution functions (eCDFs) for calibration. In its parametric version (pQM), the QM method relies on the theoretical distribution rather than the empirical one, whose parameters are estimated based on the observed and TRMM data. In particular, here it is assumed that both the observed and simulated intensity distributions can be well approximated by the biparametric gamma distribution (Piani et al., 2010), and therefore both shape and scaling parameters need to be estimated for transfer function fitting.

The gpQM approach also utilizes quantile mapping but incorporates the generalized Pareto distribution (GPD) above a certain threshold (Gutjahr and Heinemann, 2013). The threshold, denoted as \(u \), represents the percentile above which the GPD is used to adjust the wet-day distribution. Below the threshold, the distribution is adjusted to a gamma distribution following the pQM method. This method aims to improve the performance of pQM in the upper tail of the distribution, specifically for extreme events. In this work, two different thresholds are selected: the 95th and the 75th percentiles, resulting in the methods named gpQM-95 and gpQM-75, respectively.

2.4 Adaptive calibration methodology

Here, we introduce an adaptive methodology developed for the calibration of various calibration methods, namely:

2.4.1 Calibration model fitting
The adaptive calibration methodology involves the application of scaling, eQM, pQM, gpQM-95, and gpQM-75. This methodology involves applying the calibration methods (Sec. 2.3) individually to each weather type (WT, Sec. 2.2). Subsequently, the best calibration method for each WT is selected, and the calibrated series are combined to form a unified time series spanning the entire calibration period. For each model fit, the calibrated series are obtained following a cross-validation scheme. Afterwards, a cross-validation scheme, aimed at avoiding model overfitting, allowing us to obtain a more realistic measure of model performance (Efron and Gong, 1983). Under this scheme, the calibration methods are fit and validated \(k \) times, considering in turn each of the folds as a test set and training the method with the remaining \(k - 1 \) ones. The resulting \(k \)-test series are finally joined and validated together in a single series spanning the whole calibration period. In the adaptive calibration approach, the \(k \) folds are randomly chosen from each WT separately, \(k \) ranging from 2 to 6 folds depending on the number of observations falling within each WT, in order to ensure an approximate sample size of \(\sim 300 \) in each fold in order to ensure a robust fit.

2.4.2 Calibration model assessment

In this work, we focus on general validation aspects involving the observed and calibrated TRMM marginal distributions. In this context, the validation ultimately entails deriving specific precipitation indices calculated from both rain gauge observations and calibrated TRMM time series and quantifying the mismatch with the help of suitable performance measures (see e.g., Marou et al., 2015).

There are different types of precipitation indices that can be used to validate a precipitation model, depending on the purpose and scale of the model. The criteria used in this study for choosing precipitation indices for validation are: i) the ability of the index set to capture the relevant aspects of precipitation variability and extremes, such as frequency, intensity and duration, and ii) an index set that is comparable across the different locations and weather types and across different time scales within the study area. A number of precipitation-derived indices are computed to this aim, following the validation framework of the Action Cost VALUE (Maraun et al., 2015, see Table 2), thus enabling a consistent, objective, and shareable evaluation of the quality and performance of different calibration methods (note that here, the term index can also refer to a time series, as in the case of correlation as validation measure, that receives as input the raw precipitation times series, Table 2).

However, validation is a multi-faceted process and ranking the different methods using different measures of performance is difficult because there is no single, universal criterion that can capture all aspects of a method’s effectiveness. As the different measures emphasize different dimensions of performance (Table 2), such as distributional (e.g., Skewness and the TRMM-calibrated indices are then compared against the reference observations using simple measures such as relative/absolute bias or correlation \(\text{Mean} \)), average precipitation intensity (e.g. Simple Daily Intensity Index - SDII-), higher percentile precipitation amount (\(P98\text{WetAmount} \)) or extreme precipitation values for specific return-periods (e.g. \(RV20 \text{max} \)), some measures may be more relevant or important than others, or attain different rankings depending on the method, potentially yielding inconsistent or conflicting outcomes. In order to facilitate a comprehensive evaluation and inter-comparison of these methods, each calibration method and WT, we have employed a standardized score calculation methodology able to integrate into one single composite score the different aspects of the validation for each calibration method and WT. Furthermore, specific user-defined weights
can be assigned to each validation measure to reflect their relative importance or relevance for the evaluation process, as outlined next.

To determine the best method for each WT, we utilize a Ranking Framework (RF) score, which is based on the methodology described in Kotlarski et al. (2019). The computation of this score involves several steps. Firstly, we calculate the bias of each calibration method with respect to the reference observations by taking the absolute differences between each of the index values (Table 2) of the reference observations \((X_i)\) and the calibrated TRMM series for each method \((Y_{i,j})\):

\[
Z_{i,j} = |X_i - Y_{i,j}|.
\] (1)

Next, we normalize the bias values obtained from all calibrations \((j)\) for a given index \((i)\), such that lower values are considered better by the normalization:

\[
Z'_{i,j} = 1 - \frac{Z_{i,j} - Z_{i,min}}{Z_{i,max} - Z_{i,min}}.
\] (2)

Finally, the RF score for each method is calculated as the average of the normalized values for all indices:

\[
RF_j = \frac{1}{N} \sum_{i=1}^{N} w_i \cdot Z'_{i,j} \quad \text{where} \quad \sum_{i=1}^{N} w_i = 1
\] (3)

and \(N\) represents the total number of indices evaluated \((N = 10, \text{see Table 2})\). Thus, in the calculation of the score, it is possible to incorporate arbitrary (unit normalized) weights \(w_i\) for the normalized climate indices. This allows for explicit consideration of validation aspects that may carry greater importance, with higher weights assigned to those aspects to determine the final score. A common example in many hydrological applications is the significance of accurately representing extreme precipitation events following calibration. Therefore, specific extreme indices (e.g., \(P98Wet\) or \(P98WetAmount\), as shown in Table 2) can be given a higher relative weight in their contribution to the overall score, thereby reflecting their increased relevance in the calibration method ranking process.

To ensure robustness and avoid artificial skill, we employ a cross-validation scheme for model fitting. This scheme enables us to assess the consistency of the calibration results beyond the training period by using a separate test period for prediction (Efron and Gong, 1983). Specifically, we employ the classical \(k\)-fold cross-validation, ensuring that each fold contains a minimum of 275 samples for a robust training. It is important to note that under this validation framework, the ranking of calibration methods is sensitive to arbitrary decisions in i) the battery of validation indices used and ii) the weight assigned to each measure to compute the overall score. We present a flexible validation framework that can be adapted to various impact applications and research objectives. Nevertheless, end-users can also define their own validation sets according to their specific research questions.

All the calibration methods have been run using the implementation available in the package \textit{downscaleR} (Bedia et al., 2020) from the open-source \textit{climate4R} framework for climate data analysis and visualization (Iturbide et al., 2019). The different evaluation indices presented in Table 2 have been computed using the standard definitions of the VALUE Framework (Maraun et al., 2015), which are implemented in the R package \textit{VALUE}^{2}.

\(^2\text{https://github.com/SantanderMetGroup/VALUE} \)
Table 2. Summary of the validation indices and measures used in the study, along with their corresponding codes as defined in the VALUE reference list (http://www.value-cost.eu/validationportal/app/#/indices). The indices and measures serve as evaluation metrics for assessing the performance and accuracy of the calibration techniques in the study.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>Skewness</td>
<td>index</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean index</td>
<td>index</td>
</tr>
<tr>
<td>SDII</td>
<td>Mean wet-day (≥1mm) precipitation</td>
<td>index</td>
</tr>
<tr>
<td>R10</td>
<td>Relative frequency of days with precip ≥ 10mm</td>
<td>index</td>
</tr>
<tr>
<td>R10p</td>
<td>Precipitation amount falling in days with precip ≥ 10mm</td>
<td>index</td>
</tr>
<tr>
<td>R20</td>
<td>As R10, but considering a 20mm threshold</td>
<td>index</td>
</tr>
<tr>
<td>R20p</td>
<td>As R10p, but considering a 20 mm threshold</td>
<td>index</td>
</tr>
<tr>
<td>P98Wet</td>
<td>98th percentile of wet (≥1 mm) days</td>
<td>index</td>
</tr>
<tr>
<td>P98WetAmount</td>
<td>Total amount above 98th percentile of wet (≥1 mm) days</td>
<td>index</td>
</tr>
<tr>
<td>RV20_max</td>
<td>Maximum Daily precipitation for a 20-year Return Value</td>
<td>index</td>
</tr>
<tr>
<td>absolute bias</td>
<td></td>
<td>measure</td>
</tr>
<tr>
<td>relative bias</td>
<td></td>
<td>measure</td>
</tr>
<tr>
<td>Spearman’s rank correlation</td>
<td></td>
<td>measure</td>
</tr>
</tbody>
</table>

3 Results and discussion

3.1 Standard and weather-type conditioned calibration method intercomparison

To obtain a comprehensive evaluation of the method’s overall performance, we initially focus on an unconditioned intercomparison, referred to as “standard calibration” hereafter. This evaluation involves assessing the method across the entire time series without considering different weather types. The preliminary findings indicate the presence of low to moderate (negative) biases in the TRMM product. As an illustrative example, we present the results obtained at the Kolopelu station in Fig. 1 (the upper triangle represents the standard calibration results), which are representative of the overall outcomes observed at other locations (the corresponding plots for the remaining rain gauge locations are included in the Appendix B). While certain TRMM indices show negligible biases compared to the rain gauge stations (such as skewness and SDII), others exhibit significant relative biases, particularly for representing high precipitation events (such as R10p, R20p, or P98WetAmount). These findings highlight the necessity of applying some form of calibration to enhance the accuracy of TRMM for impact studies. In the same vein, we include the ERA5 precipitation series to highlight the strong biases associated with this reanalysis product.

In contrast to expectations, scaling, which is a common and straightforward technique, under the assumption that the satellite and radar error may be proportional to the magnitude of the rain rate (Aghakouchak et al., 2009), scaling has been previously used for TRMM correction (see e.g. Islam et al., 2010; Almazroui, 2011). However, it was found to be ineffective in mitigating biases in most specific indices related to intense precipitation events and some others related to mean precipitation such as SDII. Instead of improving the situation, yielding improvement, scaling had an overall deleterious effect,
underscoring the critical importance of considering alternative calibration techniques better suited to TRMM adjustment. As shown in Fig. 1, the scaling step introduces additional bias to the raw TRMM data, specially for SDII, R10p, R20p and P98Wet. The scaling step also changes the sign of the bias in these cases, but consistently increases its absolute value, both in the standard (not conditioned) and the WT-conditioned approaches.

In the analysis of the remaining (as Figure 1 shows, overall the quantile-mapping based) techniques, Figure 1 illustrates that there are no significant variations in their based techniques attain similar performance, although this may depend on the specific vary by index or technique being analyzed. Likewise, the relative bias of the indices between the standard calibration and the conditioned calibration generally exhibits minimal to moderate differences. This finding confirms and extends the results previously reported by Mirones et al. (2023) for scaling and eQM, to include is also similar for both standard and conditioned calibration. This supports Mirones et al. (2023)’s finding that EQM outperforms scaling, with minor differences between unconditioned and WT-conditioned calibration in bias. This also applies to the parametric quantile mapping variants pQM or gpQM for different exceedance thresholds, which are additional methods introduced in this study.

The final column in Figure 1 compares the best-performing conditioned technique in each case with the newly developed adaptive methodology in this study, which combines the optimal calibration technique for each weather type individually. In general, the adaptive methodology surpasses the results achieved by the best-conditioned calibration. The most notable reduction in relative bias is observed in indices that measure high rainfall amounts, such as R10p, R20p, or P98WetAmount. This improvement is significant because conditioned calibration alone did not exhibit substantial enhancements, except for specific cases involving techniques like gpQM. However, only three indices (mean, SDII, and P98Wet) did not show improvement with the adaptive approach and remained nearly unchanged. In summary, the overall results indicate that the adaptive calibration method offers improved adjustment in the upper tail of the distribution, which is where TRMM exhibits the most significant biases. This calibration methodology facilitates enhanced adjustment for extreme precipitation events, with a specific focus on high precipitation indices. Next, in Sec. 3.2, we present a more in-depth analysis of the detailed results obtained from the adaptive calibration approach.
Figure 1. Relative Biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Kolopelu Station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sec. 2.3). For each method plot cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned approach. The last column presents a comparison between the relative bias of the best performing WT-conditioned technique (eQM at the Kolopelu site) vs. the ‘adaptive’ calibration. The circle indicates the best-performing approach with the lowest relative bias. The Y-axis labels show the actual index values from the rain gauge observations beneath the index names.
3.2 Adaptive calibration

To evaluate the performance of the adaptive approach in comparison to the WT-conditioned method, we introduce the RF score as a comprehensive measure that accounts for the various indicators described earlier (Table 2). This global performance allows for an easier ranking of methods. The Figure 2 presents the summarized results, considering both unweighted and weighted RF values (the latter emphasizing the significance of extreme indicators in the evaluation process, as discussed in Section 2.4), are presented in Figure 2.

First of all, we undertake a method intercomparison using the unweighted RF score as a ranking measure (Fig. 2a). In most stations the adaptive calibration outperforms the standard and WT-conditioned techniques, with some exceptions (Port Vila and Nuu‘uli), in which the adaptive approach has a similar performance than the simpler ones. On the other hand, the adaptive method is clearly superior at some other locations, such as Kolopelu, Alofi, or Raoul Island, where the RF scores obtained with... Here, the adaptive calibration are significantly higher than the best scores obtained with standard and WT-conditioned calibration achieved by the other methods. While the score for the best standard technique at these stations exceeds 0.60, the adaptive calibration achieves values between 0.80 and 0.90, representing an improvement of 33-50%. This significant enhancement in calibration, based on the climate indices utilized in the adaptive approach, demonstrates an overall improvement that justifies the application of the adaptive method. Furthermore, it is important to note that in the worst-case scenario, the adaptive approach will nearly match (and never significantly impair) the performance of the calibration. Furthermore, the limited spatial variability across locations observed in the adaptive method (Fig. 2, boxplots) underpins its potential for a robust application across different locations. This characteristic holds importance in hydrological studies where spatial consistency between locations at the basin level is typically desired.

As mentioned earlier, it is also possible to assign arbitrary weights to the indices involved in the RF score, giving more importance to specific precipitation characteristics, such as the representation of extremes. In this study, we selected index weights that prioritize high rainfall-extreme precipitation indices (Table A2). This weighting aims to guide the calibration towards better adjustment in the upper tail of the distribution, thereby achieving improved correction for extreme precipitation events beyond a certain threshold. In this way, the influence of high rainfall indices favors methods like gpQM, which specialize in adjusting the upper tail using a GPD (Generalized Pareto Distribution). The findings are illustrated through the boxplots presented in Figure 2. It is evident showing that the scores of gpQM95 and gpQM75 exhibit higher values in the weighted version (Figure 2b) compared to the unweighted version (Figure 2a). Moreover, the differences in their performance can be visualized in Fig. 3.

The analysis of the RF weighting configuration demonstrates its dual impact: not only does it affect the overall score, but it also influences the selection of techniques for each weather type (Fig. 3). In our weighting scheme, which prioritizes superior performance in extreme precipitation indices, the gpQM approaches emerge sometimes as the favored choice after applying these weights often appear as the best choice, for instance at Aoloau site for WTs 1 to 3, Kolopelu (WTs 1 and 2) or Alofi (WT1,
This outcome establishes the superiority of the gpQM technique over the conventional quantile mapping methods, namely eQM and pQM methods when the representation of extreme indices is prioritized. Consequently, the adaptive calibration score at this station indicates the suitability of the gpQM technique over the conventional quantile mapping methods, namely eQM and pQM methods when the representation of extreme indices is prioritized. For instance, at Aoloau the overall adaptive calibration RF score improves from approximately 0.65 to 0.85, representing a 30% increase, with the best standard calibration method changing from eQM or pQM to gpQM75 in this particular case WT1, WT2 and WT3 (Fig. 3).

Figure 2. (a): Ranking Framework (RF) score results of the adaptive calibration for each WT and site. The red dots indicate the best method for the corresponding WT, while the white stars represent the best method for the standard calibration (the same technique applied over the entire period without conditioning). On the right side, the standard approach score for each method is represented in the box plot (their mean represented by the color of the boxes). (b): Similar to (a), but with the addition of different weights (refer to A2) in the computation of climate indices for the RF score.

At the Port Vila station, we observe another interesting situation. In Figure 2a, the adaptive calibration score is lower compared to the score of gpQM75. However, when applying weighting with a focus on high rainfall...
indices (Figure 2b), the adaptive calibration undergoes enhancements and achieves a competitive score higher than the un-weighted version. It is worth noting that while the inclusion of weights leads to changes and improvements in the adaptive calibration for certain stations, it has no effect on others. For instance, stations like Rarotonga or Nu’uuli exhibit no changes in the composition of the adaptive calibration, regardless of the weighting applied.

The particular case of Rarotonga site emphasizes the fact that model assessment is sensitive to user choices, such as the set of indices and measures used for validation and, as in this case, the weights assigned to each of them. As a result, when more weight is assigned to the performance of extreme precipitation indices (weighted RF evaluation), the adaptive calibration approach performs better than the standard calibration with the best-performing method (PQM, RF∼0.75). On the contrary, the standard unconditioned calibration using the PQM method performs (marginally) better under the unweighted RF scheme. In the case of Nu’uuli station, the adaptive calibration did not improve the performance, although it also attained a similar high RF score (~0.85/0.75 unweighted/weighted RF scores, Fig. 2a/b). Compared to other locations in Figs. C1-C6 (Appendix C) and Fig. 1 (Kolopelu), Nu’uuli has moderate raw TRMM biases that are effectively corrected by both empirical and parametric quantile mapping Fig. C6. gpQM performs similarly in general, but fails in reproducing distributional skewness and RV20_max in the case of the adaptive approach.

Therefore, the results show that adaptive method consistently performs better than the rest, attains an overall better performance in all stations, as highlighted in the boxplots in Figure 2, attaining higher scores. Additionally, the adaptive calibration demonstrates a narrower interquartile range (IQR) compared to the other methods in Figure 2a, indicating lower variability. Only gpQM95 calibration shows a narrower IQR range, but with obtaining significantly lower scores. We attribute this poor result to the limited robustness of the fit of the extreme function due to the high percentile threshold, which greatly reduces the sample size (see Table A1). The other methods individually considered exhibit wider RF variability ranges and lower values as compared to the adaptive approach.

In conclusion, the adaptive calibration method improves upon the results obtained with the WT-conditioned methodology presented in Mirones et al. (2023) or at least, in the worst case, it maintains the calibration performance. The adaptive calibration method showcases competitive performance in effectively calibrating the TRMM data at the target stations, thereby promoting consistency in the results across diverse locations. Furthermore, Quantile mapping can preserve the relative changes in the simulated data, such as trends and patterns (see e.g. Casanueva et al., 2018), while scaling may distort them by applying a constant factor. As a result, scaling shows limitation in representing some of the extreme precipitation indices such as p98Wet and RV20_max in most of the locations, as well as the SDII (see Figs. C1-C6 and Fig. 1 -Kolopelu-). On the other hand eQM and pQM show an overall good performance in most precipitation indices, and eQM is most often the best method for the “standard” calibration (Fig. 2).

The gpQM method has the potential to improve the modeling of local extreme precipitation by better adjusting extreme events above a given percentile (75 and 95 in this study), by fitting a generalized Pareto Distribution on the threshold exceedances as the transfer function for these points (see e.g. Vrac and Naveau, 2007). This may happen, for instance, in Weather Types 1 and 2, which are associated with enhanced tropical cyclone frequency and extreme precipitation events (Mirones et al, (2023), and Fig. A), and it is shown at Kolopelu (Fig. 2a/b for unweighted/weighted RF score) and Aoloau (Fig. 2b), where gpQM75 is the best-performing calibration method, or WT1 at Alofi (with gpQM95). The limitation, however, arises from the sample size
required to perform a robust fit; this is a major challenge in the capability to customize the calibration by applying arbitrary weights to specific indices offers increased flexibility in determining the optimal combination of methods that align with the unique characteristics of each site. This adaptability further enhances the overall calibration process. adaptive approach, since only the observations of the given WT are used, and it is exacerbated for higher percentile thresholds that further limit the number of points for a robust fit. This limitation also exists for the other quantile mapping techniques, although, in this case, the number of observations, even for the less frequent weather type (approximately 300 days for the calibration period in this study, see Sec. 2.4.1), can ensure a robust fit. Nevertheless, scaling requires less data and is easier to implement than quantile mapping. The assumption of scaling of a linear relationship between raw satellite and observed precipitation, even though may not hold true in most occasions, can still be reasonable (Aghakouchak et al., 2009) yielding a good approximation in some occasions (see e.g. the overall RF results obtained in Port Vila in Fig. 2).

![RF Score and RF Score weighted results for different weather types and locations.](image)

Figure 3. Differences between unweighted and weighted RF scores attained for each weather type at each of the target locations. The technique associated to the highest score is also indicated by the key of symbols.

4 Conclusions

We intercompared a range of bias-adjustment techniques for the calibration of daily Tropical Rainfall Measuring Mission (TRMM) precipitation data, building upon a set of rain-gauge stations scattered across the South Pacific region, spanning the

15
The calibration techniques evaluated in this study include empirical quantile mapping (eQM), parametric quantile mapping (pQM), generalized Pareto distribution quantile mapping (gpQM) and scaling, the latter used as a benchmark since it is the most common and simple approach for this task. An adaptive calibration methodology has been developed based on weather type (WT) conditioning, which selects the best-performing calibration technique for each specific WT.

Building upon the methodology proposed by Mirones et al. (2023), we extend it to encompass an expanded set of calibration techniques and adopt a more adaptable approach to suit the distinct characteristics of each weather type (WT). This extension results in a calibrated series that capitalizes on the individual strengths of each technique, tailored to specific situations. The methodology entails the selection of an optimal method for each WT, guided by a comprehensive performance measure (RF score) that encompasses various precipitation indices. The minimal spatial variability observed is according to a user-defined weighted set of precipitation indices for validation.

The adaptive calibration method improves upon the results obtained through the adaptive method enhances its potential for a robust application across different locations. This characteristic holds importance in hydrological studies where spatial consistency between locations at the basin level is typically desired. Moreover, the adaptive approach allows users to define and configure the weights assigned to different indices, affording flexibility in the assessment of each method. This comprehensive approach ensures the utilization of the most suitable techniques for each WT, resulting in an enhanced final calibrated series.

Our findings unequivocally establish the superiority of the adaptive calibration methodology over the best WT conditioned calibration technique in terms of relative bias with the standard WT-conditioned methodology presented in Mirones et al. (2023) or at least, in the worst case, it maintains the calibration performance. Notably, the most substantial improvements are observed in accumulated precipitation indices, specifically R_{10p}, R_{20p}, and $P_{98WetAmount}$ R_{10p}, R_{20p} and $P_{98WetAmount}$. These indices hold great significance within the realm of significance in hydrological modeling and climate impact studies, making the observed enhancements attained improvements in the calibration particularly relevant. The method showcases competitive performance in effectively calibrating the TRMM data at the target stations, thereby promoting consistency in the results across diverse locations. This adaptability further enhances the overall calibration accuracy, by adjusting its bias according to the specific precipitation regimes prevalent in each weather type. Furthermore, the capability to customize the calibration by applying arbitrary weights to specific indices offers increased flexibility in determining the optimal combination of methods that align with the unique characteristics of each site and research objectives.

In conclusion, this new adaptive calibration methodology offers a promising avenue for refining and improving refinement and improves the accuracy of precipitation data from indirect measures such as the TRMM database, thereby enhancing or similar products. This enhances the reliability of subsequent hydrological and climate impact assessments based on these data. In the supplementary material, we provide the data and a reproducible documented notebook to aid in the application of the method.

Code and data availability. An interactive notebook associated with this study is available at the following link: https://github.com/SantanderMetGroup/notebooks/tree/2023_TRMM_adaptiveCal/2023_adaptiveCalibration. This notebook provides a comprehensive illustr-
tration of the entire adaptive calibration process, including available data download from an open repository and the computation of both standard and adaptive calibration RF scores.

Acknowledgements. This paper is part of the R+D+i project CORDyS (PID2020-116595RB-I00) with funding from the Spanish Ministry of Science MCIN/AEI/10.13039/501100011033. O.M. has received research support from grant PID2020-116595RB-I00 funded by MCIN/AEI/10.13039/501100011033. We also thank our colleague Dr. Javier Díez-Sierra for sharing code snippets used to develop some of the figures. We are grateful to our colleagues F.J. Méndez, S. O. van Vloten, A. Pozo and L. Cagigal for fruitful discussions on weather typing applications in the South Pacific region.

Competing interests. The authors declare no competing interests.
References

Appendix A: Weather typing results

Next, we provide a visual summary of the weather typing classification undertaken using ERA5 reanalysis (Sec. 2.2). Here, we include a summary figure of the resulting classification (Fig. A1) in order to include additional relevant information for the analysis presented in this study, such as the occurrence of tropical cyclones (TCs), as relevant features significantly contributing to total annual precipitation and directly related with extreme precipitation events in the region. The TC track record for the study area has been obtained from the International Best Track Archive for Climate Stewardship (IBTrACS - v4.0) database (Knapp et al., 2010)

While the seasonal pattern of the classification is depicted, interannual variability fluctuations also emerge in this visualization. A few years stand-out as particularly cyclonic (e.g., 1981, 1997, 1998) being most of these TC events associated to weather types 1 and 4 (e.g., years 1983, 2003 and 2010) and mostly restricted to the period December-April (Fig. A1b). The exceptional year 1997 extends the TC activity to May-July and starts earlier, in October, while the second strongest (1981) does not extend the season but exhibits an increased TC activity in the period December-March (Fig. A1a). Notably, both years are characterized by experiencing the two strongest El-Niño events of recent decades, together with 2015-2016, that also exhibits a remarkable TC frequency (Fig. A1b). The interested reader is referred to the weather typing methodology and main results presented in more detail in Mirones et al. (2023).

Appendix B: Bias correction methods formulas and complementary information

Here we provide a detailed description of the correction methods used in the study. These methods aim to improve the accuracy of the TRMM rainfall data by incorporating information from PACRAIN rain gauge measurements, used as predictand. The calibration techniques are next described:

Equation B1 presents the scaling method, where \(\hat{p}_{trmm} \) represents the corrected TRMM rainfall, \(p_{rg} \) and \(p_{trmm} \) denote the PACRAIN rain gauge and raw TRMM measurements, respectively, and \(\bar{P}_{rg} \) and \(\bar{P}_{trmm} \) are the means of the \(p_{rg} \) and \(p_{trmm} \) series.

\[
\hat{p}_{trmm} = p_{trmm} \frac{\bar{P}_{rg}}{\bar{P}_{trmm}} \tag{B1}
\]

Equation B2 describes the empirical quantile mapping (eQM) method. Here, \(\hat{X}_{t,i} \) represents the corrected value for a specific day and grid, \(\hat{F}_{doy,i}^{trmm} \) and \(\hat{F}_{doy,i}^{rg} \) are the empirical cumulative distribution functions (eCDFs) for TRMM and PACRAIN,

3 All data are open access through a dedicated URL (https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-v4-access).

Figure A1. (a): Daily time series classification of weather types for the extended 41-year period 1979-2020. TCs occurrences are represented by the white dots. (b): Absolute number of days affected by TCs by year and WT.

respectively, corresponding to the given day of the year \((doy)\), and \(X_{t,i}\) is the uncorrected value.

\[
\hat{X}_{t,i} = \hat{F}_{doy,i}^{-1}(\hat{F}_{doy,i}(X_{t,i})), \tag{B2}
\]

Equation B3 presents the parametric quantile mapping (pQM) method. \(F_{doy,i}^{\text{trmm}}\) and \(F_{doy,i}^{g}\) represent the assumed theoretical distributions for TRMM and PACRAIN, respectively, and \(X_{t,i}\) is the uncorrected value.

\[
\hat{X}_{t,i} = \hat{F}_{doy,i}^{-1}(F_{doy,i}^{\text{trmm}}(X_{t,i})), \tag{B3}
\]

Lastly, Equation B4 outlines the generalized parametric quantile mapping (gpQM) method. It uses a combination of gamma and generalized Pareto distribution (GPD) to correct the TRMM rainfall values based on their percentiles. \(F_{doy,i}^{\text{trmm}, \gamma}\) and \(F_{doy,i}^{g, \gamma}\) are the gamma cumulative distributions for TRMM and PACRAIN, while \(F_{doy,i}^{\text{trmm}, \text{GPD}}\) and \(F_{doy,i}^{g, \text{GPD}}\) represent the
GPDs for TRMM and PACRAIN, respectively. The threshold of the 95th percentile is used to differentiate between the two distributions.

\[
\hat{X}_{t,i} = \begin{cases}
F_{doy,i}^{rg,gamma}^{-1}(F_{doy,i}^{trmm,\gamma}(X_{t,i})) & \text{if } X_{t,i} < 95\text{th percentile} \\
F_{doy,i}^{rg,GPD}^{-1}(F_{doy,i}^{trmm,GPD}(X_{t,i})) & \text{if } X_{t,i} \geq 95\text{th percentile}
\end{cases}
\] (B4)

Table A1. Overview of observations (days) for each WT across multiple stations. Each row corresponds to a specific station, while the columns represent different WTs. The table displays the total number of observations recorded for each WT, along with the corresponding 75th and 95th percentiles.

<table>
<thead>
<tr>
<th>Station</th>
<th>WT1</th>
<th>WT2</th>
<th>WT3</th>
<th>WT4</th>
<th>WT5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N)</td>
<td>(P75)</td>
<td>(P95)</td>
<td>(N)</td>
<td>(P75)</td>
</tr>
<tr>
<td>Kolopelu</td>
<td>966</td>
<td>242</td>
<td>48</td>
<td>775</td>
<td>194</td>
</tr>
<tr>
<td>Alofi</td>
<td>1140</td>
<td>285</td>
<td>57</td>
<td>932</td>
<td>233</td>
</tr>
<tr>
<td>Raratonga</td>
<td>1105</td>
<td>276</td>
<td>55</td>
<td>916</td>
<td>229</td>
</tr>
<tr>
<td>Raoul Island</td>
<td>1327</td>
<td>332</td>
<td>66</td>
<td>1058</td>
<td>264</td>
</tr>
<tr>
<td>Port Vila</td>
<td>1084</td>
<td>271</td>
<td>54</td>
<td>884</td>
<td>221</td>
</tr>
<tr>
<td>Aoloau</td>
<td>1091</td>
<td>273</td>
<td>55</td>
<td>874</td>
<td>218</td>
</tr>
<tr>
<td>Nu’uuli</td>
<td>2076</td>
<td>519</td>
<td>104</td>
<td>1721</td>
<td>430</td>
</tr>
</tbody>
</table>

Table A2. Index weights \(w_i\) (see Eq. 3) for the weighted RF score calculation in the adaptive calibration technique selection.

<table>
<thead>
<tr>
<th>Code</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>0.05</td>
</tr>
<tr>
<td>Mean</td>
<td>0.05</td>
</tr>
<tr>
<td>SDII</td>
<td>0.05</td>
</tr>
<tr>
<td>R10</td>
<td>0.05</td>
</tr>
<tr>
<td>R10p</td>
<td>0.05</td>
</tr>
<tr>
<td>R20</td>
<td>0.15</td>
</tr>
<tr>
<td>R20p</td>
<td>0.15</td>
</tr>
<tr>
<td>P98Wet</td>
<td>0.15</td>
</tr>
<tr>
<td>P98WetAmount</td>
<td>0.2</td>
</tr>
<tr>
<td>RV20_max</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Figure C1. Relative Biases of the climate indices used for validation (Table 2 of raw TRMM data and TRMM-calibrated data, at the Alofi Station grid box (Table 1). As an additional reference, we include in the second column the biases of the ERA5 reanalysis raw precipitation data (Hersbach et al., 2020). The calibration techniques are scaling, eQM, pQM, GPQM-95, and GPQM-75 (Sec. 2.3). For each method plot cell, the upper triangle displays the relative bias of the standard calibration, while the lower triangle represents the WT-conditioned approach. The last column presents shows a comparison between the relative bias of the best WT-conditioned technique vs. the adaptive calibration. The circle indicates the best-performing approach with the lowest relative bias. The Y-axis labels show the actual index values from the rain gauge observations beneath the index names.
Figure C2. Same as Fig. C1, but for the Rarotonga rain gauge location.
Figure C3. Same as Fig. C1, but for the Raoul Island rain gauge location.
Figure C4. Same as Fig. C1, but for the Port Vila rain gauge location.
Figure C5. Same as Fig. C1, but for the Aoloau rain gauge location.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>8.78</td>
</tr>
<tr>
<td>Skewness</td>
<td>4.38</td>
</tr>
<tr>
<td>SDII</td>
<td>15.22</td>
</tr>
<tr>
<td>R10</td>
<td>0.23</td>
</tr>
<tr>
<td>R10p</td>
<td>59093.5</td>
</tr>
<tr>
<td>R20</td>
<td>0.13</td>
</tr>
<tr>
<td>R20p</td>
<td>47482.1</td>
</tr>
<tr>
<td>P98Wet</td>
<td>83.81</td>
</tr>
<tr>
<td>P98WetAmount</td>
<td>10471.3</td>
</tr>
<tr>
<td>RV20_max</td>
<td>245.27</td>
</tr>
</tbody>
</table>

Figure C6. Same as Fig. C1, but for the Nuu’uli rain gauge location.