

Sea ice loss translates into major shifts in the carbonate environmental conditions in Arctic Shelf Sea

- 3
- 4 Claudine Hauri¹, Brita Irving¹, Sam Dupont^{2,3}, Remi Pages¹, Donna Hauser¹, and Seth
- 5 Danielson⁴
- 6
- 7 ¹ International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775,
- 8 USA
- 9 ² Department of Biological and Environmental Sciences, University of Gothenburg,
- 10 Fiskebäckskil 45178, Sweden
- ¹¹ ³ Radioecology Laboratory International Atomic Energy Agency (IAEA), Marine Laboratories,
- 12 Principality of Monaco
- ⁴ College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775,
- 14 USA
- 15
- 16 Correspondence email: chauri@alaska.edu

17 Abstract

18

19 Healthy Arctic marine ecosystems are essential to the food security and sovereignty, culture 20 and wellbeing of Indigenous Peoples in the Arctic. At the same time, Arctic marine ecosystems 21 are highly susceptible to impacts of climate change and ocean acidification. While increasing 22 ocean and air temperatures and melting sea ice act as direct stressors on the ecosystem, they also 23 indirectly enhance ocean acidification, accelerating the associated changes in the inorganic 24 carbon system. Yet, much is to be learned about the current state and variability of the inorganic 25 carbon system in remote places. Here, we present pH and pCO_2 time-series (2016-2020) from the 26 Chukchi Ecosystem Observatory. The subsurface observatory is located in the midst of a 27 biological hotspot with high primary productivity and a rich benthic food web that support 28 coastal Iñupiat, whales, ice seals, walrus (Odobenus rosmarus), and Arctic cod (Boreogadus 29 saida). Our observations suggest that near-bottom waters (33 m depth, 13 m above the seafloor) 30 are a high carbon dioxide and low pH and aragonite saturation state environment in summer and 31 fall, when organic material from the highly productive summer remineralizes. During this time, 32 the aragonite saturation state can be as low as 0.4, triggering free CaCO₃ dissolution. During the 33 sea ice covered winter period, pH was < 8 and aragonite remained undersaturated under the sea 34 ice. There are only two short seasonal periods with relatively higher pH and Ω_{arag} , which we term 35 ocean acidification relaxation events. In spring, high primary production from sea ice algae and 36 phytoplankton blooms and ikaite dissolution lead to spikes in pH(pH > 8) and aragonite 37 oversaturation. In late fall, strong wind driven mixing events that bring CO₂ depleted surface water to the shelf also lead to events with elevated pH and $\Omega_{arag.}$ Given the recent observations of 38 39 high rates of ocean acidification, and sudden and dramatic shift of the physical, biogeochemical, 40 and ecosystem conditions in the Chukchi Sea, it is possible that the observed extreme conditions 41 at the Chukchi Ecosystem Observatory are significantly deviating from the carbonate conditions 42 to which many species are adapted and may have negative impacts on the ecosystem. 43

44 **1. Introduction**

The quickly changing Arctic Ocean has climatic, societal, and geopolitical implications for the peoples of the Arctic and beyond (Huntington et al., 2022). Arctic Indigenous Peoples are at the forefront of this change and their food security, food sovereignty, culture, and ways of life depend on healthy Arctic marine ecosystems (ICC, 2015). The Arctic is warming at a rate that is

49	up to four times that of the rest of the globe (Serreze and Barry, 2011; Serreze and Francis, 2006;
50	Rantanen et al., 2022). This phenomenon, called Arctic Amplification, is observed in air and sea
51	temperatures, has accelerated in recent years, and is expected to continue in the future (Rantanen
52	et al., 2022; Shu et al., 2022). Warming exerts a toll on sea ice extent, ice thickness, and the
53	duration of seasonal sea ice cover: ice is forming later in fall and retreating earlier in spring,
54	thereby increasing the length of the open water period (Stroeve et al., 2011; Serreze et al., 2016;
55	Wood et al., 2015; Stroeve et al., 2014). The lowest Arctic wide minimum sea ice extents were
56	recorded during last 16 years of the 44 year-long satellite time-series (National Snow and Ice
57	Data Center).
58	At the same time, the Arctic Ocean is vulnerable to ocean acidification. Although oceanic
59	uptake of anthropogenic CO_2 increases oceanic CO_2 and decreases pH and calcium carbonate
60	(CaCO ₃) saturation states of calcite (Ω_{calc}) and aragonite (Ω_{arag}) globally, climate induced
61	changes to riverine input, temperature, sea ice, and circulation are accelerating the rate of ocean
62	acidification in the Arctic Ocean like nowhere else in the world (Woosley and Millero, 2020; Qi
63	et al., 2022a; Yamamoto-Kawai et al., 2009; Orr et al., 2022; Semiletov et al., 2016; Qi et al.,
64	2017). Recent observational studies propose that freshening of the Arctic Ocean as a result of
65	increased riverine input may play an even greater role in acidifying the Arctic Ocean than the
66	uptake of anthropogenic CO ₂ (Woosley and Millero, 2020; Semiletov et al., 2016). In addition,
67	the cold Arctic waters have naturally low concentrations of carbonate ions (CO_3^{2-}) and are
68	therefore closer to aragonite undersaturation ($\Omega_{arag}=1$) than more temperate waters (Orr, 2011;
69	Sarmiento and Gruber, 2006), which leads to the chemical dissolution of free aragonitic CaCO3
70	structures (Bednarsek et al., 2021). Because of the naturally low concentrations of CO32-, such
71	high latitude waters have a lower capacity to take up anthropogenic CO2 and buffer these
72	changes (Orr, 2011). As a result, concentrations of H^+ increase and pH (= -log (H^+)) decreases
73	faster in the Arctic than in the tropics, for example.
74	In the Pacific Arctic, the Chukchi shelf waters have warmed by 0.45 °C decade ⁻¹ since 1990,
75	triple the rate since the beginning of the data record in 1922 (Danielson et al., 2020). Direct
76	observations of the inorganic carbon dynamics of the Chukchi Sea are mostly limited to June
77	through November because of the region's remoteness and accessibility during sea ice covered
78	months. Summertime profiles across the Chukchi Sea show steep vertical gradients in inorganic
79	carbon chemistry (Bates, 2015; Bates et al., 2009; Pipko et al., 2002; Mathis and Questel, 2013).

- 80 Surface waters are CO2-deplete as a result of high primary production after sea ice retreat, 81 leading to aragonite supersaturated conditions, with $\Omega arag > 2$ (Bates, 2015; Bates et al., 2009). 82 In areas with sea ice melt or riverine freshwater influence, Ω areas to be lower and at times 83 undersaturated (Bates et al., 2009; Yamamoto-Kawai et al., 2009). At the same time, pCO2 values near the seafloor are around 1000 µatm as a result of remineralization of organic matter, 84 85 leading to summertime aragonite undersaturation (Mathis and Ouestel, 2013; Pipko et al., 2002; Bates, 2015). Between September and November, continuous measurements from within a few 86 87 meters of the surface suggest a mosaic of pCO2 levels between ~ 200 to 600 µatm, likely due to patchy wind-induced mixing, entraining high-CO2 waters from the bottom to the surface (Hauri 88 89 et al., 2013). Yamamoto-Kawai et al. (2016) used mooring observations of S, T, and apparent oxygen utilization to estimate dissolved inorganic carbon (DIC), total alkalinity (TA), and Ω_{arag} 90 91 in bottom waters at their mooring site in the Hope Valley to give first insights into year round 92 variability of the inorganic carbon system. They found slightly less intense aragonite 93 undersaturation in spring and winter compared to summer, with a net undersaturation duration of 94 7.5-8.5 months per year. 95 The CEO is situated in a benthic hotspot where high primary production supports rich and 96 interconnected benthic and pelagic food webs (Grebmeier et al., 2015; Moore et al., 2000). The 97 benthos is dominated by calcifying bivalves, polychaetes, amphipods, sipunculids, echinoderms 98 and snow crabs (Grebmeier et al., 2015; Blanchard et al., 2013). Bearded seals (Erignathus 99 barbatus), walrus (Odobenus rosmarus divergens), gray whale (Eschrichtius robustus), and 100 seabirds feed on these benthic calcifiers during the open water season (Kuletz et al., 2015; Jay et 101 al., 2012; Moore et al., 2022). Prolonged open-water seasons during periods of high solar 102 irradiance, in combination with an influx of new nutrients and wind mixing, are likely enhancing 103 primary and secondary production as well as advection of zooplankton (Lewis et al., 2020; 104 Arrigo and van Dijken, 2015; Wood et al., 2015). These physical processes in turn fuel keystone 105 consumers such as Arctic cod (Boreogadus saida) and upper trophic level ringed seals (Phoca 106 hispida), beluga (Delphinapterus leucas) and bowhead whales (Balaena mysticetus) as well as 107 predatory polar bears (Ursus arctos) and Inuit who rely on the marine ecosystem for traditional 108 and customary harvesting (Huntington et al., 2020). 109 Perturbation of the seawater carbonate system associated with ocean acidification and
- 110 climate change can have significant physiological and ecological consequences for marine

- 111 species and ecosystems (IPCC 2022). All parameters of the carbonate system (pH, 112 concentrations of pCO_2 , HCO_3^- , CO_3^{--}) have the potential to affect the physiology of marine 113 organisms while a change in Ω can lead to the dissolution of unprotected or "free" CaCO₃ 114 structures. Recent work has highlighted the importance of local adaptation to the present environmental variability as a key factor driving species sensitivity to ocean acidification 115 116 (Vargas et al., 2017, 2022). As the carbonate chemistry conditions and variability vary 117 enormously between regions, marine organisms are naturally exposed to different selective 118 pressures and can evolve different strategies to cope with low pH or Ω , or high pCO₂. For 119 example, the deep-sea mussel *Bathymodiolus brevior* living around vents at 1600m depths is 120 capable of precipitating calcium carbonate at pH ranging between 5.36 and 7.30 and highly undersaturated waters (Tunnicliffe et al., 2009). The response to changes in the carbonate 121 122 chemistry is also modulated by other environmental drivers such as temperature or food 123 availability (IPCC 2022). As ocean acidification imposes extra energy costs to most marine 124 organisms, its effects can be amplified under food limitations (e.g. Thomsen et al., 2013). As a 125 consequence, no absolute or single threshold is expected for ocean acidification (e.g. Bednaršek 126 et al., 2021) and a pre-requisite to assessing the impact on any biota is the monitoring at a short 127 temporal scale to characterize the present environmental niche. When it comes to future impacts, 128 the more intense and faster the changes associated with ocean acidification, the more negative 129 the biological impact is expected (Vargas et al. 2017, 2022). Arctic marine waters that are experiencing widespread and rapid ocean acidification are then highly likely to undergo severe 130 131 negative ecosystem impacts (AMAP 2018). 132 Here, we present satellite sea ice coverage data and four years of nearly continuous salinity, 133 temperature, and partial pressure of carbon dioxide (pCO_2) data, accompanied by pH, nitrate 134 (NO_3) , dissolved oxygen (O_2) , and chlorophyll fluorescence data for some of the time (Table 1, 135 Figure 2 a-h). These data allow us to determine the seasonal and interannual variability and controls of the inorganic carbon system in the Chukchi Sea between 2016 and 2020 and 136 137 characterize the chemical conditions experienced by organisms. 138
- 139 2. Materials and Methods
- 140 2.1 The Chukchi Ecosystem Observatory

141 The Chukchi Ecosystem Observatory (CEO) is located amidst a biological hotspot near the 142 southern tip of Hanna Shoal in the northeastern Chukchi Sea (71°35.976' N, 161°31.621' W, Figure 1, Hauri et al., 2018). The Chukchi Sea is a shallow shelf sea with maximum depths < 50 143 144 m. It is largely a unidirectional system with Pacific origin water entering the Chukchi Sea through the Bering Strait and advecting north into the Arctic Ocean. 145 146 The observatory consists of two moorings that sample year-round, equipped with a variety of 147 sensors that measure sea ice cover and thickness (Sandy et al., 2022), light, currents, waves, 148 salinity, temperature, concentrations of dissolved oxygen, nitrate, and particulate matter, pH, 149 pCO₂, chlorophyll fluorescence, zooplankton abundance and vertical migration (Lalande et al., 150 2021, 2020), the presence of Arctic cod and zooplankton (Gonzalez et al., 2021), and the 151 vocalizations of marine mammals. During some years, the observatory included a third mooring, 152 an experimental "freeze-up detection mooring", which transmitted real-time data of conductivity 153 and temperature throughout the water column until sea ice formation. The primary moorings 154 stretch from the seafloor at 46 m to about 33 m depth, designed to avoid collisions with ice keels. 155 A description of the CEO and a complete list of sensors deployed at the site can be found in 156 (Hauri et al., 2018). For this study we focus on the inorganic carbon system and its controlling 157 mechanisms (Figure 2).

158

159 **2.2** *p*CO₂

We used a CONTROS HydroC CO₂ sensor (4H-Jena Engineering GmbH, Kiel, Germany) to 160 161 measure pCO_2 . The Contros HydroC CO₂ sensor was outfitted with a pump (SBE 5M, Sea-Bird 162 Electronics) that flushes ambient seawater against a thin semi permeable membrane, which 163 serves as equilibrator for dissolved CO₂ between the ambient seawater and the headspace of the 164 sensor. Technical details about the sensor and its performance are described in Fietzek et al., 165 (2014), who estimated sensor accuracy to be better than 1% with postprocessing. 166 A HydroC CO₂ sensor has been deployed at the CEO site since 2016. In all deployments, 167 except 2016, HydroC CO₂ sensors were post-calibrated. The lack of post-calibration in 2016 is 168 not expected to negatively affect data quality because a battery failure resulted in the sensor only 169 returning data for 3 months (August through November). Five samples were collected in a burst

- 170 fashion every 12 or 24 hours depending on deployment year (Table 1). Average *p*CO₂ values are
- 171 reported as the mean of the measure interval (Table 1) with standard uncertainty calculated

172	following best practices (Orr et al., 2018) by adding in quadrature the random component of the
173	uncertainty (standard deviation of the mean) and the systematic components (sensor accuracy
174	and estimated error of the regression during calibration). The relative uncertainty of pCO ₂ met
175	the weather data quality goal, defined as 2.5 % by the Global Ocean Acidification Observing
176	Network (GOA-ON, Newton et al., 2015), more than 96 % of the time.
177	HydroC CO2 data were processed using Jupyter notebook scripts developed by 4H-Jena
178	Engineering GmbH using pre- and post-calibration coefficients interpolated with any change in
179	the zero signal reference over the deployment (Fietzek et al., 2014). Further processing using in-
180	house MATLAB scripts included removal of outliers, calculation of the average p CO ₂ , and
181	calculation of uncertainty estimates for each measurement interval.
182	
183	2.3 pH
184	A SeapHOx sensor (Satlantic SeaFET TM V1pH sensor integrated with Sea-Bird Electronics
185	SBE 37-SMP-ODO) was used to concurrently measure pH, salinity, temperature, pressure, and
186	oxygen (Martz et al., 2010). A SeapHOx was deployed at CEO in 2016, 2017, and 2018. No
187	SeapHOx was deployed in 2019 or 2020 due to supply chain delays and instrument
188	communication issues at sea. Unfortunately, pH data from the 2016 and 2018 SeapHOx
189	deployment were unusable due to high levels of noise in both the internal and external
190	electrodes. The SBE37-SMP-ODO did not record any CTD or oxygen data during the 2016
191	deployment and only recorded CTD and oxygen data between August and November 3 in 2018
192	due to battery failure. In short, we only collected usable pH data between August 2017 and
193	August 2018.
194	pH data were excluded during a 14-day conditioning period after the deployment and were
195	processed with post-calibration corrected temperature and salinity from the SBE37 following
196	(Bresnahan et al., 2014) using voltage from the external electrode, and pHext from an extended
197	period of low variability (18 February 2018). Despite the availability of discrete data from one
198	calibration cast (Cross et al., 2020a; Table 2, Figure 4, Figure S1), pHext was used as the single
199	calibration point for a variety of reasons; 1) high variability of pH _{SeaFET} (0.0581 pH units)
200	straddling a 12 hour window around when the discrete sample was collected, 2) high temporal
201	and spatial variability often seen in the Chukchi Sea, and 3) the discrete pH sample was within
202	the published SeaFET accuracy of 0.05 (Table 2, Figure S1). pH values are reported as the mean

7

- of the measurement interval (Table 1) and standard uncertainty was calculated following best
 practices (Orr et al., 2018) by adding in quadrature the standard deviation of the average
 (random), and the SeaFET accuracy (systematic). Data handling and processing was done using
- 206 in-house MATLAB scripts.
- 207

208 2.4 Nitrate

209 NO₃ measurements were from a Submersible Ultraviolet Nitrate Analyzer (SUNA) V2 by 210 Sea-Bird Scientific. The SUNA is an *in situ* ultraviolet spectrophotometer designed to measure 211 the concentration of nitrate ions in water. SUNA V2 data were processed using a publicly 212 available toolbox (Hennon et al., 2022; Irving, 2021) with QA/QC steps that included thermal 213 and salinity corrections (Sakamoto et al., 2009), assessment of spectra and outlier removal based 214 on spectral counts (Mordy et al., 2020), and concentration adjustments (absolute offset and linear 215 drift) based on pre-deployment and post-recovery reference measurements of zero concentration 216 (DI) water and a nitrate standard and, when available, nutrient samples taken from Niskin bottles 217 near the mooring site (e.g. Daniel et al., 2020).

218

219 **2.5 CTD and Oxygen**

220 Two CTDs were deployed on the CEO-2 morning near the HydroC CO₂ depth. A pumped 221 Sea-Bird SeaCAT (SBE16) with ancillary sensors (oxygen SBE43, fluorometer, PAR) has been 222 deployed since 2014. The other CTD was a pumped Sea-Bird MicroCAT (SBE37-SMP-ODO), 223 with an integrated optical dissolved oxygen sensor (SBE63; Figure S2), integrated within the 224 SeapHOx instrument that was deployed in fall 2016, 2017, and 2018, but only returned CTD and 225 oxygen data from August 2017 through November 2018 as discussed in Section 2.3. Density and 226 practical salinity were calculated using the TEOS-10 GSW Oceanographic Toolbox (McDougall 227 & Baker, 2011). Oxygen was converted from ml/l to umol/kg following Bittig et al., (2018). Data 228 processing of 2017-2018 SBE37-SMP-ODO included temperature and conductivity correction 229 using pre- and post-calibration data following Sea-Bird Application Note 31 and oxygen 230 correction using pre- and post-calibration data following Sea-Bird Module 28. 231 A pumped SBE43 was deployed at CEO-2 with the SBE16 during the 2015-2016, 2017-232 2018, and 2019-2020 deployments but is not discussed further because differences between the 233 SBE43 and SBE63 of approximately 145 to 265 umol/kg were observed over the 2017-2018

234	deployment, and both moored sensors had varying offsets compared to nearby casts (Figure S2).
235	Therefore, only relative oxygen values from the pumped SBE63 are discussed in this paper.
236	The freeze-up detection mooring consisted of four Sea-Bird SBE 37 inductive modem CTD
237	sensors that transmitted in real time hourly temperature, salinity and pressure data via the surface
238	float from four subsurface depths (8, 20, 30, and 40 m, Hauri et al., 2018).
239	
240	2.6 Development and evaluation of empirical relationship to estimate pH
241	Empirical relationships for estimating water column pH have been developed for regions
242	spanning Southern, tropical, temperate and Arctic biomes, using a variety of commonly
243	measured parameters (e.g. pH(S, T, NO ₃ , O ₂ , Si) Carter et al., 2018; pH(O ₂ ,T,S) Li et al., 2016;
244	$pH(\theta,O_2)$ Watanabe et al., 2020; $pH(NO_3, T, S, P)$ and $pH(O_2, T, S, P)$ Williams et al., 2016;
245	pH(O ₂ , T) Alin et al., 2012; pH(O ₂ , T) and pH(NO ₃ , T) Juranek et al., 2009). Given the tight
246	coupling between the concentration of hydrogen ion and concentration of CO ₂ solution, an
247	empirical relationship for estimating surface pH from p CO ₂ was developed by the National
248	Academies of Sciences, Engineering and Medicine (2017) appendix F. Licker et al., (2019) used
249	this empirical relationship to calculate the global average surface ocean pH and found it
250	represented the relationship for surface water temperatures spanning 5°C to 45°C. Here we take a
251	similar approach but extend it to water column pH in our cold region using temperature (T) and
252	salinity (S) as additional proxy parameters (Equation 1).
253	$pH^{est} = \alpha_0 + a_1 log (pCO_2) + \alpha_2 T + \alpha_3 S $ ⁽¹⁾
254	Where pH^{est} is the estimated proxy value of water column pH, pCO_2 is from the HydroC, and T
255	and S are from the SBE16, and all α ($\alpha 0 = 10.4660$, $\alpha 1 = -0.4088$, $\alpha 2 = 0.0013$, $\alpha 3 = -0.0001$)
256	terms are model-estimated coefficients determined using MATLAB's multiple linear regression
257	algorithm <i>regress.m.</i> After interpolating pH_{SeaFET} (Figure 3, gray dots) to the pCO_2 data
258	timestamps (Figure 3, black dots), the algorithm was trained over a 180-day time period
259	(15/9/2017-14/3/2018) (Figure 3, shaded area). An uncertainty estimate for pH ^{est} of 0.0525
260	(Figure S1, blue shading) was determined by adding in quadrature the RMSE (the uncertainty in
261	estimation) over the entire pH_{SeaFET} time series and the published accuracy of the SeaFET.
262	Estimated pH (Figure 3, red line) represents pH_{SeaFET} reasonably well across the whole time
263	series ($r^2 = 0.9598$, RMSE = 0.0161, p<0.0001, Figure 4), over the training period ($r^2 = 0.9321$,
264	Figure 4d shaded area), and outside of the training period ($r^2 = 0.9666$). The observed high

265 frequency spikes in pH_{SeaFET} were not captured by the HydroC pCO₂ sensor and as a result are not reproduced in the pH^{est} time series. Throughout the pH_{SeaFET} time series pH^{est} overestimates 266 pH_{SeaFET} by a mean of 0.0008 and median of 0.0039. Discrete values were used to evaluate the 267 algorithm at the CEO site (Table 2) and found to be within the pH^{est} uncertainty (Figure S1). 268 269 The algorithm was further evaluated using discrete data collected from the Bering Sea to the 270 Arctic Ocean on four research cruises in 2020, 2019, 2018, and 2017 (Figure 5d; Monacci et al., 271 2022; Cross et al., 2021; 2020a; 2020b) and showed good agreement with the *in situ* samples 272 (Figure 5). Samples collected below 500 dbar or flagged as questionable or bad were excluded 273 from this analysis. pH^{disc}_{calc} and pCO₂^{disc}_{calc} were calculated from 1275 discrete samples analyzed 274 for TA, DIC, silicate, phosphate, and ammonium (except when silicate, phosphate, and 275 ammonium were assumed zero for the 327 samples from SKO202014S) using CO2SYSv3 (Sharp et al., 2023; Section 2.3 for details). pH^{disc}est was calculated using Equation 1 and was fit 276 to pH^{disc}_{calc} using a linear regression model ($R^2 = 0.9975$, RMSE = 0.0078, p-value < 0.0001; 277 Figure 5a). Mean differences between pH^{disc}est and pH^{disc}calc were zero, with a median of -0.0022, 278 279 with largest anomalies observed at lower salinities (Figure 5c). Observed absolute differences between pH^{disc}_{est} and pH^{disc}_{calc} over the salinity range observed at the CEO site (30.87 to 33.93) 280 281 fall within the weather data quality goal (Newton et al., 2015) 98.7% of the time with maximum 282 absolute differences < 0.03. An estimate for the uncertainty of the algorithm (Equation 1) of 283 0.0154 was determined by adding in guadrature the mean combined standard uncertainty (u_c) for pH^{disc}_{calc} (0.0133; Orr et al., 2018) and the regression RMSE. 284

285

286 2.7 Carbonate system calculations

287 Moored data were collected at different sample intervals (Table 1) and were linearly 288 interpolated to the HydroC CO₂ timestamp to enable further calculations. TA, DIC, and Ω_{arag} 289 (Figure 2 i-k) were based on data from the HydroC CO₂, pH^{est} and S, T, and pressure (P) from the SBE16. Nutrient concentrations (Si, PO₄, NH₄, H₂S) were assumed to be zero. pH^{est} was used 290 291 in lieu of pH_{SeaFET} to allow for calculations over the whole pCO_2 record and due to erroneously 292 large variability of DIC and TA when pH_{SeaFET} was used as an input parameter (Raimondi et al., 293 2019; Cullison-Gray et al., 2011). The pH- pCO_2 input pair leads to large calculated errors in 294 DIC and TA (Raimondi et al., 2019; Cullison-Gray et al., 2011) due to strong covariance 295 between the two parameters (both temperature and pressure dependent). Cullison-Gray et al.,

296 (2011) attributed unreasonably large short-term variability in calculated TA and DIC to temporal 297 or spatial measurement mismatches between input pH and pCO_2 parameters and found that 298 appropriate filtering alleviated noise spikes. By using pHest, which by the nature of its definition 299 is well correlated to pCO_2 , we are eliminating some of these spurious noise spikes. We show Ω_{arag} calculated from pH_{SeaFET}-pCO₂ (Figure 2k, gray line) because it is less sensitive to 300 301 calculated errors as it accounts for a small portion of the total CO₂ in seawater (Cullison-Gray et 302 al., 2011). pH is reported in total scale for the entirety of this paper. 303 All inorganic carbon parameters were calculated using CO2SYSv3 ; Lewis and Wallace, 304 1998) with dissociation constants for carbonic acid of Lueker et al., (2000), bisulfate of Dickson, 305 (1990), hydrofluoric acid of Perez and Fraga, (1987), and the boron-to-chlorinity ratio of (Lee et 306 al., 2010). (Sulpis et al., 2020) found that the carbonic acid dissociation constants of (Lueker et 307 al., 2000) may underestimate pCO_2 in cold regions (below ~8°C), and therefore overestimate pH 308 and CO_3^{2-} . However, we choose to use (Lucker et al., 2000) because they are recommended 309 (Dickson et al., 2007; Woosley, 2021), continue to be the standard (Jiang et al., 2021; Lauvset et 310 al., 2021), and are commonly used at high latitudes (Duke et al., 2021; Raimondi et al., 2019; Woosley et al., 2017). Furthermore, the difference between DIC(pH^{est}, pCO₂) and discrete 311 312 samples interpolated to moored instrument depth ranged from 266 to -195 umol/kg using the k1 313 k2 of (Sulpis et al., 2020), compared to -38 to -7 umol/kg using (Lueker et al., 2000). 314 315 2.8 Influence of freshwater and temperature on inorganic carbon system 316 Salinity influence on inorganic carbon system 317 Inorganic carbon chemistry at the CEO site can be influenced by freshwater from sea ice 318 melt and meteoric sources (precipitation and rivers). The DIC and TA signatures within these 319 different freshwater sources can vary significantly. TA and DIC concentrations of 450 µmol kg⁻¹ 320 and 400 μ mol kg⁻¹, respectively, have been measured in Arctic sea ice (Rysgaard et al., 2007). 321 The CEO site is influenced by upstream riverine sources in the Gulf of Alaska and Bering and 322 Chukchi seas, and also at times by the Mackenzie River outflow from the eastern Beaufort Sea 323 and the large Russian Arctic rivers located to the west of the Chukchi Sea. Riverine input along 324 the Gulf of Alaska tends to have lower TA (366 μ mol kg⁻¹) and DIC (397 μ mol kg⁻¹) 325 concentrations (Stackpoole et al., 2016, 2017) than rivers draining into the Bering, Chukchi, and Beaufort Seas (TA = 1860 μ mol kg⁻¹, DIC = 2010 μ mol kg⁻¹, Holmes et al., 2021). In order to 326

327

328	inorganic carbon system, it is common practice to salinity-normalize inorganic carbon
329	parameters and nutrient concentrations to a reference salinity (S_{ref} = mean salinity of the
330	timeseries) using a non-zero freshwater endmember as described in (Friis, 2003):
331	nP = (P - P(s=0))/S* Sref $+P(s=0)$,
332	where P is the parameter to be normalized to a reference salinity. However, because of the
333	various freshwater sources with large differences in biogeochemical signatures, determination of
334	the freshwater endmembers of the system is not straightforward or even possible. In an attempt
335	to find the most appropriate representative bulk freshwater endmember for TA, DIC, pCO ₂ , and
336	NO ₃ , we determined the intercept of a regression line across the full timeseries. Comparison of
337	normalized (n) nDIC, nTA, npCO ₂ , and nNO ₃ with the non-normalized variables suggests that
338	the large pCO ₂ and pH changes in spring, summer, and fall are not driven by freshwater (S3).
339	
340	Temperature influence on inorganic carbon system
341	Temperature at 33 m depth at the CEO site varied between -1.7 °C during the sea ice covered
342	months and 4 °C in late fall in some years. The impact of these large temperature swings was
343	analyzed by temperature normalizing pCO_2 ($pCO_{2,NT}$) following Takahashi et al., (2002):
344	$pCO_{2,NT} = pCO_2 * exp(0.0423(T_{ref} - T));$
345	where T_{ref} is the average temperature across the full timeseries (S4). Steep temperature increases
346	occur during late fall during wind events, when warm and pCO_2 deplete surface waters are
347	entrained to the instrument depth at 33 m (see section 3.1 for a more in-depth discussion of these
348	mixing events). Since the thermal effect on pCO ₂ is minimal compared to the effect of the
349	mixing event and does not play a major role throughout the rest of the timeseries it is not
350	visualized in the following figures and analysis.
351	

disentangle the effects of freshwater from other physical-biogeochemical drivers on the

352 **2.9 Sea ice concentration**

353 Sea ice concentration at the observatory site was taken from the National Snow and Ice Data

354 Center (NSIDC; DiGirolamo et al., 2022). Latitude and longitude coordinates were converted to

355 NSIDC's EASE grid coordinate system (Brodzik and Knowles, 2002) and the 25-km gridded

356 data were bilinearly interpolated to calculate sea ice concentration at each point. Low sea ice is

defined by < 51% sea ice coverage per grid cell.

358 359	2.10 Estimation of model-based ocean acidification trend
360	Model results were obtained from historical simulations of five different global Earth System
361	Models: 1) GFDL-CM4 (Silvers et al., 2018), 2) GFDL-ESM4 (Horowitz et al., 2018), 3) IPSL-
362	CM6A-LR-INCA (Boucher et al., 2020), 4) CNRM-ESM2-1 (Seferian, 2019), and 5) Max Plank
363	Earth System Model 1.2 (MPI-ESM1-2-LR, Mauritsen et al., 2019) that are part of the Coupled
364	Model Intercomparison Project Phase 6 (CMIP6). Each simulation was used to calculate the
365	annual trend of aragonite saturation state and pH at the closest depth and grid cell to the CEO
366	mooring.
367	nooring.
368	3. Results
369	The sub-surface waters at the CEO site comprise a high pCO_2 , low pH, and low Ω_{arag}
370	environment, with mean values of $pCO_2^{\text{mean}} = 538 \mu\text{atm}$, $pH^{\text{mean}} = 7.91$, $\Omega_{\text{arag}}^{\text{mean}} = 0.94 \text{across}$
371	the full data record (Figure 2 d,e,k). Spikes of high pH and Ω_{arag} and low <i>p</i> CO ₂ occur in spring
372	and fall; we define these spikes as relaxation events (see discussion for justification of term).
373	and ran, we define these spikes as relaxation events (see discussion for justification of term).
374	3.1 Divers of relaxation events
375	<u>Spring</u> : Springtime relaxation events at 33 m depth that exhibit relatively higher pH and Ω_{arag}
376	and lower pCO_2 are likely consequences of the dissolution of CaCO ₃ minerals and
377	photosynthetic activity during sea ice break-up (Figure 2). In June of 2019 and 2020, near
378	bottom pH and Ω_{arag} spiked to > 8.17 and > 1.5, respectively, while <i>p</i> CO ₂ dropped to < 286
379	μ atm. Ω_{arag} remained oversaturated and pH was greater than 8.0 for nearly all of June in 2018. In
380	2019, the relaxation event was less sustained, with only four short (2-6 day-long) events of
381	relatively higher pH and $\Omega_{arag} > 1$ in June and July. In both years, these events were
382	characterized by a sudden increase in TA (Figure 2i) and decrease in DIC (Figure 2j) in a sea ice
383	melt affected area and therefore presumably well stratified water column.
384	In 2018, O ₂ increased by 74 umol kg ⁻¹ and chlorophyll fluorescence spiked (Figure 2g &
385	h), both signs of photosynthetic activity. Assuming that 150 umol kg ⁻¹ of O ₂ are produced per
386	106 umol kg ⁻¹ of DIC (Laws, 1991) consumed, DIC must have decreased by 53 umol kg ⁻¹ as a
387	result of organic matter formation. However, we see a decrease of 39 umol kg ⁻¹ DIC over this
388	period. With NO ₃ assumed as the nitrogen source for the organic matter formation and a Redfield

13

- 389 stoichiometry of 6.6 mol C per mol N, TA should have increased by ~ 8 umol kg⁻¹ (+ 0.15 umol
- 390 TA per umol DIC consumed). However, the observed TA increase was 35 umol kg⁻¹, suggesting
- that CaCO₃ mineral dissolution led to an increase of 27 umol kg⁻¹ in TA. Since dissolution of
- 392 CaCO₃ increases TA twice as much as DIC (Sarmiento and Gruber, 2006), this process must
- have added ~13.5 umol kg⁻¹ to DIC, which explains the lower-than-expected decrease in DIC (39 umol kg^{-1}).
- 395 A similar exercise can be undertaken for 2019, except using NO₃ since we don't have O_2 396 data available for that time. In the following we will again assume that NO₃ is the primary source 397 of nitrogen during organic matter formation, and that assimilation of 1 umol of NO₃ leads to an 398 increase of TA of 1 umol (Wolf-Gladrow et al., 2007). Based on the observed NO3 decrease of 399 7.6 umol kg⁻¹ and if DIC and TA were changed solely by organic matter formation we would 400 expect an increase of TA by 7.6 umol kg⁻¹ and DIC by \sim 50 umol kg⁻¹. As in 2018, the associated 401 increase in TA of 23 umol kg⁻¹ is larger than expected from organic matter formation alone and is likely due to CaCO₃ mineral dissolution. Roughly 15.4 umol kg⁻¹ of TA change would then be 402 403 due to dissolution of CaCO₃, which would contribute about 7.7 umol kg⁻¹ to DIC, explaining the 404 smaller-than-expected decrease in DIC. Since the water column is expected to be well-stratified 405 during this time of the year it is unlikely that gas exchange has appreciable influence on DIC at 406 33 m depth.
- 407 *Fall:* The relaxation events in fall were characterized by large and sudden drops in CO₂, 408 abrupt increases in pH and Ω_{arag} , and considerable interannual variability in their timing. Unlike 409 relaxation events observed in spring, we're attributing these fall relaxation events to wind-410 induced physical mixing. To examine the controlling mechanisms causing these abrupt 411 relaxation events in fall, we will start with using water column salinity and temperature data 412 from a freeze-up detection buoy (Hauri et al., 2018) that was deployed in summer 2017 413 approximately 1 km away from the biogeochemical mooring. The freeze-up detection mooring 414 provided temperature and salinity measurements every 7 meters throughout the water column 415 from the time of its deployment in mid-August until freeze-up. Data from the freeze-up detection 416 mooring suggest that warmer and fresher water from the upper water column gets periodically 417 entrained down to the location of the biogeochemical sensor package at 33 m depth, leading to 418 enhanced variability of density in August and September (Figure 6). During this time pCO_2 often 419 decreased to or below atmospheric levels and pH sporadically reached values > 8. At the end of

420	September, a strong mixing event homogenized the water column from the surface down to the
421	location of the sensor package and caused a sudden temperature to increase from 0.4 °C to 3.9 °C
422	(Figure 6a and 7a). At the same time, pCO_2 decreased from 590 to 308 µatm. This suggests that
423	warm and CO ₂ -deplete surface water replaced the CO ₂ -rich subsurface water and led to a
424	sustained relaxation period that subsequently lasted until mid-November. Another mixing event
425	further eroded the water column and replaced subsurface water with colder and fresher water (ice
426	melt) from the surface at the end of October. This second large mixing event did not lead to large
427	changes in pCO_2 , pH, and Ω_{arag} .
428	Salinity and temperature records from the biogeochemical mooring at 33 m depth also
429	suggest fall season mixing events in all other years, when increases in temperature coincide with
430	decreases in pCO_2 (Figure 7). For example, two mixing events shaped the carbonate chemistry
431	evolution in fall 2018. p CO ₂ decreased from 915 µatm to around 565 µatm and Ω_{arag} increased to
432	0.9 as temperature increased and salinity decreased in early September (Figure 7). pCO_2 then
433	increased to 1160 µatm in late October, before decreasing to 385 µatm at the beginning of
434	November, causing a spike in Ω_{arag} to 1.34. At the same time, salinity decreased by 1 unit,
435	suggesting a strong mixing event. Throughout November 2018, pCO ₂ oscillated between 344 and
436	757 µatm and salinity between 31.01 and 32.97, hinting at additional mixing.
437	Similarly, an early mixing event in 2019 decreased pCO_2 to 352 µatm at the beginning of
438	September. Short-term variability in pCO_2 with maximum levels of up to 855 µatm and
439	minimum values below 300 µatm, variable temperature and salinity, and sporadic aragonite
440	oversaturation events point to mixing through mid-September. At the end of October a large
441	mixing event homogenized the water column that was accompanied by a decline of salinity by
442	>1 unit, increase of temperature to 4 °C, and decrease of p CO ₂ from 565 µatm to below 400
443	µatm . In a similar fashion to 2018, this fall mixing event was followed by a month-long period
444	of large variability of p CO ₂ , salinity, pH, and Ω_{arag} , leading to short and sporadic aragonite
445	oversaturation events in November, and a sustained oversaturation in December.
446	
447	3.2 Drivers of sustained periods of low pH and $\Omega_{ m arag}$, and high $p{ m CO}_2$
448	Summer through late fall: Bottom waters at the CEO site were most acidified during the sea ice
449	free periods in summer through late fall. pH and Ω_{arag} started to gradually decrease at the

450 beginning of July in 2018 and reached an annual low at the beginning of November ($\Omega_{arag_{min}} =$

- 451 0.47, $pH_{min} = 7.58$, Figure 2 e & k). In November, the waters were also undersaturated with 452 regards to calcite (not shown) and pCO_2 peaked at 1159 uatm (Figure 2d). The gradual decrease 453 of pH and Ω_{arag} and increase of pCO₂ was interrupted by a strong mixing event in September, 454 which entrained warmer, fresher, and CO₂-poor water down to 33 m depth (section 3.1). Dissolved oxygen decreased from 592 umol kg⁻¹ at the beginning of July to 290 umol kg⁻¹ before 455 this first mixing event. At the same time DIC increased from 2074 umol kg⁻¹ to 2197 umol kg⁻¹ 456 and TA increased by 4 umol kg⁻¹. Applying the oxygen to carbon ratio by Laws (1991) suggests 457 458 a 215 umol kg⁻¹ increase of DIC and a 33 umol kg⁻¹ decrease of TA due to remineralization. 459 However, TA increased by 4 umol kg⁻¹, suggesting CaCO₃ dissolution, which may have added 460 ~37 umol kg⁻¹ to TA and roughly 18.5 umol kg⁻¹ to DIC. This scaling overestimates the observed DIC increase by 111 umol kg⁻¹ and points to the likely influence of gas exchange. After the wind 461 462 event, O₂ dropped from 408 umol kg⁻¹ to 305 umol kg⁻¹ when the O₂ sensor stopped working 463 properly at the beginning of October. Applying the oxygen to carbon ratio by (Laws, 1991) again we would expect remineralization to increase DIC by 74 umol kg⁻¹ and decrease TA by 11 umol 464 465 kg⁻¹. However, observations suggest an increase in TA by 12 umol kg⁻¹, hinting again to CaCO₃ dissolution and thereby adding 23 umol kg⁻¹ to TA and 11.5 umol kg⁻¹ to DIC. The expected 85.5 466 467 umol kg⁻¹ increase of DIC as a result of remineralization and CaCO₃ dissolution overestimates the observed DIC change by 9.5 umol kg⁻¹, again likely due to the uptake of CO₂ from the 468 469 atmosphere. 470 The 2019 observations paint a similar picture of remineralization, CaCO₃ dissolution, and 471 uptake of atmospheric CO₂ during the summer months. Between the end of June and end of August, NO₃ increased by 9.6 umol kg⁻¹. If DIC and TA were solely affected by remineralization 472 of organic matter, we would expect an increase of DIC by 63.4 umol kg⁻¹ and a decrease of TA 473 474 by 9.6 umol kg⁻¹. The observed increase in TA can only be explained by CaCO₃ dissolution of
- 475 \sim 24 umol kg⁻¹, which would add \sim 12 umol kg⁻¹ to DIC. The combined effects of remineralization
- 476 and dissolution would sum up to an expected increase in DIC of 76 umol kg⁻¹. This
- 477 overestimates the observed DIC increase by 17 umol kg⁻¹, and may again be the result of
- 478 atmospheric CO₂ uptake.
- 479Winter: pCO_2 steadily increased and pH and Ω_{arag} decreased during the sea ice covered480periods. pH was < 8 and aragonite remained undersaturated under the sea ice. At the same time,</td>481NO₃ slowly increased and O₂ decreased, which points to slow organic matter remineralization

- (Figure 8). Short-term variability in salinity, especially in January 2019 and 2020 suggests the
 influence of different water masses, which was also reflected in TA, DIC, and NO₃ (Figures 8
 and S3).
- 485

486 **3.3 Summer of 2020 was different**

487 Sea ice break-up did not lead to a spring relaxation event in 2020. On the contrary, pCO_2 488 gradually increased by roughly 200 µatm throughout the sea ice covered months to 650 µatm 489 when sea ice started to retreat at the beginning of July. By the end of July, pCO_2 peaked at 1389 490 µatm. At the same time, TA increased by 32 umol kg⁻¹ and DIC increased by 119 umol kg⁻¹ and 491 NO₃ slightly decreased from 16 umol kg to 14 umol kg⁻¹. The increase of TA and relatively high 492 increase of DIC provide evidence for a combination of CaCO₃ dissolution and remineralization. 493 Since NO₃ slightly decreased rather than increased, it is possible that NO₃ was consumed 494 through water column denitrification or modified by advection of water, however we do not have 495 sufficient evidence to support either hypothesis.

496

497 **4. Discussion**

498 CEO data provide new insights into the synoptic, seasonal and interannual variability and 499 controls of the inorganic carbon system in a time when ocean acidification and climate change 500 have already started to transform this area. The observations suggest that the CEO site is a high- CO_2 and low-pH and low- Ω_{arag} environment most of the time, except during sea ice break-up 501 502 when the combined effects of photosynthetic activity and CaCO₃ dissolution remove CO₂ and 503 add alkalinity to the system, and later in fall, when strong storm events entrain CO₂-deplete 504 surface waters to the seafloor. Lowest pH and CaCO₃ saturation states and highest pCO_2 occur in 505 summer through late fall when organic matter remineralization dominates the carbonate system 506 balance. During this time, Ω_{arag} can fall below 0.5 and even Ω_{calc} becomes sporadically 507 undersaturated ($\Omega_{calc} < 1$).

508

509 4.1 Progression of ocean acidification in the Chukchi Sea

510 The Arctic Ocean acidification rate will continue to exceed the rate of CO₂ change in the 511 atmosphere as a result of the impacts of freshening and other more localized, seasonal or short-512 term consequences of climate change (Woosley and Millero, 2020; Terhaar et al., 2021; Orr et

513	al., 2022; Qi et al., 2017). As a result, uncertainty in the rate of change pH and Ω_{arag} in the
514	Chukchi Sea remains (pH: -0.0031 \pm 0.0024 $$ vs0.0047 \pm 0.0026; $\Omega_{arag:}$ -0.0009 \pm 0.0138 vs -
515	0.017 ± 0.009 , Qi et al., 2022a, b). The weaker trend was calculated with data starting in 1994,
516	whereas the stronger trend used data starting eight years later. The difference is likely due to the
517	regions' large spatial and temporal variability, limited spatial data coverage, and short timeframe
518	of historic data (and thus statistically insignificant <i>p</i> -values), but it also provides evidence that
519	climate change has accelerated the rate of ocean acidification over time. As a comparison, an
520	average across historic simulations from five CMIP6 models (see methods) projects a change in
521	pH of -0.0077 year ⁻¹ and Ω_{arag} of -0.0063 year ⁻¹ at the CEO site between 2002 – 2014 and a
522	weaker trend between 1994-2014 (pH: -0.0025 year ⁻¹ ; Ω_{arag} : -0.0021 year ⁻¹). The historic
523	simulations end in 2014 and therefore miss the last years of extreme sea ice loss. Both
524	observations and global model-based trend estimates must be used with caution. Longer-term
525	observations are only available from the sea ice free period, and therefore do not depict an
526	annually representative trend. Global models do not resolve important local physical, chemical,
527	and biological meso-scale processes and therefore mask out the variability of the inorganic
528	carbon system and effects of climate change.
529	Organisms living at the CEO site may have always been exposed to large seasonal
530	variability and low pH and Ω_{arag} (high pCO ₂), but the combined effects of climate change and
531	ocean acidification have rapidly made these conditions more extreme and longer-lasting. Ocean
532	acidification serves as a gradual environmental press by increasing the system's mean and
533	extreme pCO_2 and decreasing mean and extreme pH and Ω_{arag} . Climate induced changes to other

534 important controls of the inorganic carbon system, such as sea ice, riverine input, temperature,

and circulation can act as sudden pulses and further modulate the inorganic carbon system to a

less predictable degree and cause extreme events (Woosley and Millero, 2020; Orr et al., 2022;

- Hauri et al., 2021; Qi et al., 2017). Huntington et al., (2020) describe a sudden and dramatic shift
- 538 of the physical, biogeochemical and ecosystem conditions in the Chukchi and Northern Bering
- seas in 2017. For example, satellite data for the CEO site illustrate that the longest open water
- seasons on record occurred between 2017 and 2020. Before 2017, the open water season was on
- s41 average 96 (+/- 32) days long (i.e., below 51 % concentration), of which 35 (+/-36) days were ice
- 542 free, whereas between 2017 and 2020, the low sea ice period was 151 (+/- 27) days long, of
- 543 which 112 (+/- 31) days were ice free (Figure 9). Sea ice decline and increased nutrient influx

544	has also promoted increased phytoplankton primary production in the area (Lewis et al., 2020;
545	Arrigo and van Dijken, 2015; Payne et al., 2021). Since our inorganic carbon time series started
546	after the "dramatic shift" that was observed in the Chukchi Sea in 2017 (Huntington et al., 2020)
547	and given the uncertainty in model output in this region, we can only speculate about how the
548	changes in sea ice, temperature and biological production may have affected seasonal variability
549	and extremes of the inorganic carbon chemistry at the CEO site. However, since the summertime
550	low pH and Ω_{arag} and high pCO ₂ are tightly coupled to the length of the ice-free period and
551	intensity of organic matter production, it is possible that the observed summertime period of
552	extreme conditions may have been previously unexperienced at this site. We therefore think it is
553	justified to call the spikes of pH and Ω_{arag} "ocean acidification relaxation events", since the long-
554	lasting summertime period of extremely low pH and Ω_{arag} maybe be a new pattern.

555

556 4.2 Relevance for ecosystem

557 Marine organisms are exposed to a wide range of naturally fluctuating environmental 558 conditions such as temperature, salinity, carbonate chemistry and food concentrations that 559 together constitute their ecological niche. As evolution works toward adaptation, the tolerance 560 range of species and ecosystems to such parameters varies between locations and is often closely 561 related to niche status. Stress can be defined as a condition evoked in an organism by one or 562 more environmental and biological factors that bring the organism near or over the limits of its ecological niche (after Van Straalen, 2003). The consequence of the exposure to a stressor will 563 564 depend on organismal sensitivity, stress intensity (how much it deviates from present conditions) 565 and stress duration. In a synthesis of the global literature on the biological impacts of ocean 566 acidification, Vargas et al. (2017, 2022) showed that the extreme of the present range of 567 variability of carbonate chemistry is a good predictor of species sensitivity. In other words, larger 568 deviations from present extreme high pCO2 or extreme low pH, exert more negative biological 569 impacts. Organismal stress and niche boundaries have implications for the definition and 570 understanding of controls and future ocean acidification conditions in experiments aimed at 571 evaluating future biological impacts. 572 Our data provide insights on conditions that affect and determine local species'

- 573 ecological niches, and a necessary key is to evaluate or re-evaluate their sensitivity to present and
- 574 future carbonate chemistry conditions. For example, an experimental study on 3 common Arctic

575 bivalve species (Macoma calcarean, Astarte montagui and Astarte borealis) collected in the 576 CEO concluded that these species were generally resilient to decreasing pH (Goethel et al., 577 2017). However, only two pH were compared (a "control" (pH 8.1) and an "acidified" treatment 578 (pH 7.8) and our results show that organisms are experiencing more extreme conditions already 579 today. While these data are providing insights on these species' plasticity to present pH 580 conditions, they cannot be used to infer sensitivity to future ocean acidification or extremes of 581 today's conditions. Based on the local adaptation hypothesis (Vargas et al. 2017, 2022), stress 582 and associated negative effect on species fitness can be expected when pH deviates from the 583 extreme of the present range of variability (pH<7.5) as shown in other regions (e.g. echinoderms: 584 Dorey et al., (2013); crustaceans: Thor and Dupont, (2015); bivalves: Ventura et al., 2016). 585 In the CEO, our results show sustained periods of remarkably low pH (e.g., 7.5; summer 586 to fall, winter). Higher pH values are observed in spring and late fall. While we are lacking the 587 local biological data to sufficiently evaluate past and future ecosystem changes, a high rate of 588 ocean acidification as observed in the Chukchi Sea (Qi et al., 2022b, a), associated with potential 589 temperature-induced shifts in the carbonate chemistry cycle (e.g. Orr et al. 2022), have the 590 potential to drive negative impacts on species and ecosystems. Exposure to low pH increases 591 organismal energy requirements for maintenance (e.g. acid-base regulation Stumpp et al., (2012), 592 compensatory calcification (Ventura et al., 2016). Organisms can cope with increased energy 593 costs using a variety of strategies, ranging from individual physiological to behavioral responses, 594 depending on trophic level, mobility, and other ecological factors. For example, they can use 595 available stored energy to compensate for increased costs or they can decrease their metabolism 596 to limit costs (AMAP 2018). At the CEO, the low pH period observed during the summer and 597 fall is associated with elevated temperature and an elevated food supply for herbivores (Lalande 598 et al., 2020). The high availability of food may then foster compensation for the higher energetic 599 costs associated with exposure to low pH. However, a longer period of low pH as suggested by our data could lead to a mismatch between the low pH and food availability, with cascading 600 601 negative consequences for the ecosystem (Kroeker et al., 2021). In winter, the low pH conditions 602 are associated with low temperature, no light, and low food level concentrations. These 603 conditions are likely to keep metabolisms low and limit the negative effects of exposure to low 604 pH (e.g. Gianguzza et al., (2014). As food availability is limited by the absence of light, this 605 strategy may be compromised by an increase in temperature that could also lead to increased

606	metabolism. Additional work is needed to understand impacts of acidification conditions and
607	variability on the marine biota of the Chukchi Sea, including field and laboratory experiments
608	that evaluate biological response under realistic scenarios. The characterization of the
609	environmental conditions at the CEO, including the variability in time, can be used to design
610	single and multiple stressors experiments (carbonate chemistry, temperature, salinity, food,
611	oxygen; Boyd et al. 2018).
612	Indigenous communities are at the forefront of the changing Arctic, including changes in
613	accessibility, availability, and condition of traditional marine foods (Buschman and Sudlovenick,
614	2022; Hauser et al., 2021). We showed seasonal and interannual variation in carbonate
615	conditions that have the potential to impact species critical to the food and cultural security of
616	coastal Inupiat who have thrived in Arctic Alaska for millenia. For example, we have
617	characterized seasonal low pH conditions that could impact organisms like bivalves in a foraging
618	hotspot for walrus (Jay et al., 2012; Kuletz et al., 2015). Walrus, as well as their bivalve stomach
619	contents, are important nutritional, spiritual, and cultural components, raising concerns for food
620	security in the context of ecosystem shifts associated with the variability and multiplicity of
621	climate impacts within the region (ICC, 2015).
621 622	climate impacts within the region (ICC, 2015).
	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution
622	
622 623	4.3 Near-bottom photosynthetic activity, and CaCO ₃ dissolution
622 623 624	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} ,
622 623 624 625	4.3 Near-bottom photosynthetic activity, and CaCO ₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower <i>p</i> CO ₂ , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution.
 622 623 624 625 626 	4.3 Near-bottom photosynthetic activity, and CaCO ₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower pCO_2 , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi
 622 623 624 625 626 627 	4.3 Near-bottom photosynthetic activity, and CaCO ₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower pCO_2 , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as
 622 623 624 625 626 627 628 	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower <i>p</i> CO ₂ , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as sea ice retreats and continues to photosynthesize there for weeks (Stabeno et al., 2020; Koch et
 622 623 624 625 626 627 628 629 	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower <i>p</i> CO ₂ , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as sea ice retreats and continues to photosynthesize there for weeks (Stabeno et al., 2020; Koch et al., 2020). Sediment trap data from a CEO deployment prior to the start of this pCO2 and pH
 622 623 624 625 626 627 628 629 630 	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower pCO_2 , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as sea ice retreats and continues to photosynthesize there for weeks (Stabeno et al., 2020; Koch et al., 2020). Sediment trap data from a CEO deployment prior to the start of this pCO2 and pH time-series suggest that export of the exclusively sympagic sea ice algae Nitzschia frigida peaked
 622 623 624 625 626 627 628 629 630 631 	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower pCO_2 , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as sea ice retreats and continues to photosynthesize there for weeks (Stabeno et al., 2020; Koch et al., 2020). Sediment trap data from a CEO deployment prior to the start of this pCO2 and pH time-series suggest that export of the exclusively sympagic sea ice algae Nitzschia frigida peaked in May and June, during snow and ice melt events (Lalande et al., 2020).
 622 623 624 625 626 627 628 629 630 631 632 	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower <i>p</i> CO ₂ , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as sea ice retreats and continues to photosynthesize there for weeks (Stabeno et al., 2020; Koch et al., 2020). Sediment trap data from a CEO deployment prior to the start of this pCO2 and pH time-series suggest that export of the exclusively sympagic sea ice algae Nitzschia frigida peaked in May and June, during snow and ice melt events (Lalande et al., 2020). The observed CaCO ₃ mineral dissolution at the CEO site are likely driven by ikaite
 622 623 624 625 626 627 628 629 630 631 632 633 	4.3 Near-bottom photosynthetic activity, and CaCO₃ dissolution The springtime relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower <i>p</i> CO ₂ , was driven by a combination of photosynthetic activity and CaCO ₃ dissolution. Near bottom photosynthetic activity has been observed at different locations across the Chukchi Sea and is likely due in part to sea ice algae that sink through the water column to the seafloor as sea ice retreats and continues to photosynthesize there for weeks (Stabeno et al., 2020; Koch et al., 2020). Sediment trap data from a CEO deployment prior to the start of this pCO2 and pH time-series suggest that export of the exclusively sympagic sea ice algae Nitzschia frigida peaked in May and June, during snow and ice melt events (Lalande et al., 2020). The observed CaCO ₃ mineral dissolution at the CEO site are likely driven by ikaite crystal dissolution in spring and aragonite and calcite dissolution in summer and fall. In spring,

21

637	in the ice matrix during brine rejection dissolved in the water column when sea ice melted, as
638	was found in other areas of the Arctic (Rysgaard et al., 2012, 2007). On the other hand, aragonite
639	and calcite undersaturation during sea ice free periods likely triggered CaCO3 mineral dissolution
640	and led to increases in TA. Shallow CaCO ₃ mineral dissolution has also been found south of the
641	CEO, in Anadyr waters in the Bering Sea and was also attributed to summertime organic matter
642	remineralization (Cross et al., 2013).
643	
644	4.4 Water column denitrification
C 1 5	

Our inorganic carbon and nutrient timeseries provide indirect evidence of water column 645 denitrification (section 3.3). The CEO salinity and temperature record suggest a resuspension 646 647 event (increase in density) prior to the steep increase of pCO_2 , DIC and TA and slight decrease 648 of NO₃ in July of 2020. Zeng et al., (2017) have recorded high summertime denitrification 649 activity in the oxic water column on the Chukchi Shelf and hypothesized that resuspension of 650 benthic particles with bacteria may induce this active denitrification process. Water column 651 denitrification would not only eliminate bio-available nitrogen from the Chukchi Sea, but it 652 would also contribute to the outgassing of nitrous oxide and therefore climate change (Etminan 653 et al., 2016).

654

655 **4.5 pH algorithm**

656 Deploying oceanographic equipment in remote Arctic locations is challenging. The data 657 return from the SeapHOx sensors was minimal, despite annual servicing and calibration at 658 Seabird. Our new pH algorithm is therefore all the more important as it fills important pH data 659 gaps in the CEO timeseries. While we need another successful year of moored pH data return to 660 fully evaluate our algorithm throughout the year, comparison with single discrete water samples 661 nearby the CEO site and cruise datasets from the Chukchi Sea (Section 2.6, Table 2, Figures 5 and S1) suggest that our algorithm-derived pH falls within the weather quality goal of ± -0.003 662 663 (Newton et al., 2015). The algorithm generally overestimates pH 0.0008 (Figures 3 and 4c), 664 which means that the Ω_{arag} is also somewhat overestimated throughout the manuscript. Empirical 665 relationships for estimating water column pH that rely on dissolved oxygen often ignore surface 666 waters to limit biases due to decoupling the stoichiometry of the O₂:CO₂ relationship due to airgas exchange (e.g. Juranek et al., 2011; Alin et al., 2012; Li et al., 2016). We see evidence of 667

668	this bias in our algorithm at low salinity (Figure 5c) and low pCO_2 (not shown) when compared
669	with discrete samples collected across the arctic and from the surface to 500m (dataset described
670	in Section 2.4), with pH^{disc}_{est} overestimating pH^{disc}_{calc} by a maximum of 0.053. If depth is
671	restricted to between 30 and 500m when evaluating the algorithm with the same dataset
672	described in Section 2.6, algorithm performance improves ($r^2 = 0.9990$, RMSE = 0.0055, p-value
673	< 0.0001; not shown) and the maximum pH ^{disc} _{est} overestimates by pH ^{disc} _{calc} is 0.022. The
674	combination of our new algorithm with recent progress in monitoring p CO ₂ with Seagliders
675	(Hayes et al., 2022) will further increase our ability to study the inorganic carbon dynamics at
676	times and locations when shipboard or mooring based measurements may not be practical.
677	Additional assessment is needed to determine to what degree the algorithm needs adjustments
678	elsewhere.
678 679	elsewhere. Inherent spatial and temporal variability of the inorganic carbon parameters in the
679	Inherent spatial and temporal variability of the inorganic carbon parameters in the
679 680	Inherent spatial and temporal variability of the inorganic carbon parameters in the Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements
679 680 681	Inherent spatial and temporal variability of the inorganic carbon parameters in the Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements difficult. Historic continuous surface measurements from the area suggest that surface pCO_2 can
679 680 681 682	Inherent spatial and temporal variability of the inorganic carbon parameters in the Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements difficult. Historic continuous surface measurements from the area suggest that surface pCO_2 can be as low < 250 µatm in early fall (Hauri et al., 2013), at a time of year when subsurface pCO_2
679 680 681 682 683	Inherent spatial and temporal variability of the inorganic carbon parameters in the Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements difficult. Historic continuous surface measurements from the area suggest that surface pCO_2 can be as low < 250 µatm in early fall (Hauri et al., 2013), at a time of year when subsurface pCO_2 reaches its max of >800 µatm at the CEO site. This suggests a steep pCO_2 gradient of > 17 µatm
 679 680 681 682 683 684 	Inherent spatial and temporal variability of the inorganic carbon parameters in the Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements difficult. Historic continuous surface measurements from the area suggest that surface pCO_2 can be as low < 250 µatm in early fall (Hauri et al., 2013), at a time of year when subsurface pCO_2 reaches its max of >800 µatm at the CEO site. This suggests a steep pCO_2 gradient of > 17 µatm per meter. High-resolution pH data from the 2017/2018 deployment suggests high temporal

688 689

690 5. Concluding Thoughts

data.

691 The Chukchi Sea is undergoing a rapid environmental transformation with potentially 692 far-reaching consequences across the ecosystem. While we are lacking a long-term time-series, 693 we used this data set to understand the drivers of extreme pH, Ω_{arag} , and pCO₂ and document 694 conditions that could affect the ecological niches of organisms, including a fast rate of ocean 695 acidification, elongated sea ice free periods, increased primary productivity and elevated 696 temperature. While a combination of experimental and monitoring approaches is needed for an 697 understanding of the ecological consequences of these changes, our results also highlight to 698 urgency to mitigate CO₂ emissions and simultaneously support Indigenous-led conservation

699	measures to safeguard an ecosystem in transition. Indigenous People in the Arctic have
700	established strategies to monitor, adapt to, and conserve the ecosystems upon which they depend.
701	Ethical and equitable engagement of Indigenous Knowledge and the communities at the forefront
702	of climate impacts can help guide research and conservation action by centering local priorities
703	and traditional practices, thereby supporting self-determination and sovereignty (Buschman and
704	Sudlovenick, 2022).
705	
706	Data availability
707	The data used in this manuscript are publicly available (Hauri and Irving, 2023a; Hauri
708	and Irving, 2023b).
709	
710	Author contributions
711	CH and BI managed and serviced the HydroC CO2 and SeapHOx sensors, analyzed and
712	published the data, and wrote the manuscript. RP, DH, SD, and SLD contributed to the
713	manuscript.
714	
715	Competing interests
716	The authors have no competing interests.
717	
718	Acknowledgments
719	The Chukchi Ecosystem Observatory is located on the traditional and contemporary
720	hunting grounds of the Northern Alaskan Iñupiat. We also acknowledge that our Fairbanks-based
721	offices are located on the Native lands of the lower Tanana Dena. The Indigenous peoples of this
722	land never surrendered lands or resources to Russia or the United States. We acknowledge this
723	not only because we are grateful to the Indigenous communities who have been in deep
724	connection with the land and water for time immemorial, but also in recognition of the historical
725	and ongoing legacy of colonialism. We are committed to improving our scientific approaches
726	and working towards co-production for a better future for everyone.
727	We acknowledge the World Climate Research Programme, which, through its Working
728	Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate
729	modeling groups for producing and making available their model output, the Earth System Grid

- Federation (ESGF) for archiving the data and providing access, and the multiple funding
- 731 agencies who support CMIP6 and ESGF.
- 732

733 Financial support

- 734 We would like to thank the National Pacific Research Board Long-term Monitoring 735 (NPRB LTM) program (project no. 1426 and L-36), the Alaska Ocean Observing System (award 736 no. NA11NOS0120020 and NA16NOS0120027), and the University of Alaska Fairbanks for 737 their financial support. Claudine Hauri, Brita Irving, and Seth Danielson also acknowledge 738 support from the National Science Foundation Office of Ocean Sciences and Polar Programs 739 (OCE-1841948 and OPP-1603116). Projects that serviced the CEO and/or collected water 740 column calibration data were funded by the National Science Foundation, Bureau of Ocean 741 Energy Management, National Oceanic and Atmospheric Administration, National 742 Oceanographic Partnership Program, and Shell Exploration and Production Company, Inc. 743 Maintenance and calibration of the CEO sensors is only possible due to the kind support of 744 numerous collaborators within the Arctic research community who helped with CEO deployment 745 and recovery or collected sensor calibration samples. We would therefore like to thank Carin 746 Ashjian, Jessica Cross, Miguel Goñi, Jackie Grebmeier, Burke Hales, Katrin Iken, Laurie 747 Juranek, Calvin Mordy, and Robert Pickart. 748 749 References Alin, S. R., Feely, R. A., Dickson, A. G., Hernández-Ayón, J. M., Juranek, L. W., Ohman, M. 750 751 D., and Goericke, R.: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005-752 753 2011), 2012. 754 755 AMAP Assessment 2018: Arctic Ocean Acidification | AMAP: 756 https://www.amap.no/documents/doc/AMAP-Assessment-2018-Arctic-Ocean-757 Acidification/1659, 2023. 758 Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean primary production, 759 760 Prog. Oceanogr., 136, 60-70, https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
- 761
- 762 Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M., Chan, K. Y. K., Dupont, S.,
- 763 Padilla-Gamiño, J. L., Spicer, J. I., Kessouri, F., Roethler, M., Sutula, M., and Weisberg, S. B.:
- 764 Synthesis of thresholds of ocean acidification impacts on echinoderms, 2021.

765	
766	Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., Körtzinger,
767	A., and Gattuso, JP.: An alternative to static climatologies: robust estimation of open ocean
768	CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural
769	networks, Front. Mar. Sci., 5, 328, https://doi.org/10.3389/fmars.2018.00328, 2018.
770	networks, 110nt. Mar. 301., 3, 328, https://doi.org/10.3387/111ars.2018.00328, 2018.
771	Bresnahan, P. J., Martz, T. R., Takeshita, Y., Johnson, K. S., and LaShomb, M.: Best practices
772	for autonomous measurement of seawater pH with the Honeywell Durafet, Methods Oceanogr.,
773	9, 44–60, https://doi.org/10.1016/j.mio.2014.08.003, 2014.
774	9, 44–00, https://doi.org/10.1010/j.nno.2014.08.005, 2014.
775	Brodzik, M. J. and K. W. Knowles: "Chapter 5: EASE-Grid: A Versatile Set of Equal-Area
776	Projections and Grids." in Michael F.Goodchild (Ed.) Discrete Global Grids: A Web Book.
777	Santa Barbara, California USA: National Center for Geographic Information & Analysis.
778	https://escholarship.org/uc/item/9492q6sm, 2002.
779	https://escholarship.org/uc/hem/9492q0shi, 2002.
780	Buschman, V. Q. and Sudlovenick, E.: Indigenous-led conservation in the Arctic supports global
780 781	conservation practices, Arct. Sci., https://doi.org/10.1139/as-2022-0025, 2022.
782	conservation practices, Aret. Set., https://doi.org/10.1159/as-2022-0025, 2022.
782 783	Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., and Takeshita, Y.:
783 784	Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate,
785	Methods Limnology and Oceanography, 16(2), 119-131, https://doi.org/10.1002/lom3.10232,
786	2018.
787	2010.
788	Corlett and Pickart, 2017
789	
790	Cross, J. N., Mathis, J. T., Bates, N. R., and Byrne, R. H.: Conservative and non-conservative
791	variations of total alkalinity on the Southeastern Bering Sea Shelf, Mar. Chem., 154, 100–112,
792	https://doi.org/10.1016/j.marchem.2013.05.012, 2013.
793	https://doi.org/10.1010/j.indionom.2015.05.012, 2015.
794	Cross, J. N.; Monacci, N. M.; Bell, S. W.; Grebmeier, J. M.; Mordy, C.; Pickart, R. S.; Stabeno,
795	and P. J.: Dissolved inorganic carbon (DIC), total alkalinity (TA) and other variables collected
796	from discrete samples and profile observations from United States Coast Guard Cutter (USCGC)
797	Healy cruise HLY1702 (EXPOCODE 33HQ20170826) in the Bering and Chukchi Sea along
798	transect lines in the Distributed Biological Observatory (DBO) from 2017-08-26 to 2017-09-15
799	(NCEI Accession 0208337). NOAA National Centers for Environmental Information. Dataset.
800	https://doi.org/10.25921/pks4-4p43, 2020a.
801	
802	Cross, J. N.; Monacci, N. M.; Bell, S. W.; Grebmeier, J. M.; Mordy, C.; Pickart, R. S.; Stabeno,
803	P. J. Dissolved inorganic carbon (DIC), total alkalinity (TA) and other parameters collected
000	

from discrete sample and profile observations during the USCGC Healy cruise HLY1801

805 (EXPOCODE 33HQ20180807) in the Bering Sea, Chukchi Sea and Beaufort Sea along transect 806 lines in the Distributed Biological Observatory (DBO) from 2018-08-07 to 2018-08-24 (NCEI 807 Accession 0221911). NOAA National Centers for Environmental Information. Dataset. 808 https://doi.org/10.25921/xc4b-xh20, 2020b. 809 810 Cross, J. N.; Monacci, N. M.; Bell, S. W.; Grebmeier, J. M.; Mordy, C.; Pickart, Robert S.; 811 Stabeno, P.J.. Dissolved inorganic carbon (DIC) and total alkalinity (TA) and other hydrographic 812 and chemical data collected from discrete sample and profile observations during the United 813 States Coast Guard Cutter (USCGC) Healy cruise HLY1901 (EXPOCODE 33HQ20190806) in 814 the Bering and Chukchi Sea along transect lines in the Distributed Biological Observatory 815 (DBO) from 2019-08-06 to 2019-08-22 (NCEI Accession 0243277). NOAA National Centers for 816 Environmental Information. Dataset. https://doi.org/10.25921/b5s5-py61, 2021. 817 818 Cullison-Gray, S. E., DeGrandpre, M. D., Moore, T. S., Martz, T. R., Friederich, G. E., and 819 Johnson, K. S.: Applications of in situ pH measurements for inorganic carbon calculations, Mar. Chem., 125, 82–90, https://doi.org/10.1016/j.marchem.2011.02.005, 2011. 820 821 822 Daniel, A., Laës-Huon, A., Barus, C., Beaton, A. D., Blandfort, D., Guigues, N., Knockaert, M., 823 Munaron, D., Salter, I., Woodward, E. M. S., Greenwood, N., and Achterberg, E. P.: Toward a 824 Harmonization for Using in situ Nutrient Sensors in the Marine Environment, Front. Mar. Sci., 6, 825 773, https://doi.org/10.3389/fmars.2019.00773, 2020. 826 827 Danielson, S. L., Ahkinga, O., Ashjian, C., Basyuk, E., Cooper, L. W., Eisner, L., Farley, E., 828 Iken, K. B., Grebmeier, J. M., Juranek, L., Khen, G., Jayne, S. R., Kikuchi, T., Ladd, C., Lu, K., 829 McCabe, R. M., Moore, G. W. K., Nishino, S., Ozenna, F., Pickart, R. S., Polyakov, I., Stabeno, 830 P. J., Thoman, R., Williams, W. J., Wood, K., and Weingartner, T. J.: Manifestation and consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental 831 shelves, Deep Sea Res. Part II Top. Stud. Oceanogr., 177, 104781, 832 833 https://doi.org/10.1016/j.dsr2.2020.104781, 2020. 834 835 Danielson, S.: (2021): Water temperature, conductivity, and others taken by CTD and Niskin 836 bottles from the research vessel Norseman II Data for Arctic Marine Biodiversity Observing 837 Network, AMBON, Program in the Chukchi Sea from 2017-08-07 to 2017-08-22 (NCEI Accession 0229072). NOAA National Centers for Environmental Information. Dataset. 838 839 https://doi.org/10.25921/afz7-0d98, 2021. 840 841 Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater from 842 273.15 to 318.15 K, Deep Sea Res. Part Oceanogr. Res. Pap., 37, 755–766, 843 https://doi.org/10.1016/0198-0149(90)90004-F, 1990. 844

- 845 Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2
- 846 measurements, PICES, Sydney, 191 pp., 2007.
- 847
- 848 DiGirolamo, N. E., C. L. Parkinson, D. J. Cavalieri, P. Gloersen, and H. J. Zwally. Sea Ice
- 849 Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data,
- 850 Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data
- 851 Center Distributed Active Archive Center. https://doi.org/10.5067/MPYG15WAA4WX, 2022.
- 852 Dorey, N., Lançon, P., Thorndyke, M., and Dupont, S.: Assessing physiological tipping point of
- sea urchin larvae exposed to a broad range of pH, Glob. Change Biol., 19, 3355–3367,
- 854 https://doi.org/10.1111/gcb.12276, 2013.
- 855
- 856 Duke, P. J., Else, B. G. T., Jones, S. F., Marriot, S., Ahmed, M. M. M., Nandan, V., Butterworth,
- 857 B., Gonski, S. F., Dewey, R., Sastri, A., Miller, L. A., Simpson, K. G., and Thomas, H.: Seasonal 858 marine carbon system processes in an Arctic coastal landfast sea ice environment observed with
- an innovative underwater sensor platform, 2021.
- 860
- 861 Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide,
- 862 methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys.
- 863 Res. Lett., 43, 12,614-12,623, https://doi.org/10.1002/2016GL071930, 2016.
- 864
- 865 Fietzek, P., Fiedler, B., Steinhoff, T., and Körtzinger, A.: In situ quality assessment of a novel
- 866 underwater CO2 sensor based on membrane equilibration and NDIR spectrometry, J.
- 867 Atmospheric Ocean. Technol., 31, 181–196, https://doi.org/10.1175/JTECH-D-13-00083.1,
- 868

2014.

- 869
- 870 Friis, K.: The salinity normalization of marine inorganic carbon chemistry data, Geophys. Res.
- 871 Lett., 30, 1085, https://doi.org/10.1029/2002GL015898, 2003.
- 872
- 873 Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G., and Dupont, S.: Temperature
- 874 modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-
- driven acidification, Mar. Environ. Res., 93, 70–77,
- 876 https://doi.org/10.1016/j.marenvres.2013.07.008, 2014.
- 877
- 878 Goethel, C. L., Grebmeier, J. M., Cooper, L. W., and Miller, T. J.: Implications of ocean
- 879 acidification in the Pacific Arctic: Experimental responses of three Arctic bivalves to decreased
- pH and food availability, Deep Sea Res. Part II Top. Stud. Oceanogr., 144, 112–124,
- 881 https://doi.org/10.1016/j.dsr2.2017.08.013, 2017.
- 882

- 883 Gonzalez, S., Horne, J. K., and Danielson, S. L.: Multi-scale temporal variability in biological-
- physical associations in the NE Chukchi Sea, Polar Biol., 44, 837–855,
- 885 https://doi.org/10.1007/s00300-021-02844-1, 2021.
- 886
- 887 Hauri, C., Danielson, S., McDonnell, A. M. P., Hopcroft, R. R., Winsor, P., Shipton, P., Lalande,
- 888 C., Stafford, K. M., Horne, J. K., Cooper, L. W., Grebmeier, J. M., Mahoney, A., Maisch, K.,
- 889 McCammon, M., Statscewich, H., Sybrandy, A., and Weingartner, T.: From sea ice to seals: a
- 890 moored marine ecosystem observatory in the Arctic, Ocean Sci., 14, 1423–1433,
- 891 https://doi.org/10.5194/os-14-1423-2018, 2018.
- 892
- 893 Hauri, C., Pagès, R., McDonnell, A. M. P., Stuecker, M. F., Danielson, S. L., Hedstrom, K.,
- Irving, B., Schultz, C., and Doney, S. C.: Modulation of ocean acidification by decadal climate
 variability in the Gulf of Alaska, 2021.
- 896
- Hauri, C. and Irving, B.: pCO2 time series measurements from the Chukchi Ecosystem
 Observatory CEO2 mooring deployed at 33 meters depth in the Northeast Chukchi Sea. Research
- 899 Workspace. https://doi.org/10.24431/rw1k7dq,
- 900 version: 10.24431_rw1k7dq_20230531T123002Z, 2023.
- 901
- 902 Hauri, C. and Irving, B.: pH, temperature, salintiy, and oxygen time series measurements from
- the Chukchi Ecosystem Observatory CEO2 mooring deployed at 33 meters depth in the
- 904 Northeast Chukchi Sea. Research Workspace. https://doi.org/10.24431/rw1k7dp
- 905 , version: 10.24431_rw1k7dp_20230531T121136Z, 2023.
- 906
- 907 Hauser, D. D. W., Whiting, A. V., Mahoney, A. R., Goodwin, J., Harris, C., Schaeffer, R. J.,
- 908 Schaeffer, R., Laxague, N. J. M., Subramaniam, A., Witte, C. R., Betcher, S., Lindsay, J. M., and
- 909 Zappa, C. J.: Co-production of knowledge reveals loss of Indigenous hunting opportunities in the
- 910 face of accelerating Arctic climate change, Environ. Res. Lett., 16, 095003,
- 911 https://doi.org/10.1088/1748-9326/ac1a36, 2021.
- 912
- 913 Hayes, D., Kemme, J., and Hauri C.: Ocean greenhouse gas monitoring: new autonomous
- 914 platform to measure *p*CO₂, methane, Sea Technology, 63(10), 13-16, https://lsc-
- 915 pagepro.mydigitalpublication.com/publication/?i=764237&p=13&view=issueViewer, 2022.
- 916
- 917 Hennon, T. D., Danielson, S. L., Woodgate, R. A., Irving, B., Stockwell, D. A., and Mordy, C.
- 918 W.: Mooring Measurements of Anadyr Current Nitrate, Phosphate, and Silicate Enable Updated
- 919 Bering Strait Nutrient Flux Estimates, Geophys. Res. Lett., 49, e2022GL098908,
- 920 https://doi.org/10.1029/2022GL098908, 2022.
- 921
- 922 Holmes, R.M., J.W. McClelland, S.E. Tank, R.G.M. Spencer, and A.I. Shiklomanov. Arctic
- 923 Great Rivers Observatory. Water Quality Dataset, https://www.arcticgreatrivers.org/data, 2021.
- 924

925	Huntington, H. P., Danielson, S. L., Wiese, F. K., Baker, M., Boveng, P., Citta, J. J., De
926	Robertis, A., Dickson, D. M. S., Farley, E., George, J. C., Iken, K., Kimmel, D. G., Kuletz, K.,
927	Ladd, C., Levine, R., Quakenbush, L., Stabeno, P., Stafford, K. M., Stockwell, D., and Wilson,
928	C.: Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway, Nat.
929	Clim. Change, 10, 342-348, https://doi.org/10.1038/s41558-020-0695-2, 2020.
930	
931 932	ICC: Alaskan Inuit food security conceptual framework: how to assess the Arctic from an Inuit perspective, Inuit Circumpolar Council-Alaska, Anchorage, 2015.
933	perspective, muit circumpolar council-maska, michorage, 2015.
934	Irving, B., SUNA V2 processing, GitHub repository, https://github.com/britairving/SUNA V2,
935	2021.
936	
937	Jay, C. V., Fischbach, A. S., and Kochnev, A. A.: Walrus areas of use in the Chukchi Sea during
938	sparse sea ice cover, Mar. Ecol. Prog. Ser., 468, 1–13, https://doi.org/10.3354/meps10057, 2012.
939	
940	Jiang, LQ., Feely, R. A., Wanninkhof, R., Greeley, D., Barbero, L., Alin, S., Carter, B. R.,
941	Pierrot, D., Featherstone, C., Hooper, J., Melrose, C., Monacci, N., Sharp, J. D., Shellito, S., Xu,
942	YY., Kozyr, A., Byrne, R. H., Cai, WJ., Cross, J., Johnson, G. C., Hales, B., Langdon, C.,
943	Mathis, J., Salisbury, J., and Townsend, D. W.: Coastal Ocean Data Analysis Product in North
944	America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon,
945	oxygen, and nutrients on the North American ocean margins, Earth Syst. Sci. Data, 13, 2777-
946	2799, https://doi.org/10.5194/essd-13-2777-2021, 2021.
947	
948	Juranek, L. W., Feely, R. A., Peterson, W. T., Alin, S. R., Hales, B., Lee, K., Sabine, C. L., and
949 950	Peterson, J.: A novel method for determination of aragonite saturation state on the continental shelf of central Oregon using multi-parameter relationships with hydrographic data, Geophys.
951	Res. Lett., 36, L24601, https://doi.org/10.1029/2009GL040778, 2009.
952	
953	Juranek, L. W., Feely, R. A., Gilbert, D., Freeland, H., and Miller, L. A.: Real-time estimation of
954	pH and aragonite saturation state from Argo profiling floats: Prospects for an autonomous carbon
955	observing strategy, Geophys. Res. Lett., 38, L17603, https://doi.org/10.1029/2011gl048580,
956	2011.
957	
958	Kroeker, K. J., Powell, C., and Donham, E. M.: Windows of vulnerability: Seasonal mismatches
959	in exposure and resource identity determine ocean acidification's effect on a primary consumer
960	at high latitude, Glob. Change Biol., 27, 1042–1051, https://doi.org/10.1111/gcb.15449, 2021.
961	
962	Kuletz, K. J., Ferguson, M. C., Hurley, B., Gall, A. E., Labunski, E. A., and Morgan, T. C.:

963 Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and

- 964 western Beaufort seas: Identifying biologically important pelagic areas, Prog. Oceanogr., 136,
- 965 175–200, https://doi.org/10.1016/j.pocean.2015.05.012, 2015.
- 966
- Lalande, C., Grebmeier, J. M., Hopcroft, R. R., and Danielson, S. L.: Annual cycle of export
- 968 fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea, Deep Sea Res. Part II
- 969 Top. Stud. Oceanogr., 177, 104730, https://doi.org/10.1016/j.dsr2.2020.104730, 2020.
- 970
- 971 Lalande, C., Grebmeier, J. M., McDonnell, A. M. P., Hopcroft, R. R., O'Daly, S., and Danielson,
- 972 S. L.: Impact of a warm anomaly in the Pacific Arctic region derived from time-series export
- 973 fluxes, PLOS ONE, 16, e0255837, https://doi.org/10.1371/journal.pone.0255837, 2021.
- 974
- 275 Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Álvarez, M., Becker,
- 976 S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M.,
- 977 Ishii, M., Jeansson, E., Jutterström, S., Jones, S. D., Karlsen, M. K., Lo Monaco, C., Michaelis,
- 978 P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo,
- A., Wanninkhof, R., Woosley, R. J., and Key, R. M.: An updated version of the global interior
- 980 ocean biogeochemical data product, GLODAPv2.2021, Earth Syst. Sci. Data Discuss.,
- 981 https://doi.org/10.5194/essd-2021-234, 2021.
- 982
- Laws, E. A.: Photosynthetic quotients, new production and net community production in the
 open ocean, Deep Sea Res. Part Oceanogr. Res. Pap., 38, 143–167, https://doi.org/10.1016/01980149(91)90059-O, 1991.
- 986
- 987 Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.: The universal
- 988 ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim.
- 989 Cosmochim. Acta, 74, 1801–1811, https://doi.org/10.1016/j.gca.2009.12.027, 2010.
- 990
- 991 Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System Calculations,
- 992 ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.,
- 993 38 pp., https://salish-sea.pnnl.gov/media/ORNL-CDIAC-105.pdf, 1998.
- 994
- 995 Lewis, K. M., van Dijken, G. L., and Arrigo, K. R.: Changes in phytoplankton concentration now
- 996 drive increased Arctic Ocean primary production, Science, 369, 198–202,
- 997 https://doi.org/10.1126/science.aay8380, 2020.
- 998
- Li, B., Watanabe, Y. W., and Yamaguchi, A.: Spatiotemporal distribution of seawater pH in the
- 1000 North Pacific subpolar region by using the parameterization technique, J. Geophys. Res. Oceans,
- 1001 121, 3435–3449, https://doi.org/10.1002/2015JC011615, 2016.
- 1002

- 1003 Licker, R., Ekwurzel, B., Doney, S. C., Cooley, S. R., Lima, I. D., Heede, R., and Frumhoff, P. 1004 C.: Attributing ocean acidification to major carbon producers, Environ. Res. Lett., 14, 124060,
- 1005 https://doi.org/10.1088/1748-9326/ab5abc, 2019.
- 1006
- 1007 Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from dissolved
- 1008 inorganic carbon, alkalinity, and equations for K 1 and K 2: validation based on laboratory 1009 measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119,
- 1010 https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
- 1011
- 1012 Martz, T. R., Connery, J. G., and Johnson, K. S.: Testing the Honeywell Durafet for seawater pH
- 1013 applications, Limnol. Oceanogr. Methods, 8, 172–184, https://doi.org/10.4319/lom.2010.8.172, 1014 2010.
- 1015
- 1016 Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen,
- 1017 M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D.
- 1018 S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilvina, T., Jahns, T., Jimenéz-de-la-1019
- Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop,
- 1020 G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis,
- 1021 B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H.,
- 1022 Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., 1023 Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six,
- 1024 K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P.,
- 1025 Wieners, K.-H., Wilkenskield, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
- 1026 Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2, J. Adv.
- 1027 Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019.
- 1028
- 1029 McDougall, T.J. and P.M. Barker: Getting started with TEOS-10 and the Gibbs Seawater (GSW)
- Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011. 1030
- 1031
- 1032 McRaven, L. and R. Pickart: Conductivity-Temperature-Depth (CTD) data from the 2018
- 1033 Distributed Biological Observatory - Northern Chukchi Integrated Study (DBO-NCIS) cruise on
- 1034 USCGC (US Coast Guard Cutter) Healy (HLY1801). Arctic Data Center.
- 1035 doi:10.18739/A2HT2GC7Z, 2021.
- 1036
- 1037 Monacci, N. M., Cross, J. N., Pickart, R. S., Juranek, L. W., McRaven, L. T., and Becker, S.:
- 1038 Dissolved inorganic carbon (DIC) and total alkalinity (TA) and other hydrographic and chemical
- 1039 data collected from discrete sample and profile observations aboard the RV Sikuliag Cruise
- 1040 SKQ202014S (EXPOCODE 33BI20201025) in the Bering and Chukchi Sea along transect lines
- 1041 in the Distributed Biological Observatory (DBO) from 2020-10-25 to 2020-11-11 (NCEI

1042	Accession 0252613). NOAA National Centers for Environmental Information. Dataset.
1043	https://doi.org/10.25921/pnsd-sv10, 2022.
1044	
1045	Mordy, C. W., Bell, S., Cokelet, E. D., Ladd, C., Lebon, G., Proctor, P., Stabeno, P., Strausz, D.,
1046	Wisegarver, E., and Wood, K.: Seasonal and interannual variability of nitrate in the eastern
1047	Chukchi Sea: Transport and winter replenishment, Deep-Sea Res. Part II Top. Stud. Oceanogr.,
1048	177, 104807, https://doi.org/10.1016/j.dsr2.2020.104807, 2020.
1049	
1050	National Academies of Sciences, Engineering and Medicine: Valuing Climate Damages:
1051	Updating Estimation of the Social Cost of Carbon Dioxide (Washington DC: The National
1052	Academies Press) https://doi.org/10.17226/24651, 2017.
1053	
1054	Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J.: Global ocean
1055	acidification observing network: requirements and governance plan, GOA-ON, Washington, 61
1056	pp., 2015.
1057	
1058	Orr, J. C.: Recent and future changes in ocean carbonate chemistry, in: Ocean acidification,
1059	edited by: Gattuso, JP. and Hansson, L., Oxford University Press, Oxford, 41-66, 2011.
1060	······································
1061	Orr, J. C., Epitalon, JM., Dickson, A. G., and Gattuso, JP.: Routine uncertainty propagation
1062	for the marine carbon dioxide system, Mar. Chem., 207, 84–107,
1063	https://doi.org/10.1016/j.marchem.2018.10.006, 2018.
1064	
1065	Orr, J. C., Kwiatkowski, L., and Pörtner, H. O.: Arctic Ocean annual high in pCO2 could shift
1066	from winter to summer, Nature, 610, 94–100, https://doi.org/10.1038/s41586-022-05205-y,
1067	2022.
1068	
1069	Payne, C. M., Bianucci, L., van Dijken, G. L., and Arrigo, K. R.: Changes in Under-Ice Primary
1070	Production in the Chukchi Sea From 1988 to 2018, J. Geophys. Res. Oceans, 126,
1071	e2021JC017483, https://doi.org/10.1029/2021JC017483, 2021.
1072	
1073	Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in seawater, Mar.
1074	Chem., 21, 161–168, https://doi.org/10.1016/0304-4203(87)90036-3, 1987.
1075	enemi, 21, 101 100, nupu, donorg 10.1010/0501 1205(07)>0050 5, 1507.
1076	Qi, D., Chen, L., Chen, B., Gao, Z., Zhong, W., Feely, R. A., Anderson, L. G., Sun, H., Chen, J.,
1070	Chen, M., Zhan, L., Zhang, Y., and Cai, WJ.: Increase in acidifying water in the western Arctic
1078	Ocean, Nat. Clim. Change, 7, 195–199, https://doi.org/10.1038/nclimate3228, 2017.
1079	
1080	Qi, D., Ouyang, Z., Chen, L., Wu, Y., Lei, R., Chen, B., Feely, R. A., Anderson, L. G., Zhong,
1000	(1, 5), Suyung, 2., Shoh, E., Wu, T., Ed, K., Shih, J., Fory, R. A., Milerson, E. G., Zhong,

1081 W., Lin, H., Polukhin, A., Zhang, Y., Zhang, Y., Bi, H., Lin, X., Luo, Y., Zhuang, Y., He, J.,

1082 1083	Chen, J., and Cai, W. J.: Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020, Science, 377, 1544–1550, https://doi.org/10.1126/science.abo0383, 2022a.
1084	
1085	Qi, D., Wu, Y., Chen, L., Cai, WJ., Ouyang, Z., Zhang, Y., Anderson, L. G., Feely, R. A.,
1086	Zhuang, Y., Lin, H., Lei, R., and Bi, H.: Rapid acidification of the Arctic Chukchi Sea waters
1087	driven by anthropogenic forcing and biological carbon recycling, 2022b.
1088	
1089	Raimondi, L., Matthews, J. B. R., Atamanchuck, D., Azetsu-Scott, K., and Wallace, D.: The
1090	internal consistency of the marine carbon dioxide system for high latitude shipboard and in situ
1091	monitoring, Mar. Chem., 213, 49-70, https://doi.org/10.1016/j.marchem.2019.03.001, 2019.
1092	
1093	Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K.,
1094	Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe
1095	since 1979, Commun. Earth Environ., 3, 1-10, https://doi.org/10.1038/s43247-022-00498-3,
1096	2022.
1097	
1098	Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P. B.: Inorganic carbon
1099	transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112,
1100	C03016, https://doi.org/10.1029/2006JC003572, 2007.
1101	
1102	Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F.
1103	C., and Barber, D.: Ikaite crystals in melting sea ice – implications for pCO_2 and pH levels in
1104	Arctic surface waters, The Cryosphere, 6, 901–908, https://doi.org/10.5194/tc-6-901-2012, 2012.
1105	
1106	Sakamoto, C. M., Johnson, K. S., and Coletti, L. J.: Improved algorithm for the computation of
1107	nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer, Limnol.
1108	Oceanogr. Methods, 7, 132-143, https://doi.org/10.4319/lom.2009.7.132, 2009.
1109	
1110	Sandy, S. J., Danielson, S. L., and Mahoney, A. R.: Automating the Acoustic Detection and
1111	Characterization of Sea Ice and Surface Waves, J. Mar. Sci. Eng., 10, 1577,
1112	https://doi.org/10.3390/jmse10111577, 2022.
1113	
1114	Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press,
1115	Princeton, NJ, 526 pp pp., 2006.
1116	
1117	Seabird. Application Note 31: Computing temperature and conductivity slope and offset
1118	correction coefficients from lab calibration and salinity bottle samples. my.hach.com/asset-
1119	get.download.jsa?id=54627861537, accessed 20 June 2016.
1120	

1121

1122 portals/seabird com/cms/documents/training/Module28 Advanced Biogeochem Processing.pdf . Accessed 30 May 2023. 1123 1124 1125 Semiletov, I., Pipko, I., Gustafsson, Ö., Anderson, L. G., Sergienko, V., Pugach, S., Dudarev, O., 1126 Charkin, A., Gukov, A., Bröder, L., Andersson, A., Spivak, E., and Shakhova, N.: Acidification 1127 of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon, Nat. 1128 Geosci., 9, 361–365, https://doi.org/10.1038/ngeo2695, 2016. 1129 1130 Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research 1131 synthesis, Glob. Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 1132 2011. 1133 1134 Serreze, M. C. and Francis, J. A.: The arctic amplification debate, Clim. Change, 76, 241–264, 1135 https://doi.org/10.1007/s10584-005-9017-y, 2006. 1136 1137 Serreze, M. C., Crawford, A. D., Stroeve, J. C., Barrett, A. P., and Woodgate, R. A.: Variability, 1138 trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea, J. Geophys. 1139 Res. Oceans, 121, 7308-7325, https://doi.org/10.1002/2016JC011977, 2016. 1140 1141 Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E. R., and 1142 Wallace, D. W. R.: CO2SYSv3 for MATLAB, , https://doi.org/10.5281/zenodo.7552554, 2023. 1143 1144 Shu, Q., Wang, Q., Årthun, M., Wang, S., and Song, Z.: Arctic Ocean Amplification in a 1145 warming climate in CMIP6 models, 1-11, 2022. 1146 1147 Stackpoole, S., Butman, D., Clow, D., Verdin, K., Gaglioti, B., and Striegl, R. G.: Carbon burial, 1148 transport, and emission from inland aquatic ecosystems in Alaska, USGS Prof. Pap., 1826, 159– 1149 188, https://doi.org/10.3133/pp1826, 2016. 1150 Stackpoole, S. M., Butman, D., Clow, D. W., Verdin, K. L., Gaglioti, B. V., Genet, H., and 1151 1152 Striegl, R. G.: Inland waters and their role in the carbon cycle of Alaska, Ecol. Appl., 27, 1403– 1153 1420, http://onlinelibrary.wiley.com/doi/10.1002/eap.1552/full, 2017. 1154 Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The 1155 1156 Arctic's rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 110, 1005–1027, 1157 https://doi.org/10.1007/s10584-011-0101-1, 2011.

Sea-Bird. Module 28. Advanced Biogeochemical Processing, www.seabird.com/cms-

1158

- 1159 Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season
- and implications for sea ice loss, Geophys. Res. Lett., 41, 1216–1225,
- 1161 https://doi.org/10.1002/2013GL058951, 2014.
- 1162
- 1163 Stumpp, M., Hu, M. Y., Melzner, F., Gutowska, M. A., Dorey, N., Himmerkus, N., Holtmann,
- 1164 W. C., Dupont, S. T., Thorndyke, M. C., and Bleich, M.: Acidified seawater impacts sea urchin
- 1165 larvae pH regulatory systems relevant for calcification, Proc. Natl. Acad. Sci. USA, 109, 18192-
- 1166 18197, https://doi.org/10.1073/pnas.1209174109, 2012.
- 1167
- 1168 Sulpis, O., Lauvset, S. K., and Hagens, M.: Current estimates of K1* and K2* appear
- 1169 inconsistent with measured CO2 system parameters in cold oceanic regions, Ocean Sci., 16,
- 1170 847-862, https://doi.org/10.5194/os-16-847-2020, 2020.
- 1171
- 1172 Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.,
- 1173 Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO2 flux
- 1174 based on climatological surface ocean pCO2, and seasonal biological and temperature effects,
- 1175 Deep Sea Res. Part II Top. Stud. Oceanogr., 49, 1601–1622, https://doi.org/10.1016/S0967-
- 1176 0645(02)00003-6, 2002.
- 1177
- 1178 Terhaar, J., Torres, O., Bourgeois, T., and Kwiatkowski, L.: Arctic Ocean acidification over the
- 1179 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model 1180 ensemble, Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, 2021.
- 1181
- 1182 Thomsen, J., Casties, I., Pansch, C., Körtzinger, A., and Melzner, F.: Food availability outweighs
- 1183 ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments, Glob.
- 1184 Change Biol., 19, 1017–1027, https://doi.org/10.1111/gcb.12109, 2013.
- 1185
- 1186 Thor, P. and Dupont, S.: Transgenerational effects alleviate severe fecundity loss during ocean
- acidification in a ubiquitous planktonic copepod, Glob. Change Biol., 21, 2261–2271,
- 1188 https://doi.org/10.1111/gcb.12815, 2015.
- 1189
- 1190 Tunnicliffe, V., Davies, K. T. A., Butterfield, D. A., Embley, R. W., Rose, J. W., and Chadwick
- Jr, W. W.: Survival of mussels in extremely acidic waters on a submarine volcano, Nat. Geosci.,
 2, 344–348, https://doi.org/10.1038/ngeo500, 2009.
- 1193
- 1194 Van Straalen, M. N.: Peer Reviewed: Ecotoxicology Becomes Stress Ecology, Environ. Sci.
- 1195 Technol., 37, 324A-330A, https://doi.org/10.1021/es0325720, 2003.
- 1196

1197	Vargas, C. A., Lagos, N. A., Lardies, M. A., Duarte, C., Manríquez, P. H., Aguilera, V. M.,
1198	Broitman, B., Widdicombe, S., and Dupont, S.: Species-specific responses to ocean acidification
1199	should account for local adaptation and adaptive plasticity, 2017.
1200	
1201	Vargas, C. A., Cuevas, L. A., Broitman, B. R., San Martin, V. A., Lagos, N. A., Gaitán-Espitia,
1202	J. D., and Dupont, S.: Upper environmental pCO2 drives sensitivity to ocean acidification in
1203	marine invertebrates, Nat. Clim. Change, 12, 200-207, https://doi.org/10.1038/s41558-021-
1204	01269-2, 2022.
1205	
1206	Ventura, A., Schulz, S., and Dupont, S.: Maintained larval growth in mussel larvae exposed to
1207	acidified under-saturated seawater, Sci. Rep., 6, 23728, https://doi.org/10.1038/srep23728, 2016.
1208	
1209	Watanabe, Y. W., Li, B. F., Yamasaki, R., Yunoki, S., Imai, K., Hosoda, S., and Nakano, Y.:
1210	Spatiotemporal changes of ocean carbon species in the western North Pacific using
1211	parameterization technique, J. Oceanogr., 76, 155–167, https://doi.org/10.1007/s10872-019-
1212	00532-7, 2020.
1213	
1214	Williams, N. L., Juranek, L. W., Johnson, K. S., Feely, R. A., Riser, S. C., Talley, L. D., Russell,
1215	J. L., Sarmiento, J. L., and Wanninkhof, R.: Empirical algorithms to estimate water column pH
1216	in the Southern Ocean, Geophys. Res. Lett., 43, 3415–3422,
1217	https://doi.org/10.1002/2016GL068539, 2016.
1218	
1219	Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.: Total
1220	alkalinity: The explicit conservative expression and its application to biogeochemical processes,
1221	Mar. Chem., 106, 287–300, https://doi.org/10.1016/j.marchem.2007.01.006, 2007.
1222	
1223	Wood, K. R., Bond, N. A., Danielson, S. L., Overland, J. E., Salo, S. A., Stabeno, P. J., and
1224	Whitefield, J.: A decade of environmental change in the Pacific Arctic region, Prog. Oceanogr.,
1225	136, 12–31, https://doi.org/10.1016/j.pocean.2015.05.005, 2015.
1226	
1227	Woosley, R. J.: Evaluation of the temperature dependence of dissociation constants for the
1228	marine carbon system using pH and certified reference materials, 2021.
1229	
1230	Woosley, R. J. and Millero, F. J.: Freshening of the western Arctic negates anthropogenic carbon
1231	uptake potential, Limnol. Oceanogr., 65, 1834–1846, https://doi.org/10.1002/lno.11421, 2020.
1232	
1233	Woosley, R. J., Millero, F. J., and Takahashi, T.: Internal consistency of the inorganic carbon
1234	system in the Arctic Ocean, Limnol. Oceanogr. Methods, 15, 887-896,
1235	https://doi.org/10.1002/lom3.10208, 2017.

- 1237 Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and Shimada, K.:
- 1238 Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt,
- 1239 Science, 326, 1098–1100, https://doi.org/10.1126/science.1174190, 2009.
- 1240
- 1241 Zeng, J., Chen, M., Zheng, M., Hu, W., and Qiu, Y.: A potential nitrogen sink discovered in the
- 1242 oxygenated Chukchi Shelf waters of the Arctic, Geochem. Trans., 18, 5,
- 1243 https://doi.org/10.1186/s12932-017-0043-2, 2017.
- 1244
- 1245
- 1246
- 1247 Tables
- 1248 **Table 1.** Chukchi Ecosystem Observatory location and instrument sampling periods. Values in
- parenthesis indicate the number of measurements averaged within each measurement intervalwindow.
- 1251

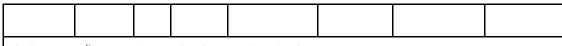
			SUNA V2	HydroC CO ₂	SBE1 6	SBE3 7	SeaFET	SBE63
Parameters	Latitude	Longitude	NO ₃	pCO ₂	CTD+	CTD	pН	O ₂
2016-2017	71.5996	-161.5184	1 h	12 h (300/5min)*	1 h	-	-	-
2017-2018	71.5997	-161.5189	1 h	12 h (5/5min)	2 h	2 h	2 h (30/5min)	2h
2018-2019	71.5999	-161.5281	1 h	24 h (5/5min)	1 h	2 h*	-	2 h*
2019-2020	71.59966	-161.5275	1 h	12 h (5/5min)	2 h	-	-	-

* indicate the sensor did not return data over the whole year due to battery failure

CTD+ indicates ancillary data was available with the SBE16 file (chl-*a* fluorescence, PAR, etc)

1252

1253 Table 2. Evaluation of pH_{SeaFET} and pH^{est} using reference pH from nearby discrete samples


1254 (pH^{disc}_{calc}). Uncertainty, u_c, is the propagated combined standard uncertainty from *errors.m* (Orr

1255 et al., 2018). pH_{SeaFET} and pH^{est} were interpolated to the discrete timestamp.

Date	Cruise	Cast No.	Distance (km)	$pH^{\text{disc}}{}_{\text{calc}} \pm u_{\text{c}}$	Anomaly (pH ^{est} - pH ^{disc} calc)	Anomaly (pH _{SeaFET} - pH ^{disc} calc)	Source
2017-09-10	HLY1702	127	0.52	8.0123±0.0166	-0.0450*	-0.0354	Cross et al., 2020a
2019-08-11	HLY1901	39	3.75	7.6423±0.012	0.0079*	-	Cross et al., 2021
2019-08-19	OS1901	33	0.27	7.7367±0.0145	-0.0200	-	unpublished

* indicates pH^{disc}calc was interpolated to mooring depth

1257

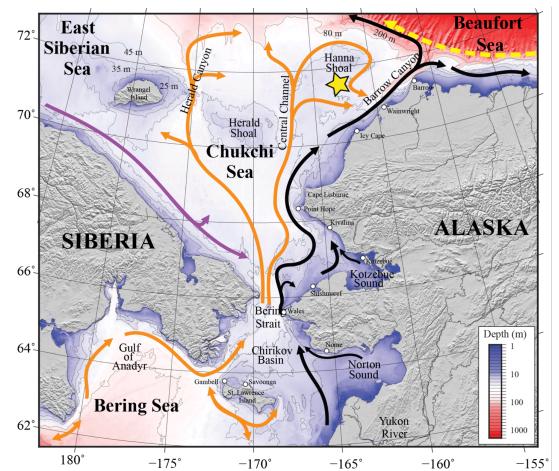
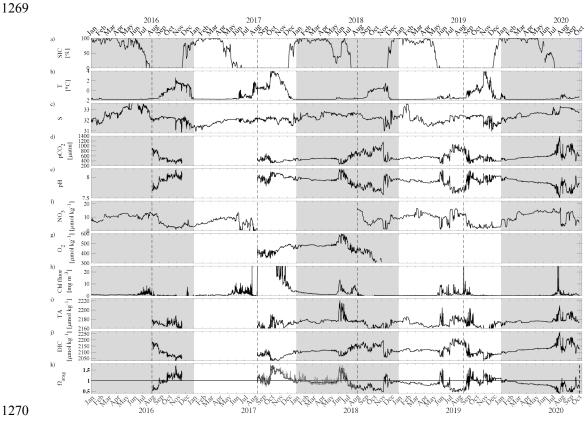



Figure 1. Map of the study area. Bathymetry of the Chukchi, northern Bering, East Siberian
and eastern Beaufort seas is shown in color. The Chukchi Ecosystem Observatory (CEO) near
Hanna Shoal is marked with a yellow star. General circulation patterns are shown with arrows:
black – Alaskan Coastal Water and Alaskan Coastal Current, dividing into the Shelf-break Jet
(right) and Chukchi Slope Current (left, Corlett and Pickart, (2017)); orange – Anadyr, Bering,
and Chukchi Seawater; purple – Siberian Coastal Current; yellow – Beaufort Gyre boundary
current. Figure is from (Hauri et al., 2018).

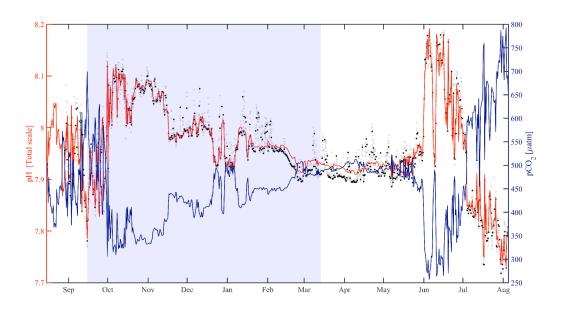
1271 Figure 2. Chukchi Ecosystem Observatory timeseries from 2016 through 2020. Shown are a)

sea ice concentration (%; DiGirolamo et al., 2022), b) temperature (°C), c) salinity, d) *p*CO₂

1273 (µatm; Hauri and Irving, 2023a), e) pH (estimated in black, measured in gray; Hauri and Irving

1274 2023b), f) NO₃ (umol kg⁻¹), g) dissolved oxygen (umol kg⁻¹), h) chlorophyll fluorescence (mg m⁻

1275 ³), i) total alkalinity (umol kg⁻¹), j) dissolved inorganic carbon (umol kg⁻¹), and k) aragonite


1276 saturation state (Ω_{arag}). Years are indicated by alternating grey and white background shading.

1277 The vertical dotted gray lines indicate the mooring turn around timing.

1279

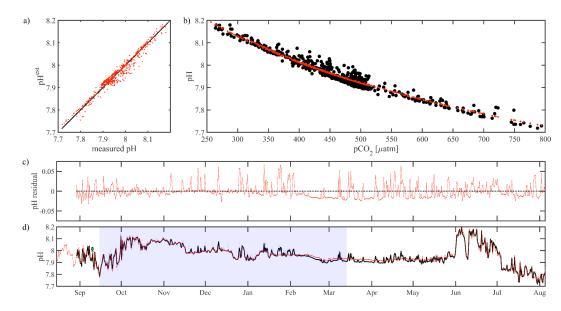
1280 1281

1282 Figure 3. HydroC *p*CO₂ (solid blue line) and SeapHOx pH (black and gray circles)

1283 highlighting mirrored trend from mid-August 2017 to beginning of August 2018. Measured

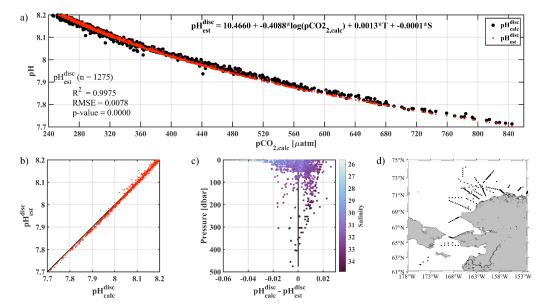
1284 pH is shown at its original resolution (2 hr, gray circles) and interpolated onto the HydroC

1285 timestamp (12 hr, black circles), and estimated pH is shown as the solid red line. The blue


1286 highlighted section shows the period over which estimated pH was trained. The green faced

1287 diamond with error bars show reference $pH^{disc}_{calc} \pm u_c$ (Cross et al., 2020a; Orr et al., 2018).

1289


1290

1291Figure 4. Evaluation of estimated pH. (a) measured pH vs estimated pH (pHest), (b) measured1292 pCO_2 vs pH (black) and pCO_2 vs pHest (red), (c) residual pH (measured pH – pHest) and (d)1293measured pH (black) and pHest (red) vs. time. The blue highlighted section in (d) shows the1294period over which pHest was trained (15 September - 14 March 2017) with pHdisc_{calc} ± u_c for1295reference (green faced diamond with error bar showing combined standard uncertainty; Cross et1296al., 2020a; Orr et al., 2018).

1298

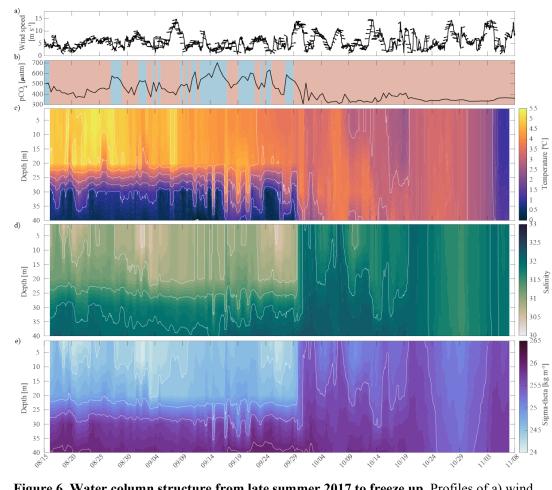
1300 Figure 5. pH algorithm evaluation with pH from discrete samples collected in fall 2017-

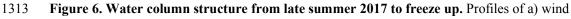
1301 **2020** and pH estimated using our linear regression model. (a) calculated *p*CO₂ (TA, DIC) vs

1302 pH (black pH^{disc}_{calc} and red pH^{disc}_{est}), (b) pH^{disc}_{calc} vs. pH^{disc}_{est}, (c) residual pH (pH^{disc}_{calc} -

1303 pH^{disc}_{est}) vs depth with color shading by salinity, and (d) map showing locations of 1275 discrete

1304 water samples used for evaluation (Monacci et al., 2022; Cross et al., 2021; 2020a; 2020b).


1305


1306

- 1308
- 1309
- 1310
- 1310

1314 speed and direction (arrows pointing downwind) from the NOAA-operated Wiley Post-Will

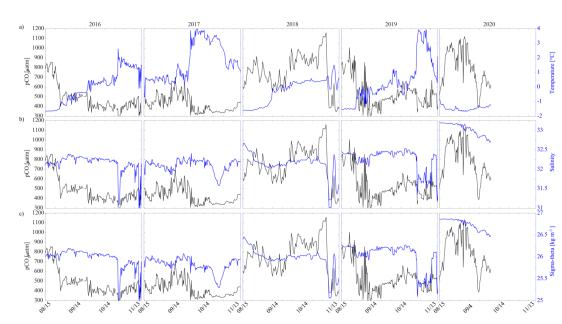
1315 Rogers Memorial Airport, b) pCO₂ (µatm) with blue background indicating the water was

1316 undersaturated regarding aragonite ($\Omega_{arag} < 1$) and red shading indicating aragonite

1317 oversaturation ($\Omega_{arag} \ge 1$), c) temperature (°C), d) salinity, and e) sigma-theta (kg m⁻³).

1318 Temperature (c) and salinity (d) were measured at 8, 20, 30, and 40 m by the Chukchi Ecosystem

1319 Observatory freeze-up detection mooring deployed in fall 2017. Density was calculated with the

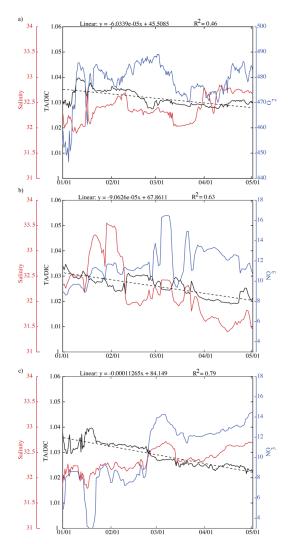

1320 TEOS-10 GSW Oceanographic Toolbox (McDougall and Baker, 2011).

1321

1322

1323

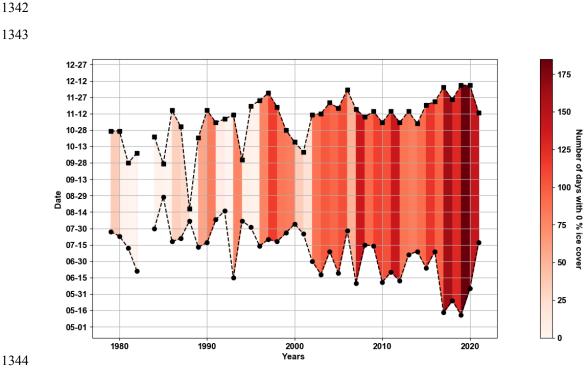
Figure 7. Impact of water column mixing on *p***CO**₂**.** Timeseries of *p*CO₂ (black, left axis) and


a) temperature (blue, right axis), b) salinity (blue, right axis), and c) density (blue, right axis) for

1326 15 August to 1 December in 2016 -2020 measured at ~33m at the Chukchi Sea Ecosystem

- 1327 Observatory.
- 1328
- 1329
- 1330
- 1331
- 1332

1333


and nitrate (NO₃, umol kg⁻¹) concentration (right axis) during January through April for 2018

1336 (top), 2019 (middle) and 2020 (bottom).

- 1338
- 1339
- 1340
- 1341

- 1344
- 1345 1346

Figure 9. Low sea ice period at the Chukchi Sea Observatory. Timeseries of start (circle) and end (square) of low sea ice (< 51% per grid cell) period from 1982-2021. Shades of red illustrate number of days with 0 sea ice cover. The satellite sea ice cover at the observatory site was taken from the NSIDC (DiGirolamo et al., 2022).