1	Supplementary Information
2	The role of lithospheric thermal structure in the development of lateral
3	heterogeneous of the continental collision system
4	Mengxue Liu ¹ , Dinghui Yang ^{1,*} , Rui Qi ¹
5	¹ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.
6	
7	Contents of this file
8	Tables S1, S2; Figures S1, S2

			Continental	Continental	Lithospheric			
Material	Units	Sub-lithospheric	upper	lower	Mantle	Sediment	Oceanic	Weak
Parameters		Mantle	Crust	Crust			Crust	Zone
Thickness	km	-	25	10	85, 88	4	8	80
Thermal	m ² s ⁻¹	9.89·10 ⁻⁷	1.21.10-6	1.15·10 ⁻⁶	9.87·10 ⁻⁷	1.21.10-6	1.21·10 ⁻⁶	1.21·10 ⁻⁶
Diffusivities(K)								
Heat	J	1250	750	750	1250	750	750	750
Capacity (C _p)	kg ⁻¹ K ⁻¹							
Density(p)	kg m ⁻³	3370	2800	2900	3370	3000	3000	3300
Thermal								
expansivity(α)	K ⁻¹	3.10-5	$2.7 \cdot 10^{-5}$	$2.7 \cdot 10^{-5}$	3.10-5	2.7.10 ⁻⁵	$2.7 \cdot 10^{-5}$	$2.7 \cdot 10^{-5}$
Angle of internal	o	30	30	30	30	2	2	2
friction(ϕ)								
Cohesion (C)	Pa	20.10^{6}	20.10^{6}	20.10^{6}	20.10^{6}	10.10^{6}	10.10^{6}	10.10^{6}
Flow Law ^a	-	dry olivine(diff/disl)	wet quartzite	wet anorthite	dry olivine(diff/disl)	gabbro	gabbro	gabbro

Table S1. Parameter list of the numerical experiments

Visc.prefactor	Pa ⁻ⁿ	$2.37 \cdot 10^{-15} / 6.52 \cdot 10^{-16}$	8.57·10 ⁻²⁸	7.13·10 ⁻¹⁸	$2.37 \cdot 10^{-15} / 6.52 \cdot 10^{-16}$	$1.0 \cdot 10^{50} / 1.12 \cdot 10^{-1}$	0 1.0·10 ⁵⁰ /1.	$1.0.10^{50}/1.1$
(A*) ^b	S ⁻¹							
Stress exponent	-	1/3.5	1/4.0	1/3	1/3.5	1/3.4	1/3.4	1/3.4
(n)								
Activation	J mol ⁻¹	375·10 ³ /530·10 ³	$0/223 \cdot 10^{3}$	$0/345 \cdot 10^3$	375·10 ³ /530·10 ³	$497 \cdot 10^3$	$497 \cdot 10^3$	497·10 ³
Energy (E)								
Activation	m ³	$4 \cdot 10^{-6} / 18 \cdot 10^{-6}$	0/0	0/0	$4 \cdot 10^{-6} / 18 \cdot 10^{-6}$	0/0	0/0	0/0
Volume (V)	mol ⁻¹							
Grain size	-	3/-	1/-	1/-	3/-	1/-	1/-	1/-
exponent(m)								
Radioactive	W m ⁻³	0	varies	varies	0	0	0	0
heating								
production (H)								

10 ^a Flow law are taken from *Hirth and Kohlstedt* [2003] for dry olivine, *Gleason and Tullis* [1995] for wet quartzite, *Rybacki et al.* [2006] for wet anorthite, *Wilks and*

11 *Carter* [1990] for gabbro.

^b The viscosity prefactor, A^{*}, is scaled from uniaxial experiments for plane strain as in *Ranalli* [1995] and *Tetreault and Buiter* [2012].

Table S2. List of the numerical experimen	of the numerical experin	of the	of	List	S2.	Table]
---	--------------------------	--------	----	------	-----	-------	---

Mode name	$T_{pro_moho}(^{\circ}C)$	$T_{retro_moho}(^{\circ}C)$	H _{pro-uc} (W m ⁻³)	H _{retro-lc} (W m ⁻³)	H _{pro-lc} (W m ⁻³)	H _{pro-lc} (W m ⁻³)	Collision Patterns
m1	450	450	1.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0.10-7	Ι
m2	450	500	1.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m3	450	550	1.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m4	450	600	1.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m5	500	450	1.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m6	500	500	1.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m7	500	550	1.0.10-6	1.0.10 ⁻⁶	4.0·10 ⁻⁷	$4.0 \cdot 10^{-7}$	Ι

m8	500	600	1.0.10-6	1.0·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m9	550	450	1.0.10-6	1.0.10-6	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	Ι
m10	550	500	1.0.10-6	1.0.10-6	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	Π
m11	550	550	1.0.10-6	1.0.10-6	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	Ι
m12	550	600	1.0.10-6	1.0·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m13	600	450	1.0.10-6	1.0·10 ⁻⁶	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	Ι
m14	600	500	1.0.10-6	1.0.10 ⁻⁶	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	II
m15	600	550	1.0.10-6	1.0.10 ⁻⁶	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	Ι
m16	600	600	1.0.10-6	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι

m17	450	500	1.5.10 ⁻⁶	1.0.10-6	$4.0 \cdot 10^{-7}$	4.0·10 ⁻⁷	Π
m18	450	500	2.0.10-6	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m19	450	500	3.0.10-6	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m20	450	500	4.0·10 ⁻⁶	1.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m21	450	500	1.0.10-6	1.5·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m22	450	500	$1.5 \cdot 10^{-6}$	1.5.10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m23	450	500	2.0.10-6	1.5.10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m24	450	500	3.0.10-6	1.5.10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m25	450	500	4.0.10 ⁻⁶	1.5·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II

m26	450	500	1.0.10-6	2.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m27	450	500	$1.5 \cdot 10^{-6}$	2.0.10-6	$4.0.10^{-7}$	4.0·10 ⁻⁷	II
m28	450	500	2.0.10-6	2.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m29	450	500	3.0.10-6	2.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m30	450	500	$4.0 \cdot 10^{-6}$	2.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m31	450	500	1.0.10-6	3.0.10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Ι
m32	450	500	1.5.10 ⁻⁶	3.0·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m33	450	500	2.0.10 ⁻⁶	3.0.10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m34	450	500	3.0.10-6	3.0.10-6	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II

m35	450	500	4.0·10 ⁻⁶	3.0.10-6	4.0·10 ⁻⁷	$4.0 \cdot 10^{-7}$	II
m36	450	500	1.0.10-6	4.0·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m37	450	500	1.5.10 ⁻⁶	4.0·10 ⁻⁶	4.0·10 ⁻⁷	$4.0 \cdot 10^{-7}$	II
m38	450	500	2.0.10-6	4.0·10 ⁻⁶	4.0·10 ⁻⁷	$4.0 \cdot 10^{-7}$	II
m39	450	500	3.0.10-6	4.0·10 ⁻⁶	4.0·10 ⁻⁷	4.0·10 ⁻⁷	Π
m40	450	500	4.0.10 ⁻⁶	4.0·10 ⁻⁶	4.0·10 ⁻⁷	$4.0 \cdot 10^{-7}$	II
m41	450	500	1.0.10 ⁻⁶	1.0·10 ⁻⁶	2.0.10-7	4.0·10 ⁻⁷	II
m42	450	500	1.0.10-6	1.0·10 ⁻⁶	6.0·10 ⁻⁷	4.0·10 ⁻⁷	II
m43	450	500	1.0.10-6	1.0.10-6	2.0.10-7	2.0.10 ⁻⁷	II

m44	450	500	1.0.10-6	1.0.10 ⁻⁶	4.0·10 ⁻⁷	2.0.10-7	II
m45	450	500	$1.0 \cdot 10^{-6}$	1.0·10 ⁻⁶	6.0·10 ⁻⁷	$2.0 \cdot 10^{-7}$	II
m46	450	500	1.0.10-6	1.0·10 ⁻⁶	2.0.10-7	6.0·10 ⁻⁷	II
m47	450	500	1.0.10-6	1.0.10-6	4.0·10 ⁻⁷	6.0·10 ⁻⁷	II
m48	450	500	1.0.10-6	1.0.10 ⁻⁶	6.0·10 ⁻⁷	6.0·10 ⁻⁷	II

Figure S1. Strain rate for Model m2 at selected model times.

Figure S2. Strain rate for Model m7 at selected model times.

20