- 1 Measurement report: Atmospheric nitrate radical chemistry in the
- 2 South China Sea influenced by the urban outflow of the Pearl River
- 3 Delta
- 4 Jie Wang^{1, 2}, Haichao Wang^{1, 2}*, Yee Jun Tham^{3, 4}*, Lili Ming⁵, Zelong Zheng¹, Guizhen
- 5 Fang³, Cuizhi Sun^{1, 2}, Zhenhao Ling^{1, 2}, Jun Zhao^{1, 2}, Shaojia Fan^{1, 2}
- 6 ¹ School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science
- 7 and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
- 8 ² Guangdong Provincial Observation and Research Station for Climate Environment and
- 9 Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-
- 10 Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai, 519082, China
- ³ School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
- 12 ⁴ Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai,
- 13 519082, China.
- ⁵ Technical Center of Gongbei Customs District of China, Zhuhai, 519000, China.

16 Correspondence to: Haichao Wang (wanghch27@mail.sysu.edu.cn); Yee Jun Tham

17 (thamyj@mail.sysu.edu.cn)

18

15

19 Abstract. Nitrate radical (NO₃) is a critical nocturnal atmospheric oxidant in the

20 troposphere, which widely affects the fate of air pollutants and regulates air quality. Many

21 previous works have reported the chemistry of NO₃ in inland regions of China, while fewer

22 studies target marine regions. Here, we present a field measurement of the NO₃ reservoir,

dinitrogen pentoxide (N₂O₅), and related species at a typical marine site (Da Wan Shan

24 Island) located in the South China Sea in the winter of 2021. Two patterns of air masses

25 were captured during the campaign, including the dominant airmass from inland China

26 (IAM) with a percentage of ~84%, and the airmass from eastern coastal areas (CAM) with

 $\sim\!16\%.$ During the IAM period, the NO_3 production rate reached 1.6 ± 0.9 ppbv $h^{\text{--}1}$ due to

28 the transportation of the polluted urban plume with high NO_x and O_3 . While the average

29 nocturnal N_2O_5 and the calculated NO_3 mixing ratio were 119.5 \pm 128.6 pptv and 9.9 \pm

30 12.5 pptv, respectively, and the steady state lifetime of NO_3 was 0.5 ± 0.7 min on average,

31 indicating intensive nighttime chemistry and rapid NO₃ loss at this site. By examining the

32 reaction of NO_3 with volatile organic compounds (VOCs) and N_2O_5 heterogeneous

33 hydrolysis, we revealed that these two reaction pathways were not responsible for the NO₃

loss (<20%), since the NO₃ reactivity (k(NO₃)) towards VOCs was small (5.2×10^{-3} s⁻¹)

and the aerosol loading was low. Instead, NO was proposed to significantly contribute to 35 nocturnal NO₃ loss at this site, despite the nocturnal NO concentration always at sub-ppby 36 37 level and near the instrument detection limit. It might be from the local soil emission or others. We infer that the nocturnal chemical NO₃ reactions would be largely enhanced once 38 39 without NO emission in the open ocean after the air mass passes through this site, thus 40 highlighting the strong influences of the urban outflow to the downwind marine areas in 41 terms of nighttime chemistry. During the CAM period, nocturnal ozone was higher, while NO_x was much lower. The NO₃ production was still very fast, with a rate of 1.2 ppby h⁻¹. 42 With the absence of N₂O₅ measurement in this period, the NO₃ reactivity towards VOCs 43 44 and N₂O₅ uptake were calculated to assess NO₃ loss processes. We showed that the average k(NO₃) from VOCs (56.5%, $2.6 \pm 0.9 \times 10^{-3}$ s⁻¹) was higher than that from N₂O₅ uptake 45 $(43.5\%, 2.0 \pm 1.5 \times 10^{-3} \text{ s}^{-1})$ during the CAM period, indicating a longer NO₃/N₂O₅ lifetime 46 than that during IAM period. This study improves the understanding of the nocturnal NO₃ 47 48 budget and environmental impacts with the interaction of anthropogenic and natural 49 activities in marine regions.

50

51

1. Introduction

- Reactive nitrogen compounds, especially the nitrate radical (NO₃) and dinitrogen pentoxide
- 53 (N₂O₅) play an essential role in nocturnal atmospheric chemistry (Wayne et al., 1991;
- Brown and Stutz, 2012). NO₃ is mainly generated via the oxidation of NO₂ by O₃ (R1), and
- 55 then NO_3 further reacts with NO_2 to produce N_2O_5 (R2) with a thermal equilibrium. The
- temperature-dependent equilibrium constant, K_{eq} , regulates the equilibrium favoring NO₃
- 57 and NO₂ at higher temperatures (Osthoff et al., 2007; Chen et al., 2022). During daytime,
- 58 the NO_3 mixing ratio is generally low as its lifetime is very short (< 5 s) due to the fast
- photolysis (R3) and rapid reaction with NO (R4) (a rate constant of 2.6×10^{-11} cm³
- 60 molecule⁻¹ s⁻¹ at 298 K, Atkinson et al., 2004). While at night, NO₃ accumulates and can
- 61 reach tens to hundreds of parts per trillion by volume (pptv), making it the major nocturnal
- 62 oxidizing agent (Wang et al., 2015).

63
$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (R1)

$$64 \qquad NO_2 + NO_3 \rightleftharpoons N_2O_5 \qquad (R2)$$

65
$$NO_3 + hv \rightarrow NO_2 + NO$$
 (R3)

$$66 \qquad NO + NO_3 \rightarrow 2NO_2 \qquad (R4)$$

During nighttime, NO₃ is the most important oxidant for alkenes (Mogensen et al., 2015; Edwards et al., 2017), particularly in rural, remote, or forested environments, where it predominantly reacts with unsaturated biogenic volatile organic compounds (VOCs), especially isoprene and monoterpene (Ng et al., 2017; Liebmann et al., 2018b; Liebmann et al., 2018a), to form alkyl nitrates (RONO₂), that ultimately lead to secondary organic aerosols (SOAs) (Brown and Stutz, 2012). The observations and model simulations showed that the measured particulate organic nitrates were largely attributed to the nocturnal NO₃ oxidation across Europe (Kiendler-Scharr et al., 2016). The NO₃ oxidation was also reported to play an important role in aerosol formation in the Southeastern United States with high isoprene and monoterpene emissions (Xu et al., 2015). These studies highlighted the critical role of the reaction of NO₃ with VOCs in NO₃ budget and organic aerosol pollution. In addition, NO₃ also reacts with dimethyl sulfide (DMS) over the ocean, affecting the marine sulfur cycle and thus cloud formation and global climate (Aldener et al., 2006; Brown and Stutz, 2012; Ian Barnes et al., 2006; Rosati et al., 2022). While in high aerosol loading regimes, the N₂O₅ heterogeneous uptake becomes a significant indirect NO₃ loss pathway. The hydrolysis reaction produces nitrate (NO₃⁻) and nitryl chloride (ClNO₂) on chloride-containing aerosol surfaces (Osthoff et al., 2008; Thornton et al., 2010), in which ClNO₂ activates the Cl radical and further enhances the photochemistry and ozone pollution in the following day (Riedel et al., 2012; Riedel et al., 2014; Behnke et al., 1993).

67

68 69

70

71

72

73

74

75

76

77

78

79

80

8182

83 84

85

86

87

88

89

90

91

92

93 94

95

96

97

98

99

100

101

102

103

104

Different NO₃ loss pathways produce different air pollutants, thus characterization of NO₃ budget is essential to clarify the NO₃ chemistry in air pollution under various environments. Observations of N₂O₅ and NO₃ in different regions and evaluation of their loss processes have been reported in numerous studies (Crowley et al., 2011; Geyer et al., 2001; Brown et al., 2011; Dewald et al., 2022; Niu et al., 2022; Brown et al., 2016; Wang et al., 2020a; Tham et al., 2016; Aldener et al., 2006; Lin et al., 2022). In general, the NO₃ loss process shows significant regional differences. In urban areas featuring intensive anthropogenic NO_x emissions and moderate (or high) aerosol loading, N₂O₅ uptake is comparable or even dominates the NO₃ loss (Wang et al., 2013). While in rural and forested areas with abundant biogenic VOC (BVOC) emissions, the NO₃ loss processes were usually dominated by BVOCs (Dewald et al., 2022; Geyer et al., 2001; Brown et al., 2011). As for the coastal areas, which were jointly affected by the polluted air mass from the inland and the relatively clean air mass from the ocean, the dominant NO₃ loss process varies greatly depending on the air mass origin (Aldener et al., 2006; Niu et al., 2022; Brown et al., 2016; Crowley et al., 2011). For instance, Crowley et al. (2011) found in the Atlantic coast of Southern Spain (forested area) that when the air mass mainly originated from the Atlantic, NO₃ was mainly consumed by BVOCs (mainly monoterpenes) emitted from nearby forests, while when the air mass came from the continent, NO₃ loss was mainly due to reactions with anthropogenic

105 VOCs (AVOCs).

- 106 China has been recently proven to be a hot spot of nocturnal chemistry with a high NO₃ production rate (Wang et al., 2023). Many studies have reported the mechanisms, budget, 107 or impacts of NO₃-N₂O₅ chemistry in different regions, while most of them were conducted 108 109 in urban regions (Wang et al., 2013; Yan et al., 2021; Wang et al., 2020a; Wang et al., 2017c; Wang et al., 2017d). For example, Wang et al. (2017b) showed a significant contribution 110 of N₂O₅ uptake to nitrate pollution in summer and winter, and they also highlighted the fast 111 112 organic nitrate production rate observed in Beijing rural region in summer (Wang et al., 113 2018b). Only several studies focused on nighttime oxidation in coastal cities like Shanghai, Shenzhen, and Hong Kong (Zhu et al., 2022; Niu et al., 2022; Yan et al., 2019), which 114 115 showed different patterns of NO₃ chemistry compared with urban regions. Even fewer field studies were conducted on the island which is far away from the coastal cities where the 116 117 interactions of the oceanic atmosphere and urban plumes can significantly affect the NO₃ 118 budget and impacts. Given the diversity of air masses in inland and coastal areas, studies are needed to gain a comprehensive understanding of NO₃ losses in different atmospheric 119 120 environments, particularly in coastal and marine areas.
 - Therefore, we conducted an intensive field observation on Da Wan Shan Island (DWS) in the winter of 2021, which is a typical island site in the north of the South China Sea, and downwind of the city clusters in the Pearl River Delta, China during the winter monsoon periods. The island features a subtropical oceanic monsoon climate, and the north and northeast synoptic winds from inland PRD and eastern China coast are generally predominant in winter (Liu et al., 2019; Wang et al., 2018a). This allows us to further investigate the interactions between anthropogenic emissions and marine emissions from the perspective of nighttime chemistry. In this study, the measurements of N₂O₅ and the related species during the DWS winter campaign are reported. We have identified two types of air masses from both mainland China and coastal areas. Finally, the NO₃ budget and loss processes in different air masses are characterized.

2. Methods

121

122

123

124

125

126127

128

129

130131

132

133

2.1 Site description

- The field campaign was conducted at Da Wan Shan Island (21°55′57″ N, 113°43′15″ E)
- from Nov. 9th to Dec. 16th, 2021. Fig. 1 shows the location of the study site, which is
- approximately 60 km southwest of Hong Kong; 40 km southeast of Zhuhai; and about 100
- km and 80 km away from the megacities Guangzhou and Shenzhen, respectively. This
- island is dominated by mountainous terrain with an area of 8.1 km² and has a small

population of about 3,000. Anthropogenic emissions are sparse and no industrial pollution sources were identified, though numerous ships engaging in local fishing activities were observed, potentially affecting the local atmosphere. During the measurement, local airflow was consistently from either the northwest or southeast (Fig. 1a) due to the winter monsoon, with wind speeds most frequently ranging from 1.8 to 7.9 m s⁻¹ (10th - 90th percentiles) and an average of 4.5 ± 2.6 m s⁻¹. This wind direction is indicative of the mixing of air masses from both continental and coastal areas. The HYbrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) was adopted to investigate the historical trajectory. The HYSPLIT model was run for 48 hours backward in time at local times of 20:00, 24:00, and 04:00, and at a height of 70 m above sea level. It confirmed that the airmass during nighttime mostly came from inland China (fresh urban emissions, IAM, 84%) and the coastal areas (aged urban emissions, CAM, 16%). IAM featured the outflow from inland China, such as Guangzhou and Changsha, while CAM featured the outflow of coastal cities like Hong Kong and Shenzhen. No air masses free of pollution from the South China Sea were observed during the measurement period. All measurement instruments were placed in the DWS Atmospheric-Marine Research Station, located on the rooftop with inlets approximately 10 m above ground level and about 72 m above sea level. All times were given in CNST (Chinese National Standard Time = UTC + 8 h), with sunrise around 06:40 CNST and sunset at 17:40 CNST.

139

140141

142

143

144145

146147

148

149150

151

152153

154

155

156157

158

159

160



Figure 1. A map of the field measurement site of Wanshan Island (red star) and the surrounding environment (extracted from BingSatelliteMap). Two coastal sites Hok Tsui

(Yan et al., 2019) and Yangmeikeng (Niu et al., 2022), and an urban site Heshan (Wang et al., 2022; Yun et al., 2018b) are denoted as blue circle and diamond, respectively. The blue triangle denoted Mt. Tai Mo Shan (957 m), a mountainous site that studied the nighttime chemistry in the nocturnal residual layer (Brown et al., 2016). The inset plot (a) provides the wind rose for the sampling site during the campaign. Panel (b) shows the clustering result of the 48-hrs backward trajectory calculations at nighttime using the HYSPLIT model throughout the campaign.

2.2 Instrument setup

161

162163

164

165

166167

168

169

170171

172

173174

175176

177

178

179

180

181

182183

184185

186

187

188

189

190

191

192

Various parameters were measured in this study, including N₂O₅, NO, NO₂, O₃, VOCs, particle number size distribution (PNSD), and meteorological parameters with different instruments. The detail information about these instruments is listed in Table 1. The N₂O₅ measurements were performed using a cavity-enhanced absorption spectrometer (CEAS) which has been deployed in several field campaigns (Wang et al., 2017a; Wang et al., 2017b; Wang et al., 2018b; Wang et al., 2020b). In brief, ambient N₂O₅ was thermally decomposed to NO₃ in a perfluoro alkoxy alkane (PFA) tube (length: 35 cm, I.D.: 4.35 mm) heated to 130 °C, and NO₃ was detected within a 110 °C PFA resonator cavity. NO was injected to destroy NO₃ from N₂O₅ thermal decomposition every 5 min cycle, and the result was used as the reference spectrum to avoid the influence of ambient water vapor. A pair of highreflectivity (HR) mirrors (Layertec GmbH, Mellingen, Germany) with a diameter of 25.0 mm (C0.00/-0.10 mm) was used to enhance the effective optical pathlength. Mirror reflectivity $(R(\lambda))$ was calibrated with high purity He and N_2 in the current experimental setup during the field measurements, $R(\lambda)$ was calibrated to be 0.99997, and the effective pathlength of the optical resonator was 13.96 km. A Teflon polytetrafluoroethylene (PTFE) filter was used to remove ambient aerosol particles, and the inlet flow rate was 1.0 L·min⁻¹. The loss of N₂O₅ in the sampling line and filter was considered in the data correction according to previous work (Wang et al., 2017a). Here the CEAS measurement encompasses the combined concentration of ambient $[N_2O_5 + NO_3]$ and effectively represents N_2O_5 under high NOx (or low temperature) conditions when the NO₃-to-N₂O₅ ratio is likely to be low. Accounting for the instrument's transmission efficiency and the thermal transformation between NO₃ and N₂O₅, the contribution of NO₃ is sufficiently negligible in comparison to N₂O₅. Nevertheless, we have taken it into account during the N₂O₅ data correction. The limit of detection (LOD) was 2.7 pptv (1 σ), and the measurement uncertainty was \pm 19%.

193 **Table 1.** The information of observation instruments used during the DWS campaign.

Species	Techniques	Detection limit	Accuracy	Time resolution
N ₂ O ₅	CEAS	2.7 pptv (1σ)	±19%	10 s

NO	Chemiluminescence	0.4 ppbv	±5%	1 min
NO_2	Chemiluminescence	0.4 ppbv	±5%	1 min
O_3	UV photometry	0.4 ppbv	±5%	1 min
VOCs	PTR-TOF-MS	0.01 ppbv	$\pm 10\%$	10 s
PNSD	SMPS	5–300 nm	$\pm 10\%$	5 min

195

196

197

198

199200

201

202

203204

205

206

207

208

209210

211

212

213214

215

216

217218

219

220

221

222

223

224

225

NO_x and O₃ were measured by commercial instruments (model T200U and model T400U, Teledyne API Inc., respectively) calibrated with zero air before the measurement. The nitrogen oxide analyzer uses the chemiluminescence detection method to measure the original NO and converted NO₂, and the LOD was 0.4 ppbv for each species. Aerosol surface area density (Sa, µm² cm⁻³) was calculated based on the particle numbers and geometric diameter, which was calculated through the results measured by a laboratoryassembled scanning-mobility particle sizer (SMPS) according to Mcmurry et al. (2000). This SMPS system consists of two differential mobility analyzers (DMA, "nano-DMA" mode 3081A, and "regular-DMA" mode 3085A, TSI Inc.) in parallel, and a condensed particle counter (mode 3787, TSI Inc.) as the detector. The combination of nano DMA and conventional mode 3085A DMA enables the SMPS to have better detection performance for particles below 50 nm. In this measurement, SMPS measured the particle size distribution in 5-300 nm with a time resolution of 5 minutes, and Sa can be regarded as the lower limit value. A growth factor $f(RH) = 1 + 8.8 \times (RH/100)^{9.7}$ (Liu et al., 2013) was used here to correct dry state S_a to wet state S_a. VOCs were measured by proton transfer reaction time of flight mass spectrometry (PTR-TOF-MS, Ionicon Analytik GmbH, Innsbruck, Austria) with a time resolution of 10 s. At the end of this campaign, background measurements and instrument calibration were conducted with high-purity nitrogen and multi-component VOC gas standards, respectively. The instrument calibration results yielded strong linear relationships ($R^2 = 0.98$) between the proton transfer reaction rate constants and the sensitivities of ten calibrants, including acetaldehyde, acetone, dimethyl sulfide, isoprene, methyl ethyl ketone, benzene, toluene, styrene, o-xylene, and trimethylbenzene. The sensitivities of the uncalibrated species were determined through the rate constants of the proton transfer reactions and their correlation coefficients with sensitivity. Meanwhile, the VOCs were also sampled by canister and analyzed by a gas chromatograph equipped with a mass spectrometer or flame ionization detector (GC-MS) for some ozone polluted days. For the absence of nocturnal data from

canister samples, the following analysis was based on the PTR-TOF-MS measurement

except the weight of α -pinene and β -pinene detected by GC-MS. Since monoterpene

species cannot be distinguished by PRT-TOF-MS, the reaction rate constant of the sum

monoterpene reaction with NO₃ was weighted by the campaign-averaged weight of α -pinene and β -pinene detected by GC-MS. Meteorological parameters (i.e., temperature (T),

- relative humidity (RH), wind speed, and wind direction) were routinely monitored with a
- time resolution of 5 min.

2.3 The calculation of NO₃ budget and lifetime

- With the observation of N₂O₅, NO₃ can be calculated according to their temperature-
- 230 dependent equilibrium relationship (Eq. 1) (Brown and Stutz, 2012). Lifetimes are
- commonly expressed as the ratio of their concentrations to the NO₃ production rate as
- determined by Eq. 2 and Eq. 3, assuming the production and loss are in dynamic balance
- at night (Brown et al., 2003; Brown and Stutz, 2012). The production rate of nitrate radical,
- P(NO₃), is commonly expressed by Eq. 4, where $k_{NO_2+O_3}$ represents the temperature-
- dependent reaction rate constant of NO₂ and O₃ (Atkinson et al., 2004). In general, the
- 236 nocturnal NO₃ losses typically include three main pathways (Eq. 5): (1) the reaction with
- NO, (2) the reactions with VOCs, and (3) N₂O₅ uptake.

238
$$[NO_3] = [N_2O_5]/Keq(T)[NO_2]$$

239 Keq =
$$5.50 \times 10^{-27} \times \exp(10724/T)$$
 (Eq. 1)

240
$$\tau_{N_2O_5} = \frac{[N_2O_5]}{P(NO_3)} = \frac{[N_2O_5]}{k_{NO_2+O_2}[NO_2][O_3]}$$
 (Eq. 2)

241
$$\tau_{NO_3} = \frac{[NO_3]}{P(NO_3)} = \frac{[NO_3]}{k_{NO_2 + O_3}[NO_2][O_3]}$$
 (Eq. 3)

242
$$P(NO_3) = k_{NO_2+O_3}[O_3][NO_2]$$
 (Eq. 4)

243
$$L(NO_3) = \sum k_i [VOC_i][NO_3] + k_{NO+NO_3}[NO][NO_3] + k_{het}[N_2O_5]$$
 (Eq. 5)

- 244 The NO₃ reactivity towards VOCs, k(NO₃), is the first-order loss rate coefficient calculated
- from the products of the bimolecular rate coefficients k_i and the VOC concentrations as
- shown in Eq. 6.

247
$$k(NO_3) = \sum k_i[VOC_i]$$
 (Eq. 6)

- The k_{het} is the first-order loss rate coefficient of N_2O_5 uptake on the aerosol surface. It
- depends on the uptake coefficient $\gamma(N_2O_5)$, the aerosol surface area density Sa (μm^2 cm⁻³),
- and the mean molecular speed c (Eq. 7). The $\gamma(N_2O_5)$ is influenced by chemical
- composition, physical properties of aerosol, as well as ambient conditions including related

252 humidity and temperature (Yu et al., 2020; Wagner et al., 2013; Wang et al., 2018b; Bertram 253 and Thornton, 2009; Tang et al., 2014; Kane et al., 2001). There are several kinds of 254 methods proposed to quantify or estimate $\gamma(N_2O_5)$ by using observed parameters. Given 255 that some essential parameters were not directly measured during this campaign, only two 256 approaches were employed to estimate the N₂O₅ uptake coefficient. The first method is the 257 pseudo steady state method by assuming that N₂O₅ and NO₃ have achieved a steady state (Brown et al., 2009). $\gamma(N_2O_5)$ and k_{NO_3} can be determined from the slope and intercept of 258 linear regression of K_{eq} [NO₂] τ (N₂O₅) ⁻¹ versus 0.25cSa K_{eq} [NO₂] respectively as shown 259 260 in Eq. 8. The second is the parameterization method. As the aerosol compositions used to 261 estimate the N₂O₅ uptake coefficients were not measured, only a simplified parameterization is available that based on relative humidity (RH) and temperature (Eq. 9) 262 263 (Hallquist et al., 2003; Kane et al., 2001; Evans and Jacob, 2005). Although simple, it had an overall reasonable performance in China (Wang et al., 2022; Tham et al., 2018; Wang 264 265 et al., 2020a).

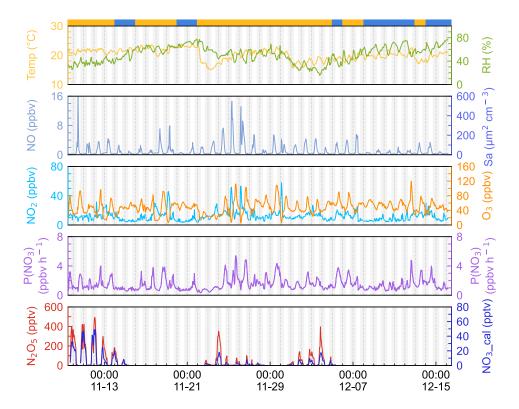
266
$$k_{het} = \frac{1}{4} cS_a \gamma (N_2 O_5)$$
 (Eq. 7)

267
$$K_{eq}[NO_2]\tau(N_2O_5)^{-1} = \frac{1}{4}cS_a\gamma(N_2O_5)K_{eq}[NO_2] + k_{NO_3}$$
 (Eq. 8)

$$268 \quad \gamma(N_2O_5) = \alpha \times 10^{\beta}$$

269
$$\alpha = 2.79 \times 10^{-4} + 1.3 \times 10^{-4} \times RH - 3.43 \times 10^{-6} \times RH^2 + 7.52 \times 10^{-8} \times RH^3$$

270
$$\beta = 4 \times 10^{-2} \times (T - 294) \ (T > 282K)$$


271
$$\beta = -0.48 \text{ (T < 282K)}$$
 (Eq. 9)

272 3. Results and discussion

273

3.1 Measurement overview

The time series of N₂O₅, related trace gases, and selected meteorological parameters for the study period are depicted in Fig. 2. The air masses are categorized into IAM and CAM according to the backward trajectories at 20:00, 00:00, and 04:00 each day as illustrated in Fig. 1. The detailed information of two kinds of air masses is listed in Table 2. Data gaps for N₂O₅ were caused by technical problems, mirror reflectivity calibration, or instrumental maintenance, which usually took place in the daytime. In this campaign, meteorological

Figure 2. Time series of N_2O_5 , NO_3 , $P(NO_3)$, NO_5 , NO_5 , NO_5 , NO_5 , NO_6 , NO_7 , NO_8 , NO_9

Ozone exhibited the characteristic of afternoon photochemical peaks especially when the airmass comes from the inland. The average and maximum concentrations of ozone were 48.2 ± 18.2 ppbv and 120.1 ppbv, respectively. Once the maximum hourly average O_3 exceeded the Chinese national air quality standard ($200 \, \mu g \, m^{-3}$, equivalent to 93 ppbv), we marked this day as an O_3 pollution day. There are $6 \, O_3$ polluted days out of 37 days during the campaign and all occurred during IAM periods. Meanwhile, the mixing ratio of NO, NO_2 , and Sa usually increased during these days, indicating that this site was strongly affected by regional transport from the PRD city clusters. Previous observations by Wang et al. (2018a) also found high O_3 levels in autumn on the same island due to the weak NO titration and high O_3 production rate.

Nitrogen oxides (NO_x = NO + NO₂) were at a moderate level with an average value of 13.1 \pm 8.2 ppbv, which is much lower than the values in PRD regions (usually > 20 ppbv, (Wang et al., 2022; Yang et al., 2022; Yun et al., 2018b) and higher than those on the remote islands

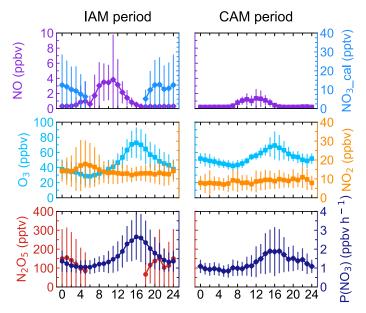
in South China Sea (< 5 ppbv, Chuang et al., 2013). The mixing ratio of NO at nighttime was low and showed small peaks during daytime. With the O₃ accumulating throughout the day, NO decreased to below the instrument detection limit in the first half of the night, while it began to increase as the O₃ concentration decreased in the second half of the night. Given that the lifetime of NO is only a few minutes in the presence of several tens of ppbv of O₃ (Dewald et al., 2022), we inferred that NO is likely originated from a local source such as soil emission, boats, cooking, and so on.

Table 2. Summary of parameters on the two air mass types (mean \pm standard deviation).

Carrier	IAM		CAM	
Species	All day ^b	Nighttime ^b	All day	Nighttime
O ₃ (ppbv)	45.8 ± 20.2	42.9 ± 18.4	53.1 ± 11.9	51.4 ± 9.6
NO_x (ppbv)	15.1 ± 8.7	14.5 ± 9	9.2 ± 5.1	8.8 ± 4.8
NO ₂ (ppbv)	13.9 ± 7.6	14.1 ± 8.3	8.6 ± 4.8	8.6 ± 4.8
NO (ppbv)	1.2 ± 2.3	0.4 ± 1.1	0.5 ± 0.6	0.2 ± 0.1
Temp (°C)	19.9 ± 2	19.9 ± 1.9	20.8 ± 1.5	20.6 ± 1.5
RH (%)	46.7 ± 12.5	47.7 ± 13.2	61.2 ± 10	64.1 ± 9.6
P(NO ₃) (ppbv h ⁻¹)	1.6 ± 0.9	1.5 ± 0.8	1.3 ± 0.8	1.2 ± 0.6
N ₂ O ₅ (pptv)	_ c	119.5 ± 128.6	_ c	-
NO ₃ (pptv) ^a	-	9.9 ± 12.5	-	-
$\tau_{N_2O_5}$ (min)	-	6.5 ± 6.5	-	-
τ_{NO_3} (min)	-	0.5 ± 0.7	-	-

Note: ^a NO₃ is calculated by the thermal equilibrium between NO₂, NO₃, and N₂O₅.

 $^{\circ}$ Without N_2O_5 measurement in the daytime and limited N_2O_5 data during the CAM period,


N₂O₅, NO₃, and their lifetimes were not valid here.

 N_2O_5 was at a moderate level on most days with a nocturnal average of 119.5 ± 128.6 pptv, with high concentrations (>400 pptv in 1-hour average) in the first three days during this campaign. During the nights from November 9^{th} to 12^{th} , the N_2O_5 concentrations were significantly higher than those on other nights, with a maximum of 657.3 pptv at midnight of November 12^{th} . The NO_3 concentration (calculated based on the thermal equilibrium with N_2O_5) was also moderate with an average mixing ratio of 9.9 ± 12.5 pptv, which was higher than that reported on a nearby coastal site of Hong Kong Island (Yan et al., 2019). Table 3 compares the N_2O_5 , NO_3 , and $P(NO_3)$ found in other coastal (or island) and continental regions from Europe, the United States, and China. In our study, N_2O_5 and NO_3 were at a moderate level compared to other coastal regions when they were affected by

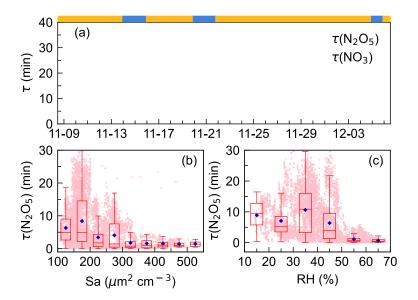
³⁰⁹ b "All day" means the 24-hour average and the "Nighttime" means the time between 18:00-310 06:00 local time.

323 emission plumes from continental regions, such as Northwestern Europe (Morgan et al., 324 2015), the East coast of the USA (Brown et al., 2004), and Shenzhen, China (Niu et al., 325 2022), and were comparable with urban regions (Wang et al., 2017b; Wang et al., 2018b). The concentrations of NO₃ precursors (NO₂ and O₃) at this site were much similar to some 326 rural areas, leading to a high NO₃ production rate with a daily average of 1.5 ± 0.9 ppbv h⁻ 327 ¹ and a maximum of 5.9 ppbv h⁻¹. The average value is much higher than that reported in 328 Beijing in winter (0.4 ppbv h⁻¹, Wang et al., 2021), comparable to autumn (1.4 \pm 1.7 ppbv 329 h^{-1} , Wang et al., 2017b) and even higher than that in summer Taizhou (1.01 \pm 0.47 ppbv h^{-1} 330 ¹, Wang et al., 2020a). The nocturnal average $P(NO_3)$ during this campaign was 1.4 ± 0.7 331 ppbv h^{-1} , which is higher than the average value in the warm season of China with 1.07 \pm 332 0.38 ppbv h⁻¹ (Wang et al., 2023). The high reaction rate constant for NO₂ and O₃ due to 333 334 the high temperature at this site is a potential explanation for the high P(NO₃) values observed in this study (i.e., at same NO₂ and O₃ level, if temperature increased from 10 °C 335 to 20 °C, the reaction rate constant would increase from 2.27×10^{-17} to 3.05×10^{-17} . which 336 337 means the $P(NO_3)$ would be 1.34 times faster). The high $P(NO_3)$ and the low concentrations of N₂O₅ and NO₃ indicate intensive atmospheric oxidation capacity and fast NO₃ and N₂O₅ 338 339 removal over the Pearl River Estuary.

340 The mean diurnal profiles of N₂O₅, together with relevant species are shown in Fig. 3. 341 Daytime N₂O₅ and NO₃ in the IAM period were shown as NaN due to the absence of 342 observation. Because of limited N₂O₅ data for the CAM period, neither N₂O₅ nor NO₃ is 343 shown in Fig. 3. NO exhibited similar diurnal variation in both periods and the mixing ratio 344 was higher in the IAM period. The wind rose plot (Fig. S1) showed high concentrations of NO originating from the north characterized by the outflow from PRD regions. However, 345 346 NO₂ differed in the two periods, showing high anti-correlation with O₃ only in the IAM 347 period and little diurnal variation in the CAM period.

Figure 3. Mean diurnal profiles of N_2O_5 , NO_3 , $P(NO_3)$, and relevant parameters in the two types of air masses. NO_3 was calculated from N_2O_5 . Neither N_2O_5 nor NO_3 was shown during CAM period because of limited N_2O_5 measurement.

Ozone exhibited a typical diurnal pattern for all air masses, gradually increasing until its peak at 16:00 and then slowly decreasing throughout the night until its lowest mixing ratio was reached at about 06:00. Compared to the CAM period, the lower minimum hourly O_3 concentration and a small peak of NO_2 in the early morning indicated that NO titration effect was stronger in the IAM period, and the higher maximum of O_3 concentration in IAM indicated that photochemical formation of O_3 and/or transport was faster to completely offset the titration. In addition, the higher NO_x and VOC concentrations (as shown in Table S1) in the IAM period facilitated O_3 formation. With the elevated precursor concentrations (NO_2 and O_3) in the IAM period, N_2O_5 and NO_3 accumulated rapidly after sunset, reaching their peak values (492.1 pptv and 49.6 pptv for each). $P(NO_3)$ was highly consistent with O_3 in diurnal variation and reached the peak at 16:00, with peak values of 2.7 ppbv h^{-1} (IAM) and 1.9 ppbv h^{-1} (CAM), as well as a nocturnal average value of 1.5 ± 0.8 ppbv h^{-1} (IAM) and 1.2 ± 0.6 ppbv h^{-1} (CAM), respectively. The $P(NO_3)$ of CAM was consistent with the observation when the air mass over eastern Shenzhen was transported from the clean area or sea surface (1.2 ± 0.3 ppbv h^{-1} , Niu et al., 2022).


Table 3. Summary of field-observed N₂O₅, NO₂, O₃ concentrations, and NO₃ production rate. 367

2000	- ~ (6	I 6			
Region	Location	Time	N_2O_5 (pptv)	NO_3 (pptv)	NO_2 (ppbv)	O ₃ (ppbv)	P (NO ₃) (ppbv hr ⁻¹)	References
Urban	Jinan, China	AugSep.,2014	$22 \pm 13 \text{ (max } 278)$		74.6	55	/	(Wang et al., 2017c)
Urban	Shanghai, China	AugOct., 2011	310 ± 380	16±9 (max 95)	92-0	$23 \pm 8 \text{ (max 57)}$	1.10 ± 1.09	(Wang et al., 2013)
Urban	Beijing, China	May-Jul., 2016	100–500 (max 937)	27		/	1.2 ± 0.9	(Wang et al., 2018b)
Urban	Mt. Tai, China	JulAug., 2014	6.8±7.7	/	16.4 (±6.1)	88.6 (±16.6)	0.45 ± 0.40	(Wang et al., 2017d)
Urban	Heshan, China	SepNov., 2019	$64 \pm 145 \text{ (night)}$	max 90	21.0 ± 10.4	75.2±20.9 (max 152.8)	$2.5 \pm 2.1 \text{ (day)}$	(Wang et al., 2022)
			(max 1180)				1.8 \pm 1.5 (night)	
Urban	Beijing, China	SepOct., 2019	68.0 ± 136.7	,	35.1 ± 16.6	27.7 ±25.2	2.25 ±2.02	(Wang et al., 2017b)
Suburban	Changzhou, China	May-Jul., 2019	$53.4 \pm 66.1 \text{ (max } 304.7)$	$4.7 \pm 3.5 \text{ (max 17.7)}$	13.7 ± 8.9	48.4 ± 27.8	$1.7 \pm 1.2 \text{ (max 7.7)}$	(Lin et al., 2022)
Rural	Wangdu, China	JunJul., 2014	<200 (max 430)	,	10-80	(max 146)	1.7 ± 0.6	(Tham et al., 2016)
Rural	Taizhou, China	May-Jul., 2018	$26.0 \pm 35.7 \text{ (max 492)}$	$4.4 \pm 2.2 \text{ (max 150)}$	28.28 ± 18.57	48.2 ± 32.5	$1.01 \pm 0.47 \text{ (night)}$	(Wang et al., 2020a)
Coastal	Tai Mo Shan, HK	NovDec., 2013	0.5-11.8 ppbv	1	7.88	68.5	0.01-2	(Brown et al., 2016)
Coastal	East coast of USA	JunAug., 2002	85	17	9	35	,	(Brown et al., 2004)
Coastal	California, USA	Jan.,2004	0-200	,	0-15	15–35	,	(Wood et al., 2005)
Coastal	Southern Spanish	NovDec., 2018	~500 (max)	,	1-15	15-40	,	(Crowley et al., 2011)
Coastal	Shenzhen, China	SepOct., 2019	$55.6 \pm 89 \text{ (max 1420)}$,	6.2	88.9±24.6	$2.9 \pm 0.5 \; (UAM)$	(Niu et al., 2022)
			$45.4 \pm 55.2 \text{ (BAM)}$				$1.2\pm0.3~(BAM)$	
Coastal	Northwestern Europe	Jul., 2010	029	,	0.5-2	30–40		(Morgan et al., 2015)
Island	Hok Tsui, HK	AugSep., 2012	17±33 (max 336)	7 ± 12	<i>7</i> ± 9	33 ± 24	,	(Yan et al., 2019)
Island	Wanshan, China	NovDec., 2021	107.22 ± 125.17	7.56 ± 10.95	13.14 ± 8.68	43.75 ± 18.49	1.38 ± 0.83	This work
	1 1 1			,			,	

Notes: UAM means air masses coming from continental areas, and BAM means air masses coming from background marine areas. Mean values are in the form of mean ± standard deviation or single data. The maximum was noted in the table.

3.2 The lifetimes of N₂O₅ and NO₃

Steady-state lifetime is one of the most common and useful diagnostics for NO₃ and N₂O₅ analysis in the atmosphere (Brown et al., 2003; Wang et al., 2018b; Wang et al., 2020a; Brown et al., 2016). As shown in Fig. 4, τ_{NO_3} was low during the whole campaign with an average of 0.5 \pm 0.7 min. $\tau_{N_2O_5}$ showed a similar pattern to τ_{NO_3} but had a much higher value, ranging from 0 to 34.1 min with an average of 6.1 \pm 6.5 min. The N₂O₅ lifetime was higher in the first half of the campaign (11.5 min, November 9th to 14th) than in the second half (3.5 min, November 22th to 28th). The difference was mainly due to the N₂O₅ mixing ratio rather than P(NO₃), as P(NO₃) shows no significant difference during the whole observation (Fig. 2).

Figure 4. Time series of N₂O₅ and NO₃ lifetimes (a) and variations of nocturnal N₂O₅ lifetime as a function of aerosol surface area density, Sa (b), and relative humidity, RH (c). The blue diamond represents the average $\tau_{N_2O_5}$ and pink dots represent the scatter data point in 1 min. The ribbon at the top separates the air masses into two categories, yellow for IAM and blue for CAM.

 $\tau_{N_2O_5}$ values were comparable to those measured on the coastline of Finokalia, Greece for a median of 5 min (Vrekoussis et al., 2004; Vrekoussis et al., 2007), but much lower than those previously reported in the residual layer in Hong Kong for 1-5 h (Brown et al., 2016). In comparison, the lifetimes were much longer than in inland urban areas, for example, 0.93 ± 1.13 min in Taizhou (Li et al., 2020), 1.6 ± 1.5 min in Changzhou (Lin et al., 2022) for YRD regions, 1.1-10.7 min (Zhou et al., 2018) and 4.5 ± 4.0 min (Wang et al., 2018b) in Beijing. Typically, high aerosol loading, more intensive VOC, and NO emissions in these

393 areas led to enhanced N₂O₅ uptake and reactions of NO₃ with VOC. While in this site, 394 measurement indicated that the peak diameter in the particle number distribution was small 395 during the whole campaign and indicated no significant difference between two air masses with respect to the aerosol diameters (Fig. S2). S_a value ranged from 29 µm² cm⁻³ to 557 396 μm² cm⁻³. All of these indicated the atmosphere was relatively clean (Wang et al., 2017b), 397 making N₂O₅ uptake slow. Fig. 4b shows N₂O₅ lifetime decreased rapidly from 8.3 min to 398 1.7 min when S_a increased up to 300 µm² cm⁻³ and then remained at relatively low constant 399 levels though S_a still increased. Such a trend of $\tau_{N_2O_5}$ - S_a dependence was consistent with 400 401 previous observations and varied in exact values (Zhou et al., 2018; Wang et al., 2018b; Li 402 et al., 2020). Fig. 4c. showed that $\tau_{N_2O_5}$ decreased as RH increased (> 40%) possibly due 403 to the hygroscopic aerosol growth and the dependence of the N₂O₅ uptake coefficient on 404 the RH (Brown and Stutz, 2012). Overall, the trend is consistent with previous works, while 405 the large discrepancy of the dependence implied that N₂O₅ uptake was not the dominant 406 NO₃ loss process.

3.3 The NO₃ reactivity and N₂O₅ uptake coefficients

407

417

418

419 420

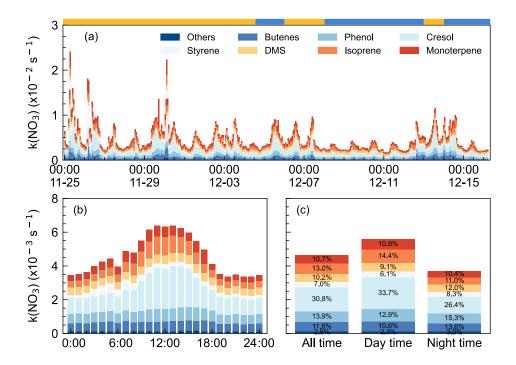
421

422

423

424

425


426 427

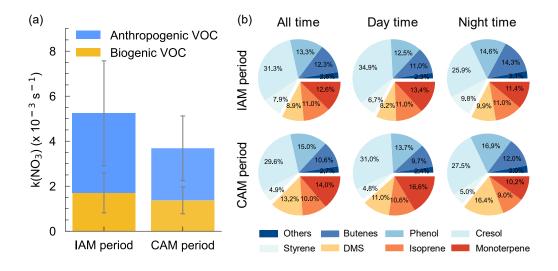
428

408 The concurrent high P(NO₃) and low NO₃ lifetime imply high NO₃ reactivity as well as a 409 large nocturnal NO₃ loss process at DWS. The NO₃ reactivity towards VOCs was 410 calculated by Eq. 4, towards which were categorized into anthropogenic VOC and biogenic 411 VOC (Gu et al., 2021). Throughout the campaign, k(NO₃) varied considerably (Fig. 5a), showing relatively high and fluctuated values when the airmasses featured IAM. The 412 $k(NO_3)$ ranged from 1.6×10^{-3} s⁻¹ to 2.4×10^{-2} s⁻¹ with the daily average of $4.6 \pm 2.8 \times 10^{-3}$ 413 s⁻¹. Low values of k(NO₃) were observed from December 9th to 12th when the air masses 414 415 originate from coastal or offshore from the east and southeast, which features the outflow 416 of coastal cities like Hong Kong and Shenzhen.

Fig. 5b shows the mean diurnal profile of $k(NO_3)$, where a trend of high values in the daytime and low values at nighttime are observed. Anthropogenic VOC, especially cresol, dominated the daily trend of $k(NO_3)$, while biogenic VOC- $k(NO_3)$ showed no significant diurnal variation. Except cresol, other highly reactive VOC showed little change throughout the day. Regarding the biogenic VOC- $k(NO_3)$, the concentrations of monoterpene, isoprene, and DMS changed smoothly although their emissions would increase with elevated temperature and sunlight during daytime (Fuentes. et al., 2000). The detailed contributions of VOC categories to $k(NO_3)$ were shown in Fig. 5c. The $k(NO_3)$ was $5.6 \pm 2.8 \times 10^{-3}$ s⁻¹ and $3.7 \pm 2.5 \times 10^{-3}$ s⁻¹ on average for daytime and nighttime, respectively. The daytime distribution of $k(NO_3)$ differed from that at the mountaintop of Tai Mo Shan in Hong Kong (Brown et al., 2016). During the nighttime, anthropogenic VOC- $k(NO_3)$ tripled the biogenic VOC- $k(NO_3)$ and was dominated by cresol (26.4%). The

nighttime k(NO₃) corresponded to a NO₃ lifetime of 4.5 min, which was about 10 times the lifetime derived from steady-state analysis, indicating that the reaction of NO₃ with VOC was not significant enough. The faster NO₃ loss rate also indicated the less aged air mass that was influenced by surface-level emissions.

Figure 5. NO₃ reactivity via VOCs during the campaign. (a) k(NO₃) time series from Nov. 25th to Dec. 15th; (b) mean diurnal profiles; and (c) the relative contribution in different categories. The ribbon at the top separates the air masses into two air masses types, yellow for IAM and blue for CAM.


We showed that NO₃ reactivity and its composition in this study exhibited significant differences compared to other urban or forested regions (Wang et al., 2017d; Ayres et al., 2015; Brown et al., 2016; Lin et al., 2022). Although anthropogenic VOCs played a dominant role, accounting for 66.1%, the major contributors were not low-carbon alkenes but phenol (13.9%, $0.64 \pm 0.28 \times 10^{-3} \text{ s}^{-1}$) and cresol (30.8%, $1.4 \pm 1.0 \times 10^{-3} \text{ s}^{-1}$), which have received little attention in previous studies. Despite their relatively low concentrations, averaging 7 ± 3 pptv and 4 ± 3 pptv respectively, their substantial contribution to k(NO₃) is notable due to their fast rate constants $(3.8 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-2} \text{ and } 1.4 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-2}$ at 298 K, respectively) for reaction with NO₃. Considering that the measured phenol and cresol concentration is low and near the instrumental detection limit, we note this may bring some uncertainties in quantifying the contribution to the total NO₃ reactivity and NO₃ loss rate. These substances are mainly secondary species from aromatic

compounds and higher concentrations have also been observed, such as in the Strasbourg area, France (14 ppty, Delhomme et al., 2010) and in Great Dun Fell, UK (16 ppty, Lüttke et al., 1997). Hence, these phenolic compounds were potentially important but often overlooked for their contributions to NO₃ reactivity in urban areas, and their reactions with NO₃ may also contribute to the formation of nitrophenol. These reactions warrant further attention in future research. Regarding biogenic VOCs, besides the contributors commonly observed in forest regions such as monoterpenes and isoprene, the marine emissions indicator, dimethyl sulfide (DMS), contributed 10.2% to NO₃ reactivity (daily average). Previous studies have suggested that DMS may serve as a major direct sink for NO₃ in clean marine regions (Allan et al., 1999; Aldener et al., 2006; Brown et al., 2007). However, this study reveals that anthropogenic VOC emissions significantly enhanced the NO₃ reactivity in marine areas, highlighting the crucial influence of anthropogenic activities on marine atmospheric chemistry.

As shown in Fig. 6a, $k(NO_3)$ differed significantly between the inland and coastal air masses, with $5.2 \pm 3.1 \times 10^{-3}$ s⁻¹ and $3.7 \pm 1.9 \times 10^{-3}$ s⁻¹ on average in IAM and CAM periods, respectively. Of which anthropogenic VOC- $k(NO_3)$ in IAM $(3.5 \pm 2.3 \times 10^{-3} \text{ s}^{-1})$ was higher than in CAM $(2.3 \pm 1.4 \times 10^{-3} \text{ s}^{-1})$ and dominant in both air masses, while biogenic VOC- $k(NO_3)$ was comparable $(1.7 \pm 0.9 \times 10^{-3} \text{ s}^{-1})$ and $1.4 \pm 0.6 \times 10^{-3} \text{ s}^{-1}$ for IAM and CAM, respectively). The difference indicated that this region was affected by long-range transport emissions to a certain extent. The pie charts in Fig. 6b showed different VOC categories that contributed to $k(NO_3)$ in two periods with AVOC dominant at any time. The change in the relative contribution of various VOCs to $k(NO_3)$ varied simultaneously throughout the day, showing an increase in butene, phenol, and DMS, and a decrease in cresol and monoterpene from daytime to nighttime.

 N_2O_5 heterogeneous uptake on aerosol is one of the vital loss processes of NO_3 and the uptake coefficient varied greatly under different environmental conditions. For instance, $\gamma(N_2O_5)$ can reach up to 0.072 in polluted urban regions (Wang et al., 2017b; Wang et al., 2018b; Lu et al., 2022; Li et al., 2020), while usually below 0.03 in coastal areas (Brown et al., 2016; Morgan et al., 2015; Niu et al., 2022). N_2O_5 uptake coefficient can be gotten from the pseudo steady state method by assuming that N_2O_5 and NO_3 have achieved a steady state (Brown et al., 2009), in which the fitted slope represents $\gamma(N_2O_5)$ and the intercept represents the direct loss rate coefficient, $k(NO_3)$ (as shown in Eq. 8). However, this approach failed to generate valid results in our study since a negative slope or intercept was observed (Fig. S4). These results indicated that a large NO_3 removal process existed at this site, making it unable to approach a stable state. The $\gamma(N_2O_5)$ was also calculated from Nov. 9th to 16th by using the simplified parameterization, as shown in Eq. 9. The parameterized average $\gamma(N_2O_5)$ showed a large variation ranging from 0.0014 to 0.0299,

with an average of 0.0095 ± 0.0059 . This value is within the range from <0.0016 to 0.03 derived from the ambient observation around other coastal areas (Niu et al., 2022; Yun et al., 2018a; Brown et al., 2006; Brown et al., 2016; Morgan et al., 2015) and smaller than the polluted North China Plain (Wang et al., 2017c; Wang et al., 2017b; Wang et al., 2017d; Tham et al., 2018).

Figure 6. (a) Distributions of k(NO₃) from AVOC and BVOC for both IAM and CAM period. The error bar indicates the standard deviation. (b) The relative contribution of VOC categories to the k(NO₃).

3.4 The NO₃ loss budget

To assess the contribution of various loss processes to the total NO₃ removal, we calculated their loss rate and the loss ratio, $LR(NO_3)$. The $LR(NO_3)$ is defined as the sum of the loss rate by process X (VOC or N₂O₅ uptake) to the total NO₃ loss rate, here the total NO₃ loss rate is represented by $P(NO_3)$ since we cannot quantify the total NO₃ loss rate due to the NO concentration below the limit of instrument detection. Due to the data absence of measured VOCs or N₂O₅ during certain periods, the loss proportion of VOCs and N₂O₅ uptake in NO₃ loss only presented from Nov. 26th to Dec. 5th during which all air masses originated from continental China. As shown in Fig. 7, a closer examination revealed that the nights can be divided into two periods, period I: November 25th to 28th when the loss ratio of VOC and N₂O₅ uptake remained below 3%, and period II: November 30 to December 4 when the loss ratio was higher. Both periods had large nocturnal NO₃ production rates with an average of 2.1 ± 1.1 ppbv h⁻¹ in period I and 1.4 ± 0.6 ppbv h⁻¹ in period II, respectively.

 N_2O_5 uptake rate was larger in period I $(0.01 \pm 0.01 \text{ ppbv h}^{-1})$ than that in period II $(0.006 \pm 0.004 \text{ ppbv h}^{-1})$, which can be explained by the increased RH, Sa, and N_2O_5 concentration as shown in Fig. 2. The loss ratio of these processes was shown in Fig. 7b, the total NO_3 loss through reactions with VOCs and N_2O_5 uptake accounted for less than 20%, with an average of 1.2% (period I) and 5.3% (period II), respectively. This result shows that the nighttime NO_3 chemistry may be almost negligible to the NO_3 removal compared with the day $OH + NO_2$ pathway according to previous works reported in urban regions (Wang et al., 2017b; Wang et al., 2020a). The diurnal variation of the NO_3 loss fraction of both periods was shown in Fig. 7c and 7d, revealing that NO_3 loss via N_2O_5 uptake and VOC_3 was slightly higher in the early evening and relatively stable in the late evening. The pie charts in the center were the relative contribution between VOC_3 and N_2O_5 uptake, showing that VOC_3 were overwhelming compared with N_2O_5 uptake during the two periods, with an average of 68.4% and 91.7% during the first and second periods, respectively.

To better understand the nocturnal oxidation of VOCs, we compared the nighttime oxidation of VOCs by NO₃ with O₃. Since OH was not measured and OH is often regarded as a vital daytime oxidant (Finlayson-Pitts, 2000; Lu et al., 2010), we did not consider OH oxidation in the nighttime. Figure S4 showed the diurnal pattern of VOC loss rate by NO₃ and O₃, NO₃ predominantly achieves its peak oxidation rates (0.07 ppbv h⁻¹) during the initial half of the night, accounting for 63.1% of the total VOC oxidation on nocturnal average. Meanwhile, O₃ also makes a contribution to VOC oxidation, mainly owing to its relatively high nighttime concentration levels (42.9 ± 18.4 ppbv).

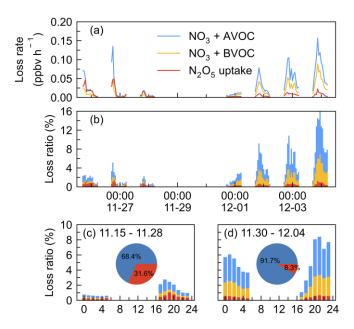


Figure 7. Time series of (a) the loss rate of NO₃ reactions with AVOC, BVOC, and N₂O₅

uptake, and (b) fractional contribution to the NO₃ loss during the nighttime by taking P(NO₃) as the total NO₃ loss in the IAM period. The mean diurnal profiles of NO₃ loss ratio in two periods (c) November 25th - 28th, and (d) November 30th - December 4th. Pie charts in the center showed the relative contribution of VOCs (blue) and N₂O₅ uptake (red) in NO₃ loss.

533

534

535

536537

538

539

540

541

542

543

544545

546547

548549

550

551

552

553

554

555

556

557

558

Due to the difficulty in experimental quantifying $\gamma(N_2O_5)$, the estimation of N_2O_5 uptake in NO₃ loss may include some uncertainty. Considering the uncertainty both in parameterized $\gamma(N_2O_5)$ and the NO₃ reactivity calculation, three sensitivity tests were conducted to assess the uncertainty in period II because of the relatively high loss ratio in the above analysis (Fig. 8), and the three cases were used to represent the upper limit of their contribution to NO₃ loss. Case 1 represents the overrated contribution of N₂O₅ uptake by taking $\gamma(N_2O_5) = 0.08$, which was the high value reported in high N_2O_5 and ClNO₂ plume of Shenzhen (Niu et al., 2022) and approximately seven times the parameterized value at this site. In this case, the fraction of NO₃+VOCs and N₂O₅ uptake was significantly elevated to account for approximately 30% of NO₃ loss. Case 2 shows the total NO₃ reactivity reached an average of 5.0×10^{-3} s⁻¹ by taking β -pinene as the total monoterpene because of the higher reaction rate constant. The weak change in the loss ratio indicates the reactions of NO₃ with VOC may not be sensitive to the weights of monoterpenes, since the contribution of monoterpenes to the NO₃ reactivity is not dominant. Case 3 is the synthesis of Case 1 and Case 2 by considering higher N₂O₅ uptake coefficient and higher k(NO₃) to represent the upper limit of N₂O₅ uptake and NO₃ reaction with VOCs to NO₃ loss, whose result is slightly higher than the contribution of Case 1. Nevertheless, the quantified upper contribution was still less than half. Thus, we conclude that most of the NO₃ loss was not well accounted for even considering the uncertainties.

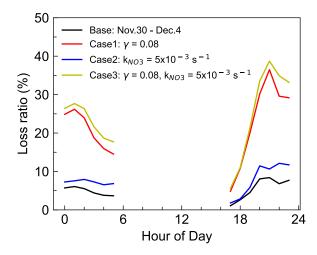


Figure 8. Three sensitivity tests for the contribution of VOCs and N₂O₅ uptake to the NO₃

loss during the nighttime of period II (November 30^{th} - December 4^{th}). Case 1 takes $\gamma(N_2O_5)$ = 0.08, which is the high value reported in the previous study. Case 2 takes β -pinene as the total monoterpene with a higher reaction rate constant, and Case 3 is the synthesis of the above two cases to represent the upper limit of the contribution.

559

560561

562

563

564

565566

567

568569

570571

572

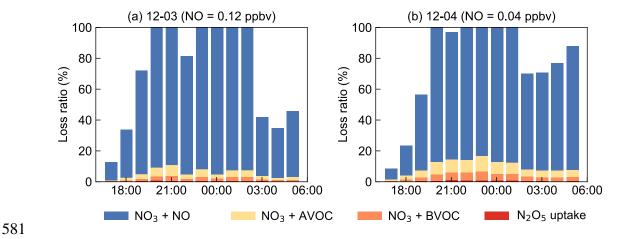
573

574575

576

577

578


579

580

582

583

The NO₃ reaction with NO was often considered to be one of the dominant loss processes during the daytime since at nighttime NO decreased to low levels, thus not considered in the above analysis. However, by taking NO into consideration although at low concentration levels below the detection limit of the instrument (0.4 ppbv), the contribution of NO to the nighttime NO₃ loss exceeded 100% frequently as shown in Fig. S5. Due to the rapid reaction between NO and NO₃, several pptv concentrations of NO could effectively account for most NO₃ loss in a relatively clean coastal environment (Crowley et al., 2011). Nevertheless, limited by NO precise measurement, we considered the following assessments to understand the total NO₃ loss processes (Fig. 9). By assuming NO at a constant value of 40-400 pptv, more than 80% of the total NO₃ loss can be well explained. Although some loss remained unidentified, these results underline that NO, often considered to be important during daytime, was the predominant NO₃ loss way during nighttime at this study site. This also suggests accurate measurement of low NO concentrations is crucial for identifying removal pathways of nocturnal NO₃ oxidants and has significant implications for nighttime atmospheric chemistry. We can infer that the nocturnal chemical NO₃ reactions would be largely enhanced once without NO emission in the open ocean after the air mass passes through this site, indicating the strong influences of the urban outflow to the downwind marine areas with respect to nighttime chemistry.

Figure 9. Examples for the assessment of NO₃ loss process by assuming NO as constant values to approximately explain about 80% of the budget.

- For the absence of measured N₂O₅ during the CAM period, we compared the k(NO₃) and
- 585 the reactivity of N_2O_5 uptake ($k_{het}K_{eq}NO_2$) to indirectly reflect NO_3 removal process.
- Overall, the NO₃ reactivity values from VOCs and N₂O₅ uptake during nighttime was
- relatively comparable, for 56.5% and 43.5%, respectively. This indicates that VOCs still
- had a slightly larger contribution than N₂O₅ uptake during the CAM period, which is
- consistent with the findings in southern China (Brown et al., 2016) and on the east coast of
- 590 the USA (Aldener et al., 2006).

4. Summary and Conclusion

- This study presents the first observation of nocturnal nitrogen oxide species, N₂O₅, at a
- 593 typical marine site (Da Wan Shan Island, Zhuhai) in the north of the South China Sea during
- 594 the winter of 2021. Although Da Wan Shan Island was almost free of local anthropogenic
- emissions, the air pollutants from the megacities of the Pearl River Delta were transported
- 596 to this area by northerly or northeasterly winds during the measurement period. The
- 597 maximum ratio of N₂O₅ was 657.27 pptv (1 min average) and the nocturnal average was
- 598 119.5 ± 128.6 pptv. The NO₃ production rate was comparable to that in urban areas such as
- north China and the Yangtze River Delta, with an average value of 1.5 ± 0.9 ppbv h⁻¹ and
- a maximum of up to 5.84 ppbv h⁻¹, indicating an active nighttime chemical process in that
- 601 area.

591

- Further analysis of N₂O₅ and NO₃ steady state lifetimes indicates that NO₃ had a very short
- average life of 0.5 ± 0.6 minutes, which was to some extent comparable to that in urban
- areas in summer. The combination of the high NO₃ production rate and short lifetime
- suggests a rapid NO₃ loss at night. While N₂O₅ uptake is inefficient in relatively clean air
- masses. The nighttime k(NO₃) corresponded to a NO₃ lifetime of 4.5 minutes, indicating
- that VOCs also contribute little to NO₃ loss. Both VOC and N₂O₅ uptake can only explain
- less than 20% of the total loss. The fast NO₃ loss rate also indicated the air mass that was
- influenced by local surface-level emissions. We infer that the local weak NO emission may
- significantly change the near-surface chemical pattern of NO₃ chemistry, which may result
- in a huge difference between the observed results on the island and those on the sea surface.
- We suggested that future field measurements should be made on sea surfaces away from
- 613 islands, such as ship-based cruise observation, to get a comprehensive understanding of the
- 614 nocturnal NO₃ chemistry in the background marine regions.

615

- 616 Code/Data availability. The datasets used in this study are available at:
- 617 https://doi.org/10.5281/zenodo.8089100 (Wang et al., 2023).

- Author contributions. H.C.W. and Y. J.T. designed the study. J.W. and H.C.W. analyzed
- 619 the data with input from H.J.H., Z.L.Z., G.Z.F., C.Z.S., Z.H.L., J.Z., S.J.F., H.C.W., L.M.
- Y. J.T., Z.H.L., and J.Z. organized this field campaign and provided the field measurement
- dataset, J.W., H.C.W., and Y.J.T. wrote the paper. All authors commented on and edited the
- 622 manuscript.

623 Acknowledgments

- This work was supported by the National Natural Science Foundation of China (Nos.
- 625 42175111), the Guangdong Major Project of Basic and Applied Basic Research (No.
- 626 2020B0301030004), Guangdong Basic and Applied Basic Research Foundation
- 627 (2022A1515010852), and the Fundamental Research Funds for the Central Universities,
- 628 Sun Yat-sen University (23lgbj002, 23hytd002). L.M. acknowledges the Zhuhai Science
- and Technology Plan Project (ZH22036201210115PWC).

630 631

Competing interests. The authors declare that they have no conflicts of interest.

632

633 Appendix A Supplementary data

- Supplementary data associated with this article can be found in the online version at xxxxxx.
- 635
- 636 Reference
- Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan,
- P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity
- and loss mechanisms of NO₃ and N₂O₅ in a polluted marine environment: Results
- from in situ measurements during New England Air Quality Study 2002, Journal of
- Geophysical Research-Atmospheres, 111, Artn D23s73, Doi 10.1029/2006jd007252,
- 642 2006.
- Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., and Plane, J. M. C.: Observations of the
- nitrate radical in the marine boundary layer, Journal of Atmospheric Chemistry, 33,
- 645 129-154, Doi 10.1023/A:1005917203307, 1999.
- 646 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G.,
- Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for
- atmospheric chemistry: Volume I gas phase reactions of O_x, HO_x, NO_x and SO_x
- species, Atmospheric Chemistry and Physics, 4, 1461-1738, DOI 10.5194/acp-4-
- 650 1461-2004, 2004.
- 651 Ayres, B. R., Allen, H. M., Draper, D. C., Brown, S. S., Wild, R. J., Jimenez, J. L., Day, D.
- A., Campuzano-Jost, P., Hu, W., de Gouw, J., Koss, A., Cohen, R. C., Duffey, K. C.,
- Romer, P., Baumann, K., Edgerton, E., Takahama, S., Thornton, J. A., Lee, B. H.,
- Lopez-Hilfiker, F. D., Mohr, C., Wennberg, P. O., Nguyen, T. B., Teng, A., Goldstein,
- A. H., Olson, K., and Fry, J. L.: Organic nitrate aerosol formation via NO₃ + biogenic
- volatile organic compounds in the southeastern United States, Atmospheric Chemistry

- and Physics, 15, 13377-13392, 10.5194/acp-15-13377-2015, 2015.
- Behnke, W., and, V., Scheer, and, C., and Zetzsch: 16 O 04 Formation of ClNO₂ and HNO₃
- in the presence of N₂O₅ and wet pure NaCl- and wet mixed NaCl/Na₂SO₄- aerosol, J Aerosol Sci, 24, S115-S116, 1993.
- Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and
- chloride, Atmospheric Chemistry and Physics, 9, 8351-8363, 2009.
- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem Soc Rev, 41, 6405-6447, Doi 10.1039/C2cs35181a, 2012.
- Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅,
- Journal of Geophysical Research-Atmospheres, 108, Artn 4539, Doi 10.1029/2003jd003407, 2003.
- 670 Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake,
- D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime chemistry at a high altitude
- site above Hong Kong, Journal of Geophysical Research-Atmospheres, 121, 2457-
- 673 2475, 10.1002/2015jd024566, 2016.
- Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber,
- R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A.
- R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67-70, DOI 10.1126/science.1120120, 2006.
- Brown, S. S., Dube, W. P., Peischl, J., Ryerson, T. B., Atlas, E., Warneke, C., de Gouw, J.
- A., Hekkert, S. T., Brock, C. A., Flocke, F., Trainer, M., Parrish, D. D., Feshenfeld, F.
- 680 C., and Ravishankara, A. R.: Budgets for nocturnal VOC oxidation by nitrate radicals
- aloft during the 2006 Texas Air Quality Study, Journal of Geophysical Research-
- 682 Atmospheres, 116, Artn D24305, 10.1029/2011jd016544, 2011.
- Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini,
- R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D.,
- Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients
- for N2O5 determined from aircraft measurements during the Second Texas Air
- Quality Study: Comparison to current model parameterizations, Journal of
- Geophysical Research-Atmospheres, 114, Artn D00f10, 10.1029/2008id011679, 2009.
- Brown, S. S., Dube, W. P., Osthoff, H. D., Stutz, J., Ryerson, T. B., Wollny, A. G., Brock,
- 690 C. A., Warneke, C., De Gouw, J. A., Atlas, E., Neuman, J. A., Holloway, J. S., Lerner,
- B. M., Williams, E. J., Kuster, W. C., Goldan, P. D., Angevine, W. M., Trainer, M.,
- Fehsenfeld, F. C., and Ravishankara, A. R.: Vertical profiles in NO₃ and N₂O₅
- measured from an aircraft: Results from the NOAA P-3 and surface platforms during
- the New England Air Quality Study 2004, Journal of Geophysical Research-
- 695 Atmospheres, 112, Artn D22304, 10.1029/2007jd008883, 2007.

- Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J.,
- Lerner, B. M., Jakoubek, R., Middlebrook, A. M., DeGouw, J. A., Warneke, C.,
- Goldan, P. D., Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn, P. K., Bates, T.
- 699 S., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Nighttime removal of
- NOx in the summer marine boundary layer, Geophysical Research Letters, 31, Artn L07108, Doi 10.1029/2004gl019412, 2004.
- Chen, X., Wang, H., and Lu, K.: Interpretation of NO₃-N₂O₅ observation via steady state
 in high-aerosol air mass: the impact of equilibrium coefficient in ambient conditions,
 Atmospheric Chemistry and Physics, 22, 3525-3533, 10.5194/acp-22-3525-2022,
- 705 2022.
- Chuang, M.-T., Chang, S.-C., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., and Lee, C.-T.: Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 82-92, 10.1016/j.atmosenv.2012.05.014, 2013.
- 710 Crowley, J. N., Thieser, J., Tang, M. J., Schuster, G., Bozem, H., Beygi, Z. H., Fischer, H.,
- Diesch, J. M., Drewnick, F., Borrmann, S., Song, W., Yassaa, N., Williams, J., Pohler,
- D., Platt, U., and Lelieveld, J.: Variable lifetimes and loss mechanisms for NO₃ and
- N₂O₅ during the DOMINO campaign: contrasts between marine, urban and
- 714 continental air, Atmospheric Chemistry and Physics, 11, 10853-10870, 10.5194/acp-715 11-10853-2011, 2011.
- Delhomme, O., Morville, S., and Millet, M.: Seasonal and diurnal variations of atmospheric concentrations of phenols and nitrophenols measured in the Strasbourg area, France,
- 718 Atmospheric Pollution Research, 1, 16-22, 10.5094/apr.2010.003, 2010.
- Dewald, P., Nussbaumer, C. M., Schuladen, J., Ringsdorf, A., Edtbauer, A., Fischer, H.,
- Williams, J., Lelieveld, J., and Crowley, J. N.: Fate of the nitrate radical at the summit
- of a semi-rural mountain site in Germany assessed with direct reactivity
- 722 measurements, Atmospheric Chemistry and Physics, 22, 7051-7069, 10.5194/acp-22-723 7051-2022, 2022.
- Edwards, P. M., Aikin, K. C., Dube, W. P., Fry, J. L., Gilman, J. B., de Gouw, J. A., Graus,
- 725 M. G., Hanisco, T. F., Holloway, J., Huber, G., Kaiser, J., Keutsch, F. N., Lerner, B.
- M., Neuman, J. A., Parrish, D. D., Peischl, J., Pollack, I. B., Ravishankara, A. R.,
- Roberts, J. M., Ryerson, T. B., Trainer, M., Veres, P. R., Wolfe, G. M., Warneke, C.,
- and Brown, S. S.: Transition from high- to low-NO_x control of night-time oxidation
- 729 in the southeastern US, Nat Geosci, 10, 490-+, 10.1038/Ngeo2976, 2017.
- Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on
- global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophysical
- Research Letters, 32, Artn L09813, Doi 10.1029/2005gl022469, 2005.
- Finlayson-Pitts, B. J., James N.: Chemistry of the upper and lower atmosphere: theory,
- experiments and applications, Academic Press, Calif2000.

- 735 Fuentes., J. D., Lerdau., M., and Atkinson., R.:
- Biogenic_hydrocarbons_in_the_atmospheric_Boundary_A review, B Am Meteorol Soc, 2000.
- Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.: Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin,
- 740 Journal of Geophysical Research-Atmospheres, 106, 8013-8025, Doi 10.1029/2000jd900681, 2001.
- Gu, S., Guenther, A., and Faiola, C.: Effects of Anthropogenic and Biogenic Volatile
 Organic Compounds on Los Angeles Air Quality, Environ Sci Technol, 55, 1219112201, 10.1021/acs.est.1c01481, 2021.
- Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N₂O₅ on sub-micron sulfate aerosols, Phys Chem Chem Phys, 5, 3453-3463, Doi 10.1039/B301827j, 2003.
- Ian Barnes, Jens Hjorth, and Mihalopoulos, N.: Dimethyl Sulfide and Dimethyl Sulfoxide
 and Their Oxidation in the Atmosphere, Chem Rev, 2006.
- Kane, S. M., Caloz, F., and Leu, M. T.: Heterogeneous uptake of gaseous N_2O_5 by (NH₄)(2)SO₄, NH₄HSO₄, and H₂SO₄ aerosols, J Phys Chem A, 105, 6465-6470, Doi 10.1021/Jp010490x, 2001.
- Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H.,
- Aijala, M., Allan, J., Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall
- Osto, M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney,
- E., Hao, L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen,
- A., McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N.,
- Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner,
- A., Worsnop, D., and Wu, H. C.: Ubiquity of organic nitrates from nighttime chemistry
- in the European submicron aerosol, Geophysical Research Letters, 43, 7735-7744, 10.1002/2016gl069239, 2016.
- Li, Z., Xie, P., Hu, R., Wang, D., Jin, H., Chen, H., Lin, C., and Liu, W.: Observations of N₂O₅ and NO₃ at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N₂O₅ uptake coefficients, J Environ Sci (China), 95, 248-255,
- 765 10.1016/j.jes.2020.04.041, 2020.
- Liebmann, J., Karu, E., Sobanski, N., Schuladen, J., Ehn, M., Schallhart, S., Quelever, L.,
- Hellen, H., Hakola, H., Hoffmann, T., Williams, J., Fischer, H., Lelieveld, J., and
- 768 Crowley, J. N.: Direct measurement of NO₃ radical reactivity in a boreal forest,
- 769 Atmospheric Chemistry and Physics, 18, 3799-3815, 10.5194/acp-18-3799-2018, 770 2018a.
- Liebmann, J. M., Muller, J. B. A., Kubistin, D., Claude, A., Holla, R., Plass-Dulmer, C.,
- Lelieveld, J., and Crowley, J. N.: Direct measurements of NO₃ reactivity in and above
- the boundary layer of a mountaintop site: identification of reactive trace gases and

- 774 comparison with OH reactivity, Atmospheric Chemistry and Physics, 18, 12045-775 12059, 10.5194/acp-18-12045-2018, 2018b.
- Lin, C., Hu, R., Xie, P., Lou, S., Zhang, G., Tong, J., Liu, J., and Liu, W.: Nocturnal atmospheric chemistry of NO₃ and N₂O₅ over Changzhou in the Yangtze River Delta in China, J Environ Sci (China), 114, 376-390, 10.1016/j.jes.2021.09.016, 2022.
- Liu, X., Lyu, X., Wang, Y., Jiang, F., and Guo, H.: Intercomparison of O₃ formation and radical chemistry in the past decade at a suburban site in Hong Kong, Atmospheric Chemistry and Physics, 19, 5127-5145, 10.5194/acp-19-5127-2019, 2019.
- Liu, X. G., Gu, J. W., Li, Y. P., Cheng, Y. F., Qu, Y., Han, T. T., Wang, J. L., Tian, H. Z., Chen, J., and Zhang, Y. H.: Increase of aerosol scattering by hygroscopic growth:
 Observation, modeling, and implications on visibility, Atmospheric Research, 132, 91-101, 10.1016/j.atmosres.2013.04.007, 2013.
- Lu, K. D., Zhang, Y. H., Su, H., Brauers, T., Chou, C. C., Hofzumahaus, A., Liu, S. C., Kita,
 K., Kondo, Y., Shao, M., Wahner, A., Wang, J. L., Wang, X. S., and Zhu, T.: Oxidant
 (O₃ + NO₂) production processes and formation regimes in Beijing, Journal of
 Geophysical Research-Atmospheres, 115, Artn D07303, 10.1029/2009jd012714,
 2010.
- Lu, X., Qin, M., Xie, P., Duan, J., Fang, W., and Liu, W.: Observation of ambient NO₃
 radicals by LP-DOAS at a rural site in North China Plain, Sci Total Environ, 804,
 149680, 10.1016/j.scitotenv.2021.149680, 2022.
- Lüttke, J., Scheer, V., Levsen, K., Wünsch, G., Cape, J. N., Hargreaves, K. J., Storeton-West, R. L., Acker, K., Wieprecht, W., and Jones, B.: Occurrence and formation of nitrated phenols in and out of cloud, Atmospheric Environment, 31, 2637-2648, 1997.
- McMurry, P. H., Woo, K. S., Weber, R., Chen, D. R., and Pui, D. Y. H.: Size distributions of 3-10 nm atmospheric particles: implications for nucleation mechanisms, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 358, 2625-2642, 10.1098/rsta.2000.0673, 2000.
- Mogensen, D., Gierens, R., Crowley, J. N., Keronen, P., Smolander, S., Sogachev, A., Nolscher, A. C., Zhou, L., Kulmala, M., Tang, M. J., Williams, J., and Boy, M.: Simulations of atmospheric OH, O₃ and NO₃ reactivities within and above the boreal forest, Atmospheric Chemistry and Physics, 15, 3909-3932, 10.5194/acp-15-3909-2015, 2015.
- Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D.,
 Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe,
 H.: Influence of aerosol chemical composition on N₂O₅ uptake: airborne regional
 measurements in northwestern Europe, Atmospheric Chemistry and Physics, 15, 973 990, DOI 10.5194/acp-15-973-2015, 2015.
- Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D.
 A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H.,

- Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J.,
- Mao, J. Q., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B.,
- Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton,
- J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic
- volatile organic compounds: oxidation, mechanisms, and organic aerosol,
- 818 Atmospheric Chemistry and Physics, 17, 2103-2162, 10.5194/acp-17-2103-2017,
- 819 2017.
- 820 Niu, Y. B., Zhu, B., He, L. Y., Wang, Z., Lin, X. Y., Tang, M. X., and Huang, X. F.: Fast
- Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its
- 822 Implications for Daytime Photochemistry, Journal of Geophysical Research:
- 823 Atmospheres, 127, 10.1029/2022jd036716, 2022.
- 824 Osthoff, H. D., Pilling, M. J., Ravishankara, A. R., and Brown, S. S.: Temperature
- dependence of the NO₃ absorption cross-section above 298 K and determination of
- the equilibrium constant for $NO_3 + NO_2 \rightarrow N_2O_5$ at atmospherically relevant
- 827 conditions, Phys Chem Chem Phys, 9, 5785-5793, 10.1039/b709193a, 2007.
- 828 Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M.,
- Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H.,
- Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.:
- High levels of nitryl chloride in the polluted subtropical marine boundary layer, Nat
- 832 Geosci, 1, 324-328, Doi 10.1038/Ngeo177, 2008.
- Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M., Vlasenko, A., Li,
- S. M., Gilman, J., de Gouw, J., Bon, D. M., Wagner, N. L., Brown, S. S., and Thornton,
- J. A.: Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer,
- 836 Environmental Science & Technology, 46, 10463-10470, 10.1021/es204632r, 2012.
- Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Vlasenko,
- 838 A., Li, S. M., Williams, E. J., Lerner, B. M., Veres, P. R., Roberts, J. M., Holloway, J.
- 839 S., Lefer, B., Brown, S. S., and Thornton, J. A.: An MCM modeling study of nitryl
- 840 chloride (ClNO₂) impacts on oxidation, ozone production and nitrogen oxide
- partitioning in polluted continental outflow, Atmospheric Chemistry and Physics, 14,
- 842 3789-3800, 10.5194/acp-14-3789-2014, 2014.
- Rosati, B., Isokääntä, S., Christiansen, S., Jensen, M. M., Moosakutty, S. P., Wollesen de
- Jonge, R., Massling, A., Glasius, M., Elm, J., Virtanen, A., and Bilde, M.:
- Hygroscopicity and CCN potential of DMS-derived aerosol particles, Atmospheric
- 846 Chemistry and Physics, 22, 13449-13466, 10.5194/acp-22-13449-2022, 2022.
- Tang, M. J., Schuster, G., and Crowley, J. N.: Heterogeneous reaction of N2O5 with illite
- and Arizona test dust particles, Atmospheric Chemistry and Physics, 14, 245-254,
- DOI 10.5194/acp-14-245-2014, 2014.
- 850 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S.,
- Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient

- and production yield of ClNO₂ in polluted northern China: roles of aerosol water content and chemical composition, Atmos. Chem. Phys., 18, 13155-13171, 10.5194/acp-18-13155-2018, 2018.
- Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N., Bohn, B., Li, X., Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmospheric Chemistry and Physics, 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.
- Thornton, J. A., Kercher, J. P., Rie De L, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dubé, W., Wolfe, G. M., Quinn, P. K., and Middlebrook, A. M.: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464, 271-274, 2010.
- Vrekoussis, M., Mihalopoulos, N., Gerasopoulos, E., Kanakidou, M., Crutzen, P. J., and Lelieveld, J.: Two-years of NO₃ radical observations in the boundary layer over the Eastern Mediterranean, Atmospheric Chemistry and Physics, 7, 315-327, 2007.
- Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., Crutzen, P. J., Lelieveld, J., Perner, D.,
 Berresheim, H., and Baboukas, E.: Role of the NO₃ radicals in oxidation processes in
 the eastern Mediterranean troposphere during the MINOS campaign, Atmospheric
 Chemistry and Physics, 4, 169-182, 2004.
- Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S.,
 Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R.,
 Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake
 coefficients and nocturnal NO₂ removal rates determined from ambient wintertime
 measurements, Journal of Geophysical Research-Atmospheres, 118, 9331-9350, Doi
 10.1002/Jgrd.50653, 2013.
- Wang, H., Chen, J., and Lu, K.: Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO₃ and N₂O₅: experimental setup, lab characterizations, and field applications in a polluted urban environment, Atmos Meas Tech, 10, 1465-1479, 10.5194/amt-10-1465-2017, 2017a.
- Wang, H., Chen, T., and Lu, K.: Measurement of NO₃ and N₂O₅ in the Troposphere, Progress in Chemistry, 27, 963-976, 10.7536/pc141230, 2015.
- Wang, H., Lu, K., Chen, S., Li, X., Zeng, L., Hu, M., and Zhang, Y.: Characterizing nitrate radical budget trends in Beijing during 2013–2019, Science of The Total Environment, 795, 10.1016/j.scitotenv.2021.148869, 2021.
- Wang, H., Wang, H., Lu, X., Lu, K., Zhang, L., Tham, Y. J., Shi, Z., Aikin, K., Fan, S., Brown, S. S., and Zhang, Y.: Increased night-time oxidation over China despite widespread decrease across the globe, Nat Geosci, 10.1038/s41561-022-01122-x, 2023.

- Wang, H., Lyu, X., Guo, H., Wang, Y., Zou, S., Ling, Z., Wang, X., Jiang, F., Zeren, Y., Pan,
- W., Huang, X., and Shen, J.: WS-Ozone pollution around a coastal region of South
- 893 China Sea: interaction between marine and continental air, Atmospheric Chemistry
- and Physics, 18, 4277-4295, 10.5194/acp-18-4277-2018, 2018a.
- 895 Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X., Chen, S., Dong,
- H., Liu, Y., Fang, X., Zeng, L., Hu, M., and Zhang, Y.: NO₃ and N₂O₅ chemistry at a
- suburban site during the EXPLORE-YRD campaign in 2018, Atmospheric Environment, 224, 10.1016/j.atmosenv.2019.117180, 2020a.
- 899 Wang, H., Chen, X., Lu, K., Tan, Z., Ma, X., Wu, Z., Li, X., Liu, Y., Shang, D., Wu, Y.,
- Zeng, L., Hu, M., Schmitt, S., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.:
- Wintertime N₂O₅ uptake coefficients over the North China Plain, Science Bulletin, 65,
- 902 765-774, 10.1016/j.scib.2020.02.006, 2020b.
- 903 Wang, H., Lu, K., Guo, S., Wu, Z., Shang, D., Tan, Z., Wang, Y., Le Breton, M., Lou, S.,
- Tang, M., Wu, Y., Zhu, W., Zheng, J., Zeng, L., Hallquist, M., Hu, M., and Zhang, Y.:
- 905 Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing,
- 906 Atmospheric Chemistry and Physics, 18, 9705-9721, 10.5194/acp-18-9705-2018,
- 907 2018b.
- 908 Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D., Tan,
- 2., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zeng, L., Zhu, T., Hu, M., and Zhang, Y.: High
- 910 N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate
- 911 Formation Pathway, Environmental Science & Technology Letters, 4, 416-420,
- 912 10.1021/acs.estlett.7b00341, 2017b.
- 913 Wang, H., Yuan, B., Zheng, E., Zhang, X., Wang, J., Lu, K., Ye, C., Yang, L., Huang, S.,
- 914 Hu, W., Yang, S., Peng, Y., Qi, J., Wang, S., He, X., Chen, Y., Li, T., Wang, W.,
- Huangfu, Y., Li, X., Cai, M., Wang, X., and Shao, M.: Formation and impacts of nitryl
- chloride in Pearl River Delta, Atmospheric Chemistry and Physics, 22, 14837-14858,
- 917 10.5194/acp-22-14837-2022, 2022.
- 918 Wang, S. S., Shi, C. Z., Zhou, B., Zhao, H., Wang, Z. R., Yang, S. N., and Chen, L. M.:
- Observation of NO₃ radicals over Shanghai, China, Atmospheric Environment, 70,
- 920 401-409, DOI 10.1016/j.atmosenv.2013.01.022, 2013.
- 921 Wang, X. F., Wang, H., Xue, L. K., Wang, T., Wang, L. W., Gu, R. R., Wang, W. H., Tham,
- 922 Y. J., Wang, Z., Yang, L. X., Chen, J. M., and Wang, W. X.: Observations of N₂O₅ and
- 923 ClNO₂ at a polluted urban surface site in North China: High N₂O₅ uptake coefficients
- and low ClNO₂ product yields, Atmospheric Environment, 156, 125-134,
- 925 10.1016/j.atmosenv.2017.02.035, 2017c.
- Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and Wang,
- 927 T.: Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and
- industrial plumes observed in the nocturnal residual layer over the North China Plain,
- 929 Atmospheric Chemistry and Physics, 17, 12361-12378, 10.5194/acp-17-12361-2017,

- 930 2017d.
- 931 Wang, J., Wang, H., Tham, Y. J., Ming, L., Zheng, Z., Fang, G., Sun, C., Ling, Z., Zhao, J.,
- and Fan, S.. (2023). Measurement report: Atmospheric nitrate radical chemistry in the
- South China Sea influenced by the urban outflow of the Pearl River Delta [Data set].
- 934 Zenodo. https://doi.org/10.5281/zenodo.8089100.
- Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosamas, C. E., Hjorth, J., Lebras, G.,
- Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The Nitrate
- 937 Radical Physics, Chemistry, and the Atmosphere, Atmos Environ a-Gen, 25, 1-203,
- 938 Doi 10.1016/0960-1686(91)90192-A, 1991.
- Wood, E. C., Bertram, T. H., Wooldridge, P. J., and Cohen, R. C.: Measurements of N₂O₅,
- NO₂, and O₃ east of the San Francisco Bay, 2005.
- 941 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R.,
- Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein,
- A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S. H., Nenes, A., Weber, R. J.,
- and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene
- and monoterpenes in the southeastern United States (vol 112, pg 37, 2015), P Natl
- 946 Acad Sci USA, 112, E4506-E4507, 2015.
- 947 Yan, C., Tham, Y. J., Zha, Q. Z., Wang, X. F., Xue, L. K., Dai, J. N., Wang, Z., and Wang,
- T.: Fast heterogeneous loss of N₂O₅ leads to significant nighttime NO_x removal and
- 949 nitrate aerosol formation at a coastal background environment of southern China,
- 950 Science of the Total Environment, 677, 637-647, 10.1016/j.scitotenv.2019.04.389,
- 951 2019.
- 952 Yan, Y., Wang, S., Zhu, J., Guo, Y., Tang, G., Liu, B., An, X., Wang, Y., and Zhou, B.:
- Vertically increased NO₃ radical in the nocturnal boundary layer, Sci Total Environ,
- 954 763, 142969, 10.1016/j.scitotenv.2020.142969, 2021.
- 955 Yang, S., Yuan, B., Peng, Y., Huang, S., Chen, W., Hu, W., Pei, C., Zhou, J., Parrish, D. D.,
- 956 Wang, W., He, X., Cheng, C., Li, X.-B., Yang, X., Song, Y., Wang, H., Qi, J., Wang,
- 957 B., Wang, C., Wang, C., Wang, Z., Li, T., Zheng, E., Wang, S., Wu, C., Cai, M., Ye,
- 958 C., Song, W., Cheng, P., Chen, D., Wang, X., Zhang, Z., Wang, X., Zheng, J., and Shao,
- M.: The formation and mitigation of nitrate pollution: comparison between urban and
- suburban environments, Atmospheric Chemistry and Physics, 22, 4539-4556,
- 961 10.5194/acp-22-4539-2022, 2022.
- 962 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W., Tham, Y. J., Chen, T., Zheng, P., Li, H., Shan,
- 963 Y., Wang, X., Xue, L., Zhou, Y., Yue, D., Ou, Y., Gao, J., Lu, K., Brown, S. S., Zhang,
- 964 Y., and Wang, T.: Heterogeneous N₂O₅ reactions on atmospheric aerosols at four
- Chinese sites: improving model representation of uptake parameters, Atmos. Chem.
- 966 Phys., 20, 4367-4378, 10.5194/acp-20-4367-2020, 2020.
- 967 Yun, H., Wang, T., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, Z., and Poon, S. C. N.:
- Nighttime NO_x loss and ClNO₂ formation in the residual layer of a polluted region:

- Insights from field measurements and an iterative box model, Science of the Total Environment, 622, 727-734, 10.1016/j.scitotenv.2017.11.352, 2018a.
- Yun, H., Wang, W. H., Wang, T., Xia, M., Yu, C., Wang, Z., Poon, S. C. N., Yue, D. L., and
 Zhou, Y.: Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during
 a severe winter haze in southern China, Atmospheric Chemistry and Physics, 18,
 17515-17527, 10.5194/acp-18-17515-2018, 2018b.
- Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W. Q., Wang, Y. Y., Bannan, T. J., Worrall,
 S. D., Priestley, M., Bacak, A., Chen, Q., Xie, C. H., Wang, Q. Q., Wang, J. F., Du, W.,
 Zhang, Y. J., Ge, X. L., Ye, P. L., Lee, J. D., Fu, P. Q., Wang, Z. F., Worsnop, D., Jones,
 R., Percival, C. J., Coe, H., and Sun, Y. L.: Production of N₂O₅ and ClNO₂ in summer
 in urban Beijing, China, Atmospheric Chemistry and Physics, 18, 11581-11597,
 10.5194/acp-18-11581-2018, 2018.
- Zhu, J., Wang, S., Zhang, S., Xue, R., Gu, C., and Zhou, B.: Changes in NO₃ Radical and
 Its Nocturnal Chemistry in Shanghai From 2014 to 2021 Revealed by Long Term
 Observation and a Stacking Model: Impact of China's Clean Air Action Plan, Journal
 of Geophysical Research: Atmospheres, 127, 10.1029/2022jd037438, 2022.