

1 **Supporting information for**

2

3 Wang et al.,

4

5 *Correspondence to:* Haichao Wang (wanghch27@mail.sysu.edu.cn); Yee Jun Tham
6 (thamyj@mail.sysu.edu.cn)

7

8 **Contents**

9 **Figure S1.** The wind rose plot for NO concentrations (ppbv) and wind direction.

10 **Figure S2.** Fits O₃ against NO₂ during the nocturnal time.

11 **Figure S3.** N₂O₅ uptake coefficients derived from the pseudo steady state method.

12 **Figure S4.** Nighttime NO mixing ratio and its contribution to NO₃ loss.

13

14

15

16

17 Figure S1. The wind rose plot for NO concentrations (ppbv) and wind direction.

18

19

20 Figure S2. Fits O3 against NO2 during the nocturnal time with a time resolution of 1 hour
21 for airmass from inland China (IAM) and coastal areas (CAM).

22

23

24

25 Figure S3. N_2O_5 uptake coefficients derived from scatter plots of $K_{\text{eq}}[\text{NO}_2]\tau(\text{N}_2\text{O}_5)^{-1}$
26 versus $0.25c\text{Sa}K_{\text{eq}}[\text{NO}_2]$, K_{eq} : the equilibrium constant between N_2O_5 , NO_2 , and NO_3 ; c :
27 the mean molecular speed of N_2O_5 ; Sa : the aerosol surface area density; γ : the N_2O_5 uptake
28 coefficient; k_{NO_3} : the indirect NO_3 loss frequency.

29

30

31

32 Figure S4. (a) Nighttime NO mixing ratio with the gray dashed line denoting the detection
 33 limit of the instrument (0.4 ppbv). (b) The fraction ratio of NO to NO_3 loss, with the black
 34 dashed line representing a maximum of 100%.