Supporting information for

Wang et al.,

Correspondence to: Haichao Wang (wanghch27@mail.sysu.edu.cn); Yee Jun Tham (thamyj@mail.sysu.edu.cn)

Contents

Figure S1. The wind rose plot for NO concentrations (ppbv) and wind direction.

Figure S2. Fits O₃ against NO₂ during the nocturnal time.

Figure S3. N₂O₅ uptake coefficients derived from the pseudo steady state method.

Figure S4. Nighttime NO mixing ratio and its contribution to NO₃ loss.
Figure S1. The wind rose plot for NO concentrations (ppbv) and wind direction.

Figure S2. Fits O₃ against NO₂ during the nocturnal time with a time resolution of 1 hour for airmass from inland China (IAM) and coastal areas (CAM).
Figure S3. N₂O₅ uptake coefficients derived from scatter plots of $K_{eq}[\text{NO}_2] \tau(\text{N}_2\text{O}_5)^{-1}$ versus $0.25\text{cSa}K_{eq}[\text{NO}_2]$, K_{eq}: the equilibrium constant between N₂O₅, NO₂, and NO₃; c: the mean molecular speed of N₂O₅; Sa: the aerosol surface area density; γ: the N₂O₅ uptake coefficient; k_{NO_3}: the indirect NO₃ loss frequency.
Figure S4. (a) Nighttime NO mixing ratio with the gray dashed line denoting the detection limit of the instrument (0.4 ppbv). (b) The fraction ratio of NO to NO$_3$ loss, with the black dashed line representing a maximum of 100%.