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Abstract 16 

Healthy Arctic marine ecosystems are essential to the food security and sovereignty, culture, 17 

and wellbeing of Indigenous Peoples in the Arctic. At the same time, Arctic marine ecosystems 18 

are highly susceptible to impacts of climate change and ocean acidification. While increasing 19 

ocean and air temperatures and melting sea ice act as direct stressors on the ecosystem, they also 20 

indirectly enhance ocean acidification, accelerating the associated changes in the inorganic 21 

carbon system. Yet, much is to be learned about the current state and variability of the inorganic 22 

carbon system in remote, high-latitude oceans. Here, we present time-series (2016-2020) of pH 23 

and the partial pressure of carbon dioxide (pCO2) from the northeast Chukchi Sea continental 24 

shelf. The Chukchi Ecosystem Observatory includes a suite of subsurface year-round moorings 25 

sited amid a biological hotspot that is characterized by high primary productivity and a rich 26 

benthic food web that in turn supports coastal Iñupiat, whales, ice seals, walrus (Odobenus 27 

rosmarus), and Arctic cod (Boreogadus saida). Our observations suggest that near-bottom 28 

waters (33 m depth, 13 m above the seafloor) are a high carbon dioxide and low pH and 29 

aragonite saturation state (Ωarag) environment in summer and fall, when organic material from the 30 

highly productive summer remineralizes. During this time, Ωarag can be as low as 0.4. In winter, 31 

when the site was covered by sea ice, pH was < 8 and Ωarag remained undersaturated under the 32 

sea ice. There were only two short seasonal periods with relatively higher pH and Ωarag, which 33 

we term ocean acidification relaxation events. In spring, high primary production from sea ice 34 

algae and phytoplankton blooms led to spikes in pH (pH > 8) and aragonite oversaturation. In 35 

late fall, strong wind-driven mixing events that delivered low CO2 surface water to the shelf also 36 

led to events with elevated pH and Ωarag. Given the recent observations of high rates of ocean 37 

acidification, and sudden and dramatic shift of the physical, biogeochemical, and ecosystem 38 
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conditions in the Chukchi Sea, it is possible that the observed extreme conditions at the Chukchi 39 

Ecosystem Observatory are deviating from carbonate conditions to which many species are 40 

adapted. 41 

 42 

1. Introduction 43 

The quickly changing Arctic Ocean has climatic, societal, and geopolitical implications for 44 

the peoples of the Arctic and beyond (Huntington et al., 2022). Arctic Indigenous Peoples are at 45 

the forefront of this change and their food security, food sovereignty, culture, and ways of life 46 

depend on healthy Arctic marine ecosystems (ICC, 2015). The Arctic is warming at a rate that is 47 

up to four times that of the rest of the globe (Serreze and Barry, 2011; Serreze and Francis, 2006; 48 

Rantanen et al., 2022). This phenomenon, called Arctic Amplification, is observed in air and sea 49 

temperatures, has accelerated in recent years, and is expected to continue in the future (Rantanen 50 

et al., 2022; Shu et al., 2022). Warming exerts a toll on sea ice extent, ice thickness, and the 51 

duration of seasonal sea ice cover: ice is forming later in fall and retreating earlier in spring, 52 

thereby increasing the length of the open water period (Stroeve et al., 2011; Serreze et al., 2016; 53 

Wood et al., 2015; Stroeve et al., 2014). The lowest Arctic wide minimum sea ice extents were 54 

recorded during the last 16 years of the 44 year-long satellite time-series (National Snow and Ice 55 

Data Center, DiGirolamo et al. (2022)).  56 

At the same time, the Arctic Ocean is vulnerable to ocean acidification. Although oceanic 57 

uptake of anthropogenic carbon dioxide (CO2) increases oceanic CO2 and decreases pH and 58 

calcium carbonate (CaCO3) saturation states of calcite (Ωcalc) and aragonite (Ωarag) globally, 59 

climate induced changes to riverine input, temperature, sea ice, and circulation are accelerating 60 

the rate of ocean acidification in the Arctic Ocean like nowhere else in the world (Woosley and 61 
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Millero, 2020; Qi et al., 2022a; Yamamoto-Kawai et al., 2009; Orr et al., 2022; Semiletov et al., 62 

2016; Qi et al., 2017). Recent observational studies propose that freshening of the Arctic Ocean 63 

due to increased riverine input may play an even greater role in acidifying the Arctic Ocean than 64 

the uptake of anthropogenic CO2 (Woosley and Millero, 2020; Semiletov et al., 2016). In 65 

addition, the cold Arctic waters have naturally low concentrations of carbonate ions (CO32-) and 66 

are therefore closer to aragonite undersaturation (Ωarag < 1) than more temperate waters (Orr, 67 

2011; Sarmiento and Gruber, 2006), which leads to the chemical dissolution of free aragonitic 68 

CaCO3 structures (Bednaršek et al., 2021). Because of the naturally low concentrations of CO32-, 69 

such high latitude waters have a lower capacity to take up anthropogenic CO2 and buffer these 70 

changes (Orr, 2011). As a result, concentrations of hydrogen ions (H+) increase and pH decreases 71 

faster in the Arctic than in the tropics, for example.  72 

In the Pacific Arctic, the Chukchi shelf waters have warmed by 0.45 oC decade-1 since 1990, 73 

triple the rate since the beginning of the data record in 1922 (Danielson et al., 2020). Direct 74 

observations of the inorganic carbon dynamics of the Chukchi Sea are mostly limited to June 75 

through November because of the region's remoteness and accessibility during sea ice covered 76 

months. Summertime profiles across the Chukchi Sea show steep vertical gradients in inorganic 77 

carbon chemistry (Bates, 2015; Bates et al., 2009; Pipko et al., 2002; Mathis and Questel, 2013). 78 

Surface waters have a low partial pressure of carbon dioxide (pCO2) as a result of high primary 79 

production after sea ice retreat, leading to aragonite supersaturated conditions, with Ωarag > 2 80 

(Bates, 2015; Bates et al., 2009). In areas with sea ice melt or riverine freshwater influence, Ωarag 81 

tends to be lower and at times undersaturated (Bates et al., 2009; Yamamoto-Kawai et al., 2009). 82 

At the same time, pCO2 values near the seafloor are around 1000 µatm as a result of organic 83 

matter remineralization, leading to summertime aragonite undersaturation (Mathis and Questel, 84 
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2013; Pipko et al., 2002; Bates, 2015). Between September and November, continuous 85 

measurements from within a few meters of the surface suggest a mosaic of pCO2 levels between 86 

~ 200 to 600 µatm, likely due to patchy wind-induced mixing entraining high-CO2 waters from 87 

depth into the surface mixed layer (Hauri et al., 2013). Yamamoto-Kawai et al. (2016) used 88 

mooring observations of S, T, and apparent oxygen utilization to estimate dissolved inorganic 89 

carbon (DIC), total alkalinity (TA), and Ωarag in bottom waters at their mooring site in the Hope 90 

Valley in the southwestern Chukchi Sea to give first insights into year round variability of the 91 

inorganic carbon system. They found slightly less intense aragonite undersaturation in spring and 92 

winter compared to summer, with a net undersaturation duration of 7.5-8.5 months per year.  93 

The Chukchi Ecosystem Observatory (CEO) is situated in a benthic hotspot (Figure 1) where 94 

high primary production supports rich and interconnected benthic and pelagic food webs 95 

(Grebmeier et al., 2015; Moore and Stabeno, 2015). The benthos is dominated by calcifying 96 

bivalves, polychaetes, amphipods, sipunculids, echinoderms and crustaceans (Grebmeier et al., 97 

2015; Blanchard et al., 2013). Benthic foraging bearded seals (Erignathus barbatus), walrus 98 

(Odobenus rosmarus divergens), gray whale (Eschrichtius robustus), and seabirds feed on these 99 

calcifiers during the open water season (Kuletz et al., 2015; Jay et al., 2012; Moore et al., 2022).  100 

The CEO site, located on the southern flank of Hanna Shoal, is a region of reduced stratification 101 

(relative to other sides of the shoal) that likely alternately feels the effects of differing flow 102 

regimes located to the west and to the east (Fang et al., 2020). Consequently, the site exhibits 103 

relatively weaker currents (Tian et al., 2021) and so is conducive to deposition of sinking organic 104 

matter that in turn feeds the local benthos (Grebmeier et al., 2015). Prolonged open-water 105 

seasons during periods of high solar irradiance, in combination with an influx of new nutrients 106 

and wind mixing, are likely enhancing primary and secondary production as well as advection of 107 
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zooplankton (Lewis et al., 2020; Arrigo and van Dijken, 2015; Wood et al., 2015). These 108 

physical processes in turn fuel keystone consumers such as Arctic cod (Boreogadus saida) and 109 

upper trophic level ringed seals (Phoca hispida), beluga (Delphinapterus leucas) and bowhead 110 

whales (Balaena mysticetus) as well as predatory polar bears (Ursus arctos) and Indigenous 111 

People who rely on the marine ecosystem for traditional and customary harvesting (Huntington 112 

et al., 2020).  113 

Perturbation of the seawater carbonate system associated with ocean acidification and 114 

climate change can have significant physiological and ecological consequences for marine 115 

species and ecosystems (Doney et al., 2020). All parameters of the carbonate system (pH, pCO2, 116 

Ωarag, concentrations of HCO3-, CO32-, etc.) have the potential to affect the physiology of marine 117 

organisms while a change in the saturation state (Ω) can lead to the dissolution of unprotected or 118 

“free” CaCO3 structures. Recent work has highlighted the importance of local adaptation to the 119 

present environmental variability as a key factor driving species sensitivity to ocean acidification 120 

(Vargas et al., 2017, 2022). As carbonate chemistry conditions vary enormously between 121 

regions, marine organisms are naturally exposed to different selective pressures and can evolve 122 

different strategies to cope with low pH or Ω, or high pCO2. For example, the deep-sea mussel 123 

Bathymodiolus brevior living around vents at 1600 m depths is capable of precipitating calcium 124 

carbonate at pH ranging between 5.36 and 7.30 and highly undersaturated waters (Tunnicliffe et 125 

al., 2009). The response to changes in the carbonate chemistry is also modulated by other 126 

environmental drivers such as temperature or food availability (e.g. Thomsen et al., 2013; 127 

Breitberg et al., 2015). Consequently, no absolute or single threshold is expected for ocean 128 

acidification (e.g., Bednaršek et al., 2021) and a pre-requisite to assessing the impact on any 129 

biota is the monitoring at a short temporal scale to characterize the present environmental niche. 130 
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When it comes to future impacts, the more intense and faster the changes associated with ocean 131 

acidification, the more adverse associated biological impacts are expected (Vargas et al. 2017, 132 

2022). As a result, it is anticipated that Arctic marine waters that are experiencing widespread 133 

and rapid ocean acidification will potentially undergo severe negative ecosystem impacts 134 

(AMAP 2018).  135 

Here, we present satellite sea ice coverage data and four years of nearly continuous salinity, 136 

temperature, and pCO2 data, accompanied by pH, nitrate (NO3), dissolved oxygen (O2), and 137 

chlorophyll fluorescence data for some of the time (Table 1, Figures 2 and 3). We developed an 138 

empirical equation for estimating pH from moored pCO2, temperature, and salinity and evaluated 139 

it using discrete samples collected across the Chukchi Sea, Bering Sea, and Beaufort Sea. Our 140 

timeseries allow us to assess the seasonal and interannual variability and controls of the 141 

inorganic carbon system in the Chukchi Sea between 2016 and 2020 and characterize the 142 

chemical conditions experienced by organisms. We discuss our observations in terms of 143 

progressing acidification and implications to organisms in the Chukchi Sea region.  144 

 145 

2. Materials and Methods 146 

2.1 The Chukchi Ecosystem Observatory (CEO) 147 

       The Chukchi Sea is a shallow shelf sea with maximum depths < 50 m. It is largely a 148 

unidirectional inflow shelf system with Pacific origin water entering the Chukchi Sea through the 149 

Bering Strait and advecting north into the Arctic Ocean (Carmack and Wassmann, 2006). The 150 

CEO (71°36' N, 161°30' W, Figure 1, Hauri et al., 2018) is located along the pathway of waters 151 

flowing through Bering Strait (Fang et al., 2020) and thence from the west of Hanna Shoal 152 

toward Barrow Canyon to the south, although the wind can also drive waters from the east over 153 
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the observatory site (Fang et al., 2020). From both shipboard and moored acoustic Doppler 154 

current profiler records, the south side of Hanna Shoal mean flow is characterized by a weak 155 

southward-directed current (Tian et al., 2021). 156 

The observatory consists of oceanographic moorings that sample year-round, equipped with a 157 

variety of sensors that measure sea ice cover and thickness (Sandy et al., 2022), light, currents, 158 

waves, salinity, temperature, concentrations of dissolved oxygen, nitrate, and particulate matter, 159 

pH, pCO2, chlorophyll fluorescence, zooplankton abundance and vertical migration (Lalande et 160 

al., 2021, 2020), the presence of Arctic cod and zooplankton (Gonzalez et al., 2021), and the 161 

vocalizations of marine mammals. During some years, the observatory included a third mooring, 162 

an experimental “freeze-up detection mooring”, which transmitted real-time data of conductivity 163 

and temperature throughout the water column until sea ice formation. The primary moorings 164 

stretch from the seafloor at 46 m to about 33 m depth, designed to avoid collisions with ice keels. 165 

Pressure sensors at the top of the moorings show less than ± 1 m of excursion of the moored 166 

sensor package from its deployment mean depth in any given year, indicating that mooring blow-167 

over or diving is not the cause of any observed large variability. Description of the CEO and lists 168 

of sensors deployed at the site can be found in Danielson et al. (2017) and Hauri et al., (2018). 169 

For this study we focus on the inorganic carbon system and its controlling mechanisms.  170 

 171 

2.2 pCO2  172 

We used a CONTROS HydroC CO2 sensor (4H-Jena Engineering GmbH, Kiel, Germany) to 173 

measure pCO2. The Contros HydroC CO2 sensor was outfitted with a pump (SBE 5M, Sea-Bird 174 

Electronics) that flushes ambient seawater against a thin semi permeable membrane, which 175 

serves as equilibrator for dissolved CO2 between the ambient seawater and the headspace of the 176 
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sensor. Technical details about the sensor and its performance are described in Fietzek et al. 177 

(2014), who estimated sensor accuracy to be better than 1% with postprocessing. 178 

A HydroC CO2 sensor has been deployed at the CEO site since 2016. In all deployments, 179 

except 2016, HydroC CO2 sensors were post-calibrated. The lack of post-calibration in 2016 is 180 

not expected to negatively affect data quality because a battery failure resulted in data returns 181 

only over the first 3 months (August through November). Following a zero interval where the 182 

gas was pumped through a soda lime cartridge to create a zero-signal reference with respect to 183 

CO2, and subsequent flush interval to allow CO2 concentrations to return to ambient conditions, 184 

measurements were taken in a burst fashion every 12 or 24 hours depending on deployment year 185 

(Table 1). Average pCO2 values are reported as the mean of the measure interval (Table 1) with 186 

standard uncertainty (Equation 1) defined following best practices (Orr et al., 2018) and where 187 

the random component is the standard deviation of the mean, and the systematic components 188 

include sensor accuracy and estimated error of the regression during calibration.  189 

𝑢 = 	$u!"!#$%&#'() + 𝑢*+,-./)     (1) 190 

More than 96% of the time, the relative uncertainty of the pCO2 data met the weather data 191 

quality goal, defined as 2.5% by the Global Ocean Acidification Observing Network (GOA-ON, 192 

Newton et al., 2015).  193 

HydroC CO2 data were processed using Jupyter notebook scripts developed by 4H-Jena 194 

Engineering GmbH using pre- and post-calibration coefficients interpolated with any change in 195 

the zero-signal reference over the deployment (Fietzek et al., 2014). Further processing using in-196 

house MATLAB scripts included removal of outliers, calculation of the average pCO2, and 197 

calculation of uncertainty estimates for each measure interval.   198 

 199 
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2.3 pH  200 

  A SeapHOx sensor (Satlantic SeaFET™ V1 pH sensor integrated with Sea-Bird Electronics 201 

SBE 37-SMP-ODO) was used to concurrently measure pH, salinity, temperature, pressure, and 202 

oxygen (Martz et al., 2010).  A SeapHOx was deployed at CEO in 2016, 2017, and 2018. No 203 

SeapHOx was deployed in 2019 or 2020 due to supply chain delays and communication issues at 204 

sea. Unfortunately, measured pH (pHSeaFET) from the 2016 and 2018 SeapHOx deployments 205 

were unusable due to high levels of noise in both the internal and external electrodes. In short, 206 

we only have usable pH data between August 2017 and August 2018.  207 

pHSeaFET data were excluded during a 14-day conditioning period following deployment and 208 

were processed with post-calibration corrected temperature and salinity from the SBE37 209 

following Bresnahan et al. (2014) using voltage from the external electrode (Vext), and pHVext 210 

(pH calculated from the external electrode of the SeaFET) from an extended period of low 211 

variability (18 February 2018). Despite the availability of discrete data from one calibration cast 212 

(Cross et al., 2020b; Table 2), pHVex was used as the single calibration point (Bresnahan et al., 213 

2014) for a variety of reasons: 1) high variability of pHSeaFET (0.0581 pH units) straddling a 12 214 

hour window around the discrete sample collection time, 2) high temporal and spatial variability 215 

often seen in the Chukchi Sea, and 3) the discrete pH sample was within the published SeaFET 216 

accuracy of 0.05 (Table 2, Figure S1). pHSeaFET values are reported as the mean of the measure 217 

interval (Table 1) and standard uncertainty is calculated with Equation 1 with the standard 218 

deviation of the average (random), and the SeaFET accuracy (systematic).  Data handling and 219 

processing were done using in-house MATLAB scripts. pH is reported in total scale and at in 220 

situ temperature and depth for the entirety of this paper.  221 

 222 
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2.4 Nitrate  223 

NO3 measurements were from a Submersible Ultraviolet Nitrate Analyzer (SUNA) V2 by 224 

Sea-Bird Scientific. The SUNA is an in situ ultraviolet spectrophotometer designed to measure 225 

the concentration of nitrate ions in water. SUNA V2 data were processed using a publicly 226 

available toolbox (Hennon et al., 2022; Irving, 2021) with QA/QC steps that included thermal 227 

and salinity corrections (Sakamoto et al., 2009), assessment of spectra and outlier removal based 228 

on spectral counts (Mordy et al., 2020), and concentration adjustments (absolute offset and linear 229 

drift) based on pre-deployment and post-recovery reference measurements of zero concentration 230 

(DI) water and a nitrate standard and, when available, nutrient samples taken from Niskin bottles 231 

near the mooring site (e.g. Daniel et al., 2020).   232 

   233 

2.5 CTD and Oxygen 234 

Two CTDs were deployed on the CEO mooring near the HydroC CO2 depth. The main 235 

pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth 236 

since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015-237 

2016, 2017-2018, and 2019-2020 deployments but only data returns from the 2017-2018 238 

deployment is discussed briefly in this manuscript (Figure S2).  239 

The other pumped CTD was a Sea-Bird MicroCAT (SBE37-SMP-ODO), which was 240 

integrated with an optical dissolved oxygen sensor (SBE63; Figure S2), and the SeaFET pH 241 

sensor within the SeapHOx instrument. The SeapHOx was deployed in fall 2016, 2017, and 242 

2018. The SBE37-SMP-ODO did not record any CTD or oxygen data during the 2016 243 

deployment and only recorded CTD and oxygen data between August and November 3 in 2018 244 

due to battery failure.  245 
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Processing of these data included temperature and conductivity correction using pre- and 246 

post-calibration data following Sea-Bird Application Note 31 and oxygen correction using pre- 247 

and post-calibration data following Sea-Bird Module 28. Oxygen was converted from ml/l to 248 

µmol/kg following Bittig et al. (2018). Density and practical salinity were calculated using the 249 

TEOS-10 GSW Oceanographic Toolbox (McDougall and Baker, 2011).  250 

Differences between the two oxygen sensors (SBE43 and SBE63) of approximately 145 to 251 

265 µmol/kg were observed over the 2017-2018 deployment, and both moored sensors had 252 

varying offsets compared to nearby casts (Figure S2).  Therefore, only relative oxygen values 253 

from the freshly calibrated SBE63 are discussed in this paper. 254 

The freeze-up detection mooring (Figure 6) consisted of four Sea-Bird SBE 37 inductive 255 

modem CTD sensors that transmitted in real time hourly temperature, salinity, and pressure data 256 

via the surface float from four subsurface depths (8, 20, 30, and 40 m; Hauri et al., 2018). 257 

 258 

2.6 Development of empirical relationship to estimate pH 259 

        Empirical relationships for estimating water column pH have been developed for regions 260 

spanning southern, tropical, temperate and Arctic biomes, using a variety of commonly measured 261 

parameters (e.g., pH(S, T, NO3, O2, Si) Carter et al 2018; pH(O2,T,S) Li et al., 2016; pH(θ,O2) 262 

Watanabe et al., 2020; pH(NO3, T, S, P) and pH(O2, T, S, P) Williams et al., 2016; pH(O2, T) 263 

Alin et al., 2012; pH(O2, T) and pH(NO3, T) Juranek et al., 2009). Given the tight coupling 264 

between the concentration of H+ and concentration of CO2 solution, an empirical relationship for 265 

estimating surface pH from pCO2 was developed by the National Academies of Sciences, 266 

Engineering and Medicine (2017) appendix F. Licker et al. (2019) used this empirical 267 

relationship to calculate the global average surface ocean pH and found it represented the 268 
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relationship for surface water temperatures spanning 5°C to 45°C. Here, we take a similar 269 

approach but extend it to water column pH in our cold region using temperature (T) and salinity 270 

(S) as additional proxy parameters (Equation 2).  271 

𝑝𝐻012 =	𝛼3 + α4𝑙𝑜𝑔	(𝑝𝐶𝑂)) 	+ 𝛼)𝑇 + 𝛼5𝑆    (2) 272 

Where pHest is the estimated value of water column pH, pCO2 is from the HydroC, and T and S 273 

are from the SBE16, and all α (α0 = 10.4660, α1= -0.4088, α2 = 0.0013, α3 = -0.0001) terms are 274 

model-estimated coefficients determined using MATLAB’s multiple linear regression algorithm 275 

regress.m (Chatterjee and Hadi, 1986). After interpolating pHSeaFET (Figure 4, red dots) to the 276 

pCO2 timestamp, the algorithm was trained over an arbitrarily chosen 180-day period 277 

(15/9/2017-14/3/2018, Figure 4, dashed box). An uncertainty of 0.0525 for pHest (Figure 3 and 278 

Figure S1, gray shading) was determined with Equation 1, where the RMSE (the uncertainty in 279 

the estimation) over the entire pHSeaFET timeseries is the random component and the published 280 

accuracy of the SeaFET is the systematic component (since the algorithm was trained with 281 

pHSeaFET). The algorithm cross-validation and evaluation are discussed in section 3.1. Unless 282 

explicitly defined otherwise, observations of pH refer to pHest for the remainder of this paper. 283 

 284 

2.7 Carbonate system calculations 285 

Moored data were collected at different sample intervals (Table 1) and were linearly 286 

interpolated to the HydroC CO2 timestamp to enable further calculations.  TA, DIC, and Ωarag 287 

(Figure 11 a & b and Figure 3d) were calculated based on measured pCO2, S, T, and pressure (P) 288 

and algorithm-based pH (pHest). Due to a lack of data, nutrient concentrations (Si, PO4, NH4, 289 

H2S) were assumed to be negligible in the CO2SYS calculations (e.g. deGrandpre et al., 2019; 290 

Vergara-Jara et al., 2019; Islam et al., 2017). pHest was used in lieu of pHSeaFET to allow for 291 
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calculations over the whole pCO2 record and due to erroneously large variability of DIC and TA 292 

when pHSeaFET was used as an input parameter (Raimondi et al., 2019; Cullison-Gray et al., 293 

2011). The pH-pCO2 input pair leads to large, calculated errors in DIC and TA (Raimondi et al., 294 

2019; Cullison-Gray et al., 2011) due to strong covariance between the two parameters (both 295 

temperature and pressure dependent). Cullison-Gray et al. (2011) attributed unreasonably large 296 

short-term variability in calculated TA and DIC to temporal or spatial measurement mismatches 297 

between input pH and pCO2 parameters and found that appropriate filtering alleviated noise 298 

spikes. By using pHest, which by the nature of its definition is well correlated to pCO2, we are 299 

eliminating some of these spurious noise spikes. We show Ωarag calculated from pHSeaFET-pCO2 300 

(Figure 3d, red line) because it is less sensitive to calculated errors as it accounts for a small 301 

portion of the total CO2 in seawater (Cullison-Gray et al., 2011).  302 

All inorganic carbon parameters were calculated using CO2SYSv3 (Sharp et al., 2023; Lewis 303 

and Wallace, 1998) with dissociation constants for carbonic acid of Lueker et al. (2000), 304 

bisulfate of Dickson (1990), hydrofluoric acid of Perez and Fraga (1987), and the boron-to-305 

chlorinity ratio of Lee et al. (2010). Sulpis et al. (2020) found that the carbonic acid dissociation 306 

constants of Lueker et al. (2000) may underestimate pCO2 in cold regions (below ~8°C), and 307 

therefore overestimate pH and CO32-. However, we choose to use Lueker et al. (2000) because 308 

they are recommended (Dickson et al., 2007; Woosley, 2021), continue to be the standard (Jiang 309 

et al., 2021; Lauvset et al., 2021), and are commonly used at high latitudes (Duke et al., 2021; 310 

Raimondi et al., 2019; Woosley et al., 2017). Furthermore, the difference between DIC 311 

calculated from pHest and pCO2 and discrete samples interpolated to moored instrument depth 312 

ranged from 266 to -195 µmol/kg using the K1* and K2* of Sulpis et al. (2020), compared to -38 313 

to -7 µmol/kg using Lueker et al. (2000). 314 
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 315 

2.8 Sea ice concentration 316 

Sea ice concentration at the observatory site was taken from the National Snow and Ice Data 317 

Center (NSIDC; DiGirolamo et al., 2022). Latitude and longitude coordinates were converted to 318 

NSIDC's EASE grid coordinate system (Brodzik and Knowles, 2002) and the 25-km gridded 319 

data were bilinearly interpolated to calculate sea ice concentration at the CEO site. Low sea ice is 320 

defined by < 15 % sea ice coverage per grid cell. 321 

 322 

2.9 Estimation of model-based ocean acidification trend 323 

Model results were obtained from historical simulations of five different global Earth System 324 

Models: 1) GFDL-CM4 (Silvers et al., 2018), 2) GFDL-ESM4 (Horowitz et al., 2018), 3) IPSL-325 

CM6A-LR-INCA (Boucher et al., 2020), 4) CNRM-ESM2-1 (Seferian, 2019), and 5) Max Plank 326 

Earth System Model 1.2 (MPI-ESM1-2-LR, Wieners et al., 2019) that are part of the Coupled 327 

Model Intercomparison Project Phase 6 (CMIP6). Each simulation was used to calculate the 328 

annual trend of aragonite saturation state and pH at the closest depth and grid cell to the CEO 329 

mooring.  330 

 331 

3. Results 332 

In the following, we will evaluate the pH algorithm (section 3.1), analyze the large 333 

variability patterns (sections 3.2 and 3.3), and then take a closer look at the data from 2020 since 334 

the seasonal cycle was different in 2020 than in previous years (section 3.4). 335 

 336 

3.1 pH algorithm  337 
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The algorithm estimated pH data from the CEO site reasonably well and within the weather 338 

uncertainty goal as defined by Newton et al. (2015) most of the time. As a first step, pHest  339 

consistency was assessed through cross-validation (Figure 5) using the test dataset (outside the 340 

training period, r2 = 0.9666, RMSE = 0.166) and across the whole timeseries (r2 = 0.9598, RMSE 341 

= 0.0161, p<0.0001, Figure 5). Observed high frequency spikes in pHSeaFET (Figure 4, red dots; 342 

Figure 5d, red line) were not captured by the HydroC pCO2 sensor (sampling frequency of 12 h) 343 

and as a result, are not reproduced in the pHest timeseries. Throughout the pHSeaFET timeseries, 344 

pHest overestimates pHSeaFET by a mean of 0.0008 and median of 0.0039. Since pHest generally 345 

overestimates pHSeaFET, we assume that Ωarag is also somewhat overestimated throughout this 346 

manuscript. Discrete water samples were used as reference values to evaluate the algorithm at 347 

the CEO site (Table 2) and were found to be within the pHest uncertainty (Figure S1).   348 

An independent verification of our algorithm was done using discrete data collected from the 349 

Bering Sea to the Arctic Ocean on four research cruises in 2020, 2019, 2018, and 2017 (Figure 350 

6d; Monacci et al., 2022; Cross et al., 2021; 2020a; 2020b), henceforth called the DBO dataset. 351 

Samples collected from deeper than 500 m below the surface or flagged as questionable or bad 352 

were excluded from this analysis. pH and pCO2 were calculated from 1275 discrete samples 353 

analyzed for TA, DIC, silicate, phosphate, and ammonium (except when silicate, phosphate, and 354 

ammonium were assumed to be negligible for the 327 samples from cruise SKQ202014S; 355 

Monacci et al., 2022) using CO2SYSv3 (Sharp et al., 2023; section 2.7 for details) and are 356 

referred to as pHdisccalc and pCO2disccalc, respectively. pHdiscest was based on discrete water samples 357 

and calculated using Equation 2 and was fit to pHdisccalc using a linear regression (r2 = 0.9975, 358 

RMSE = 0.0078, p-value < 0.0001; Figure 6 a – c). Mean and median differences between 359 

pHdisccalc and pHdiscest were zero and 0.0022, respectively, with largest anomalies observed at 360 
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lower salinities (Figure 6c). Absolute differences between pHdiscest and pHdisccal over the salinity 361 

range observed at the CEO site (30.87 to 33.93) fall within the weather data quality goal 362 

(Newton et al., 2015) 98.7% of the time with maximum absolute differences < 0.03.  The 363 

uncertainty of 0.0154 for pHdiscest was determined using Equation 1, where the mean combined 364 

standard uncertainty (uc) for pHdisccalc (0.0133; Orr et al., 2018) was the systmetic component, 365 

and the regression RMSE was the random component.  366 

Empirical relationships for estimating water column pH that rely on dissolved oxygen often 367 

ignore surface waters to limit biases due to decoupling the stoichiometry of the O2:CO2 368 

relationship due to air-sea gas exchange (e.g. Juranek et al., 2011; Alin et al., 2012; Li et al., 369 

2016). We see evidence of this bias in our algorithm at low salinity (Figure 6c) and low pCO2 370 

(not shown) when compared with the DBO dataset samples collected across the Arctic and from 371 

the surface to 500 m, with pHdiscest overestimating pHdisccalc by a maximum of 0.049. If depth is 372 

restricted to between 30 and 500 m when evaluating the algorithm with the DBO dataset, 373 

algorithm performance improves (r2 = 0.9990, RMSE = 0.0055, p-value < 0.0001; not shown) 374 

and the maximum pHdiscest overestimates pHdisccalc by 0.022. 375 

 376 

3.2 Relaxation events 377 

The sub-surface waters at the CEO site comprise a high pCO2, low pH, and low Ωarag 378 

environment, with mean values of pCO2mean = 538 ± 7 µatm, pHmean = 7.91 ± 0.05, Ωaragmean = 379 

0.94 ± 0.23 across the full data record (Figure 3 b - d). In the following we will focus on spikes 380 

of high pH and Ωarag and low pCO2 that occur in spring (May-June) and fall (September-381 

December); we define these spikes as relaxation events (see discussion for justification of term).  382 
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Spring: Springtime relaxation events at 33 m depth that exhibit relatively higher pH and 383 

Ωarag and lower pCO2 compared to the overall mean, are likely consequences of photosynthetic 384 

activity during sea ice break-up (Figures 2 and 3). In June of 2018 and 2019, near bottom pH and 385 

Ωarag spiked to > 8.17 and > 1.5, respectively, while pCO2 dropped to < 286 µatm. Ωarag remained 386 

oversaturated and pH was greater than 8.0 for nearly all of June in 2018.  In 2019, the relaxation 387 

event was less sustained, with only four short (2-6 day-long) events of relatively higher pH and 388 

Ωarag > 1 in June. In both years, chlorophyll fluorescence spiked and either O2 increased (in 389 

2018) or NO3 decreased (in 2019), which are signs of photosynthetic activity and primary 390 

production.  391 

 Fall: The relaxation events in fall were characterized by large and sudden drops in pCO2, 392 

abrupt increases in pH and Ωarag, and considerable interannual variability in their timing. Unlike 393 

the relaxation events observed in spring, we attribute these fall relaxation events to wind-induced 394 

physical mixing. To examine the controlling mechanisms causing these abrupt relaxation events 395 

in fall, we will start with using water column salinity and temperature data from a freeze-up 396 

detection buoy (Hauri et al., 2018) that was deployed in summer 2017 approximately 1 km away 397 

from the biogeochemical mooring. The freeze-up detection mooring provided temperature and 398 

salinity measurements every 7 meters throughout the water column from the time of its 399 

deployment in mid-August until freeze-up. Data from the freeze-up detection mooring suggest 400 

that warmer and fresher water from the upper water column gets periodically entrained down to 401 

the location of the biogeochemical sensor package at 33 m depth, leading to enhanced variability 402 

of density in August and September (Figure 7). Fluctuations of the pycnocline associated with 403 

the passage of internal waves could also elevate signal variances. During this time pCO2 often 404 

decreased to or below atmospheric levels and pH sporadically reached values > 8. At the end of 405 
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September, a strong mixing event (with coincident strong surface winds) homogenized the water 406 

column from the surface down to the location of the sensor package and caused a sudden 407 

temperature increase from 0.4 °C to 3.9 °C (Figure 7c and 8a). At the same time, pCO2 (Figure 408 

7b and 8) decreased from 590 to 308 µatm. This suggests that warm and low CO2 surface water 409 

mixed with CO2-rich subsurface water and led to a sustained relaxation period that subsequently 410 

lasted until mid-November. Another mixing event further eroded the water column stratification 411 

and replaced subsurface water with colder and fresher water (ice melt) from the surface at the 412 

end of October. This second large mixing event did not lead to large changes in pCO2, pH, and 413 

Ωarag. 414 

Salinity and temperature records from the biogeochemical mooring at 33 m depth also 415 

suggest fall season mixing events in all other years, when increases in temperature coincide with 416 

decreases in pCO2 (Figure 2b and c, 3a and 8). For example, two mixing events shaped the 417 

carbonate chemistry evolution in fall 2018. pCO2 decreased from 915 µatm to around 565 µatm 418 

and Ωarag increased to 0.9 as temperature increased and salinity decreased in early September 419 

(Figures 2 and 8).  pCO2 then increased to 1160 µatm in late October, before decreasing to 385 420 

µatm at the beginning of November, causing a spike in Ωarag to 1.34. At the same time, salinity 421 

decreased by 1 unit, suggesting a strong mixing event. Throughout November 2018, pCO2 422 

oscillated between 344 and 757 µatm and salinity between 31.01 and 32.97, hinting at additional 423 

mixing. 424 

Similarly, an early mixing event in 2019 decreased pCO2 to 352 µatm at the beginning of 425 

September. Short-term variability in pCO2 with maximum levels of up to 855 µatm and 426 

minimum values below 300 µatm, variable temperature and salinity, and sporadic aragonite 427 

oversaturation events point to mixing through mid-September. At the end of October, a large 428 
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mixing event homogenized the water column, accompanied by a decline of salinity by >1 unit, 429 

increase of temperature to 4 °C, and decrease of pCO2 from 565 µatm to below 400 µatm. In a 430 

similar fashion to 2018, this fall mixing event was followed by a month-long period of large 431 

variability of pCO2, salinity, pH, and Ωarag, leading to short and sporadic aragonite oversaturation 432 

events in November, and sustained oversaturation in December. 433 

 434 

3.3 Sustained periods of low pH and Ωarag, and high pCO2  435 

Waters at 33 m depth at the CEO site were most acidified during the sea ice free periods 436 

until mixing events entrained surface waters to the sensor depth (section 3.2). pH and Ωarag 437 

started to gradually decrease from their maximum levels (Ωarag_max = 1.65, pHmax = 8.19) at the 438 

beginning of June in 2018 to their annual low at the beginning of November (Ωarag_min = 0.47, 439 

pHmin = 7.58, Figure 3 d and c). In November, the waters were also undersaturated with regards 440 

to calcite (not shown) and pCO2 peaked at 1159 µatm (Figure 3b). Dissolved oxygen decreased 441 

by about 400 µmol kg-1 between July and October, when the sensor stopped working properly. 442 

The decrease of dissolved oxygen suggests remineralization of organic material. The decrease of 443 

pH, Ωarag, O2 and increase of pCO2 was briefly interrupted by a strong mixing event in 444 

September, which entrained warmer, fresher, and CO2-poorer water down to 33 m depth (section 445 

3.2, Figure 8). The 2019 observations paint a similar picture of remineralization during the 446 

summer months, as the pCO2 increase and pH and Ωarag decreases were accompanied by an NO3 447 

increase (Figure 2d and 3b-d).   448 

pCO2 steadily increased and pH and Ωarag decreased during the sea ice covered periods 449 

(Figures 8). pH was < 8 and Ωarag remained undersaturated under the sea ice. At the same time, 450 

NO3 slowly increased and O2 decreased, which points to slow organic matter remineralization 451 
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(Figure 9). Short-term variability in pCO2, especially in January of all three observed years, was 452 

also reflected in salinity, O2 and NO3 (Figure 9) and could be attributed to advection, as the CEO 453 

site is adjacent to contrasting regimes of flow and hydrographic properties (Fang et al., 2020). 454 

 455 

3.4 Spring and summer of 2020 were different 456 

The seasonal cycle in 2020 strongly contrasted with the previous observed years. pCO2 457 

gradually increased by roughly 200 µatm throughout the sea ice covered months to 650 µatm 458 

when sea ice started to retreat at the beginning of July. By the end of July, pCO2 doubled and 459 

increased to 1389 µatm, which is the highest pCO2 level recorded in this timeseries. The peak of 460 

pCO2 was accompanied by an increase in salinity of 0.5 while temperature did not change, 461 

suggesting the influence of advection. At the beginning of August, pCO2 dropped to 536 µatm 462 

and then oscillated around 600 µatm through much of August before returning to around 900 463 

µatm for the next month. Similarly, pH decreased to 7.5 at the end of July and then oscillated 464 

around 7.85, while Ωarag dropped to 0.37, and oscillated around 0.85. The steep drop and 465 

oscillation of pCO2 was reflected in NO3, suggesting that primary production and 466 

remineralization played a role. When pCO2 and NO3 decreased at the beginning of August, 467 

temperature simultaneously increased by 0.7 °C and salinity decreased by 0.12, suggesting that 468 

entrainment of shallower water masses may have played a role too. Comprehensive analyses of 469 

the factors that resulted in the 2020 differing conditions are beyond the scope of this paper, but 470 

deserve attention in a future effort.  471 

 472 

4. Discussion 473 
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CEO data provide new insights into the synoptic, seasonal and interannual variability of 474 

the inorganic carbon system in a time when ocean acidification and climate change have already 475 

started to transform this area. The observations suggest that the CEO site is a high-CO2 and low-476 

pH and low-Ωarag environment most of the time, except during sea ice break-up when the effects 477 

of photosynthetic activity remove CO2 from the system, and later in fall, when strong storm 478 

events entrain low pCO2 surface waters to the seafloor. Lowest pH and CaCO3 saturation states 479 

and highest pCO2 occur in summer through late fall when organic matter remineralization 480 

dominates the carbonate system balance. During this time, Ωarag can fall below 0.5 and even Ωcalc 481 

becomes sporadically undersaturated (Ωcalc < 1). 482 

 483 

4.1 pH algorithm 484 

Deploying oceanographic equipment in remote Arctic locations is challenging. The data 485 

return from the SeapHOx sensors was disappointingly minimal, despite annual servicing and 486 

calibration by the manufacturer. Our new pH algorithm is therefore even more important as it 487 

fills pH data gaps in the CEO timeseries and can be applied with confidence from the Bering to 488 

the western Beaufort seas (Figure 6). While another successful year of moored pH data return at 489 

the CEO site is needed to fully evaluate our algorithm throughout the year, comparison with 490 

single discrete water samples nearby the CEO site and the DBO dataset (section 3.1, Table 2, 491 

Figures 6 and S1) suggest that our algorithm-derived pH meets the weather quality uncertainty 492 

goal of ± 0.02 (Newton et al., 2015) much of the time.  493 

The combination of our new algorithm with recent progress in monitoring pCO2 with 494 

Seagliders (Hayes et al., 2022) will further increase our ability to study the inorganic carbon 495 

dynamics at times and locations when shipboard or mooring based measurements may not be 496 
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practical. Additional assessment is needed to determine to what degree the algorithm needs 497 

adjustments beyond the region evaluated in this work. 498 

 499 

4.2 Uncertainty  500 

Inherent spatial and temporal variability of the inorganic carbon parameters in the 501 

Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements 502 

difficult. Historic continuous surface measurements from the area suggest that surface pCO2 can 503 

be as low < 250 µatm in early fall (Hauri et al., 2013), at a time of year when subsurface pCO2 504 

reaches its max of >800 µatm at the CEO site. This suggests a steep pCO2 gradient of > 17 µatm 505 

per meter. High-resolution pH data from the 2017/2018 deployment suggests high temporal 506 

variability as well, further complicating the collection of discrete water samples to adequately 507 

evaluate the sensors. The HydroC’s zeroing function, in addition to our pre- and post-calibration 508 

routines that factor into the post-processing of the data, gives us confidence in the accuracy of 509 

the pCO2 data, and further confidence in pH derived from pCO2.  510 

The pHest uncertainty of 0.0525 is likely a conservative estimate based on our validation 511 

of pHest (section 3.1, Table 2). Consequently, propagated uncertainties in the calculated 512 

parameters are high. As discussed in section 2.7, the pH-pCO2 input pair exacerbates these larger 513 

uncertainties. Mean TA(pHest,pCO2), DIC(pHest,pCO2), and Ωarag(pHest,pCO2), ± uc (Orr et al., 514 

2018) are 2173 ± 281 μmol kg−1, 2111 ± 263 μmol kg−1, and 0.94 ± 0.23, respectively, when 515 

input uncertainties are the standard uncertainty (Equation 1). When the input uncertainty for 516 

pHest is only the RMSE of 0.0161 (section 3.1), uncertainties decrease to ± 98 μmol kg−1, ± 93 517 

μmol kg−1, and ± 0.09, respectively. When input uncertainties are only the random component of 518 

the input parameters (i.e. standard deviation for pHSeaFET and pCO2 and instrument precision for 519 
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T and S), TA(pHSeaFET,pCO2), DIC(pHSeaFET,pCO2), and Ωarag(pHSeaFET,pCO2) uc drops to ± 38 520 

μmol kg−1, ± 37 μmol kg−1, and ± 0.06, respectively. Given the above uncertainties and that we 521 

do not see significant biofouling at the CEO site, we believe that short term variability can be 522 

discussed with confidence with this dataset. In other words, wiggles in the data represent real 523 

events, despite the high uncertainty in the precise value of the calculated parameters.  524 

 525 

4.3 Subsurface biogeochemical drivers of pH, Ωarag, and pCO2 526 

 Inorganic carbon chemistry can be influenced by advection and vertical entrainment of 527 

different water masses, temperature, salinity, biogeochemistry, and conservative mixing with TA 528 

and DIC freshwater endmembers. Here, we followed Rheuban et al. (2019) and separated the 529 

drivers of the observed large pH, Ωarag, and pCO2 variability to provide additional insights into 530 

our timeseries (Figure 10) using CO2SYS by altering input parameters temperature, salinity, TA, 531 

and DIC. Anomalies (black) relative to the reference values pH(T0, S0, DIC0, TA0), Ωarag(T0, S0, 532 

DIC0, TA0), and pCO2(T0, S0, DIC0, TA0), were calculated using a linear Taylor series 533 

decomposition, adding up the thermodynamic effects of temperature and salinity, and the 534 

perturbations due to biogeochemistry, and conservative mixing with freshwater DIC and TA 535 

endmembers (Rheuban et al., 2019). Reference values T0, S0, DIC0, and TA0, are the mean of the 536 

CEO timeseries. Freshwater from sea ice melt and meteoric sources (precipitation and rivers) 537 

may influence the CEO site. TA and DIC concentrations of 450 μmol kg−1 and 400 μmol kg−1, 538 

respectively, have been measured in Arctic sea ice (Rysgaard et al., 2007). Riverine input along 539 

the Gulf of Alaska tends to have lower TA (366 μmol kg−1) and DIC (397 μmol kg−1) 540 

concentrations (Stackpoole et al., 2016, 2017) than rivers draining into the Bering, Chukchi, and 541 

Beaufort Seas (TA = 1860 μmol kg−1, DIC = 2010 μmol kg−1, Holmes et al., 2021) all of which 542 
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can influence the CEO site to some extent (Asahara et al., 2012; Jung et al., 2021). In this Taylor 543 

decomposition we used sea ice TA and DIC endmembers (Rysgaard et al., 2007) but want to 544 

emphasize that using Arctic river endmembers did not meaningfully change the results (not 545 

shown). Figure 10 shows the effects of biogeochemical processes, temperature, salinity, and 546 

conservative mixing with TA and DIC freshwater endmembers on pH, Ωarag, and pCO2. The 547 

effects of salinity (turquoise) and conservative mixing with TA and DIC freshwater endmembers 548 

(green) are negligible for pH, Ωarag, and pCO2. Temperature varied between -1.7 °C during the 549 

sea ice covered months and up to 4 °C in late fall, when wind events mixed the whole water 550 

column and entrained warm and low pCO2 surface waters to the instrument depth at 33 m (see 551 

section 3.2 for a more in-depth discussion of these mixing events). During this time, the increase 552 

in temperature counteracted the effect of biogeochemistry slightly and increased pCO2 and 553 

decreased pH (Figure 10 a,c). Temperature did not affect Ωarag. 554 

Biogeochemistry (photosynthesis, respiration, calcification, dissolution) is the most 555 

important driver of the inorganic carbon dynamics at 33 m depth at the CEO site. The springtime 556 

relaxation events in 2018 and 2019 with relatively higher pH and Ωarag, and lower pCO2, were 557 

mainly driven by biogeochemistry (Figure 10, magenta). During these events O2 increased and 558 

NO3 decreased, suggesting photosynthetic activity (Figure 2d, e and 3a). Near bottom 559 

photosynthetic activity by phytoplankton or sea ice algae has been observed at different locations 560 

across the Chukchi Sea (Arrigo et al., 2017; Ouyang et al., 2022; Stabeno et al., 2020; Koch et 561 

al., 2020). Sediment trap data from a CEO deployment prior to the start of this pCO2 and pH 562 

time-series suggest that export of the exclusively sympagic sea ice algae Nitzschia frigida peaked 563 

in May and June, during snow and ice melt events (Lalande et al., 2020), further supporting the 564 

hypothesis that sea ice algae contributed to the CO2 draw down. Interestingly, TA also increased 565 
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significantly during these events in 2018 and 2019, which cannot be solely attributed to organic 566 

matter production. Specifically, TA increased by 23 umol kg-1 in 2019 (Figure 11a). However, 567 

with an observed NO3 decrease of 7.6 umol kg-1, we would expect an increase of TA by 7.6 umol 568 

kg-1. This is assuming that NO3 is the primary source of nitrogen during organic matter 569 

formation, and that assimilation of 1 umol of NO3 leads to an increase of TA of 1 umol (Wolf-570 

Gladrow et al., 2007). The TA increase of 23 umol kg-1 is therefore larger than expected from 571 

organic matter formation alone and is likely due to CaCO3 mineral dissolution. While direct 572 

evidence is missing, the strong TA increase suggests that CaCO3 mineral dissolution during sea 573 

ice break up also plays an important role at the CEO site. As observed in other Arctic areas, it is 574 

possible that ikaite crystals that were trapped in the ice matrix dissolved in the water column 575 

when sea ice melted (Rysgaard et al., 2012, 2007).  576 

 577 

4.4 Progression of ocean acidification in the Chukchi Sea 578 

Organisms living at the CEO site may have always been exposed to large seasonal 579 

variability and low pH and Ωarag (high pCO2), but the combined and cumulative effects of 580 

climate change and ocean acidification have rapidly made these conditions more extreme and 581 

longer lasting. Ocean acidification serves as a gradual environmental press by increasing the 582 

system’s mean and extreme pCO2 and decreasing mean and extreme pH and Ωarag. Climate 583 

induced changes to other important controls of the inorganic carbon system, such as sea ice, 584 

riverine input, temperature, and circulation can act as sudden pulses and further modulate the 585 

inorganic carbon system to a less predictable degree and cause extreme events (Woosley and 586 

Millero, 2020; Orr et al., 2022; Hauri et al., 2021; Qi et al., 2017). Huntington et al. (2020) 587 

describe a sudden and dramatic shift of the physical, biogeochemical and ecosystem conditions 588 
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in the Chukchi and Northern Bering seas in 2017. For example, satellite data for the CEO site 589 

illustrate that the longest open water seasons on record occurred between 2017 and 2020. Before 590 

2017, the open water season was on average 81 (± 40) days long (i.e., below 15 % 591 

concentration), of which 60 (± 44) days were ice free, whereas between 2017 and 2020, the low 592 

sea ice period was 157 (± 30) days long, of which 152 (± 24) days were ice free (Figure 12). Sea 593 

ice decline and increased nutrient influx has also promoted increased phytoplankton primary 594 

production in the area (Lewis et al., 2020; Arrigo and van Dijken, 2015; Payne et al., 2021). 595 

Since our inorganic carbon timeseries started after the “dramatic shift” that was observed in the 596 

Chukchi Sea in 2017 (Huntington et al., 2020) and given the uncertainty in model output in this 597 

region, we can only speculate about how the changes in sea ice, temperature and biological 598 

production may have affected seasonal variability and extremes of the inorganic carbon 599 

chemistry at the CEO site. However, since the summertime low pH and Ωarag and high pCO2 are 600 

tightly coupled to the length of the ice-free period and intensity of organic matter production, it 601 

is possible that the observed summertime period of extreme conditions may have been 602 

previously unexperienced at this site.  We therefore think it is justified to call the spikes of pH 603 

and Ωarag “ocean acidification relaxation events”, since the long-lasting summertime period of 604 

extremely low pH and Ωarag may be a new pattern. 605 

 606 

4.5 Relevance for ecosystem 607 

 Marine organisms are exposed to a wide range of naturally fluctuating environmental 608 

conditions such as temperature, salinity, carbonate chemistry and food concentrations that 609 

together constitute their ecological niche. As evolution works toward adaptation, the tolerance 610 

range of species and ecosystems to such parameters varies between locations and is often closely 611 
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related to niche status (Vargas et al., 2022). Stress can be defined as a condition evoked in an 612 

organism by one or more environmental and biological factors that bring the organism near or 613 

over the limits of its ecological niche (after Van Straalen, 2003). The consequence of the 614 

exposure to a stressor will depend on organismal sensitivity, stress intensity (how much it 615 

deviates from present conditions) and stress duration. In a synthesis of the global literature on the 616 

biological impacts of ocean acidification, Vargas et al. (2017, 2022) showed that the extreme of 617 

the present range of variability of carbonate chemistry is a good predictor of species sensitivity. 618 

In other words, larger deviations from present extreme high pCO2 or extreme low pH, would be 619 

expected to exert more negative biological impacts. Organismal stress and niche boundaries have 620 

implications for the definition and understanding of controls and future ocean acidification 621 

conditions in experiments aimed at evaluating future biological impacts. 622 

Our data provide insights on conditions that affect and determine local species’ 623 

ecological niches, and a necessary key is to evaluate or re-evaluate their sensitivity to present and 624 

future carbonate chemistry conditions, particularly for the sessile benthic calcifiers that constitute 625 

prey for mobile and upper trophic level taxa. For example, an experimental study on three 626 

common Arctic bivalve species (Macoma calcarean, Astarte montagui and Astarte borealis) 627 

collected in the CEO concluded that these species were generally resilient to decreasing pH 628 

(Goethel et al., 2017). However, only two pH were compared (a “control” (pH of 8.1) and an 629 

“acidified” treatment (pH of 7.8) and our results show that organisms are already experiencing 630 

more extreme conditions today than have been experimentally manipulated. While these data 631 

provide insights on these species’ plasticity to present pH conditions, they cannot be used to infer 632 

sensitivity to future ocean acidification or extremes of current conditions. Based on the local 633 

adaptation hypothesis (Vargas et al. 2017, 2022), stress and associated negative effect on species 634 
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fitness can be expected when pH deviates from the extreme of the present range of variability 635 

(pH<7.5) as shown in other regions (e.g. echinoderms: Dorey et al., (2013); crustaceans: Thor 636 

and Dupont, (2015); bivalves: Ventura et al., (2016)).  637 

At the CEO, our results show sustained periods of remarkably low pH (e.g., 7.5; summer 638 

to fall, winter). Higher pH values are observed in spring and late fall. While we are lacking the 639 

local biological data to sufficiently evaluate past and future ecosystem changes, a high rate of 640 

ocean acidification as observed in the Chukchi Sea (Qi et al., 2022b, a), associated with potential 641 

temperature-induced shifts in the carbonate chemistry cycle (e.g. Orr et al. 2022), have the 642 

potential to impact species and ecosystems. Exposure to low pH increases organismal energy 643 

requirements for maintenance (e.g. acid-base regulation: Stumpp et al., 2012, compensatory 644 

calcification: Ventura et al., 2016). Organisms can cope with increased energy costs using a 645 

variety of strategies, ranging from individual physiological to behavioral responses, depending 646 

on trophic level, mobility, and other ecological factors. For example, they can use available 647 

stored energy to compensate for increased costs or they can decrease their metabolism to limit 648 

costs (AMAP 2018). At the CEO, the low pH period observed during the summer and fall is 649 

associated with elevated temperature and an elevated food supply for herbivores (Lalande et al., 650 

2020). The high availability of food may then foster compensation for the higher energetic costs 651 

associated with exposure to low pH. However, a longer period of low pH as suggested by our 652 

data could lead to a mismatch between the low pH and food availability, with cascading negative 653 

consequences for the ecosystem (Kroeker et al., 2021). In winter, the low pH conditions are 654 

associated with low temperature, no light, and low food level concentrations. These conditions 655 

are likely to keep metabolisms low and limit the negative effects of exposure to low pH 656 

(Gianguzza et al., 2014). As food availability is limited by the absence of light, this strategy may 657 
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be compromised by an increase in temperature that could also lead to increased metabolism. 658 

Additional work is needed to understand impacts of acidification conditions and variability on 659 

the marine biota of the Chukchi Sea, including field and laboratory experiments that evaluate 660 

biological response under realistic scenarios. The characterization of the environmental 661 

conditions at the CEO, including the variability in time, can be used to design single and multiple 662 

stressor experiments (carbonate chemistry, temperature, salinity, food, oxygen; Boyd et al. 663 

2018).  664 

Indigenous communities are at the forefront of the changing Arctic, including changes in 665 

accessibility, availability, and condition of traditional marine foods (Buschman and Sudlovenick, 666 

2022; Hauser et al., 2021). Several marine species are critical to the food and cultural security of 667 

coastal Inupiat who have thrived in Arctic Alaska for millenia. While it is not possible to resolve 668 

the consequences of the seasonal and interannual variations in carbonate chemistry documented 669 

in this manuscript without a proper sensitivity evaluation, the seasonally low pH conditions have 670 

the potential to impact organisms like bivalves in a foraging hotspot for walrus (Jay et al., 2012; 671 

Kuletz et al., 2015). Walrus, as well as their bivalve stomach contents, are important nutritional, 672 

spiritual, and cultural components, raising concerns for food security in the context of ecosystem 673 

shifts associated with the variability and multiplicity of climate impacts within the region (ICC, 674 

2015).    675 

 676 

5. Concluding Thoughts 677 

The Chukchi Sea is undergoing a rapid environmental transformation with potentially 678 

far-reaching consequences across the ecosystem. While we are lacking a long-term time-series, 679 

we used this dataset to investigate the drivers of extreme pH, Ωarag, and pCO2 and document 680 
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conditions that could affect the ecological niches of organisms, including a fast rate of ocean 681 

acidification, elongated sea ice free periods, increased primary productivity and elevated 682 

temperature. While a combination of experimental and monitoring approaches is needed for an 683 

understanding of the ecological consequences of these changes, our results also highlight the 684 

urgency to mitigate CO2 emissions and simultaneously support Indigenous-led conservation 685 

measures to safeguard an ecosystem in transition. Indigenous People in the Arctic have 686 

established strategies to monitor, adapt to, and conserve the ecosystems upon which they depend. 687 

Ethical and equitable engagement of Indigenous Knowledge and the communities at the forefront 688 

of climate impacts can help guide research and conservation action by centering local priorities 689 

and traditional practices, thereby supporting self-determination and sovereignty (Buschman and 690 

Sudlovenick, 2022). 691 
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Tables 1403 

Table 1. Chukchi Ecosystem Observatory location and instrument sampling frequency. Sensor 1404 

type and parameter measured (italicized) shown in top row. Values in parenthesis indicate the 1405 

number of measurements averaged over the measurement interval window.  1406 

Deployment Latitude Longitude 
SUNA  

NO3 

HydroC CO2 

pCO2 

SBE16 

CTD+ 

SBE37 

CTD 

SeaFET 

pH 

SBE63 

O2 

2016-2017 71°35'58.5600"N  161°31'06.2400"W 1 h 
12 h (300/5 

min)* 
1 h - - - 

2017-2018 71°35'58.9200"N  161°31'08.0400"W 1 h 12 h (5/5 min) 2 h 2 h 
2 h (30/5 

min) 
2 h 

2018-2019 71°35'59.6400"N  161°31'41.1600"W 1 h 24 h (5/5 min) 1 h 2 h* - 2 h* 

2019-2020 71°35'58.9200"N 161°31'39.0000"W 1 h 12 h (5/5 min) 2 h - - - 
 

* indicates the sensor did not return data over the whole year due to battery failure 

CTD+ indicates ancillary data was available with the SBE16 file (e.g., chlorophyll fluorescence) 

 1407 

 1408 

 1409 

Table 2. Evaluation of pHSeaFET and pHest using reference pH from nearby discrete samples 1410 

(pHdisccalc). Uncertainty, uc, is the propagated combined standard uncertainty from errors.m (Orr 1411 

et al., 2018). pHSeaFET and pHest were interpolated to the discrete timestamp. Figure S1 for 1412 

visualization of reference values.  1413 

 1414 

Date Cruise Cast No. 
Distance 

(km) 
pHdisccalc ± uc 

Anomaly 

(pHest-pHdisccalc) 

Anomaly 

(pHSeaFET-pHdisccalc) 
Source 
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2017-09-10 HLY1702 127 0.52 8.0123±0.0166 -0.0450* -0.0354 
Cross et al., 

2020a 

2019-08-11 HLY1901 39 3.75 7.6423±0.012 0.0079* - Cross et al., 
2021 

2019-08-19 OS1901 33 0.27 7.7367±0.0145 -0.0200 - unpublished 

* indicates pHdisccalc was interpolated to mooring depth 

 1415 

  1416 
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Figures 1417 

 1418 

Figure 1.  Map of the study area. Bathymetry of the Chukchi, northern Bering, East Siberian 1419 

and eastern Beaufort seas is shown in color. The Chukchi Ecosystem Observatory (CEO) 1420 

location near Hanna Shoal is marked with a yellow star. General circulation patterns are shown 1421 

with arrows: black – Alaskan Coastal Water and Alaskan Coastal Current, dividing into the 1422 

Shelf-break Jet (right) and Chukchi Slope Current (left, Corlett and Pickart, (2017)); orange – 1423 

Anadyr, Bering, and Chukchi Seawater; purple – Siberian Coastal Current; yellow – Beaufort 1424 

Gyre boundary current. Figure is from Hauri et al. (2018). 1425 
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 1426 

 1427 

 1428 

Figure 2. Chukchi Ecosystem Observatory timeseries from 2016 through 2020. a) sea ice 1429 

concentration (blue shading to highlight coverage, %; DiGirolamo et al., 2022), b) temperature 1430 

(°C), c) salinity, d) NO3 with uncertainty envelope (μmol kg-1), and e) chlorophyll fluorescence 1431 

(mg m-3). Years are indicated by alternating yellow and white background shading. The vertical 1432 

dotted gray lines indicate the mooring turn around timing.  1433 
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 1434 

Figure 3. Chukchi Ecosystem Observatory timeseries from 2016 through 2020, part 2. a) 1435 

relative dissolved oxygen with uncertainty envelope (relative to the mean; μmol kg-1), b) pCO2 1436 

with uncertainty envelope (μatm; Hauri and Irving, 2023a), c) pH with uncertainty envelope 1437 

(pHest in black, pHSeaFET in red; Hauri and Irving 2023b), and d) aragonite saturation state with 1438 

uncertainty envelope (Ωarag(pCO2, pHest) in black; Ωarag(pCO2, pHSeaFET) in red). Years are 1439 

indicated by alternating yellow and white backgrounds. The vertical dotted gray lines indicate 1440 

the mooring turn around timing. 1441 

 1442 
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 1443 

 1444 

Figure 4. HydroC pCO2 and pH highlighting mirrored trend from mid-August 2017 to 1445 

beginning of August 2018. Measured pH (pHSeaFET, red dots) is interpolated onto the HydroC 1446 

pCO2 timestamp (blue), and pHest is shown as the solid black line. The dashed box shows the 1447 

period over which pHest was trained. The yellow faced diamond with error bars show reference 1448 

pHdisccalc ± uc (Table 2; Cross et al., 2020a; Orr et al., 2018).  1449 
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 1450 

 1451 

 1452 

Figure 5. Performance of the pH algorithm. (a) pHSeaFET vs pHest with black line highlighting 1453 

1:1 ratio, (b) pCO2 vs pHSeaFET (red) and pCO2 vs pHest (black), (c) residual pH (pHSeaFET – 1454 

pHest), and (d) pHSeaFET (red) and pHest (black) vs. time, with dashed box highlighting the period 1455 

over which pHest was trained (15 September - 14 March 2017), and the yellow faced diamond 1456 

with error bars showing reference pHdisccalc ± uc (Table 2; Cross et al., 2020). 1457 

  1458 
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 1459 

 1460 

 1461 

 1462 

Figure 6. Evaluation of the pH algorithm. pHest evaluation with pHdisccalc from discrete 1463 

samples collected during 4 cruises in the fall or early winter (August - November) of 2017-2020 1464 

and pHdiscest from our linear regression model (Equation 2). (a) pCO2disccalc(TA, DIC) vs pH (red 1465 

pHdisccalc and black pHdiscest) with dashed black box showing the range of pH and pCO2 observed 1466 

at the CEO at 33 m depth, (b) pHdisccalc vs pHdiscest with black 1:1 ratio, (c) residual pH (pHdisccalc - 1467 

pHdiscest) vs depth with color shading by salinity and black vertical line at 0, and (d) map showing 1468 

the locations of the 1275 discrete water samples used for evaluation (Monacci et al., 2022; Cross 1469 

et al., 2021; 2020a; 2020b).  1470 

 1471 

 1472 
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 1473 

Figure 7. Water column structure from late summer 2017 to freeze up. Profiles of a) wind 1474 

speed and direction (arrows pointing downwind) from the NOAA-operated Wiley Post-Will 1475 

Rogers Memorial Airport, b) pCO2 (μatm) with blue background indicating the water was 1476 

undersaturated regarding aragonite (Ωarag < 1) and red shading indicating aragonite 1477 

oversaturation (Ωarag >= 1), c) temperature (°C), d) salinity, and e) sigma-theta (kg m-3). 1478 

Temperature (c) and salinity (d) were measured at 8, 20, 30, and 40 m by the Chukchi Ecosystem 1479 

Observatory freeze-up detection mooring deployed in fall 2017. Density was calculated with the 1480 

TEOS-10 GSW Oceanographic Toolbox (McDougall and Baker, 2011).  1481 
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 1482 

Figure 8. Impact of water column mixing on pCO2. Timeseries of pCO2 (black, left axis) and 1483 

a) temperature (maroon, right axis), b) salinity (green, right axis), and c) density (purple, right 1484 

axis) for 15 August to 1 December in 2016 -2020 measured at ~33m septh at the Chukchi Sea 1485 

Ecosystem Observatory.  1486 

 1487 

 1488 

 1489 

 1490 

 1491 

 1492 

 1493 
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 1494 

Figure 9. Respiration under the sea ice. Timeseries of pCO2 (black) and salinity (green, left 1495 

axis), and oxygen (O2, µmol kg-1, maroon, top) and nitrate (NO3, µmol kg-1, blue, middle and 1496 

bottom) concentration (right axis during January through April for 2018 (top), 2019 (middle) and 1497 

2020 (bottom). 1498 
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 1499 

 Figure 10. Drivers of the inorganic carbon system. Component timeseries of the linear Taylor 1500 

decomposition of a) pH, b) Ωarag, and c) pCO2. Contributions of changes in salinity (red), 1501 

temperature (blue), biogeochemistry (pink), and freshwater mixing (green) to changes (black, 1502 

relative to the mean of the timeseries) in pH, Ωarag, and pCO2 were computed following Rheuban 1503 

et al. (2019). The grey dotted line illustrates an estimated residual term. Sea ice concentration 1504 

(blue shading, %; DiGirolamo et al., 2022) is shown on the right axes. 1505 

  1506 
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 1507 

Figure 11. Spring 2019 relaxation event. Timeseries of a) total alkalinity (TA, µmol kg-1), b) 1508 

dissolved inorganic carbon (DIC, µmol kg-1), and c) nitrate (NO3, µmol kg-1) from May 1st, 2019 1509 

through July 15th, 2019. 1510 
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 1511 

 1512 

Figure 12. Low sea ice period at the Chukchi Sea Observatory. Timeseries of start (circle) 1513 

and end (square) of low sea ice (< 15 % per grid cell) period from 1982-2021. Shades of red 1514 

illustrate number of days with 0 % sea ice cover. The satellite sea ice cover at the observatory 1515 

site was taken from the NSIDC (DiGirolamo et al., 2022). 1516 
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