
Potential Artifacts In
:::
in

:
Conservation Laws and Invariants Inferred

from Sequential State Estimation
Carl Wunsch1, Sarah Williamson2, and Patrick Heimbach2, 3, 4

1Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA
2Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
3Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
4Institute for Geophysics, University of Texas at Austin, Austin, TX, USA

Correspondence: Sarah Williamson, swilliamson@utexas.edu

Abstract. In sequential estimation methods often used in oceanic and general climate calculations of the state and of forecasts,

observations act mathematically and statistically as forcings. For
::::::
source

::
or

::::
sink

:::::
terms

::
in

::::::::::
conservation

:::::::::
equations

:::
for

::::
heat,

::::
salt,

::::
mass,

::::
and

::::::::::
momentum.

:::::
These

:::::::
artificial

:::::
terms

:::::::
obscure

:::
the

::::::::
inference

::
of

:::
the

:::::::
system’s

:::::::::
variability

::
or

::::::
secular

::::::::
changes.

:::::::::::
Furthermore,

::
for

:
purposes of calculating changes in important functions of state variables such as total mass and energy, or volumetric

current transports, results
::
of

::::
both

:::::
filter

::::
and

:::::::::::::
smoother-based

::::::::
estimates

:
are sensitive to mis-representation of a large variety5

of parameters, including initial conditions, prior uncertainty covariances, and systematic and random errors in observations.

Here,
:

toy models of a
::::::
coupled

:
mass-spring oscillator

::::::
system and of a barotropic Rossby-wave equation

:::::
system

:
are used to

demonstrate many of the issues
:::
that

:::::
arise

::::
from

::::
such

::::::::::::::::
mis-representations. Results from Kalman-filter estimates, and those from

finite interval smoothing are analyzed. In the filter (and prediction) problem, entry of data leads to violation of conservation

and other invariant rules. A finite interval smoothing method restores the conservation rules, but uncertainties in all such10

estimation results remain. Convincing trend and other time-dependent determinations in “reanalysis”-like estimates require

a full understanding of both models and observations.
::::::
models,

:::::::::::
observations,

::::
and

:::::::::
underlying

::::
error

:::::::::
structures.

::::::::::
Application

:::
of

::::::::::::
smoother-type

:::::::
methods

:::
that

:::
are

::::::::
designed

:::
for

::::::
optimal

::::::::::::
reconstruction

::::::::
purposes

:::::::
alleviate

:::::
some

::
of

:::
the

::::::
issues.

1 Introduction

Intense scientific and practical interest exists in understanding the time-dependent behavior in the past and future of elements of15

the climate systems of a full reanalysiscomputation, some simple examples of the known difficulties with sequential analysis

methods could be useful.
::::::
system,

::::::::
especially

:::::
those

::::::::::
represented

:::
in

:
a
::::::::::

reanalysis. Expert practitioners of the methodology
::
of

::::::::
reanalysis, particularly on the atmospheric side (e.g. Dee (2005), Cohn (2010), Janjić et al. (2014), and Gelaro et al. (2017))

clearly understand the pitfalls of the methodologies, but many of these discussions are couched in the mathematical language

of continuous space-time (requiring the full apparatus of functional analysis) and/or the specialized language of atmospheric20

sciences. Somewhat controversial, contradictory, results in the public domain (e.g. Hu et al. (2020) or Boers (2021)) suggest

that, given the technical complexities of a full reanalysis computation, some simple examples of the known difficulties with

sequential analysis methods could be helpful. For scientists interested in the results, but not fully familiar with the machinery
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being used, it is helpful
:::::
useful to have a more schematic, simplified set of examples so that the numerous assumptions underly-

ing reanalyses and related calculations can be fully understood. dee2005bias
:::::::::
Dee (2005) is close in spirit to what is attempted25

here. As in geophysical fluid dynamics methods, two “toy models”
::::
“toy

:::::::
models”

:
are used to gain insight into issues applying

to far more realistic systems.

Discussion of even the simplified systems considered below requires much notation. Although the Appendix writes out the

fuller notation and its applications, the basic terminology used is defined more compactly here. Best estimates of past, present,

and future invoke knowledge of both observations and models,
:
and both involve physical-dynamical, chemical, and biological30

elements.

Fundamental to understanding many physical systems is analysis of
::
To

:::::::::
understand

::::
and

:::::::
interpret

::::
the

:::::::
behavior

::
of

::::::::
physical

::::::
systems

::::
one

::::
must

:::::::
examine

:
long-term changes in quantities that are subject to various conservation rules(e.g.

:::::
system

:::::::::
invariants

::
or

::::::::::
conservation

:::::
rules,

::::
e.g.,

:
energy, enstrophy, total mass, and mean concentrations. )

:
or
::::::

tracer
:::::::
budgets. Conservation rules in

physical systems imply that any changes in the quantity are specifically attributable to identifiable sources/sinks/dissipation35

in the interior and in the bounday conditions
:::::::
boundary

::::::::::
conditions,

:::
and

::::::::::
represented

::
as

::::
such

::
in

:::
the

:::::::::
governing

::::::::
equations. Absent

that identifiability
:::::::::
connection

:
in e.g., mass or energy conservation, claims to physical understanding must be viewed with

suspicion. In climate science particularly, violation undermines
::::::::
violations

:::::::::
undermine

:
the ability to determine system trends

::
in

:::::::
physical

::::::::
quantities

::::
such

:::
as

::::::::::
temperature

::
or

:::::
mass,

::
as

::::
well

:::
as

:::::::::::::::
domain-integrated

:::::::::
diagnostics

::::::::::
(integrated

::::
heat

:::
and

:::::
mass

:::::::
content)

over months, decades, and longer.40

Two major reservoirs of understanding of systems such as those governing the ocean or climate overall lie with observations

of the system, and with the equations
:
of

:::::::
motion (e.g., Navier-Stokes) believed applicable. Appropriate combination of the

information from both reservoirs generally leads to improvement over estimates made from either alone, but should never

degrade them. Conventional methods for combining data with models fall into the general category of control theory, in

both mathematical and engineering forms, although full understanding is made difficult in practice by the need to combine45

major sub-elements of different disciplines, including statistics of several types, computer science, numerical approximations,

oceanography, meteorology, climate, dynamical systems theory, and the observational characteristics of very diverse instrument

types and distributions. Within the control theory context, distinct goals include “filtering” (what is the present system state?),

“prediction” (what is the best estimate of the future state?), and “interval smoothing” (what was the time history over some

finite past interval?) and their corresponding uncertainties.50

In oceanography, and climate physics and chemistry more generally, a central tool has become what meteorologists call a

“reanalysis,”—a time-sequential estimation method based ultimately on long experience with numerical weather prediction.

Particular attention is called, however, to Bengtsson et al. (2004) who showed the impacts of observational system shifts on

apparent climate change outcomes arising in some sequential methods. A number of subsequent papers (see, for example,

Bromwich and Fogt (2004), Bengtsson et al. (2007), Carton and Giese (2008), and Thorne and Vose (2010)) have noticed55

difficulties in using reanalyses for long-term climate properties sometimes ending with advice—such as “minimize the errors”

(see Wunsch (2020) for one global discussion).
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For some purposes, e.g., short-term weather or other prediction, system failure
:::
the

::::::
failure

::
of

:::
the

::::::::::
forecasting

:::::::::
procedure

:::::::::
(consisting

::
of

:::::
cycles

:::::::::
producing

:::::::
analysis

:::::::::
increments

:::::
from

::::
data

:::::::
followed

:::
by

:::::
model

::::::::
forecast) to conserve massor

:
, energy or en-

strophy may be of no concern—as the time-scale of emergence for detectable consequences of that failure can greatly exceed60

the forecast time. In contrast, for reconstruction of past states, those consequences can destroy any hope of physical interpre-

tation. In long-duration forecasts with rigorous models, which by definition contain no observational data at all, conservation

laws and other invariants of the model are likely to be preserved
::::::::
preserved,

::::::::
provided

::::
their

::::::::
numerical

:::::::::::::
implementation

::
is
:::::::
accurate.

Tests however, of model elements and in particular of accumulating errors, are not then possible until adequate data do appear.

We introduce notation essential for the methods used throughout the manuscript in section
::::
Sect. 2. Experiments that examine65

the impact of data on reconstruction of invariants in a mass-spring oscillator system are discussed in section 3. This
::::::
section

includes the impact of data density and sparsity on reconstructions of energy, position, and velocity, and ends with a discussion

of the structure of the covariance matrix. Section 4 covers the Rossby wave equation and examines a simplified dynamical

system resembling a forced Rossby wave solution. Here a combination of the Kalman Filter and the Rauch-Tung-Striebel

smoother
::::
(both

:::::::
defined

::::
fully

::
in

:::::::::::::::::::
Bryson and Ho (1975)

:::
and

::::::::::::
Wunsch (2006)

:
)
:
is used to reconstruct a pseudo-energy

:::::::::
generalized70

:::::
energy

:
as well as the

::::::::::::::
time-independent

::::::::
transport

:::
of

:
a
:

western boundary current. Results are discussed in section
:::
Sect.

:
5.

Discussion of even the simplified systems considered below requires much notation. Although the Appendix writes out the

fuller notation and its applications, the basic terminology used is defined in the following.

2 Notation and Some Generic Inferences

All variables, independent and dependent, are assumed to be discrete. Notation is similar to that in Wunsch (2006). Throughout75

the manuscript lower case bold variables are vectors and upper case bold variables are matrices.

Let x(t) be a state vector for time 0≤ t≤ tf =Nt∆t:::::
where

:::
∆t

::
is

:
a
:::::::
discrete

::::
time

::::
step. A state vector is one that completely

describes a physical system evolving according to a model rule (in this case, linear),

x(t+∆t) =A(t)x(t)+B(t)q(t) , (1)

where ∆t is the constant time-step. A(t) is a square “state-transition matrix” , and B(t)q(t) is any imposed external forcing,80

including boundary conditions, with B(t) a matrix distributing disturbances q(t) appropriately over the state vector. Generally

speaking, knowledge of x(t) is sought by combining Eq. (1) with a set of linear observations,

y (t) =E(t)x(t)+n(t) (2)

Here E(t) is another known matrix, which typically vanishes for most values t, and represents how the observations measure

elements of x(t) . The variable n(t) is the inevitable noise in any real observation and for which some basic statistics will85

be assumed. Depending upon the nature of E(t), Eq. (2) can be solved by itself for an estimate of x(t) . (As part of the

linearization assumption, neither E(t) nor n(t) depends upon the state vector.)

Estimates of the (unknown) true variables x(t) and q(t) are written with tildes, x̃(t) , q̃(t), x̃(t,−) , x̃(t,+), etc. As bor-

rowed from control theory convention, the minus sign
:
in

:::::::
x̃(t,−) denotes a prediction of x(t) not using any data at time t, but
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possibly using data from the past. If no data at t are then used ,
::::
used

:::
then

:
x̃(t) = x̃(t,−) . The plus sign

::::::::
Similarly,

:::
the

::::
plus

::::
sign90

::
in

::::::
x̃(t,+) indicates an estimate at time t where data future to time t have also been employed. In what follows, the “prediction”

::::::::::
“prediction” model is always of the form Eq. (1), but normally

::::::
usually

:
with deviations in x(0) , and in q(t) , which must be

accounted for.

In any estimation procedure, knowledge of the initial and resulting uncertainties is required. For these linear problems, a

bracket is used to denote expected value, e.g. the variance matrix of any variable ξ (t) is denoted,95

Pξ (t) =

〈(
ξ̃ (t)−a

)(
ξ̃ (t)−a

)T
〉

(3)

and where a is usually the true value of ξ (t) , or some averaged value. (When ξ is omitted in the subscript, P refers to x̃.)

Together, Eqs. (1), (2) are a set of linear simultaneous equations for x(t) and possibly q(t) and which, irrespective of

whether over- or under-determined, can be solved by the standard inverse methods from linear algebra. For systems too large

for such a calculation and/or ones in which data continue to arrive (e.g., for weather) following a previous calculation, one100

moves to using sequential methods in time.

Suppose that, starting from t= 0, a forecast is made using only the model Eq. (1) until time t, resulting in x̃(t,−) and a

model-alone forecast A(t) x̃(t,−)+B(t) q̃(t). Should a measurement y(t+∆t) exist, a weighted average of
::
the

:::::::::
difference

::::::
betwee x̃(t+∆t,−) and y(t+∆t) provides the “best” estimate, where the relative weighting is by the inverse of their separate

uncertainties. In the present case, this best estimate at one time-step in the future is given by,105

x̃(t+∆t) =A(t) x̃(t,−)+B(t)q(t)+K(t+∆t) [y (t+∆t)−E(t+∆t) x̃(t+∆t,−)] , (4)

K(t+∆t) =P(t+∆t,−)E(t+∆t)T
[
E(t+∆t)P(t+∆t,−)E(t+∆t)T +R(t+∆t)

]−1
. (5)

As written, this operation is known as the innovation form of the “Kalman filter” (KF), and K(t+∆t) is the “Kalman gain.”

Embedded in this form are the matrices P(t+∆t,−) and R(t+∆t) which denote the uncertainty of the pure model predic-

tion at time t and the covariance of the observation noise (usually assumed to have zero mean error) respectively. The operators110

::::::::::
uncertainties

:
P(t,−) and P(t) evolve with time according to a matrix Riccati equation; see Appendix (A1)

:
A, Wunsch (2006)

or numerous textbooks (e.g. Stengel (1986), Goodwin and Sin (1984)) for a fuller discussion. Although possibly looking un-

familiar, Eq. (4) is simply a convenient rewriting of the matrix-weighted average of the model forecast at t+∆t with that

determined from the data. If no data exist, y (t+∆t) =E(t+∆t) = 0, and
:::
both

:::::::::
y (t+∆t)

::::
and

:::::::::
E(t+∆t)

::::::
vanish,

::::
and the

system reduces to the ordinary model prediction.115

Without doing any calculations, some surmises can be made about system behavior from Eq. (4). Among them are: (a) If the

initial condition (with uncertainty P(0)) has errors, the time evolution will propagate initial condition errors forward. Similarly,

however obtained, any error in x̃(t,−) with uncertainty covariance P(t+∆t,−) will be propagated into x̃(t+∆t) . (b) Impor-

tance of the data versus the model evolution depends directly on the ratio of the norms of E(τ)P(τ,−)E(τ)T , R(τ)
::::::::::::::::
E(τ)P(τ,−)E(τ)T

:::
and

:::::
R(τ). Lastly (c), most important for this paper, the data disturbances appear in the time-evolution equation (4) fully anal-120

ogous to the external source-sink/boundary condition term. Conservation laws implicit in the model-alone will be violated in

the time-evolution, and ultimately methods to obviate that problem must be found.
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Figure 1. Mass-spring oscillator system used as a detailed example. Although the sketch is slightly more general, here all masses have the

same value, m, and all spring constants and Rayleigh dissipation coefficients k,r are the same.

Although here the true Kalman filter is used for toy models to predict time series, in large-scale ocean or climate models

such is almost never the case in practice. Calculation of the P matrices from Eq. (A1) is computationally so burdensome that

K(t) is replaced by some very approximate or intuitive version, usually constant in time, potentially leading to further major125

errors beyond what is being discussed here.

3 Example 1: Mass-Spring Oscillator
:::::::::
Oscillators

Consider the intuitively accessible system of a mass-spring oscillator, following any of McCuskey (1959), Goldstein (1980),

Wunsch (2006), Strang (2007), initially in the conventional continuous time formulation of simultaneous differential equations.

Three identical masses,m= 1, are connected to each other and to a wall at either end by springs of identical constant, k (Fig. 1).130

Movement is damped by a Rayleigh friction coefficient r. Generalization to differing masses, spring constants, and dissipation

coefficients is straightforward. Displacements of each mass are ξi (t) , i= 1,2,3. The linear Newtonian equations of coupled

motion are,

m
d2ξ1
dt2

+ kξ1 + k (ξ1 − ξ2)+ r
dξ1
dt

= qc1 (t) (6a)

m
d2ξ2
dt2

+ kξ2 + k (ξ2 − ξ1)+ k (ξ2 − ξ3)+ r
dξ2
dt

= qc2 (t) (6b)135

m
d2ξ3
dt2

+ kξ3 + k (ξ3 − ξ2)+ r
dξ3
dt

= qc3 (t) . (6c)

This second-order system is reduced to a canonical form of coupled first-order equations by introduction of a continuous

time state vector, the column vector,

xc (t) = [ξ1 (t) , ξ2 (t) , ξ3 (t) , dξ1/dt, dξ2/dt, dξ3/dt]
T
, (7)
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where superscript T denotes the transpose. Note the mixture of dimensional units in the elements of xc (t) , identifiable with140

the Hamiltonian variables of position and momentum. Then Eqs. (6) become (setting m= 1, or dividing through by it),

dxc (t)

dt
=Acxc (t)+Bcqc (t) , (8)

where

Ac =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−2k k 0 −r 0 0

k −3k k 0 −r 0

0 k −2k 0 0 −r


=

03 I3

Kc Rc

 , (9)

defining the time-invariant 3x3 block matrices Kc and Rc, symmetric and diagonal respectively. The structure of Bc depends145

on which masses are forced. For example, if only ξ2(t) is forced, then Bc would be the unit vector in the second element.

Assuming r, k ̸= 0, A is full-rank with three pairs of complex conjugate eigenvalues, but non-orthonormal right eigenvec-

tors. A and B are both assumed time-independent. Discussion of the physics and mathematics of small oscillations can be

found in most classical mechanics textbooks and is omitted here. What follows is left in dimensional form to make the results

most intuitively accessible.150

Energy

Consider now an energy principle. Let ξ = (ξ1(t), ξ2(t), ξ3(t))
T be the position sub-vector. Define, without dissipation

(Rc = 0) or forcing,

Ec (t) =
1

2

[(
dξ

dt

)T (
dξ

dt

)
− ξTKcξ

]
(10)

dEc (t)
dt

=
1

2

d

dt

[(
dξ

dt

)T (
dξ

dt

)
− ξTKcξ

]
= 0. (11)155

Here Ec is the sum of the kinetic and potential energies (the minus sign compensates for the negative definitions in Kc). The

non-diagonal elements of Kc redistribute the potential energy amongst the masses through time.

With finite dissipation and forcing,

dEc (t)
dt

=

(
dξ

dt

)T

Rc

(
dξ

dt

)
+
dξ

dt

T

Bcq(t) . (12)

If the forcing and dissipation vanish then dEc (t)/dt= 0 (see Cohn (2010) for a formal discussion of such continuous time160

systems.)

Discretization

Eq. (1) is discretized
:::::::
Equation

:::
(1)

::
is

:::::::::
considered

:
at time intervals ∆t using an Eulerian time-step in the same form,

x(t+∆t) =Ax(t)+Bq(t) , t= n∆t, (13)
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for n≥ 0. The prediction model is unchanged except now,165

A=



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

−2k∆t k∆t 0 1− r∆t 0 0

k∆t −3k∆t k∆t 0 1− r∆t 0

0 k∆t −2k∆t 0 0 1− r∆t


(14)

=

 I3 ∆tI3

∆tKc I3 +∆tRc

 (15)

and without the c subscript.

For this choice of the discrete state vector, the energy rate of change is formally analogous to that in the continuous case,

E (t)−E (t−∆t)

∆t
=

(
dξ

dt

)T

R

(
dξ

dt

)
+
dξ

dt

T

Bq(t) (16)170

where E(t) is computed as before in Eq. (10) except now using the discretized x(t). An example solution for the nearly

dissipationless, unforced oscillator is provided in Fig. 2, produced by the discrete formulation E (t). The potential and kinetic

energies through time are shown in Fig. 2c, along with elements and derived quantities of the state vector in Fig. 2a, 2b.

Non-zero values here arise only from the initial condition x(0) = [1,0,0,0,0,0]T , and necessarily involve specifying both

:::::::::::::::::::
x(0) = [1,0,0,0,0,0]T

:::::::::
necessarily

:::::::::
specifying

::::
both

::::::
initial positions and their rates of change. A small amount of dissipation175

(r = 0.5) was included to stabilize the particularly simple numerical scheme. The basic oscillatory nature of the state vector

elements is plain, and the decay time is also visible.

The total energy declines over the entire integration time, but with small numerical oscillations persisting after 5000 time

steps. Kinetic energy is oscillatory as energy is exchanged with the potential component.

3.1 Mass-Spring Oscillator with Observations180

Note that if the innovation form of the evolution, Eq. (4), is used, the energy change becomes,

E (t)−E (t−∆t)

∆t
≈
(
dξ

dt

)T

R

(
dξ

dt

)
+
dξ

dt

T

Bq(t)+
dx(t)

dt

T

K(t) [y (t)−E(t)x(t)] ,

showing explicitly the influence of the observations. With intermittent observations and/or with changing structures in E(t) ,

then E (t) will undergo forced abrupt changes that are a consequence of the sequential innovation.

Given the very large number of potentially erroneous elements in any choice of model, data and data distributions, and185

the ways in which they interact when integrated through time, a comprehensive discussion even of the 6-element state vector

mass-spring oscillator system is difficult. Instead, some simple examples exploring primarily the influence of data density on

the state estimate and of its mechanical energy are described. Numerical experiments are readily done with the model and its
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Figure 2. The unforced case, initial condition vanishing except for ξ1 (1) = 1. Natural frequency and decay scale are apparent. (a) x1 (t)

(solid) and x1 (t)−x3 (3) (dashed). (b) x4 (solid) and x5−x6 (dashed). (c) E (t) showing decay scale from the initial displacement, alongside

kinetic energy (dashed) and potential energy (dot-dashed.)

time-constants, model time-step, accuracies and corresponding covariances of initial conditions, boundary conditions, data
:
,

etc. The basic problems of any linear or linearized system already emerge in this simple example.190

The “true” model assumes the parameters k = 30, r = 0.5, and ∆t= .001, and is forced by

q(t) = q1 (t) = 0.1cos[2πt/(2.5Tdiss)] + ε(t) . (17)

That is, only mass one is forced in position, and with a low frequency not equal to one of the natural frequencies. In this case,

B= [1,0,0,0,0,0]T and q(t) = q1(t), a scalar. The dissipation time is Tdiss = 1/r, and ε(t) is a white noise element with

standard deviation 0.1. Initial condition is ξ1 (0) = 1, all other elements vanishing; see Fig. 3
::
(b)

:::
and

:::
(c)

:
for an example of a195

forced solution of positions, velocities, and derived quantities
:
,
::::::::::
respectively. Accumulation of the influence of the stochastic

element in the forcing depends directly upon details of the model time-scales, and, if ε(t) were not white noise, on its spectrum

8



Figure 3. Forced version of the same oscillator system as in Fig. 2. Forcing is at every time-step in the mass one position alone. (a) The

forcing, q(t), is given by white noise plus the visible low frequency cosine curve. (b) x1(t) (solid) and x1 (t)−x3 (t) (dashed). (c) Total

energy through time, E (t) alongside kinetic energy (dashed) and potential energy (dot-dashed). Energy varies with the
:::::
purely random walk

arising from
::::::
process ε(t) as well as from the deterministic forcing.

as well. In all cases the cumulative effect of a random forcing will be a random walk—with details dependent upon the forcing

structure, as well as on the various model time scales.

The prediction model here has fully known initial conditions and A,B matrices, but the stochastic component of the forcing200

is being treated as fully unknown, i.e., ε(t) = 0. Added
:::::
white noise in the data values has a standard deviation of 0.01 in all

calculations. The numerical experiments and their parameters are defined in Table 1.

The experiments and their parameters are outlined in Table 1, where “ – ” is used to indicate that the same conditions as the

nominal truth are used:

205

9



3.1.1: Accurate observations at two

timesteps and multiple timesteps

3.1.2: Fixed position 3.1.3: Observations

of averages

Nominal Forcing given by q(t) (Eq. (17)), x0 = (1,0,2,0,0,0) Same as 3.1.1

truth observational noise is σ(ε(t)) = 0.1, All else the same as 3.1.1

Prediction Forcing given by 0.5q(t)− ε(t) – –

Kalman filter Forcing given by 0.5q(t)− ε(t), – –

observational noise is σ = 0.01

Table 1. Numerical experiments and corresponding parameters. Common to all configurations are the following settings: k = 30, r =

0.5, ∆t= 0.001, x0 = e1.
:::
The

::::::
symbol

:::
“–”

:::::::
indicates

::
the

::::
same

::::::::
conditions

::
as

:::
the

::::::
nominal

:::::
truth.

3.1.1 Accurate Observations: Two Times and Multiple Times

To demonstrate the most basic problem of estimating energy, consider highly accurate observations of all six generalized

coordinates (i.e., positions and velocity) at two times τ1, τ2 as displayed in Fig. 4 with E= I6, i.e. having no observational null-

space. The forecast model has the correct initial conditions of the true state but incorrect forcing: the deterministic component

has half the amplitude of the true forcing and ε(t) is completely unknown. Noise with standard deviation 0.01 is added to210

the observations. Although the new estimate of the KF reconstructed state vector is an improvement over that from the pure

forecast, any effort to calculate a true trend in the energy of the system, Ẽ(t), will fail unless careful attention is paid to

correcting for the conservation violations at the times of the observation.

Until the first data point (
::::::
denoted

::::
with a vertical line in Fig. 4

::
in

::
all

:::::
three

:::::
panels) is introduced , the KF and prediction energies

are identical, as expected. Energy discontinuities occur at each introduction of a data point (t= 5000∆t and t= 7300∆t).215

::::::::::
t= 5000∆t

:::
and

::::::::::::
t= 7300∆t),

::::
seen

::
as

:::
the

:::::::
vertical

:::::
jumps

::
in

::::
Fig.

:::
4a. After the first data point the KF energy remains

:::::
tends

::
to

::::::
remain lower than the true energy, but the KF prediction is nonetheless an improvement over that from the prediction model

alone.
::::
This

::::::
change

::
is
::::::
shown

::
in

::::
Fig.

:::
4b,

:::::
where

::::
the

::::::::
difference

::
of

::::
true

::::
and

::::::::
predicted

::
is

::::::
plotted

::::::::
alongside

:::
the

:::::::::
difference

::
of

::::
true

:::
and

:::
KF

::::::::
estimate. Even if the observations are made perfect ones (not shown), this bias error in the energy persists (see e.g.,

Dee (2005)). Figure 4c offers insight into the KF prediction via the covariance matrix P(t).
:::
The

::::::::::
uncertainty

::
in

:::
the

::::::::
predicted220

:::::::::::
displacement

::
is

::::
small

:::::
once

::::
new

::::
data

:::
are

:::::::
inserted

:::
via

:::
the

:::::::
analysis

:::::::::
increment,

:::
but

::
it
:::::::
quickly

:::::
grows

::
as

::::
the

:::::
model

::
is

:::::::::
integrated

::::::
beyond

:::
the

::::
time

::
of

:::::::
analysis.

:

Figure 5 shows the results when observations occur in clusters having different intervals between the measurements; the

first being sparser observations (300 timesteps between data points) and the second being denser observations (125 timesteps

between data points). Visually, the displacement and energy have a periodicity imposed by the observation time-intervals and225

readily confirmed by Fourier analysis. Again, the KF solution is the pure model prediction until data are available, at which

point multiple discontinuities occur, one for every t where data are introduced.

A great many further specific calculations can provide insight as is apparent in the above examples, and as inferred from

the innovation equation. ,
::::

Eq.
:::
(4).

:
For example, the periodic appearance of observations introduces periodicities in x̃(t) , and

10



Figure 4. (a) Total energy for the 3-mass-spring oscillator system (solid), E (t), the prediction model (dashed), Ẽ(t,−), and for the KF

reconstruction (dot-dashed), Ẽ(t). (b) The difference between truth and prediction total energies (solid) and the difference between truth and

KF total energies (dashed). The data points
::::
Data

:::
are

::::::::
introduced

::
at

::::
times

:::::::
indicated

:::
by

::
the

::::::
vertical

::::
lines

::::
and create discontinuities, forcing

E(t)− Ẽ(t) to be near zero. Note that the differences do not perfectly match at time t= 0, but they are relatively small. (c) Estimated

position for velocity in
:
of
:

the first mass (dξ1/dt= x4 (t)) from the Kalman filter, showing the jump at the two times where there are

complete near-perfect data. Standard error bar is shown from the corresponding diagonal element of P(t) , in this case given by
√
P44.

hence in properties such as the energy derived from it. Persistence of the information in these observations at future times will230

depend upon model time-constants including dissipation rates.

3.1.2 A Fixed Position

Exploration of the dependencies of energies of the mass-spring system is interesting and a great deal more can be said. Turn

however, to a somewhat different invariant: suppose that one of the mass positions is fixed, but with the true displacement

unknown to the analyst. A significant literature exists devoted to finding changes in scalar quantities such as global mean235

atmospheric temperatures, or oceanic currents, with the Atlantic Meridional Overturning Circulation (AMOC) being a favorite

focus. These quantities are typically sub-elements of complicated models involving very large state vectors.
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Figure 5. (a) Similar to Fig. 4. Shown are true total energy (solid), E(t), plotted alongside the prediction mode
:::::
model

:
energy (dashed),

Ẽ(t,−), and calculated from KF algorithml
:::::::
algorithm

:
(dot-dashed), Ẽ(t). (b) The difference between the “truth” and prediction (solid)

alongside the difference between “truth” and KF (dashed). (c) The position of mass two, x2(t), given by the “true” model (solid), the

prediction (dashed), and the KF estimate (dot-dashed). The introduction of data points forces the KF to match the state vector from the data,

creating the discontinuities expected. (d) x2(t)− x̃2(t,−) (solid) alongside x2(t)− x̃2(t) (dashed).

The true model is now adjusted to include the constraint that x3 (t) = ξ3 (t) = 2 and thus x6 (t) = dξ3 (t)/dt= 0. That is,

a fixed displacement in mass 3 (and consequently a zero velocity in mass 3) is used in computing the true state vector. The

forecast model has the correct initial condition and incorrect forcing: with a deterministic component again having half the240

:::
true

:
amplitude and fully unknown noise ε(t). Observations are assumed to be those of all displacements and velocities, with

the added noise having standard deviation 0.01. Results are shown in Fig.
:
6.

:
The question is whether one can infer accurately

that ξ3 (t) ::::
ξ3 (t) is a constant through time.

:
? A KF estimate for the fixed position, x̃3(t) = ξ̃3 (t), is shown in Fig. 6(a) and

includes a substantial error in its value (and its variations or trends) at all times. Exceptions occur when data are introduced at

the vertical lines in Fig. 6(a), (b). Owing to the noise in the observations, the KF cannot reproduce a perfect result.245

Estimated mass 3 position variations
:::::::
Looking

::
at

::::
Fig.

::::
6(a),

:::
one

::::
sees

:::
that

::::::::
variations

::
in
:::
the

:::::::
position

::
of

:::::
mass

:
3
:
occur even during

the data dense periodand .
::::
The

::::::::
variations

:
arise both from the entry of the data and the noise in the observations. An average

12



Figure 6. (a) Correct value of the constant displacement x3 (t) (solid line) and the estimated value from the KF calculation (dot-dashed line)

with error bar computed from P. Vertical lines are again the observation times. (b) Correct value of the constant velocity x6 (t) (solid line)

and the estimated value from the KF calculation (dot-dashed line) with error bar computed from P. (c) The total energy given by the true

model (solid line), the prediction value (dashed line), and the KF estimate (dot-dashed line.) (d) The absolute value of the difference between

truth and prediction (solid line), and the absolute value of the difference between truth and the KF value (dashed line.)
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taken over the two-halves of the observation interval might lead to the erroneous conclusion that a decrease had taken place.

Such an incorrect inference can be precluded by appropriate use of computed uncertainties. Note also the impact of the KF on

the energy (Fig. 6c,d), producing artificial changes as in the previous experiment.250

3.1.3 Observations of Averages

Consider now a set of observations of the average of the position of masses 2
:
2
:
and 3, and of the average velocity of masses

1 and 2, mimicking the type of observations that might be available in a realistic setting. Again for optimistic simplicity, the

observations are relatively accurate (including noise with standard deviation 0.01) and occur in the two different sets of periodic

time intervals. Prediction begins with the correct initial conditions, and again the forcing has half the correct amplitude with255

fully unknown random forcing. Figure 7 displays the results. Position estimates shown
:
in

::::
Fig.

::::
7(c) are good, but not perfect,

as is also true for the total energy .
::::
seen

::
in

::::
Fig.

::::
7(a).

:
The energy estimate carries oscillatory power with the periodicity of the

oncoming observation intervals and appears in the spectral estimate (not shown) with excess energy in the oscillatory band, and

somewhat too low energy at the longest periods. Irregular observation spacing would generate a more complicated spectrum in

the result.260

A general discussion of nullspaces involves that of the column weighted P(τ,−)ET appearing in the Kalman gain. If E is

the identity (i.e. observations of all positions and velocities), and R(τ) has sufficiently small norm, all elements of x(τ) are

resolved. In the present case, with E having two rows, corresponding to observations of the averages of two mass positions and

of two velocity positions, the resolution analysis is more structured than the identity with,

E=

 0 1/2 1/2 0 0 0

0 0 0 1/2 1/2 0

 . (18)265

A singular value decomposition E=USVT =U2S2V
T
2 , produces two non-zero singular values, where U2, etc. denotes the

first two columns of the matrix. At rank 2, the resolution matrices, TU , TV , based on the U, V vectors respectively and the

standard solution covariances are easily computed (Wunsch (2006)). A distributes information about the partially determined

xi throughout all masses via the dynamical connections as contained in P(τ) . Bias errors require specific, separate analysis.

The impact of an observation on future estimated values tends to decay in time, dependent upon the model time-scales.270

Insight into the future influence of an observation can be obtained from the Green function discussion in the Appendix.

3.2 Uncertainties

In a linear system, a Gaussian assumption for the dependent variables is commonly appropriate. Here the quadratic dependent

energy variables become χ2 distributed. Thus the ξ2i , ξ̇
2
i have such distributions, but with differing means and variances, and

with potentially very strong correlations, so that they cannot be regarded as independent variables. Determining the uncertain-275

ties of the six covarying elements making up Ẽ (t) involves some intricacy. A formal analysis can be made of the resulting

probability distribution for the sum in Ẽ (t), involving non-central χ2 distributions (Imhof (1961), Sheil and O’Muircheartaigh

(1977), Davies (1980)). As an example, an estimate of the uncertainty could be made via a Monte Carlo approach by generating
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Figure 7. (a) Results for total energy when observations were of the average of the two positions x2 (t) ,x3 (t) and the two velocities,

x4 (t) ,x5 (t) at the times marked by vertical lines. (b) Total energy differences corresponding to the situation in (a). (c) Results for the

displacement x2(t) estimate when observations were of averages along with error bar from P. (d) Differences between true and predicted

(solid blue) and true and KF (dashed red).
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Figure 8. From left to right: (a) The first three diagonal elements of P before any observations of x5 (solid) and after ten observations of x5

(dashed). (b) The last three diagonal elements of P before any observations (solid) and after ten observations (dashed.)

N different versions of the observations, differing in the particular choice of noise value in each and tabulating the resulting

range. These uncertainties can be used to calculate, e.g., the formal significance of any apparent trend in Ẽ (t) .
:::::
Ẽ (t) . Implicit in280

such calculations is having adequate knowledge of the probability distribution from which the random variables are obtained.

An important caveat is that
:::
once

:::::
again

:
bias errors such as those seen in the energy estimates in Fig. 7

::
(a)

:
must be separately

determined.

The structure of the uncertainty operator P depends upon both the model and the detailed nature of the observations via
:::
(see

::::::::
Appendix

::
A;

:
Eq. (A3)). Suppose observations only provide knowledge of the velocity of mass 2, x5(t). Consider P(t= 7124),285

just before observations become available (i.e., the model has mimicked a true prediction until this point), and P(t= 8250),

after ten observations of x5 have been incorporated with the Kalman filter. The resulting P(t) following the observations

produces highly inhomogeneous variances (the diagonals of P). In this particular case, one of the eigenvalues of P(τ) for

τ just beyond the time of any observation, is almost zero, meaning that P(τ) is nearly singular (Fig. 8). The corresponding

eigenvector has a value near 1 in position 5 and is near zero elsewhere. Because numerous accurate observations were made of290

x5(t), its uncertainty almost vanishes for that element, and a weighting of values by P(t)
−1, gives it a near infinite weight at

that time.
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3.3 A Fixed-Interval Smoother

The Kalman filter and various approximations to it produce an estimate at any time, τ , taking account only of data at τ or

in the past—with an influence falling as the data recedes into the past, at a rate dependent on the model time scales. But295

in many problems, such as those addressed (for one example) by the Estimating the Circulation and Climate of the Ocean

(ECCO) project
:::::::::::::::::::::::::::::::::::::::::::
(Stammer et al., 2002; Wunsch and Heimbach, 2007), the goal is to find a best-estimate over a finite interval,

nominally, 0≤ t≤ tf , and accounting for all of the observations, whether past or future to any τ. Furthermore, as already noted

above, physical sense requires satisfaction of the generalized (to account for sources/sinks) energy, mass, and other important

conservation rules. How to do that?300

In distinction to the “filtering” goal underlying a KF best-prediction, the fixed interval problem is generally known as that of

“smoothing.” Several approaches exist. One of the most interesting, and one leading to the ability to parse data versus model

structure impact over the whole interval, is called the Rauch-Tung-Striebel (RTS) smoothing algorithm. In that algorithm, it

is assumed that a true KF has already been run over the full time-interval, and that the resulting x̃(t) , P(t) , x̃(t,−) ,P(t,−)

remain available. The basic idea is subsumed in the algorithm,305

x̃(t,+) = x̃(t) + L(t+∆t) [x̃(t+∆t,+)− x̃(t+∆t,−)] (19)

with

L(t+∆t) =P(t)A(t)T P(t+∆t,−)−1 (20)

This new estimate, using data future to t, depends upon a weighted average of the previous best estimate x̃(t) with its difference

between the original pure prediction, x̃(t+∆t,−) and the improvement (if any) made of the later estimate at t+∆t. The310

latter uses any data that occured after that time. Thus a backwards-in-time recursion of Eq. (19) is done—starting from the

best estimate at the final KF time, t= tf , beyond which no future data occur. The RTS coefficient matrix, L(t+∆t), has a

particular structure accounting for the correlation between x̃(t+∆t,+) and x̃(t+∆t,−) generated by the KF. Equation (A5)

calculates the new uncertainty, P(t,+) .

In this algorithm a correction is also necessarily made to the initial assumptions concerning q(t) , producing a new set315

of vector forcings, q̃(t,+) = q(t)+ ũ(t) such that the new estimate, x̃(t,+) exactly satisfies Eq. 1 with q̃, at all times,

over the interval. If the true model satisfies energy
::::::::::
conservation, so will the new estimate.

:::
That

::::
the

::::::::
smoothed

::::::::
estimate

::::::
satisfies

::::
the

::::::::::
free-running

::::
but

:::::::
adjusted

::::::
model

:::::::::
parameters

::::
and

::::
thus

:::
all

::
of

:::
its

:::::::
implied

:::::::::::
conservation

::::
laws

::
is
::::::::::::

demonstrated
:::
by

::::::::::::::::::
Bryson and Ho (1975)

::
in

:::::::
Chapter

:::
13. Estimated ũ(t,+), often called the “control vector,” has its own computable uncertainty

found from Eq. (A5b). In many problems, an improved knowledge of the forcing field/boundary conditions may be equally or320

more important than is improvement of the state vector. Application of the RTS algorithm is made in the following section to

a slightly more geophysical example.
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4 Example 2: Barotropic Rossby Waves

Consider the smoothing problem in a geophysical fluid dynamics toy model. Realism is still not the goal, which remains as the

demonstration of various elements making up estimates in simplified settings.325

4.1 Rossby Wave Normal Modes

A flat-bottom, linearized β-plane Rossby wave system, has a two-dimensional governing equation for the streamfunction, ψ,

∂∇2ψ

∂t
+β

∂ψ

∂x
= 0, (21)

in a square beta-plane basin of horizontal dimension L.
:::
The

::::::::
parameter

:::::::::
β = df/dy

::
is
:::
the

::::::::
variation

::
of

:::
the

:::::::
Coriolis

:::::::::
parameter,

::
f ,

:::::
which

:::::
varies

::::
with

:::
the

:::::::
latitude

:::::::::
coordinate,

::
y.
:
This problem is representative of those involving both space and time structures,330

including boundary conditions. (Spatial variables x,y should not be confused with the state vector or data variables). Eq. (21)

and other geophysically important ones are not self-adjoint, and the general discussion of quadratic invariants leads inevitably

to adjoint operators (see Morse and Feshbach (1953) or for bounding problems—Sewell et al. (1987), Chs. 3, 4).

The closed-basin problem was considered by Longuet-Higgins (1964). Additionally, Pedlosky (1965) and LaCasce (2002)

provide helpful discussions of normal modes. Relevant real observational data are discussed by Luther (1982), Woodworth335

et al. (1995), Ponte (1997), Thomson and Fine (2021) and others. The domain here is 0≤ x≤ L, 0≤ y ≤ L with boundary

condition ψ = 0 on all four boundaries.

Introduce non-dimensional primed variables t′ = ft, x= Lx′, y = Ly′, q = q0q
′, and ψ′ = (a2/f)ψ. Letting a be the radius

of the Earth, and β = β′f/a= 1.7, Eq. (21) is non-dimensionalized as

∂∇′2ψ′

∂t′
= β′L

a

∂ψ′

∂x′
= 0. (22)340

Choosing further L= a
:::::
(since

:
a
::
is

::
of

:::
the

:::::
same

:::::
order

::
as

:::
the

:::::
width

:::
of

:::
the

::::::
Pacific), and then omitting the primes from here on

except for β′,

∂∇2ψ

∂t
+β′ ∂ψ

∂x
= 0 (23)

Haier et al. (2006) describe numerical solution methods that specifically conserve invariants, but these methods are not used

here. Gaspar and Wunsch (1989) employed this system for a demonstration of sequential estimation with altimetric data. Here345

a different state vector is used.

An analytical solution to (23) is,

ψ (t,x,y) =

N∑
n=0

M∑
m=0

exp(−iσnmt)cnme−iβ′x/σnm sin(nπx)sin(mπy) , (24)

along with the dispersion relation,

σnm =− β′/2√
(nπ/L)

2
+(mπ/L)

2
(25)350

18



where cnm is a coefficient dependent only upon initial conditions in the unforced case.

A state vector is then

x(t) = {cp(t)} ,

where p is a linear ordering of n,m. Total dimension is then N ·M , with N,M the upper limits in Eq. (24). State transition

can be written in the now familiar form,355

xj (t+∆t) = exp(−iσj∆t)xj (t) , j = 1, ..,NM. (26)

For numerical examples with the KF and RTS smoother, a random forcing qj(t) is introduced at every step so that,

xj (t+∆t) = exp(−iσj∆t)xj (t)+ qj(t), j = 1, ..,NM. (27)

Note that with the introduction of a forcing these coefficients do
::
the

:::::::
solution

:::::::::
described

:::
by

:::::::::
coefficients

:::
cp::::

does
:
not strictly

satisfy Eq. (23) but are
::
is rather an over-simplified version of a forced solution. Discussion of this dynamical system is still360

useful for understanding the difficulties that arise in numerical data assimilation. An example of a true forced solution to (21)

is examined in Pedlosky (1965).

The problem is now made a bit more interesting by addition to ψ1 :
ψ
:
of a steady component.

:::::::
Namely, the solution , ψs (x,y)

from Stommel (1948)
:
, whose governing equation is,

Ra∇2ψs +β
∂ψs

∂x
= sinπy, (28)365

where Ra is a Rayleigh friction
::::::::
coefficient.

An approximate solution, written in the simple boundary-layer/interior form is (e.g., Pedlosky (1965)),

ψs = e−xβ′/R′
a sinπy+(x− 1)sinπy, (29)

which leads to a small error in the eastern boundary condition (numerical calculations that follow used the full Stommel (1948)

solution). The sinπy arises from Stommel’s assumed time-independent wind-curl
:::::::::
wind-stress

::::
curl.370

The new state vector becomes,

x(t) =

cp(t)1

 (30)

now of total dimension N ·M +1.

The state transition matrix A is diagonal with the first N ·M diagonal elements
::::
given

:::
by diag(exp(−iσj∆t))and ,

::::
and

::
the

:::::
final

:::::::
diagonal

:::::::
element

:
AN ·M+1,N ·M+1 = 1,

::::::
overall square of dimension N ·M +1. A small, numerical dissipation is375

introduced, multiplying A by exp(−b) for b > 0, to accommodate loss of memory, e.g., as a conventional Rayleigh dissipation.

The
:::::
matrix operator B is diagonal with the first N ·M diagonal elements diag(1)

::
all

:::::
equal

::
to

::::
one, and BN ·M+1,N ·M+1 = 0 (no
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forcing is added to the steady solution.) Some special care in computing covariances must be taken when using complex state

vectors and transition matrices (Schreier and Scharf (2010)).

Consistent with the analysis in Pedlosky (1965), no westward intensification exists in the normal modes, which decay as380

a whole. Rayleigh friction of the time-dependent modes is permitted to be different from that in the time-independent mean

flow—a physically acceptable situation.

If q(t) = 0 and with no dissipation, then Eq. (23) has several useful conservation invariants including the quadratic invariants

of the kinetic energy and of the variance in ψ,

Φ(t) = x(t)Tx(t) =

N ·M∑
k=1

|xk(t)|2 (31)385

(conjugate transpose); and the linear invariant of the vorticity or circulation—when integrated over the entire basin domain. As

above, estimates of the quadratic and linear conservation rules will depend explicitly on initial conditions, forces, distribution

and accuracy of the data, and the covariances and bias errors assigned to all of them.

4.1.1 System with Observations

Using the KF plus RTS smoother for sequential estimation, estimates of Φ(t) as well as the transport of the western boundary390

current (WBC), TWBC (t) , are calculated; the latter is constant in time, although that is unknown to the analyst. Random noise

in TWBC (t) exists from both physical noise—the normal modes—and that of the observations y (tj), as would be the situation

in nature.

Eq. (1) with the above A,B is used to generate the correct
:::
true fields. Initial conditions, x(0)

:
, in the modal components are,

395

xp (0) = 1/(n2 +m2), p= (n,m), n= 3,4,5, m= 4,5, . . . ,9 (32)

Modal periods are shown in Fig.
::
9. Parameters are fixed as ∆t= 29, b= 1.8 · 10−3, and the random forcing

::
qj:has standard

deviation 0.002.

The prediction model uses
:::::::
0.5qp(t):::

as a first guess for q(t) as 0.5qp(t) :::::
qp (t) where qp(t) are the true random forcing

values, and the initial conditions are too-large as 1.5x(0)
:::::::
1.5x(0). Noisy observations y(t) are supposed

:::::::
assumed

:
to exist at400

the positions given
::::::
denoted

::::
with

:::
red

::::
dots in Fig. 10, and the measurement noise has a standard deviation of 0.001.

The field ψ (t= 167∆t) as given by the true model is shown in Fig. 10, keeping in mind that apart from the time-mean ψ,

the structure seen is the result of a particular set of random forcings.

Aliasing

In isolation, the observations will time-alias the field, if not taken at minimum intervals of 1/2 the shortest period present405

(here 4∆t). A spatial-alias
:::::
spatial

::::
alias occurs if the separation between observations is less than 1/2

:::::
larger

::::
than

:::::::
one-half

::
of the

shortest wavelength present (here ∆y = 1/9). Both these phenomena are present in what follows, but their impact is minimized

by the presence of the time-evolution model.
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Figure 9. (a) Non-dimensional periods. Grouped ,
:::::::
grouped by fixed n and increasing m. (b) Inverse of the periods in (a), giving us the

frequencies.

4.2 Results: Kalman filter and RTS smoother

For the KF and RTS algorithms the model is run for tf = 2000 timesteps with the above parameters.410

4.2.1 Energy Estimates

A KF estimate is computed and the results stored. As in section 3.1.1, observations are introduced in two intervals, each with

a different density of observations: initially data are introduced with 50∆t between them, and subsequently reduced to 25∆t

between observations. Observations cease prior to TF , mimicking a pure prediction interval following the observations.

The estimated values of the quadratic Φ(t) are shown in Fig. 11 for the true values, the prediction, KF estimatesand
:::
KF415

::::::::
estimates,

:
RTS smoother estimates

:
,
:::
and

:::
the

::::
pure

::::::
model

:::::::::
prediction. The KF and prediction estimates agree until the first ob-

21



Figure 10. Stream function at t= 167∆t, with the normal modes superimposed on the time–independent Stommel solution. At later times,

the mean flow becomes difficult to visually detect in the presence of the growing normal modes under the forcing. The markers indicate the

locations of the observational data, and the horizontal line at y = 0.5 is the distance over which the boundary current transport is defined.

servation time, at which point a clear discontinuity is seen. As additional observations accumulate, ΦKF (t) jumps by varying

amounts depending upon the particulars of the observations and their noise. Over the entire observation interval the energy re-

constructed by the KF remains low—a systematic error owing to the sparse observations and null space of E. Here the forcing

amplitude overall dominates the effects of the incorrect initial conditions. Uncertainty estimates for energy would once-again420

come from summations of correlated χ2 variables of differing means. In the present case, important systematic errors are

visible as the offsets between the curves in Fig. 11.

This system can theoretically be over-determined by letting the number of observations at time t exceed the number of

unknowns—should the null space of E(t) then vanish. As expected, with 14 covarying observations, and 18 time-varying

unknown xi (t), rank 12 time-independent E(t) =E has a nullspace, and thus energy in the true field is missed even if the425

observations were perfect. As is well-known in inverse methods, the smaller eigenvalues of E and their corresponding eigenvec-

tors are most susceptible to noise biases. The solution nullspace of this particular E(t) is found from the solution eigenvectors

of the singular value decomposition, UΛVT =E. Solution resolution matrix at rank K = 12, VKVT
K , is shown in Fig. 12.
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Figure 11. (a) The energy, i.e. Φ(t) defined by Eq. (31), computed from the non-dimensional state vector of the true model, prediction,

KF, and the RTS reconstructions. In the KF the initial conditions are 20% too large, and the forcing is 50% too small. Full knowledge of A

is assumed. (b) An expanded plot for timesteps 380≤ t≤ 1325 where observations were incorporated into the result. The RTS smoother

produces an improved energy, namely one without discontinuities and marginally more accurate than does the KF. (c) Difference between

the true values and from the KF (solid line), and
:::::::
difference

:
between the

:::
true

:::::
values and RTS smoother values (dashed line).

Thus the observations carry no information about modes (as ordered) 3, 6, 9, 12, 15, and 18. In a real situation, if control

over positioning of the observations was possible, this result could sensibly be modified and/or a strengthening of the weaker430

singular values could be achieved. Knowledge of the nullspace structure is important in the interpretation of results.

A more general discussion of nullspaces involves that of the weighted P(τ,−)ET appearing in the Kalman gain (Eq. 5).

If P(τ,−)
1/2 is the Cholesky factor of P(τ,−) (Wunsch (2006), page 56), then EP(τ,−)

1/2 is the conventional column-

weighting of E at time τ, and the resolution analysis would be applied to that combination. A diagonal A does not distribute

information from any covariance amongst the elements xj(τ) and which would be carried in P(τ,−) .435

Turning now to the RTS smoother, Fig. 11 shows that the energy in the smoothed solution, ΦRTS (t) , is continuous (up

to the model time-stepping changes), but briefly exceeds the true energy prior to the appearance of the first observation. The

only information available to the prediction prior to the observational interval lies in the initial conditions, which were given
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Figure 12. (a) Eigenvalues of the first 14 singular vectors of E. Rank is 12 with 14 observational positions. (b) Diagonal elements of the

rank 12 solution resolution matrix, showing lack of information for several of the modes. A value of 1 means that the mode is fully resolved

by the observations. All variables are non-dimensional.

incorrect values leading to an initial uncertainty. Estimated unknown elements u(t) , of q(t)
::::
u(t),

:::
the

::::::
control

::::::
vector,

::
of
:::::
q(t)

in this interval also have a large variance.440

One element through time of the estimated control vector , ũ(t) ,
:::
ũ(t)

:
and its standard error are shown in Fig. 13. The

complex result of the insertion of data is apparent. As with the KF, discussion of any systematic errors has to take place outside

of the formalities leading to the smoothed solution. This RTS solution does conserve Φu(t) ,
::::
Φ(t) ,

:
as well as other properties

(circulation).

24



Figure 13. (a) One element, u2(t), of the control vector correction estimate and (b) its standard error through time, showing the drop towards

zero at the data time, and the slow increase towards a higher value when no data is
::
are

:
available

::
(we

::::
note

:::
here

:::
that

:::::::
Q(t,+)

:
is
::::::::
computed

::::
from

:::::
t= Tf::::::::

backwards
::
to

:::::
t= 0).
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4.2.2 Western Boundary Current Estimates445

Consider now determination of T̃WBC (t), the north-south transport across latitude y0 at each time-step, whose true value is

constant. TWBC (t) is computed from the velocity or stream function as,

TWBC (t) = ψ (t, 0, y0)−ψ (t, x0, y0) , (33)

the stream-function difference between a longitude pair, x= 0, x0. From the boundary condition, ψ (t,0,y0) = 0, identically.

The horizontal line segment in Fig. 10 indicates the location of the zonal section for the experiment at y0 = 0.5, extending from450

x= 0 to x0 = 0.2. In the present context, five different values of TWBC (t) are relevant: (A
:
a) the true, steady, time-invariant

value, computed from the Stommel solution; (B
:
b) the true apparent

::::::::::::
time-dependent

:
value including mode contributions from

Eq. (27); (C
:
c) the estimated value from the prediction model; (D

:
d) the estimate from the KF; and (E

:
e) the estimate from the

RTS smoother. Fig.
:::::
Figure 14a displays the transport computed from the full version of Eq. 33,

:::::::
Stommel

:::::::
solution

:::
ψs alongside

the transport computed from the KF estimate. Panel (b)
:
in

::::
Fig.

::
14

:
displays the same variables for

:::::
steady

:::::::
transport

:::::::::
alongside455

the RTS estimate. Values here are dominated by the variability induced by the normal modes, leading to a random walk. Note

that the result can depend sensitively on positions x0, y0, and the particular spatial structure of any given normal mode.

In the KF reconstruction (Fig. 14a), observations move the WBC transport values closer to the steady solution, seen via the

jump at t= 400, but remain noisy. Transport value uncertainties are derived from the P of the state vector using Eq. (A1) and

shown in Fig. 14
:
c. Within the observation interval the estimates are indistinguishable from the true value, but still have a wide460

uncertainty with time scales present both from the natural variability and the regular injection times of the data. The magnitude

of the uncertainty, during the observation intervals, is still roughly 10% of the magnitude of the KF estimate.

Fig. 14b shows the behavior of the estimate of TWBC (t) after the RTS smoother has been applied. Most noticeably, the

discontinuity that occurred at the onset of the observations has been removed.

(a) Estimated non-dimensional western boundary current transport from the Kalman filter (solid line) and the steady western465

boundary current from the Stommel solution (dashed line). (b) Same as (a) except now the smoothed TWBC from the RTS

smoother next to the steady solution. Vertical dashed lines indicate timesteps where data was available (c) Uncertainty in the

TWBC predictions over time, computed from the operators P(t) and P(t,+).

A test of the negative
:::
null hypothesis that the transport computed from the RTS smoother was indistinguishable from a

steady value is based upon an analysis using the uncertainty (not shown).470

The very large uncertainty prior to the onset of data, even with use of a smoothing algorithm, is a central reason that the state

estimate produced by the Estimating the Circulation and Climate of the Ocean (ECCO) project (e.g.Fukumori et al. (2018)

:
,
:::::::::::::::::::::::::::::::::::::
Stammer et al. (2002); Fukumori et al. (2018)) is confined to the interval following 1992 when the data become far denser

than before
::::::
through

:::
the

::::::
advent

::
of

:::::::::::::
ocean-dedicated

:::::::
satellite

::::::::
altimetry

:::
and

:::::::
nascent

:::::
Argo

:::::
arrays. Estimates prior to a dense data

interval depend greatly upon the time durations built into the system, which in the present case are limited by the longest475

normal mode period. The real ocean does include some very long memory (Wunsch and Heimbach (2008)), but the estimation

skill will depend directly on the specific physical variables of concern. (ECCO estimates are based upon a different algorithm
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Figure 14.
::

(a)
:::::::
Estimated

:::::::::::::
non-dimensional

::::::
western

::::::::
boundary

:::::
current

:::::::
transport

:::::
from

::
the

:::::::
Kalman

::::
filter

::::
(solid

::::
line)

:::
and

:::
the

::::::
steady

::::::
western

:::::::
boundary

:::::
current

::::
from

:::
the

:::::::
Stommel

:::::::
solution

::::::
(dashed

::::
line).

:::
(b)

::::
Same

::
as

:::
(a)

:::::
except

::::
now

::
the

::::::::
smoothed

:::::
TWBC::::

from
:::

the
::::
RTS

:::::::
smoother

::::
next

:
to
:::
the

:::::
steady

:::::::
solution.

::::::
Vertical

:::::
dashed

::::
lines

::::::
indicate

::::::::
timesteps

::::
where

::::
data

:::
was

:::::::
available

:::
(c)

::::::::
Uncertainty

::
in
:::
the

::::::
TWBC ::::::::

predictions
::::
over

::::
time,

:::::::
computed

::::
from

:::
the

:::::::
operators

::::
P(t)

:::
and

:::::::
P(t,+).

using iterative least-squares and Lagrange multipliers (Stammer et al. (2002).) For a linear system, those results are identical

to those using a sequential smoother ; (see Fukumori et al. (2018).)

Some understanding of the impact via the smoother of later observations on KF time estimates can be found from the480

operator L(t) . Fig. 15 shows the norm of the operator L (Eq. 20) controlling the correction to earlier state estimates, along

with the time dependence of one of its diagonal elements. As always, the temporal structure of L(t) depends directly upon

the time constants embedded in A, and the compositions of P(t) ,P(t+∆t,−). In turn these latter are determined by any

earlier information, including initial conditions, as well as the magnitudes and distributions of later forcing and data accuracies.

Generalizations are not easy.485

Relative importance of the
:::
The norm of the gain matrix M(t)

:::::
M(t),

::::
used

:
for computation of the control vector Eq. (A4)is

:
,

provides a measure of its importance relative to the prior estimate, and is displayed in Fig. 16. Here the dependence is directly
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Figure 15. (a) Norm of the operator L controlling the backwards in time state estimate (see
:::
Eq. (20), RTS smoother for the full equation)

:
,

(b) The real (solid line) and imaginary (dashed line) components of L22(t).

upon the a priori known control variance Q(t) , the data distributions, and P(t+∆t,−) . The limiting cases discussed above

for the state vector also provide insights here.

4.2.3 Spectra490

Computation of the spectral estimates of the various estimates of any state vector element or combination is straightforward

and the z−transforms in the Appendix provide an analytic approach. What is not so straightforward is the interpretation of the

result in this non-statistically stationary system. Care must be taken to account for the non-stationarity.
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Figure 16. Norm of the gain matrix M through time and which determines the magnitude and persistence of inferred changes in the control

variables u(t).

5 Discussion
:::
and

:::::::::::
Conclusions

In sequential estimation methods, the behavior of dynamical system invariants and conservation laws, including energy or495

circulation or scalar inventories, or derived ones such as a thermocline depth, depend, as shown using toy models, upon a

number of parameters. These parameters include the time scales embedded in the dynamical system, the temporal distribution

of the data
:::
used

::
in
:::
the

:::::::::
sequential

:::::::::
estimation relative to the embedded time-scales, the accuracies of initial conditions, boundary

conditions, sources and sinks, and data, as well as the accuracy of the governing time evolution model. Errors in any of these

parameters can lead to physically significant errors in estimates of the state and control vectors and any quantity derived from500

them.

Estimates depend directly upon the accuracies of the assumed and calculated uncertainties in all of the elements making

up the estimation system. Impacts of data insertions can range from very short time intervals to those extending far into the

future. Because of model/data interplay, the only easy generalization is that the user must check the accuracies of all of these

elements, including the appearance of systematic errors in any of them (e.g., Dee (2005)), or of periodicities arising solely505
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from data distributions. When feasible, a strong clue to the presence of systematic errors in energies, as one example, lies in

determining the nullspace of the observation matrices coupled with the structure of the state evolution matrices, A. Analogous

examples have been computed for advection-diffusion systems (not shown, but see Marchal and Zhao (2021)) with results

concerning, in one example, estimates of fixed total tracer inventories.

:::
Use

::
of
::::::::

Kalman
:::::
filters,

::::
and

:::
the

::::::
simple

:::::::::
analogues

::::
most

:::::
often

:::::
used

::
in

:::::::
weather

:::::::::
prediction

::
or

:::::::::::
“reanalyses”

::::::::
produces

::::::
results510

:::
that

:::
are

::::::
always

::::::::::
sub-optimal

:::::
when

:::
the

::::
goal

::
is

::::::::::::
reconstruction

:::::::
because

::::
data

:::::
future

::
to

:::
the

:::::::
estimate

::::
have

::::
not

::::
been

:::::
used.

::
A

::::::
second

::::::::::
consequence

::
is

:::
the

::::::
failure

::
of

:::
the

:::::
result

::
to

:::::
satisfy

::::
any

::::::::
particular

:::::::::
dynamical

::::::::::::
time-evolution

:::::
model

::::::::
implying

:::
loss

:::
of

::::::
energy,

:::::
mass,

:::
etc.

:::::::::::
conservation

::::
laws.

:
In the Rossby wave example, reconstructions of the constant western boundary current transport im-

proved
::
as

:::::::
expected

:
from that of the KF, by using future data and the Rauch-Tung-Striebel (RTS) smoother. Estimates nonethe-

less can still contain large uncertainties—quantifiable from the accompanying algorithmic equations. The RTS algorithm is only515

one choice from several approaches to the finite interval estimation problem. Alternatives include the least-squares/Lagrange

multiplier approach of the ECCO project, which in the linear case can be demonstrated to produce identical results.

All possible error sources have not been explored. In particular, only linear systems were analyzed, assuming exact knowl-

edge of the state transition matrix, A, and the data distribution matrix, B. Notation was simplified by using only time-

independent versions of them. Nonlinear problems arising from errors in A, B will be described elsewhere. Other interesting520

nonlinear problem
::::::::
problems include those where the observations are not independent

::::::
derived

::::::::
quantities

:
of the state vector, or

the observations—such as a speed—are nonlinear in the state vector.

Unless, as in weather prediction, short-term predictions are almost immediately testable by comparison with the observed

outcome, physical insights into the system behavior are essential, along with an understanding of the structure of the imputed

statistical relationships. As a considerable literature cited above has made clear, the inference of trends in properties and525

understanding of the physics (or biology or chemistry) in the presence of time-evolving observation systems requires particular

attention. At a minimum, one should test any such system against the behavior of a known result—for example, treating a

GCM as “truth” and then running the smoothing algorithms to test whether that truth is forthcoming.

:::
The

::::
RTS

::::::::
algorithm

::
is

::::
only

:::
one

::::::
choice

::::
from

::::::
several

::::::::::
approaches

::
to

:::
the

::::
finite

:::::::
interval

:::::::::
estimation

:::::::
problem.

::::::::::
Alternatives

:::::::
include

::
the

:::::::::::::::::::
least-squares/Lagrange

:::::::::
multiplier

::::::::
approach

::
of

:::
the

::::::
ECCO

::::::
project,

::::::
which

::
in

:::
the

:::::
linear

::::
case

:::
can

::
be

::::::::::::
demonstrated

::
to

:::::::
produce530

:::::::
identical

::::::
results. This approach guarantees exact dynamical and kinematic consistency of the state estimate (

::::::::::::::::::
Stammer et al. (2002)

:
, Stammer et al. (2016), Wunsch and Heimbach (2007))

:
, a key requirement when seeking physical understanding of the results.

::::
Such

::::::::::
consistency

::
is

:::::::
ensured

:::
by

:::::::::
restricting

:::::::::::::::::
observation-induced

:::::::
updates

::
to

:::::
those

:::
that

::::
are

:::::::
formally

:::::::::::
independent

:::::
inputs

:::
to

::
the

:::::::::::
conservation

:::::
laws,

::::
i.e.,

::::::
initial,

:::::::
surface,

::
or

::
–
::::::
where

:::::::
relevant

:
–
::::::

lateral
::::::::
boundary

::::::::::
conditions.

::::
This

::::::::::
consistency

:::::::
ensures

:::
no

:::::::
artificial

:::::
source

:::
or

:::
sink

:::::
terms

::
in

:::
the

:::::::::::
conservation

:::::::::
equations.

:::
The

::::::
ECCO

::::::
project

:::
has

:::::::::
conducted

:::
this

::::::::
approach

::::
with

:::::::::::
considerable535

::::::
success

::::
over

:::
the

::::
past

:::
two

::::::::
decades,

:::
and

:::::::::::
demonstrated

:::
the

::::::
merits

::
of

:::::::
accurate

::::::::::::
determination

::
of

:::::
heat,

:::::::::
freshwater

:::
and

::::::::::
momentum

::::::
budgets

:::
and

:::::
their

::::::::::
constituents

::::::::::::::::::
Heimbach et al. (2019)

:
.
:::
The

::::::::
Lagrange

:::::::::
multiplier

:::::::::
framework

:::::::
provides

:
a
:::::::
general

::::::
inverse

::::::::
modeling

:::::::::
framework,

:::::
which

:::::::::
addresses

::::::
several

::::::::
estimation

:::::::::
problems,

:::::
either

::::::::
separately,

:::
or

::::::
jointly:

::
(i)

::::::::
inference

::
of

::::::
optimal

:::::
initial

::::::::::
conditions,

::::
such

::
as

::::::::
produced

:::
by

::::::::::
incremental

::::::::
so-called

::::::::::::
4-dimensional

:::::::::
variational

:::::
data

::::::::::
assimilation

::::::::
practiced

::
in

::::::
NWP;

:::
(ii)

::::::::
inference

:::
of

::::::
updated

:::
(or

:::::::::
corrected)

:::::::::
boundary

:::::::::
conditions,

:::::
such

::
as

::::::::
practiced

:::
in

:::
flux

:::::::::
inversion

::::::::
methods;

:::
(iii)

:::::::::
inference

::
of

:::::::
optimal

::::::
model540
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:::::::::
parameters,

:::::
such

::
as

::::
done

:::
in

::::::
formal

::::::::
parameter

:::::::::
calibration

:::::::::
problems;

::
or

::::
(iv)

:::
any

:::::::::::
combination

:::::::
thereof.

::
A

:::::::
detailed

:::::::
exposure

:::
of

:::
this

::::
more

:::::::
general

:::::::::
framework

::
in

:::
the

::::::
context

:::::::
similar

:::
toy

::::::
models

:::
will

:::
be

::::::::
presented

::
in

:
a
::::::
sequel

:::::
paper.

:

Appendix A: Notation and Equations

Kalman Filter

The model state transition equation is that in Eq. (1) and the weighted averaging equation is Eq. (4) with the gain matrix545

K(t) defined in Eq. (5). Time evolution of the covariance matrix of x̃(t) is governed by

P(t,−) =
〈
(x̃(t,−)−x(t))(x̃(t,−)−x(t))

T
〉

(A1)

=A

(
t−1
::

)
P(t−∆t)A

(
t−1
::

)T

+Γ(t−∆t)Q(t−∆t)Γ(t−∆t)
T
,

and

P
(
τt
)
=P

(
τt,−

)
−K

(
τt
)
E
(
τt
)
P
(
τt,−

)
(A2)550

=P
(
τt,−

)
−P

(
τt,−

)
EE

:

(
τt
)T

[
E
(
τt
)
P
(
τt,−

)
E
(
τt
)T

+R
(
τt
)]−1

E
(
τt
)
P
(
τt,−

)
,

E,R are defined in the text. The matrix symbol Γ is introduced for a situation in which the control distribution over the state

differs from that in B. Otherwise they are identical. Because P is square of the state vector length, calculating it is normally

the major computational burden in the use of a Kalman filter.

Under some circumstances where a system including observation injection reaches a steady state, the time-index may be555

omitted in both the KF and the RTS smoother. Time independence is commonly assumed when the rigorous formulation for

the KF is replaced by a
::
an

::
ad

::::
hoc constant gain matrix K.

RTS Smoother

In addition to Eqs. (19), (20), the Rauch-Tung-Striebel smoother estimates

ũ(t,+) =M(t+∆t) [x̃(t+∆t,+)− x̃(t+∆t,−)] , (A3)560

M(t+∆t) =Q(t)Γ(t)TP(t+∆t,−)−1, (A4)

for the updated control u(t). Q(t) is the assumed covariance of u(t) (the uncertainty in q(t)) and Γ is again often equal to B.

Then the corresponding uncertainties of the smoothed estimates are,

P(t,+)=P(t)+L(t+∆t) [P(t+∆t,+)−P(t+∆t,−)]L(t+∆t)T , (A5a)

Pu(t,+) =Q(t,+)=Q(t)+M(t+∆t) [P(t+∆t,+)−P(t+∆t,−)]M(t+∆t)T ,. (A5b)565

One can gain insight into this filter/smoother machinery by considering its operation on a scalar state vector with scalar

observations
:::
(not

:::::
shown

:::::
here).
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Appendix: Green Function Analysis of Estimates

Appendix B:
::::::
Green

::::::::
Function

:::::::
Analysis

:::
of

::::::::
Estimates

KF response570

The impact at other times of having data at time t can lend important physical insight into the sequential analyses. Define an

innovation matrix
:::::
vector,

Dδ (t, j) = y (t)−E(t)x(t) = δt,τδij (B6)

that is, Dδ is a matrix
:::::
vector

:
of Kronecker deltas representing the difference Dij (τ) = δt,τδij = yj (τ)−

∑
rEir (τ)xr (τ) .

Solutions to the innovation equation
:::::::::
innovation

:::::::
equation

:::
(4)

:
are the columns of the Green function matrix,575

G(t) =AG(t−∆t)+KDδ (t) , t=m∆t. (B7)

K, now fixed in time, is sought as an indication of a delta impulse effects of observations on the prediction model at time τ.

Define the scalar complex variable,

z = exp(−i2πs∆t) ,−1/2∆t≤ s≤ 1/2∆t. (B8)

where s is the frequency. Then the discrete Fourier transform of Eq. (B7) (the z−transform—a matrix polynomial in z) is,580

Ĝ(z) = (I−zA)
−1

KD̂δ (z) . (B9)

The norm of the variable (I−zA)
−1 defines the “resolvent” of A in the full complex plane (see Trefethen and Embree, 2005),

but here, only |z|= 1, is of direct interest, that is, only on the unit circle. The full complex plane carries information about the

behavior of A, including stability.

Here D̂(z) = Izτ and,585

Ĝ(z) = (I−zA)
−1

Kzτ (B10)

If a suitably defined norm of A is less than 1,

Ĝ(z) = (I−zA)
−1

Kzτ ≈
(
zτ I+zτ+1A+zτ+2A2 + zτ+3A+ ...

)
K (B11)

and the solution matrix in time is the causal vector sequence (no disturbance before t= τ) of columns of

G(t) = 0, t < τ (B12)590

=AmK(τ) , t= τ+m∆t

m= 0,1,2, ...

G can be obtained without the z−transform, but the frequency content of these results is of interest.
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Green Function of Smoother Innovation

As with the innovation equation for filtering, Eq. (19) introduces a disturbance into the previous estimate, x̃(t) , in which595

the structure of L(t) determines the magnitude and time scales of observational disturbances propagated backwards in time. It

provides direct insight in the extent to which later measurements influence earlier ones. As an example, suppose that the KF has

been run to time t= TF so that x̃(Tf ,+) = x̃(Tf ) , which is the only measurement. Let the innovation, x̃(Tf ,+)− x̃(Tf ,−),

be a matrix of δ functions in separate columns,

D= δ (t−Tf )IN (B13)600

then a backwards-in-time matrix Green function is,

G(t) = L(t)...L(Tf −∆t)L(Tf ) (B14)

The various time-scales embedded in L depend upon those in A,P(t,−) ,P(t) and with many observations including those

of the observation intervals, and any structure in the observational noise. Similarly, the control modification will be determined

by P(t+∆t,−)−1 if Q(t)Γ(t)T are constant in time.605

Author contributions. CW designed the study, performed initial calculations and the initial writing. Calculations were fully redone and

updated by SW. PH advised on, provided updates to, and checked accuracies of the manuscript.

Competing interests. None

Acknowledgements. Supported from the NASA/UT Austin/JPL ECCO Projects. Work by CW done at home originally during the Trump-

Covid Apocalypse period. We would like to thank the two anonymous reviewers for providing detailed, helpful comments on the first copy610

of this manuscript. Detlef Stammer provided many useful suggestions for an earlier version of the manuscript.

Code availability. Matlab codes used here are available directly from SW Github page: https://github.com/swilliamson7/data_assimilation_

project.

33

https://github.com/swilliamson7/data_assimilation_project
https://github.com/swilliamson7/data_assimilation_project
https://github.com/swilliamson7/data_assimilation_project


References

Bengtsson, L., Hagemann, S., and Hodges, K. I.: Can climate trends be calculated from reanalysis data?, Journal of Geophysical Research:615

Atmospheres, 109, 2004.

Bengtsson, L., Arkin, P., Berrisford, P., Bougeault, P., Folland, C. K., Gordon, C., Haines, K., Hodges, K. I., Jones, P., Kallberg, P., et al.:

The need for a dynamical climate reanalysis, Bulletin of the American Meteorological Society, 88, 495–501, 2007.

Boers, N.: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation, Nature Climate

Change, 11, 680–688, 2021.620

Bromwich, D. H. and Fogt, R. L.: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the

Southern Hemisphere, 1958–2001, Journal of Climate, 17, 4603–4619, 2004.

Bryson, A. E. and Ho, Y.-C.: Applied optimal control, revised printing, Hemisphere, New York, 1975.

Carton, J. A. and Giese, B. S.: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA), Monthly weather review, 136,

2999–3017, 2008.625

Cohn, S. E.: The principle of energetic consistency in data assimilation, in: Data Assimilation, pp. 137–216, Springer, 2010.

Davies, R. B.: Algorithm AS 155: The distribution of a linear combination of χ 2 random variables, Applied Statistics, pp. 323–333, 1980.

Dee, D. P.: Bias and data assimilation, Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied

meteorology and physical oceanography, 131, 3323–3343, 2005.

Fukumori, I., Heimbach, P., Ponte, R. M., and Wunsch, C.: A dynamically consistent, multivariable ocean climatology, Bulletin of the630

American Meteorological Society, 99, 2107–2128, 2018.

Gaspar, P. and Wunsch, C.: Estimates from altimeter data of barotropic Rossby waves in the northwestern Atlantic Ocean, Journal of Physical

Oceanography, 19, 1821–1844, 1989.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R.,

et al.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), Journal of climate, 30, 5419–5454,635

2017.

Goldstein, H.: Classical Mechanics, Addison-Wesley, Reading, Mass., 1980.

Goodwin, G. and Sin, K.: Adaptive Filtering Prediciton and Control, Prentice-Hall, Englewood Cliffs, N.J., 1984.

Haier, E., Lubich, C., and Wanner, G.: Geometric Numerical integration: structure-preserving algorithms for ordinary differential equations,

Springer, 2006.640

Heimbach, P., Fukumori, I., Hill, C. N., Ponte, R. M., Stammer, D., Wunsch, C., Campin, J.-M., Cornuelle, B., Fenty, I., Forget, G., et al.:

Putting it all together: Adding value to the global ocean and climate observing systems with complete self-consistent ocean state and

parameter estimates, Frontiers in Marine Science, 6, 55, 2019.

Hu, S., Sprintall, J., Guan, C., McPhaden, M. J., Wang, F., Hu, D., and Cai, W.: Deep-reaching acceleration of global mean ocean circulation

over the past two decades, Science advances, 6, eaax7727, 2020.645

Imhof, J.-P.: Computing the distribution of quadratic forms in normal variables, Biometrika, 48, 419–426, 1961.

Janjić, T., McLaughlin, D., Cohn, S. E., and Verlaan, M.: Conservation of mass and preservation of positivity with ensemble-type Kalman

filter algorithms, Monthly Weather Review, 142, 755–773, 2014.

LaCasce, J.: On turbulence and normal modes in a basin, Journal of marine research, 60, 431–460, 2002.

34



Longuet-Higgins, H. C.: Planetary waves on a rotating sphere, Proceedings of the Royal Society of London. Series A. Mathematical and650

Physical Sciences, 279, 446–473, 1964.

Luther, D. S.: Evidence of a 4–6 day barotropic, planetary oscillation of the Pacific Ocean, Journal of Physical Oceanography, 12, 644–657,

1982.

Marchal, O. and Zhao, N.: On the Estimation of Deep Atlantic Ventilation from Fossil Radiocarbon Records. Part II:(In) consistency with

Modern Estimates, Journal of Physical Oceanography, 51, 2681–2704, 2021.655

McCuskey, S.: An Introduction to Advanced Dynamics, Addison-Wesley, Reading, Mass., 1959.

Morse, P. and Feshbach, H.: Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

Pedlosky, J.: A study of the time dependent ocean circulation, Journal of Atmospheric Sciences, 22, 267–272, 1965.

Ponte, R. M.: Nonequilibrium response of the global ocean to the 5-day Rossby–Haurwitz wave in atmospheric surface pressure, Journal of

physical oceanography, 27, 2158–2168, 1997.660

Schreier, P. J. and Scharf, L. L.: Statistical signal processing of complex-valued data: the theory of improper and noncircular signals, Cam-

bridge university press, 2010.

Sewell, M. J., Crighton, C., et al.: Maximum and minimum principles: a unified approach with applications, vol. 1, CUP Archive, 1987.

Sheil, J. and O’Muircheartaigh, I.: Algorithm AS 106: The distribution of non-negative quadratic forms in normal variables, Journal of the

Royal Statistical Society. Series C (Applied Statistics), 26, 92–98, 1977.665

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C., and Marshall, J.: Global ocean circulation

during 1992–1997, estimated from ocean observations and a general circulation model, Journal of Geophysical Research: Oceans, 107,

1–1, 2002.

Stammer, D., Balmaseda, M., Heimbach, P., Köhl, A., and Weaver, A.: Ocean data assimilation in support of climate applications: status and

perspectives, Annual review of marine science, 8, 491–518, 2016.670

Stengel, R. F.: Stochastic optimal control: theory and application, John Wiley & Sons, Inc., 1986.

Stommel, H.: The westward intensification of wind-driven ocean currents, Eos, Transactions American Geophysical Union, 29, 202–206,

1948.

Strang, G.: Computational science and engineering, vol. 791, Wellesley-Cambridge Press Wellesley, 2007.

Thomson, R. E. and Fine, I. V.: Revisiting the ocean’s nonisostatic response to 5-day atmospheric loading: New results based on global675

bottom pressure records and numerical modeling, Journal of Physical Oceanography, 51, 2845–2859, 2021.

Thorne, P. and Vose, R.: Reanalyses suitable for characterizing long-term trends, Bulletin of the American Meteorological Society, 91,

353–362, 2010.

Woodworth, P., Windle, S., and Vassie, J.: Departures from the local inverse barometer model at periods of 5 days in the central South

Atlantic, Journal of Geophysical Research: Oceans, 100, 18 281–18 290, 1995.680

Wunsch, C.: Discrete inverse and state estimation problems: with geophysical fluid applications, Cambridge University Press, 2006.

Wunsch, C.: Is the ocean speeding up? Ocean surface energy trends, Journal of Physical Oceanography, 50, 3205–3217, 2020.

Wunsch, C. and Heimbach, P.: Practical global oceanic state estimation, Physica D: Nonlinear Phenomena, 230, 197–208, 2007.

Wunsch, C. and Heimbach, P.: How long to oceanic tracer and proxy equilibrium?, Quaternary Science Reviews, 27, 637–651, 2008.

35


