1	Insights into carbonate environmental conditions in the Chukchi Sea
2	
3	Claudine Hauri ¹ , Brita Irving ¹ , Sam Dupont ^{2,3} , Rémi Pagés ¹ , Donna D. W. Hauser ¹ , and Seth L.
4	Danielson ⁴
5	
6	¹ International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775,
7	USA
8	² Department of Biological and Environmental Sciences, University of Gothenburg,
9	Fiskebäckskil 45178, Sweden
10	³ Radioecology Laboratory International Atomic Energy Agency (IAEA), Marine Laboratories,
11	Principality of Monaco
12	⁴ College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK 99775,
13	USA

- Correspondence email: chauri@alaska.edu

16 Abstract

17	Healthy Arctic marine ecosystems are essential to the food security and sovereignty, culture,	
18	and wellbeing of Indigenous Peoples in the Arctic. At the same time, Arctic marine ecosystems	
19	are highly susceptible to impacts of climate change and ocean acidification. While increasing	
20	ocean and air temperatures and melting sea ice act as direct stressors on the ecosystem, they also	
21	indirectly enhance ocean acidification, accelerating the associated changes in the inorganic	
22	carbon system. Yet, much is to be learned about the current state and variability of the inorganic	
23	carbon system in remote, high-latitude oceans. Here, we present time-series (2016-2020) of pH	
24	and the partial pressure of carbon dioxide (p CO ₂) from the northeast Chukchi Sea continental	
25	shelf. The Chukchi Ecosystem Observatory includes a suite of subsurface year-round moorings	
26	sited amid a biological hotspot that is characterized by high primary productivity and a rich	
27	benthic food web that in turn supports coastal Iñupiat, whales, ice seals, walrus (Odobenus	
28	rosmarus), and Arctic cod (Boreogadus saida). Our observations suggest that near-bottom	
29	waters (33 m depth, 13 m above the seafloor) are a high carbon dioxide and low pH and	
30	aragonite saturation state (Ω_{arag}) environment in summer and fall, when organic material from the	
31	highly productive summer remineralizes. During this time, Ω_{arag} can be as low as 0.4. In winter,	
32	when the site was covered by sea ice, pH was < 8 and Ω_{arag} remained undersaturated under the	
33	sea ice. There were only two short seasonal periods with relatively higher pH and Ω_{arag} , which	
34	we term ocean acidification relaxation events. In spring, high primary production from sea ice	
35	algae and phytoplankton blooms led to spikes in pH ($pH > 8$) and aragonite oversaturation. In	
36	late fall, strong wind-driven mixing events that delivered low CO2 surface water to the shelf also	
37	led to events with elevated pH and Ω_{arag} . Given the recent observations of high rates of ocean	
38	acidification, and sudden and dramatic shift of the physical, biogeochemical, and ecosystem	

Deleted:

40 conditions in the Chukchi Sea, it is possible that the observed extreme conditions at the Chukchi
41 Ecosystem Observatory are deviating from carbonate conditions to which many species are
42 adapted.
43

44 1. Introduction

45 The quickly changing Arctic Ocean has climatic, societal, and geopolitical implications for the peoples of the Arctic and beyond (Huntington et al., 2022). Arctic Indigenous Peoples are at 46 47 the forefront of this change and their food security, food sovereignty, culture, and ways of life depend on healthy Arctic marine ecosystems (ICC, 2015). The Arctic is warming at a rate that is 48 49 up to four times that of the rest of the globe (Serreze and Barry, 2011; Serreze and Francis, 2006; 50 Rantanen et al., 2022). This phenomenon, called Arctic Amplification, is observed in air and sea 51 temperatures, has accelerated in recent years, and is expected to continue in the future (Rantanen 52 et al., 2022; Shu et al., 2022). Warming exerts a toll on sea ice extent, ice thickness, and the 53 duration of seasonal sea ice cover: ice is forming later in fall and retreating earlier in spring, 54 thereby increasing the length of the open water period (Stroeve et al., 2011; Serreze et al., 2016; 55 Wood et al., 2015; Stroeve et al., 2014). The lowest Arctic wide minimum sea ice extents were recorded during the last 16 years of the 44 year-long satellite time-series (National Snow and Ice 56 57 Data Center, DiGirolamo et al. (2022)). 58 At the same time, the Arctic Ocean is vulnerable to ocean acidification. Although oceanic 59 uptake of anthropogenic carbon dioxide (CO₂) increases oceanic CO₂ and decreases pH and calcium carbonate (CaCO₃) saturation states of calcite (Ω_{calc}) and aragonite (Ω_{arag}) globally, 60 61 climate induced changes to riverine input, temperature, sea ice, and circulation are accelerating 62 the rate of ocean acidification in the Arctic Ocean like nowhere else in the world (Woosley and

Deleted: 2017

64 Millero, 2020; Oi et al., 2022a; Yamamoto-Kawai et al., 2009; Orr et al., 2022; Semiletov et al., 65 2016; Qi et al., 2017). Recent observational studies propose that freshening of the Arctic Ocean 66 due to increased riverine input may play an even greater role in acidifying the Arctic Ocean than 67 the uptake of anthropogenic CO₂ (Woosley and Millero, 2020; Semiletov et al., 2016). In 68 addition, the cold Arctic waters have naturally low concentrations of carbonate ions (CO_3^{2-}) and 69 are therefore closer to aragonite undersaturation ($\Omega_{arag} < 1$) than more temperate waters (Orr, 70 2011; Sarmiento and Gruber, 2006), which leads to the chemical dissolution of free aragonitic 71 CaCO₃ structures (Bednaršek et al., 2021). Because of the naturally low concentrations of CO₃²⁻, 72 such high latitude waters have a lower capacity to take up anthropogenic CO₂ and buffer these 73 changes (Orr, 2011). As a result, concentrations of hydrogen ions (H⁺) increase and pH decreases 74 faster in the Arctic than in the tropics, for example. 75 In the Pacific Arctic, the Chukchi shelf waters have warmed by 0.45 °C decade⁻¹ since 1990, 76 triple the rate since the beginning of the data record in 1922 (Danielson et al., 2020). Direct 77 observations of the inorganic carbon dynamics of the Chukchi Sea are mostly limited to June 78 through November because of the region's remoteness and accessibility during sea ice covered 79 months. Summertime profiles across the Chukchi Sea show steep vertical gradients in inorganic carbon chemistry (Bates, 2015; Bates et al., 2009; Pipko et al., 2002; Mathis and Questel, 2013). 80 Surface waters have a low partial pressure of carbon dioxide (pCO_2) as a result of high primary 81 production after sea ice retreat, leading to aragonite supersaturated conditions, with $\Omega_{arag} > 2$ 82 (Bates, 2015; Bates et al., 2009). In areas with sea ice melt or riverine freshwater influence, Ω_{arag} 83 84 tends to be lower and at times undersaturated (Bates et al., 2009; Yamamoto-Kawai et al., 2009). At the same time, pCO₂ values near the seafloor are around 1000 µatm as a result of organic 85 86 matter remineralization, leading to summertime aragonite undersaturation (Mathis and Questel,

87	2013; Pipko et al., 2002; Bates, 2015). Between September and November, continuous
88	measurements from within a few meters of the surface suggest a mosaic of p CO ₂ levels between
89	~ 200 to 600 μatm likely due to patchy wind-induced mixing entraining high-CO_2 waters from
90	depth into the surface mixed layer (Hauri et al., 2013). Yamamoto-Kawai et al. (2016) used
91	mooring observations of S, T, and apparent oxygen utilization to estimate dissolved inorganic
92	carbon (DIC), total alkalinity (TA), and Ω_{arag} in bottom waters at their mooring site in the Hope
93	Valley in the southwestern Chukchi Sea to give first insights into year round variability of the
94	inorganic carbon system. They found slightly less intense aragonite undersaturation in spring and
95	winter compared to summer, with a net undersaturation duration of 7.5-8.5 months per year.
96	The Chukchi Ecosystem Observatory (CEO) is situated in a benthic hotspot (Figure 1) where
97	high primary production supports rich and interconnected benthic and pelagic food webs
98	(Grebmeier et al., 2015; Moore and Stabeno, 2015). The benthos is dominated by calcifying
99	bivalves, polychaetes, amphipods, sipunculids, echinoderms and crustaceans (Grebmeier et al.,
100	2015; Blanchard et al., 2013). Benthic foraging bearded seals (Erignathus barbatus), walrus
101	(Odobenus rosmarus divergens), gray whale (Eschrichtius robustus), and seabirds feed on these
102	calcifiers during the open water season (Kuletz et al., 2015; Jay et al., 2012; Moore et al., 2022).
103	The CEO site, located on the southern flank of Hanna Shoal, is a region of reduced stratification
104	(relative to other sides of the shoal) that likely alternately feels the effects of differing flow
105	regimes located to the west and to the east (Fang et al., 2020). Consequently, the site exhibits
106	relatively weaker currents (Tian et al., 2021) and so is conducive to deposition of sinking organic
107	matter that in turn feeds the local benthos (Grebmeier et al., 2015). Prolonged open-water
108	seasons during periods of high solar irradiance, in combination with an influx of new nutrients
109	and wind mixing, are likely enhancing primary and secondary production as well as advection of

110	zooplankton (Lewis et al., 2020; Arrigo and van Dijken, 2015; Wood et al., 2015). These
111	physical processes in turn fuel keystone consumers such as Arctic cod (Boreogadus saida) and
112	upper trophic level ringed seals (Phoca hispida), beluga (Delphinapterus leucas) and bowhead
113	whales (Balaena mysticetus) as well as predatory polar bears (Ursus arctos) and Indigenous
114	People who rely on the marine ecosystem for traditional and customary harvesting (Huntington
115	et al., 2020).

116 Perturbation of the seawater carbonate system associated with ocean acidification and 117 climate change can have significant physiological and ecological consequences for marine 118 species and ecosystems (Doney et al., 2020). All parameters of the carbonate system (pH, pCO₂, 119 Ω_{arag} , concentrations of HCO₃⁻, CO₃²⁻, etc.) have the potential to affect the physiology of marine 120 organisms while a change in the saturation state (Ω) can lead to the dissolution of unprotected or 121 "free" CaCO3 structures. Recent work has highlighted the importance of local adaptation to the 122 present environmental variability as a key factor driving species sensitivity to ocean acidification 123 (Vargas et al., 2017, 2022). As carbonate chemistry conditions vary enormously between 124 regions, marine organisms are naturally exposed to different selective pressures and can evolve 125 different strategies to cope with low pH or Ω , or high pCO₂. For example, the deep-sea mussel 126 Bathymodiolus brevior living around vents at 1600 m depths is capable of precipitating calcium 127 carbonate at pH ranging between 5.36 and 7.30 and highly undersaturated waters (Tunnicliffe et 128 al., 2009). The response to changes in the carbonate chemistry is also modulated by other 129 environmental drivers such as temperature or food availability (e.g. Thomsen et al., 2013; 130 Breitberg et al., 2015). Consequently, no absolute or single threshold is expected for ocean 131 acidification (e.g., Bednaršek et al., 2021) and a pre-requisite to assessing the impact on any 132 biota is the monitoring at a short temporal scale to characterize the present environmental niche.

133	When it comes to future impacts, the more intense and faster the changes associated with ocean
134	acidification, the more adverse associated biological impacts are expected (Vargas et al. 2017,
135	2022). As a result, it is anticipated that Arctic marine waters that are experiencing widespread
136	and rapid ocean acidification will potentially undergo severe negative ecosystem impacts
137	(AMAP 2018).
138	Here, we present satellite sea ice coverage data and four years of nearly continuous salinity,
139	temperature, and pCO ₂ data, accompanied by pH, nitrate (NO ₃), dissolved oxygen (O ₂), and
140	chlorophyll fluorescence data for some of the time (Table 1, Figures 2 and 3). We developed an
141	empirical equation for estimating pH from moored pCO ₂ , temperature, and salinity and evaluated
142	it using discrete samples collected across the Chukchi Sea, Bering Sea, and Beaufort Sea. Our
143	timeseries allow us to assess the seasonal and interannual variability and controls of the
144	inorganic carbon system in the Chukchi Sea between 2016 and 2020 and characterize the
145	chemical conditions experienced by organisms. We discuss our observations in terms of
146	progressing acidification and implications to organisms in the Chukchi Sea region.
147	
148	2. Materials and Methods
149	2.1 The Chukchi Ecosystem Observatory (CEO)
150	The Chukchi Sea is a shallow shelf sea with maximum depths < 50 m. It is largely a
151	unidirectional inflow shelf system with Pacific origin water entering the Chukchi Sea through the
152	Bering Strait and advecting north into the Arctic Ocean (Carmack and Wassmann, 2006). The
153	CEO (71°36' N, 161°30' W, Figure 1, Hauri et al., 2018) is located along the pathway of waters

- 154 flowing through Bering Strait (Fang et al., 2020) and thence from the west of Hanna Shoal
- 155 toward Barrow Canyon to the south, although the wind can also drive waters from the east over

156	the observatory site (Fang et al., 2020). From both shipboard and moored acoustic Doppler	
157	current profiler records, the south side of Hanna Shoal mean flow is characterized by a weak	
158	southward-directed current (Tian et al., 2021).	
159	The observatory consists of oceanographic moorings that sample year-round, equipped with a	
160	variety of sensors that measure sea ice cover and thickness (Sandy et al., 2022), light, currents,	
161	waves, salinity, temperature, concentrations of dissolved oxygen, nitrate, and particulate matter,	
162	pH, pCO ₂ , chlorophyll fluorescence, zooplankton abundance and vertical migration (Lalande et	
163	al., 2021, 2020), the presence of Arctic cod and zooplankton (Gonzalez et al., 2021), and the	
164	vocalizations of marine mammals. During some years, the observatory included a third mooring,	
165	an experimental "freeze-up detection mooring", which transmitted real-time data of conductivity	
166	and temperature throughout the water column until sea ice formation. The primary moorings	
167	stretch from the seafloor at 46 m to about 33 m depth, designed to avoid collisions with ice keels.	
168	Pressure sensors at the top of the moorings show less than ± 1 m of excursion of the moored	
169	sensor package from its deployment mean depth in any given year, indicating that mooring blow-	
170	over or diving is not the cause of any observed large variability. Description of the CEO and lists	
171	of sensors deployed at the site can be found in Danielson et al. (2017) and Hauri et al., (2018).	
172	For this study we focus on the inorganic carbon system and its controlling mechanisms.	
173		

2.2 *p*CO₂

175We used a CONTROS HydroC CO_2 sensor (4H-Jena Engineering GmbH, Kiel, Germany) to176measure pCO_2 . The Contros HydroC CO_2 sensor was outfitted with a pump (SBE 5M, Sea-Bird177Electronics) that flushes ambient seawater against a thin semi permeable membrane, which178serves as equilibrator for dissolved CO_2 between the ambient seawater and the headspace of the

179	sensor. Technical details about the sensor and its performance are described in Fietzek et al.
180	(2014), who estimated sensor accuracy to be better than 1% with postprocessing.
181	A HydroC CO2 sensor has been deployed at the CEO site since 2016. In all deployments,
182	except 2016, HydroC CO ₂ sensors were post-calibrated. The lack of post-calibration in 2016 is
183	not expected to negatively affect data quality because a battery failure resulted in data returns
184	only over the first 3 months (August through November). Following a zero interval where the
185	gas was pumped through a soda lime cartridge to create a zero-signal reference with respect to
186	CO_2 , and subsequent flush interval to allow CO_2 concentrations to return to ambient conditions,
187	measurements were taken in a burst fashion every 12 or 24 hours depending on deployment year
188	(Table 1). Average pCO_2 values are reported as the mean of the measure interval (Table 1) with
189	standard uncertainty (Equation 1) defined following best practices (Orr et al., 2018) and where
190	the random component is the standard deviation of the mean, and the systematic components
191	include sensor accuracy and estimated error of the regression during calibration.
192	$u = \sqrt{u_{\text{systematic}}^2 + u_{random}^2} \tag{1}$
193	More than 96% of the time, the relative uncertainty of the pCO_2 data met the weather data

More than 96% of the time, the relative uncertainty of the pCO₂ data met the weather data
quality goal, defined as 2.5% by the Global Ocean Acidification Observing Network (GOA-ON,
Newton et al., 2015).

196HydroC CO_2 data were processed using Jupyter notebook scripts developed by 4H-Jena197Engineering GmbH using pre- and post-calibration coefficients interpolated with any change in198the zero-signal reference over the deployment (Fietzek et al., 2014). Further processing using in-199house MATLAB scripts included removal of outliers, calculation of the average pCO_2 , and200calculation of uncertainty estimates for each measure interval.

202 2.3 pH

203	A SeapHOx sensor (Satlantic SeaFET TM V1 pH sensor integrated with Sea-Bird Electronics
204	SBE 37-SMP-ODO) was used to concurrently measure pH, salinity, temperature, pressure, and
205	oxygen (Martz et al., 2010). A SeapHOx was deployed at CEO in 2016, 2017, and 2018. No
206	SeapHOx was deployed in 2019 or 2020 due to supply chain delays and communication issues at
207	sea. Unfortunately, measured pH (pH_{SeaFET}) from the 2016 and 2018 SeapHOx deployments
208	were unusable due to high levels of noise in both the internal and external electrodes. In short,
209	we only have usable pH data between August 2017 and August 2018.
210	pH_{SeaFET} data were excluded during a 14-day conditioning period following deployment and
211	were processed with post-calibration corrected temperature and salinity from the SBE37
212	following Bresnahan et al. (2014) using voltage from the external electrode (V $_{ext}$), and pH_{Vext}
213	(pH calculated from the external electrode of the SeaFET) from an extended period of low
214	variability (18 February 2018). Despite the availability of discrete data from one calibration cast
215	(Cross et al., 2020b; Table 2), pH_{Vex} was used as the single calibration point (Bresnahan et al.,
216	2014) for a variety of reasons: 1) high variability of pH_{SeaFET} (0.0581 pH units) straddling a 12
217	hour window around the discrete sample collection time, 2) high temporal and spatial variability
218	often seen in the Chukchi Sea, and 3) the discrete pH sample was within the published SeaFET
219	accuracy of 0.05 (Table 2, Figure S1). pH_{SeaFET} values are reported as the mean of the measure
220	interval (Table 1) and standard uncertainty is calculated with Equation 1 with the standard
221	deviation of the average (random), and the SeaFET accuracy (systematic). Data handling and
222	processing were done using in-house MATLAB scripts. pH is reported in total scale and at in
223	<i>situ</i> temperature <u>and depth</u> for the entirety of this paper.
224	

225 2.4 Nitrate

226	NO3 measurements were from a Submersible Ultraviolet Nitrate Analyzer (SUNA) V2 by	
227	Sea-Bird Scientific. The SUNA is an <i>in situ</i> ultraviolet spectrophotometer designed to measure	
228	the concentration of nitrate ions in water. SUNA V2 data were processed using a publicly	
229	available toolbox (Hennon et al., 2022; Irving, 2021) with QA/QC steps that included thermal	
230	and salinity corrections (Sakamoto et al., 2009), assessment of spectra and outlier removal based	
231	on spectral counts (Mordy et al., 2020), and concentration adjustments (absolute offset and linear	
232	drift) based on pre-deployment and post-recovery reference measurements of zero concentration	
233	(DI) water and a nitrate standard and, when available, nutrient samples taken from Niskin bottles	
234	near the mooring site (e.g. Daniel et al., 2020).	
235		
236	2.5 CTD and Oxygen	
237	Two CTDs were deployed on the CEO mooring near the HydroC CO_2 depth. The main	
237 238	Two CTDs were deployed on the CEO mooring near the HydroC CO ₂ depth. The main pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth	
238	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth	
238 239	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015-	
238 239 240	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015-2016, 2017-2018, and 2019-2020 deployments but only data returns from the 2017-2018	
238 239 240 241	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015-2016, 2017-2018, and 2019-2020 deployments but only data returns from the 2017-2018 deployment is discussed briefly in this manuscript (Figure S2).	
238 239 240 241 242	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015- 2016, 2017-2018, and 2019-2020 deployments but only data returns from the 2017-2018 deployment is discussed briefly in this manuscript (Figure S2). The other pumped CTD was a Sea-Bird MicroCAT (SBE37-SMP-ODO), which was	
 238 239 240 241 242 243 	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015- 2016, 2017-2018, and 2019-2020 deployments but only data returns from the 2017-2018 deployment is discussed briefly in this manuscript (Figure S2). The other pumped CTD was a Sea-Bird MicroCAT (SBE37-SMP-ODO), which was integrated with an optical dissolved oxygen sensor (SBE63; Figure S2), and the SeaFET pH	
 238 239 240 241 242 243 244 	pumped Sea-Bird SeaCAT (SBE16) has been deployed on the CEO mooring around 33 m depth since 2014. A pumped SBE43 oxygen sensor was deployed with the SBE16 during the 2015- 2016, 2017-2018, and 2019-2020 deployments but only data returns from the 2017-2018 deployment is discussed briefly in this manuscript (Figure S2). The other pumped CTD was a Sea-Bird MicroCAT (SBE37-SMP-ODO), which was integrated with an optical dissolved oxygen sensor (SBE63; Figure S2), and the SeaFET pH sensor within the SeapHOx instrument. The SeapHOx was deployed in fall 2016, 2017, and	

248	Processing of these data included temperature and conductivity correction using pre- and
249	post-calibration data following Sea-Bird Application Note 31 and oxygen correction using pre-
250	and post-calibration data following Sea-Bird Module 28. Oxygen was converted from ml/l to
251	μ mol/kg following Bittig et al. (2018). Density and practical salinity were calculated using the
252	TEOS-10 GSW Oceanographic Toolbox (McDougall and Baker, 2011).
253	Differences between the two oxygen sensors (SBE43 and SBE63) of approximately 145 to
254	265 μ mol/kg were observed over the 2017-2018 deployment, and both moored sensors had
255	varying offsets compared to nearby casts (Figure S2). Therefore, only relative oxygen values
256	from the freshly calibrated SBE63 are discussed in this paper.
257	The freeze-up detection mooring (Figure 6) consisted of four Sea-Bird SBE 37 inductive
258	modem CTD sensors that transmitted in real time hourly temperature, salinity, and pressure data
259	via the surface float from four subsurface depths (8, 20, 30, and 40 m; Hauri et al., 2018).
260	
261	2.6 Development of empirical relationship to estimate pH
262	Empirical relationships for estimating water column pH have been developed for regions
263	spanning southern, tropical, temperate and Arctic biomes, using a variety of commonly measured
264	parameters (e.g., pH(S, T, NO ₃ , O ₂ , Si) Carter et al 2018; pH(O ₂ ,T,S) Li et al., 2016; pH(θ,O ₂)
265	Watanabe et al., 2020; pH(NO ₃ , T, S, P) and pH(O ₂ , T, S, P) Williams et al., 2016; pH(O ₂ , T)
266	Alin et al., 2012; pH(O ₂ , T) and pH(NO ₃ , T) Juranek et al., 2009). Given the tight coupling
267	between the concentration of H^+ and concentration of CO_2 solution, an empirical relationship for
268	estimating surface pH from p CO ₂ was developed by the National Academies of Sciences,
2(0	
269	Engineering and Medicine (2017) appendix F. Licker et al. (2019) used this empirical

270 relationship to calculate the global average surface ocean pH and found it represented the

271	relationship for surface water temperatures spanning 5°C to 45°C. Here, we take a similar
272	approach but extend it to water column pH in our cold region using temperature (T) and salinity
273	(S) as additional proxy parameters (Equation 2).
274	$pH^{est} = \alpha_0 + \alpha_1 \log \left(pCO_2 \right) + \alpha_2 T + \alpha_3 S \tag{2}$
275	Where pH^{est} is the estimated value of water column pH, pCO_2 is from the HydroC, and T and S
276	are from the SBE16, and all α ($\alpha_0 = 10.4660$, $\alpha_1 = -0.4088$, $\alpha_2 = 0.0013$, $\alpha_3 = -0.0001$) terms are
277	model-estimated coefficients determined using MATLAB's multiple linear regression algorithm
278	regress.m (Chatterjee and Hadi, 1986). After interpolating pH _{SeaFET} (Figure 4, red dots) to the
279	pCO ₂ timestamp, the algorithm was trained over an arbitrarily chosen 180-day period
280	(15/9/2017-14/3/2018, Figure 4, dashed box). An uncertainty of 0.0525 for pHest (Figure 3 and
281	Figure S1, gray shading) was determined with Equation 1, where the RMSE (the uncertainty in
282	the estimation) over the entire pH_{SeaFET} timeseries is the random component and the published
283	accuracy of the SeaFET is the systematic component (since the algorithm was trained with
284	pH_{SeaFET}). The algorithm cross-validation and evaluation are discussed in section 3.1. Unless
285	explicitly defined otherwise, observations of pH refer to pH ^{est} for the remainder of this paper.
286	
287	2.7 Carbonate system calculations
288	Moored data were collected at different sample intervals (Table 1) and were linearly
289	interpolated to the HydroC CO ₂ timestamp to enable further calculations. TA, DIC, and Ω_{arag}
290	(Figure 11 a & b and Figure 3d) were calculated based on measured <i>p</i> CO ₂ , S, T, and pressure (P)
291	and algorithm-based pH (pHest). Due to a lack of data, nutrient concentrations (Si, PO4, NH4,
292	H ₂ S) were assumed to be negligible in the CO2SYS calculations (e.g. deGrandpre et al., 2019;

 $293 \qquad \text{Vergara-Jara et al., 2019; Islam et al., 2017). pH^{est} was used in lieu of pH_{SeaFET} to allow for$

294	calculations over the whole pCO_2 record and due to erroneously large variability of DIC and TA	
295	when pH_{SeaFET} was used as an input parameter (Raimondi et al., 2019; Cullison-Gray et al.,	
296	2011). The pH-pCO ₂ input pair leads to large, calculated errors in DIC and TA (Raimondi et al.,	
297	2019; Cullison-Gray et al., 2011) due to strong covariance between the two parameters (both	
298	temperature and pressure dependent). Cullison-Gray et al. (2011) attributed unreasonably large	
299	short-term variability in calculated TA and DIC to temporal or spatial measurement mismatches	
300	between input pH and p CO ₂ parameters and found that appropriate filtering alleviated noise	
301	spikes. By using pH^{est} , which by the nature of its definition is well correlated to pCO_2 , we are	
302	eliminating some of these spurious noise spikes. We show Ω_{arag} calculated from pH_{SeaFET} - pCO_2	
303	(Figure 3d, red line) because it is less sensitive to calculated errors as it accounts for a small	
304	portion of the total CO ₂ in seawater (Cullison-Gray et al., 2011).	
305	All inorganic carbon parameters were calculated using CO2SYSv3 (Sharp et al., 2023; Lewis	
306	and Wallace, 1998) with dissociation constants for carbonic acid of Lueker et al. (2000),	
307	bisulfate of Dickson (1990), hydrofluoric acid of Perez and Fraga (1987), and the boron-to-	
308	chlorinity ratio of Lee et al. (2010). Sulpis et al. (2020) found that the carbonic acid dissociation	
309	constants of Lucker et al. (2000) may underestimate pCO_2 in cold regions (below ~8°C), and	
310	therefore overestimate pH and CO3 ²⁻ . However, we choose to use Lucker et al. (2000) because	
311	they are recommended (Dickson et al., 2007; Woosley, 2021), continue to be the standard (Jiang	
312	et al., 2021; Lauvset et al., 2021), and are commonly used at high latitudes (Duke et al., 2021;	
313	Raimondi et al., 2019; Woosley et al., 2017). Furthermore, the difference between DIC	
314	calculated from pH^{est} and pCO_2 and discrete samples interpolated to moored instrument depth	
315	ranged from 266 to -195 μ mol/kg using the K1 [*] and K2 [*] of Sulpis et al. (2020), compared to -38	Del
316	to -7 µmol/kg using Lueker et al. (2000).	Del

Deleted: k

Deleted: k Formatted: Superscript Formatted: Superscript

320	2.8 Sea ice concentration
321	Sea ice concentration at the observatory site was taken from the National Snow and Ice Data
322	Center (NSIDC; DiGirolamo et al., 2022). Latitude and longitude coordinates were converted to
323	NSIDC's EASE grid coordinate system (Brodzik and Knowles, 2002) and the 25-km gridded
324	data were bilinearly interpolated to calculate sea ice concentration at the CEO site. Low sea ice is
325	defined by < 15 % sea ice coverage per grid cell.
326	
327	2.9 Estimation of model-based ocean acidification trend
328	Model results were obtained from historical simulations of five different global Earth System
329	Models: 1) GFDL-CM4 (Silvers et al., 2018), 2) GFDL-ESM4 (Horowitz et al., 2018), 3) IPSL-
330	CM6A-LR-INCA (Boucher et al., 2020), 4) CNRM-ESM2-1 (Seferian, 2019), and 5) Max Plank
331	Earth System Model 1.2 (MPI-ESM1-2-LR, Wieners et al., 2019) that are part of the Coupled
332	Model Intercomparison Project Phase 6 (CMIP6). Each simulation was used to calculate the
333	annual trend of aragonite saturation state and pH at the closest depth and grid cell to the CEO
334	mooring.
335	
336	3. Results
337	In the following, we will evaluate the pH algorithm (section 3.1), analyze the large
338	variability patterns (sections 3.2 and 3.3), and then take a closer look at the data from 2020 since
339	the seasonal cycle was different in 2020 than in previous years (section 3.4).
340	

341 3.1 pH algorithm

342	The algorithm estimated pH data from the CEO site reasonably well and within the weather	
343	uncertainty goal as defined by Newton et al. (2015) most of the time. As a first step, pHest	
344	consistency was assessed through cross-validation (Figure 5) using the test dataset (outside the	
345	training period, $r^2 = 0.9666$, RMSE = 0.166) and across the whole timeseries ($r^2 = 0.9598$, RMSE	
346	= 0.0161, p<0.0001, Figure 5). Observed high frequency spikes in pH_{SeaFET} (Figure 4, red dots;	
347	Figure 5d, red line) were not captured by the HydroC p CO ₂ sensor (sampling frequency of 12 h)	
348	and as a result, are not reproduced in the $p\mathrm{H}^{est}$ timeseries. Throughout the $p\mathrm{H}_{SeaFET}$ timeseries,	
349	pH^{est} overestimates pH_{SeaFET} by a mean of 0.0008 and median of 0.0039. Since pH^{est} generally	
350	overestimates $pH_{SeaFET_{\phi}}$ we assume that Ω_{arag} is also somewhat overestimated throughout this	Deleted: (mean
351	manuscript. Discrete water samples were used as reference values to evaluate the algorithm at	
352	the CEO site (Table 2) and were found to be within the pHest uncertainty (Figure S1).	
353	An independent verification of our algorithm was done using discrete data collected from the	
354	Bering Sea to the Arctic Ocean on four research cruises in 2020, 2019, 2018, and 2017 (Figure	
355	6d; Monacci et al., 2022; Cross et al., 2021; 2020a; 2020b), henceforth called the DBO dataset.	
356	Samples collected from deeper than 500 m below the surface or flagged as questionable or bad	
357	were excluded from this analysis. pH and p CO ₂ were calculated from 1275 discrete samples	
358	analyzed for TA, DIC, silicate, phosphate, and ammonium (except when silicate, phosphate, and	
359	ammonium were assumed to be negligible for the 327 samples from cruise SKQ202014S;	
360	Monacci et al., 2022) using CO2SYSv3 (Sharp et al., 2023; section 2.7 for details) and are	
361	referred to as pH^{disc}_{calc} and $pCO_2^{disc}_{calc}$, respectively. pH^{disc}_{est} was based on discrete water samples	
362	and calculated using Equation 2 and was fit to pH^{disc}_{calc} using a linear regression ($r^2 = 0.9975$,	
363	RMSE = 0.0078, p-value $<$ 0.0001; Figure 6 a – c). Mean and median differences between	
364	pHdisc _{calc} and pHdisc _{est} were zero and 0.0022, respectively, with largest anomalies observed at	

Deleted: (mean difference of 0.0008)

366	lower salinities (Figure 6c). Absolute differences between pH ^{disc} est and pH ^{disc} cal over the salinity
367	range observed at the CEO site (30.87 to 33.93) fall within the weather data quality goal
368	(Newton et al., 2015) 98.7% of the time with maximum absolute differences < 0.03. The
369	uncertainty of 0.0154 for pH ^{disc} est was determined using Equation 1, where the mean combined
370	standard uncertainty (u _e) for pH^{disc}_{calc} (0.0133; Orr et al., 2018) was the systmetic component,
371	and the regression RMSE was the random component.
372	Empirical relationships for estimating water column pH that rely on dissolved oxygen often
373	ignore surface waters to limit biases due to decoupling the stoichiometry of the O2:CO2
374	relationship due to air-sea gas exchange (e.g. Juranek et al., 2011; Alin et al., 2012; Li et al.,
375	2016). We see evidence of this bias in our algorithm at low salinity (Figure 6c) and low pCO_2
376	(not shown) when compared with the DBO dataset samples collected across the Arctic and from
377	the surface to 500 m, with pH^{disc}_{est} overestimating pH^{disc}_{calc} by a maximum of 0.049. If depth is
378	restricted to between 30 and 500 m when evaluating the algorithm with the DBO dataset,
379	algorithm performance improves ($r^2 = 0.9990$, RMSE = 0.0055, p-value < 0.0001; not shown)
380	and the maximum pH^{disc}_{est} overestimates pH^{disc}_{calc} by 0.022.
381	
382	3.2 Relaxation events
383	The sub-surface waters at the CEO site comprise a high p CO ₂ , low pH, and low Ω_{arag}
384	environment, with mean values of $pCO_2^{mean} = 538 \pm 7 \mu atm$, $pH^{mean} = 7.91 \pm 0.05$, $\Omega_{arag}^{mean} = 1000 \mu cm^{-1}$
385	0.94 ± 0.23 across the full data record (Figure 3 b - d). In the following we will focus on spikes
386	of high pH and Ω_{arag} and low pCO_2 that occur in spring (May-June) and fall (September-
387	December); we define these spikes as relaxation events (see discussion for justification of term).

388 Spring: Springtime relaxation events at 33 m depth that exhibit relatively higher pH and 389 Ω_{arag} and lower pCO₂ compared to the overall mean, are likely consequences of photosynthetic 390 activity during sea ice break-up (Figures 2 and 3). In June of 2018 and 2019, near bottom pH and 391 Ω_{arag} spiked to > 8.17 and > 1.5, respectively, while pCO₂ dropped to < 286 µatm. Ω_{arag} remained 392 oversaturated and pH was greater than 8.0 for nearly all of June in 2018. In 2019, the relaxation 393 event was less sustained, with only four short (2-6 day-long) events of relatively higher pH and 394 $\Omega_{arag} > 1$ in June. In both years, chlorophyll fluorescence spiked and either O₂ increased (in 2018) or NO₃ decreased (in 2019), which are signs of photosynthetic activity and primary 395 396 production. 397 Fall: The relaxation events in fall were characterized by large and sudden drops in pCO₂, 398 abrupt increases in pH and Ω_{arag} , and considerable interannual variability in their timing. Unlike

399 the relaxation events observed in spring, we attribute these fall relaxation events to wind-induced 400 physical mixing. To examine the controlling mechanisms causing these abrupt relaxation events 401 in fall, we will start with using water column salinity and temperature data from a freeze-up 402 detection buoy (Hauri et al., 2018) that was deployed in summer 2017 approximately 1 km away 403 from the biogeochemical mooring. The freeze-up detection mooring provided temperature and 404 salinity measurements every 7 meters throughout the water column from the time of its 405 deployment in mid-August until freeze-up. Data from the freeze-up detection mooring suggest 406 that warmer and fresher water from the upper water column gets periodically entrained down to 407 the location of the biogeochemical sensor package at 33 m depth, leading to enhanced variability 408 of density in August and September (Figure 7). Fluctuations of the pycnocline associated with 409 the passage of internal waves could also elevate signal variances. During this time pCO_2 often decreased to or below atmospheric levels and pH sporadically reached values > 8. At the end of 410

Deleted: 2019 **Deleted:** 2020

413	September, a strong mixing event (with coincident strong surface winds) homogenized the water
414	column from the surface down to the location of the sensor package and caused a sudden
415	temperature increase from 0.4 °C to 3.9 °C (Figure 7c and 8a). At the same time, pCO_2 (Figure
416	7b and 8) decreased from 590 to 308 $\mu atm.$ This suggests that warm and low CO_2 surface water
417	mixed with CO2-rich subsurface water and led to a sustained relaxation period that subsequently
418	lasted until mid-November. Another mixing event further eroded the water column stratification
419	and replaced subsurface water with colder and fresher water (ice melt) from the surface at the
420	end of October. This second large mixing event did not lead to large changes in p CO ₂ , pH, and
421	$\Omega_{ m arag}.$
422	Salinity and temperature records from the biogeochemical mooring at 33 m depth also
423	suggest fall season mixing events in all other years, when increases in temperature coincide with
424	decreases in p CO ₂ (Figure <u>2b and c, 3a and 8</u>). For example, two mixing events shaped the
425	carbonate chemistry evolution in fall 2018. p CO ₂ decreased from 915 µatm to around 565 µatm
426	and Ω_{arag} increased to 0.9 as temperature increased and salinity decreased in early September
427	(Figures 2 and 8). pCO ₂ then increased to 1160 µatm in late October, before decreasing to 385
428	μ atm at the beginning of November, causing a spike in Ω_{arag} to 1.34. At the same time, salinity
429	decreased by 1 unit, suggesting a strong mixing event. Throughout November 2018, p CO ₂
430	oscillated between 344 and 757 µatm and salinity between 31.01 and 32.97, hinting at additional
431	mixing.
432	Similarly, an early mixing event in 2019 decreased p CO ₂ to 352 µatm at the beginning of
433	September. Short-term variability in p CO ₂ with maximum levels of up to 855 µatm and
434	minimum values below 300 ustme variable temperature and salinity, and sporadic aragonite

- $434 \qquad \text{minimum values below 300 } \mu \text{atm, variable temperature and salinity, and sporadic aragonite}$
- 435 oversaturation events point to mixing through mid-September. At the end of October, a large

437	increase of temperature to 4 °C, and decrease of pCO_2 from 565 µatm to below 400 µatm. In a
438	similar fashion to 2018, this fall mixing event was followed by a month-long period of large
439	variability of p CO ₂ , salinity, pH, and Ω_{arag} , leading to short and sporadic aragonite oversaturation
440	events in November, and sustained oversaturation in December.
441	
442	3.3 Sustained periods of low pH and Ω_{arag} , and high pCO_2
443	Waters at 33 m depth at the CEO site were most acidified during the sea ice free periods
444	until mixing events entrained surface waters to the sensor depth (section 3.2). pH and Ω_{arag}
445	started to gradually decrease from their maximum levels ($\Omega_{arag_max} = 1.65$, $pH_{max} = 8.19$) at the
446	beginning of June in 2018 to their annual low at the beginning of November ($\Omega_{arag_min} = 0.47$,
447	$pH_{min} = 7.58$, Figure 3 d and c). In November, the waters were also undersaturated with regards
448	to calcite (not shown) and pCO_2 peaked at 1159 µatm (Figure 3b). Dissolved oxygen decreased
449	by about 400 $\mu mol~kg^{\text{-1}}$ between July and October, when the sensor stopped working properly.
450	The decrease of dissolved oxygen suggests remineralization of organic material. The decrease of

mixing event homogenized the water column, accompanied by a decline of salinity by >1 unit,

- 451 pH, Ω_{arag} , O₂ and increase of *p*CO₂ was briefly interrupted by a strong mixing event in
- 452 September, which entrained warmer, fresher, and CO2-poorer water down to 33 m depth (section
- 453 3.2, Figure 8). The 2019 observations paint a similar picture of remineralization during the
- 454 summer months, as the pCO_2 increase and pH and Ω_{arag} decreases were accompanied by an NO₃ 455 increase (Figure 2d and 3b-d).
- 456 pCO_2 steadily increased and pH and Ω_{arag} decreased during the sea ice covered periods 457 (Figures 8). pH was < 8 and Ω_{arag} remained undersaturated under the sea ice. At the same time, 458 NO₃ slowly increased and O₂ decreased, which points to slow organic matter remineralization

459	(Figure 9). Short-term variability in p CO ₂ , especially in January of all three observed years, was
460	also reflected in salinity, O_2 and NO_3 (Figure 9) and could be attributed to advection, as the CEO
461	site is adjacent to contrasting regimes of flow and hydrographic properties (Fang et al., 2020).

463 **3.4 Spring and summer of 2020 were different**

464 The seasonal cycle in 2020 strongly contrasted with the previous observed years. pCO2 465 gradually increased by roughly 200 µatm throughout the sea ice covered months to 650 µatm 466 when sea ice started to retreat at the beginning of July. By the end of July, pCO2 doubled and increased to 1389 µatm, which is the highest pCO2 level recorded in this timeseries. The peak of 467 468 pCO₂ was accompanied by an increase in salinity of 0.5 while temperature did not change, 469 suggesting the influence of advection. At the beginning of August, pCO_2 dropped to 536 µatm 470 and then oscillated around 600 µatm through much of August before returning to around 900 471 µatm for the next month. Similarly, pH decreased to 7.5 at the end of July and then oscillated 472 around 7.85, while Ω_{arag} dropped to 0.37, and oscillated around 0.85. The steep drop and 473 oscillation of pCO2 was reflected in NO3, suggesting that primary production and 474 remineralization played a role. When pCO2 and NO3 decreased at the beginning of August, 475 temperature simultaneously increased by 0.7 °C and salinity decreased by 0.12, suggesting that 476 entrainment of shallower water masses may have played a role too. Comprehensive analyses of 477 the factors that resulted in the 2020 differing conditions are beyond the scope of this paper, but 478 deserve attention in a future effort.

- 479
- 480 4. Discussion

481	CEO data provide new insights into the synoptic, seasonal and interannual variability of
482	the inorganic carbon system in a time when ocean acidification and climate change have already
483	started to transform this area. The observations suggest that the CEO site is a high-CO ₂ and low-
484	pH and low- Ω_{arag} environment most of the time, except during sea ice break-up when the effects
485	of photosynthetic activity remove CO ₂ from the system, and later in fall, when strong storm
486	events entrain low pCO ₂ surface waters to the seafloor. Lowest pH and CaCO ₃ saturation states
487	and highest pCO_2 occur in summer through late fall when organic matter remineralization
488	dominates the carbonate system balance. During this time, Ω_{arag} can fall below 0.5 and even Ω_{calc}
489	becomes sporadically undersaturated ($\Omega_{calc} < 1$).

491 4.1 pH algorithm

492 Deploying oceanographic equipment in remote Arctic locations is challenging. The data 493 return from the SeapHOx sensors was disappointingly minimal, despite annual servicing and 494 calibration by the manufacturer. Our new pH algorithm is therefore even more important as it 495 fills pH data gaps in the CEO timeseries and can be applied with confidence from the Bering to 496 the western Beaufort seas (Figure 6). While another successful year of moored pH data return at 497 the CEO site is needed to fully evaluate our algorithm throughout the year, comparison with 498 single discrete water samples nearby the CEO site and the DBO dataset (section 3.1, Table 2, 499 Figures 6 and S1) suggest that our algorithm-derived pH meets the weather quality uncertainty 500 goal of ± 0.02 (Newton et al., 2015) much of the time. 501 The combination of our new algorithm with recent progress in monitoring pCO_2 with

502 Seagliders (Hayes et al., 2022) will further increase our ability to study the inorganic carbon

503 dynamics at times and locations when shipboard or mooring based measurements may not be

504 practical. Additional assessment is needed to determine to what degree the algorithm needs

- 505 adjustments beyond the region evaluated in this work.
- 506

507 4.2 Uncertainty

508 Inherent spatial and temporal variability of the inorganic carbon parameters in the 509 Chukchi Sea make the use of discrete water samples for evaluating sensor-based measurements 510 difficult. Historic continuous surface measurements from the area suggest that surface pCO_2 can 511 be as low $< 250 \mu$ atm in early fall (Hauri et al., 2013), at a time of year when subsurface pCO_2 512 reaches its max of >800 μ atm at the CEO site. This suggests a steep pCO₂ gradient of > 17 μ atm 513 per meter. High-resolution pH data from the 2017/2018 deployment suggests high temporal 514 variability as well, further complicating the collection of discrete water samples to adequately 515 evaluate the sensors. The HydroC's zeroing function, in addition to our pre- and post-calibration 516 routines that factor into the post-processing of the data, gives us confidence in the accuracy of 517 the pCO_2 data, and further confidence in pH derived from pCO_2 . 518 The pHest uncertainty of 0.0525 is likely a conservative estimate based on our validation 519 of pHest (section 3.1, Table 2). Consequently, propagated uncertainties in the calculated 520 parameters are high. As discussed in section 2.7, the pH-pCO₂ input pair exacerbates these larger 521 uncertainties. Mean TA(pHest,pCO₂), DIC(pHest,pCO₂), and Ωarag(pHest,pCO₂), ± uc (Orr et al., 2018) are 2173 \pm 281 $\mu mol~kg^{-1},$ 2111 \pm 263 $\mu mol~kg^{-1},$ and 0.94 \pm 0.23, respectively, when 522 523 input uncertainties are the standard uncertainty (Equation 1). When the input uncertainty for pH^{est} is only the RMSE of 0.0161 (section 3.1), uncertainties decrease to \pm 98 µmol kg⁻¹, \pm 93 524 μ mol kg⁻¹, and \pm 0.09, respectively. When input uncertainties are only the random component of 525 526 the input parameters (i.e. standard deviation for pH_{SeaFET} and pCO_2 and instrument precision for

527	T and S), TA(pH _{SeaFET} ,pCO ₂), DIC(pH _{SeaFET} ,pCO ₂), and Ω_{arag} (pH _{SeaFET} ,pCO ₂) u _c drops to ± 38	
528	$\mu mol~kg^{-1},\pm37~\mu mol~kg^{-1},$ and \pm 0.06, respectively. Given the above uncertainties and that we	
529	do not see significant biofouling at the CEO site, we believe that short term variability can be	
530	discussed with confidence with this dataset. In other words, wiggles in the data represent real	
531	events, despite the high uncertainty in the precise value of the calculated parameters.	
532		
533	4.3 Subsurface biogeochemical drivers of pH, $\Omega_{ m arag}$, and $p{ m CO}_2$	
534	Inorganic carbon chemistry can be influenced by advection and vertical entrainment of	
535	different water masses, temperature, salinity, biogeochemistry, and conservative mixing with TA	
536	and DIC freshwater endmembers. Here, we followed Rheuban et al. (2019) and separated the	
537	drivers of the observed large pH, Ω_{arag} , and pCO_2 variability to provide additional insights into	
538	our timeseries (Figure 10) using CO2SYS by altering input parameters temperature, salinity, TA,	
539	and DIC. Anomalies (black) relative to the reference values $pH(T_0, S_0, DIC_0, TA_0)$, $\Omega_{arag}(T_0, S_0, TA_0)$	
540	DIC_0 , TA ₀), and $pCO_2(T_0, S_0, DIC_0, TA_0)$, were calculated using a linear Taylor series	
541	decomposition, adding up the thermodynamic effects of temperature and salinity, and the	
542	perturbations due to biogeochemistry, and conservative mixing with freshwater DIC and TA	
543	endmembers, (Rheuban et al., 2019). Reference values T ₀ , S ₀ , DIC ₀ , and TA ₀ , are the mean of the	Deleted: .
544	CEO timeseries. Freshwater from sea ice melt and meteoric sources (precipitation and rivers)	
545	may influence the CEO site. TA and DIC concentrations of 450 $\mu mol~kg^{-1}$ and 400 $\mu mol~kg^{-1},$	
546	respectively, have been measured in Arctic sea ice (Rysgaard et al., 2007). Riverine input along	
547	the Gulf of Alaska tends to have lower TA (366 $\mu mol~kg^{-1})$ and DIC (397 $\mu mol~kg^{-1})$	
548	concentrations (Stackpoole et al., 2016, 2017) than rivers draining into the Bering, Chukchi, and	
549	Beaufort Seas (TA = 1860 μ mol kg ⁻¹ , DIC = 2010 μ mol kg ⁻¹ , Holmes et al., 2021) all of which	

551	can influence the CEO site to some extent (Asahara et al., 2012; Jung et al., 2021). In this Taylor	
552	decomposition we used sea ice TA and DIC endmembers (Rysgaard et al., 2007) but want to	
553	emphasize that using Arctic river endmembers did not meaningfully change the results (not	
554	shown). Figure 10 shows the effects of biogeochemical processes, temperature, salinity, and	
555	conservative mixing with TA and DIC freshwater endmembers on pH, Ω_{arag} , and pCO ₂ . The	
556	effects of salinity (turquoise) and conservative mixing with TA and DIC freshwater endmembers	
557	(green) are negligible for pH, Ω_{arag} , and pCO ₂ . Temperature varied between -1.7 °C during the	
558	sea ice covered months and up to 4 °C in late fall, when wind events mixed the whole water	
559	column and entrained warm and low p CO ₂ surface waters to the instrument depth at 33 m (see	
560	section 3.2 for a more in-depth discussion of these mixing events). During this time, the increase	
561	in temperature counteracted the effect of biogeochemistry slightly and increased p CO ₂ and	
562	decreased pH (Figure 10 a,c). Temperature did not affect Ω_{arag} .	
563	Biogeochemistry (photosynthesis, respiration, calcification, dissolution) is the most	
564	important driver of the inorganic carbon dynamics at 33 m depth at the CEO site. The springtime	
565	relaxation events in 2018 and 2019 with relatively higher pH and Ω_{arag} , and lower pCO ₂ , were	
566	mainly driven by biogeochemistry (Figure 10, magenta). During these events O2 increased and	
567	NO3 decreased, suggesting photosynthetic activity (Figure 2d, e and 3a). Near bottom	
568	photosynthetic activity by phytoplankton or sea ice algae has been observed at different locations	
569	across the Chukchi Sea (Arrigo et al., 2017; Ouyang et al., 2022; Stabeno et al., 2020; Koch et	
570	al., 2020). Sediment trap data from a CEO deployment prior to the start of this p CO ₂ and pH	
571	time-series suggest that export of the exclusively sympagic sea ice algae Nitzschia frigida peaked	
572	in May and June, during snow and ice melt events (Lalande et al., 2020), further supporting the	
573	hypothesis that sea ice algae contributed to the CO2 draw down. Interestingly, TA also increased	

Deleted: red

575	significantly during these events in 2018 and 2019, which cannot be solely attributed to organic
576	matter production. Specifically, TA increased by 23 umol kg ⁻¹ in 2019 (Figure 11a). However,
577	with an observed NO ₃ decrease of 7.6 umol kg ⁻¹ , we would expect an increase of TA by 7.6 umol
578	kg ⁻¹ . This is assuming that NO ₃ is the primary source of nitrogen during organic matter
579	formation, and that assimilation of 1 umol of NO3 leads to an increase of TA of 1 umol (Wolf-
580	Gladrow et al., 2007). The TA increase of 23 umol kg ⁻¹ is therefore larger than expected from
581	organic matter formation alone and is likely due to CaCO ₃ mineral dissolution. While direct
582	evidence is missing, the strong TA increase suggests that CaCO3 mineral dissolution during sea
583	ice break up also plays an important role at the CEO site. As observed in other Arctic areas, it is
584	possible that ikaite crystals that were trapped in the ice matrix dissolved in the water column
585	when sea ice melted (Rysgaard et al., 2012, 2007).
586	

587 4.4 Progression of ocean acidification in the Chukchi Sea

588 Organisms living at the CEO site may have always been exposed to large seasonal variability and low pH and Ω_{arag} (high pCO₂), but the combined and cumulative effects of 589 590 climate change and ocean acidification have rapidly made these conditions more extreme and 591 longer lasting. Ocean acidification serves as a gradual environmental press by increasing the 592 system's mean and extreme pCO_2 and decreasing mean and extreme pH and Ω_{arag} . Climate 593 induced changes to other important controls of the inorganic carbon system, such as sea ice, 594 riverine input, temperature, and circulation can act as sudden pulses and further modulate the 595 inorganic carbon system to a less predictable degree and cause extreme events (Woosley and 596 Millero, 2020; Orr et al., 2022; Hauri et al., 2021; Qi et al., 2017). Huntington et al. (2020) describe a sudden and dramatic shift of the physical, biogeochemical and ecosystem conditions 597

Deleted: increase

Formatted: Superscript

Deleted: The Arctic Ocean acidification rate will continue to exceed the rate of CO2 change in the atmosphere because of the impacts of freshening and other more localized, seasonal or short-term consequences of climate change (Woosley and Millero, 2020; Terhaar et al., 2021; Orr et al., 2022; Qi et al., 2017). Seventeen years of ship-based data from sub surface Chukchi Summer water suggests a mean pH change of - 0.0047 ± 0.0026 and mean Ω_{arag} change of -0.017 ± 0.009 (Qi et al., 2022b). As a comparison, an average across historic simulations from five CMIP6 models (see methods) estimates a change in pH of -0.0077 year⁻¹ and Ω_{arag} of -0.0063 year⁻¹ at 33 m of the CEO site between 2002 – 2014. The historic CMIP6 simulations end in 2014 and therefore miss the last years of extreme sea ice loss. Both observations and global model-based trend estimates must be used with caution. The observations were collected during the sea ice free period (Qi et al., 2022b), and therefore do not depict an annually representative trend. Global models do not resolve important local physical, chemical, and biological mesoscale processes and therefore mask out the variability of the inorganic carbon system and effects of climate change.

620	in the Chukchi and Northern Bering seas in 2017. For example, satellite data for the CEO site
621	illustrate that the longest open water seasons on record occurred between 2017 and 2020. Before
622	2017, the open water season was on average 81 (± 40) days long (i.e., below 15 $\%$
623	concentration), of which 60 (\pm 44) days were ice free, whereas between 2017 and 2020, the low
624	sea ice period was 157 (± 30) days long, of which 152 (± 24) days were ice free (Figure 12). Sea
625	ice decline and increased nutrient influx has also promoted increased phytoplankton primary
626	production in the area (Lewis et al., 2020; Arrigo and van Dijken, 2015; Payne et al., 2021).
627	Since our inorganic carbon timeseries started after the "dramatic shift" that was observed in the
628	Chukchi Sea in 2017 (Huntington et al., 2020) and given the uncertainty in model output in this
629	region, we can only speculate about how the changes in sea ice, temperature and biological
630	production may have affected seasonal variability and extremes of the inorganic carbon
631	chemistry at the CEO site. However, since the summertime low pH and Ω_{arag} and high pCO_2 are
632	tightly coupled to the length of the ice-free period and intensity of organic matter production, it
633	is possible that the observed summertime period of extreme conditions may have been
634	previously unexperienced at this site. We therefore think it is justified to call the spikes of pH
635	and Ω_{arag} "ocean acidification relaxation events", since the long-lasting summertime period of
636	extremely low pH and Ω_{arag} may be a new pattern.
637	

638 4.5 Relevance for ecosystem

Marine organisms are exposed to a wide range of naturally fluctuating environmental
 conditions such as temperature, salinity, carbonate chemistry and food concentrations that
 together constitute their ecological niche. As evolution works toward adaptation, the tolerance
 range of species and ecosystems to such parameters varies between locations and is often closely

643	related to niche status (Vargas et al., 2022). Stress can be defined as a condition evoked in an
644	organism by one or more environmental and biological factors that bring the organism near or
645	over the limits of its ecological niche (after Van Straalen, 2003). The consequence of the
646	exposure to a stressor will depend on organismal sensitivity, stress intensity (how much it
647	deviates from present conditions) and stress duration. In a synthesis of the global literature on the
648	biological impacts of ocean acidification, Vargas et al. (2017, 2022) showed that the extreme of
649	the present range of variability of carbonate chemistry is a good predictor of species sensitivity.
650	In other words, larger deviations from present extreme high p CO ₂ or extreme low pH, would be
651	expected to exert more negative biological impacts. Organismal stress and niche boundaries have
652	implications for the definition and understanding of controls and future ocean acidification
653	conditions in experiments aimed at evaluating future biological impacts.
654	Our data provide insights on conditions that affect and determine local species'
655	ecological niches, and a necessary key is to evaluate or re-evaluate their sensitivity to present and
656	future carbonate chemistry conditions, particularly for the sessile benthic calcifiers that constitute
657	prey for mobile and upper trophic level taxa. For example, an experimental study on three
658	common Arctic bivalve species (Macoma calcarean, Astarte montagui and Astarte borealis)
659	collected in the CEO concluded that these species were generally resilient to decreasing pH
660	(Goethel et al., 2017). However, only two pH were compared (a "control" (pH of 8.1) and an
661	"acidified" treatment (pH of 7.8) and our results show that organisms are already experiencing
662	more extreme conditions today than have been experimentally manipulated. While these data
663	provide insights on these species' plasticity to present pH conditions, they cannot be used to infer
664	sensitivity to future ocean acidification or extremes of current conditions. Based on the local
665	adaptation hypothesis (Vargas et al. 2017, 2022), stress and associated negative effect on species

666	fitness can be expected when pH deviates from the extreme of the present range of variability
667	(pH<7.5) as shown in other regions (e.g. echinoderms: Dorey et al., (2013); crustaceans: Thor
668	and Dupont, (2015); bivalves: Ventura et al., (2016)).
669	At the CEO, our results show sustained periods of remarkably low pH (e.g., 7.5; summer
670	to fall, winter). Higher pH values are observed in spring and late fall. While we are lacking the
671	local biological data to sufficiently evaluate past and future ecosystem changes, a high rate of
672	ocean acidification as observed in the Chukchi Sea (Qi et al., 2022b, a), associated with potential
673	temperature-induced shifts in the carbonate chemistry cycle (e.g. Orr et al. 2022), have the
674	potential to impact species and ecosystems. Exposure to low pH increases organismal energy
675	requirements for maintenance (e.g. acid-base regulation: Stumpp et al., 2012, compensatory
676	calcification: Ventura et al., 2016). Organisms can cope with increased energy costs using a
677	variety of strategies, ranging from individual physiological to behavioral responses, depending
678	on trophic level, mobility, and other ecological factors. For example, they can use available
679	stored energy to compensate for increased costs or they can decrease their metabolism to limit
680	costs (AMAP 2018). At the CEO, the low pH period observed during the summer and fall is
681	associated with elevated temperature and an elevated food supply for herbivores (Lalande et al.,
682	2020). The high availability of food may then foster compensation for the higher energetic costs
683	associated with exposure to low pH. However, a longer period of low pH as suggested by our
684	data could lead to a mismatch between the low pH and food availability, with cascading negative
685	consequences for the ecosystem (Kroeker et al., 2021). In winter, the low pH conditions are
686	associated with low temperature, no light, and low food level concentrations. These conditions
687	are likely to keep metabolisms low and limit the negative effects of exposure to low pH
688	(Gianguzza et al., 2014). As food availability is limited by the absence of light, this strategy may

689	be compromised by an increase in temperature that could also lead to increased metabolism.
690	Additional work is needed to understand impacts of acidification conditions and variability on
691	the marine biota of the Chukchi Sea, including field and laboratory experiments that evaluate
692	biological response under realistic scenarios. The characterization of the environmental
693	conditions at the CEO, including the variability in time, can be used to design single and multiple
694	stressor experiments (carbonate chemistry, temperature, salinity, food, oxygen; Boyd et al.
695	2018).

696 Indigenous communities are at the forefront of the changing Arctic, including changes in 697 accessibility, availability, and condition of traditional marine foods (Buschman and Sudlovenick, 698 2022; Hauser et al., 2021). Several marine species are critical to the food and cultural security of 699 coastal Inupiat who have thrived in Arctic Alaska for millenia. While it is not possible to resolve 700 the consequences of the seasonal and interannual variations in carbonate chemistry documented 701 in this manuscript without a proper sensitivity evaluation, the seasonally low pH conditions have 702 the potential to impact organisms like bivalves in a foraging hotspot for walrus (Jay et al., 2012; 703 Kuletz et al., 2015). Walrus, as well as their bivalve stomach contents, are important nutritional, 704 spiritual, and cultural components, raising concerns for food security in the context of ecosystem 705 shifts associated with the variability and multiplicity of climate impacts within the region (ICC, 706 2015).

707

708 5. Concluding Thoughts

The Chukchi Sea is undergoing a rapid environmental transformation with potentially far-reaching consequences across the ecosystem. While we are lacking a long-term time-series, we used this dataset to investigate the drivers of extreme pH, Ω_{arag} , and pCO_2 and document

712	conditions that could affect the ecological niches of organisms, including a fast rate of ocean
713	acidification, elongated sea ice free periods, increased primary productivity and elevated
714	temperature. While a combination of experimental and monitoring approaches is needed for an
715	understanding of the ecological consequences of these changes, our results also highlight the
716	urgency to mitigate CO ₂ emissions and simultaneously support Indigenous-led conservation
717	measures to safeguard an ecosystem in transition. Indigenous People in the Arctic have
718	established strategies to monitor, adapt to, and conserve the ecosystems upon which they depend.
719	Ethical and equitable engagement of Indigenous Knowledge and the communities at the forefront
720	of climate impacts can help guide research and conservation action by centering local priorities
721	and traditional practices, thereby supporting self-determination and sovereignty (Buschman and
722	Sudlovenick, 2022).
723	
724	Data availability
725	The inorganic carbon data used in this manuscript are publicly available (Hauri and
726	Irving, 2023a; Hauri and Irving, 2023b).
727	
728	Author contributions
729	CH and BI managed and serviced the HydroC CO2 and SeapHOx sensors, analyzed and
730	published the data, and wrote the manuscript. SD and Peter Shipton carried out the CEO mooring
731	deployments and recoveries and managed and serviced the CTD and NO3 sensors. RP, DH, SD,
732	and SLD contributed to the manuscript.
733	

734 Competing interests

735 The authors have no competing interests.

736

737 Acknowledgments

738 The Chukchi Ecosystem Observatory is located on the traditional and contemporary 739 hunting grounds of the Northern Alaska Iñupiat. We also acknowledge that our Fairbanks-based 740 offices are located on the Native lands of the Lower Tanana Dena. The Indigenous Peoples of 741 this land never surrendered lands or resources to Russia or the United States. We acknowledge 742 this not only because we are grateful to the Indigenous communities who have been in deep 743 connection with the land and water for time immemorial, but also in recognition of the historical and ongoing legacy of colonialism. We are committed to improving our scientific approaches 744 745 and working towards co-production for a better future for everyone. 746 We acknowledge the World Climate Research Programme, which, through its Working 747 Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate 748 modeling groups for producing and making available their model output, the Earth System Grid 749 Federation (ESGF) for archiving the data and providing access, and the multiple funding 750 agencies who support CMIP6 and ESGF. 751 752 **Financial support** 753 We would like to thank the National Pacific Research Board Long-term Monitoring 754 (NPRB LTM) program (project no. 1426 and L-36), the Alaska Ocean Observing System (award no. NA11NOS0120020 and NA16NOS0120027), and the University of Alaska Fairbanks for 755

- their financial support. Claudine Hauri, Brita Irving, and Seth Danielson also acknowledge
- support from the National Science Foundation Office of Ocean Sciences and Polar Programs

758	(OCE-1841948 and OPP-1603116). Projects that assisted in the servicing of the CEO and/or
759	collected water column calibration data were funded by the National Science Foundation, Bureau
760	of Ocean Energy Management, National Oceanic and Atmospheric Administration, National
761	Oceanographic Partnership Program, and Shell Exploration and Production Company, Inc.
762	Maintenance and calibration of the CEO sensors is only possible due to the kind support of
763	numerous collaborators within the Arctic research community who helped with CEO deployment
764	and recovery or collected sensor calibration samples. We would therefore like to thank Peter
765	Shipton, Carin Ashjian, Jessica Cross, Miguel Goñi, Jackie Grebmeier, Burke Hales, Katrin Iken,
766	Laurie Juranek, Calvin Mordy, and Robert Pickart.
767	
768	References
769	Alin, S. R., Feely, R. A., Dickson, A. G., Hernández-Ayón, J. M., Juranek, L. W., Ohman, M.
770	D., and Goericke, R.: Robust empirical relationships for estimating the carbonate system in the
771	southern California Current System and application to CalCOFI hydrographic cruise data (2005-
772	2011), Journal of Geophysical Research, 117, C05033, doi:10.1029/2011JC007511, 2012.
773	
774	AMAP. AMAP Assessment 2018: Arctic Ocean Acidification. Arctic Monitoring and
775	Assessment Programme (AMAP), Tromsø, Norway. vi+187pp,
776	https://www.amap.no/documents/doc/AMAP-Assessment-2018-Arctic-Ocean-
777	Acidification/1659, 2018.
778	
779	Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean primary production,

780 Prog. Oceanogr., 136, 60–70, https://doi.org/10.1016/j.pocean.2015.05.002, 2015.

784	derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions,
785	Deep Sea Res. Part II Top. Stud. Oceanogr., 61–64, 155–171,
786	https://doi.org/10.1016/j.dsr2.2011.12.004, 2012.
787	
788	Bates, N.: Assessing ocean acidification variability in the Pacific-Arctic region as part of the
789	Russian-American Long-term Census of the Arctic, Oceanography, 28, 36-45,
790	https://doi.org/10.5670/oceanog, 2015.
791	
792	Bates, N. R., Mathis, J. T. and Cooper, L. W.: Ocean acidification and biologically induced

Asahara, Y., Takeuchi, F., Nagashima, K., Harada, N., Yamamoto, K., Oguri, K., and Tadai, O.:

Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as

seasonality of carbonate mineral saturation states in the western Arctic Ocean. J. Geophys. Res.

794 114, 2008JC004862, 2009.

795

781

782

- 796 Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M., Chan, K. Y. K., Dupont, S.,
- 797 Padilla-Gamiño, J. L., Spicer, J. I., Kessouri, F., Roethler, M., Sutula, M., and Weisberg, S. B.:
- 798 Synthesis of thresholds of ocean acidification impacts on echinoderms, Front. Mar. Sci.,
- 799 8, https://doi.org/10.3389/fmars.2021.602601, 2021.
- 800
- 801 Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., Körtzinger,
- 802 A., and Gattuso, J.-P.: An alternative to static climatologies: robust estimation of open ocean

- 803 CO₂ variables and nutrient concentrations from T, S, and O₂ data using Bayesian neural
- 804 networks, Front. Mar. Sci., 5, 328, https://doi.org/10.3389/fmars.2018.00328, 2018.
- 805
- 806 Blanchard, A. L., Parris, C. L., Knowlton, A. L. and Wade, N. R.: Benthic ecology of the
- 807 northeastern Chukchi Sea. Part I. Environmental characteristics and macrofaunal community
- structure, 2008–2010. Continental Shelf Research 67, 52–66, 2013.
- 809
- 810 Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.-A., Meurdesoif, Y.,
- 811 Balkanski, Y., Checa-Garcia, R., Hauglustaine, D., Bekki, S. and Marchand, M.: IPSL IPSL-
- 812 CM6A-LR-INCA model output prepared for CMIP6 AerChemMIP.
- 813 doi:10.22033/ESGF/CMIP6.13581, 2020.
- 814
- 815 Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J.-P., Havenhand, J., Hutchins, D.
- 816 A., Riebesell, U., Rintoul, M. S., Vichi, M., Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C.
- 817 L., Kurihara, H., McGraw, C. M., Navarro, J. M., Nilsson, G. E., Passow, U. and Pörtner, H.-O.:
- 818 Experimental strategies to assess the biological ramifications of multiple drivers of global ocean
- 819 change—A review. Global Change Biology 24, 2239–2261, 2018.
- 820
- 821 Breitberg, D., Salisbury, J., Bernhard, J., Cai, W.-J., Dupont, S., Doney, S., Kroeker,
- 822 K., Levin, L.A., Long, W. C., Milke, L.M., Miller S.H., Phelan, B., Passow, U., Seibel,
- 823 B.A., Todgham, A.E., and Tarrant, A.M.: And on top of all that... Coping with ocean
- 824 acidification in the midst of many stressors. Oceanography, 25(2), 48-61.
- 825 https://doi.org/10.5670/oceanog.2015.31, 2015.

Bresnahan, P. J., Martz, T. R., Takeshita, Y., Johnson, K. S., and LaShomb, M.: Best practices
for autonomous measurement of seawater pH with the Honeywell Durafet, Methods Oceanogr.,
9, 44-60, https://doi.org/10.1016/j.mio.2014.08.003, 2014.
Brodzik, M. J. and K. W. Knowles: "Chapter 5: EASE-Grid: A Versatile Set of Equal-Area
Projections and Grids." in Michael F.Goodchild (Ed.) Discrete Global Grids: A Web Book.
Santa Barbara, California USA: National Center for Geographic Information & Analysis.
https://escholarship.org/uc/item/9492q6sm, 2002.
Buschman, V. Q. and Sudlovenick, E.: Indigenous-led conservation in the Arctic supports global
conservation practices, Arctic Science, 9(3): 714-719, https://doi.org/10.1139/as-2022-0025,
2022.
Carmack, E. and Wassmann, P.: Food webs and physical-biological coupling on pan-Arctic
shelves: unifying concepts and comprehensive perspectives. Progress in Oceanography, 71(2-4),
pp.446-477, 2006.
Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., and Takeshita, Y.:
Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate,
Methods Limnology and Oceanography, 16(2), 119-131, https://doi.org/10.1002/lom3.10232,
2018.

849	Chatterjee, S., and Hadi, A. S.: "Influential Observations, High Leverage Points, and Outliers in	
850	Linear Regression." Statistical Science, 1(3), 1986, pp. 379-416, 10.1214/ss/1177013622, 1986.	
851		
852	Corlett, W. B. and Pickart, R. S.: The Chukchi slope current. Progress in Oceanography 153, 50-	
853	65, 2017.	
854		
855	Cross, J. N., Mathis, J. T., Bates, N. R., and Byrne, R. H.: Conservative and non-conservative	
856	variations of total alkalinity on the Southeastern Bering Sea Shelf, Mar. Chem., 154, 100-112,	
857	https://doi.org/10.1016/j.marchem.2013.05.012, 2013.	
858		
859	Cross, J. N., Monacci, N. M., Bell, S. W., Grebmeier, J. M., Mordy, C., Pickart, R. S., Stabeno,	
860	and P. J.: Dissolved inorganic carbon (DIC), total alkalinity (TA) and other variables collected	
861	from discrete samples and profile observations from United States Coast Guard Cutter (USCGC)	
862	Healy cruise HLY1702 (EXPOCODE 33HQ20170826) in the Bering and Chukchi Sea along	
863	transect lines in the Distributed Biological Observatory (DBO) from 2017-08-26 to 2017-09-15	
864	(NCEI Accession 0208337). NOAA National Centers for Environmental Information. Dataset.	
865	https://doi.org/10.25921/pks4-4p43, 2020a.	
866		
867	Cross, J. N., Monacci, N. M., Bell, S. W., Grebmeier, J. M., Mordy, C., Pickart, R. S., and	
868	Stabeno, P. J.: Dissolved inorganic carbon (DIC), total alkalinity (TA) and other parameters	
869	collected from discrete sample and profile observations during the USCGC Healy cruise	
870	HLY1801 (EXPOCODE 33HQ20180807) in the Bering Sea, Chukchi Sea and Beaufort Sea	

871 along transect lines in the Distributed Biological Observatory (DBO) from 2018-08-07 to 2018-

872	08-24 (NCE	EI Accession	0221911)	. NOAA	National	Centers for	r Environmental	Information.

- 873 Dataset. https://doi.org/10.25921/xc4b-xh20, 2020b.
- 874

875	Cross, J. N.	. Monacci.	N. M., I	Bell, S. W.,	Grebmeier.	J. M.	. Mordy. (C. Pickart	. Robert S.,

- 876 Stabeno, P.J.: Dissolved inorganic carbon (DIC) and total alkalinity (TA) and other hydrographic
- 877 and chemical data collected from discrete sample and profile observations during the United
- 878 States Coast Guard Cutter (USCGC) Healy cruise HLY1901 (EXPOCODE 33HQ20190806) in
- 879 the Bering and Chukchi Sea along transect lines in the Distributed Biological Observatory
- 880 (DBO) from 2019-08-06 to 2019-08-22 (NCEI Accession 0243277). NOAA National Centers for
- 881 Environmental Information. Dataset. https://doi.org/10.25921/b5s5-py61, 2021.
- 882
- 883 Cullison-Gray, S. E., DeGrandpre, M. D., Moore, T. S., Martz, T. R., Friederich, G. E., and
- 884 Johnson, K. S.: Applications of in situ pH measurements for inorganic carbon calculations, Mar.

```
885 Chem., 125, 82–90, https://doi.org/10.1016/j.marchem.2011.02.005, 2011.
```

- 886
- 887 Daniel, A., Laës-Huon, A., Barus, C., Beaton, A. D., Blandfort, D., Guigues, N., Knockaert, M.,
- 888 Munaron, D., Salter, I., Woodward, E. M. S., Greenwood, N., and Achterberg, E. P.: Toward a
- harmonization for using in situ nutrient sensors in the marine environment, Front. Mar. Sci., 6,
- 890 773, https://doi.org/10.3389/fmars.2019.00773, 2020.
- 891
- 892 Danielson, S.L., Iken, K., Hauri, C., Hopcroft, R.R., McDonnell, A.M., Winsor, P., Lalande, C.,
- 893 Grebmeier, J.M., Cooper, L.W., Horne, J.K. and Stafford, K.M.: Collaborative approaches to

894	multi-disciplinary	w monitoring of the	e Chukchi shelf marine	e ecosystem: Networks o	of networks for
074	muni-uiscipimai	y monitoring of u	ie Chukem shen marm	c coosystem. I to works t	JI HOUWOIKS IOI

- 895 maintaining long-term Arctic observations. In OCEANS 2017-Anchorage (pp. 1-7). IEEE, 2017.
- 896
- 897 Danielson, S. L., Ahkinga, O., Ashjian, C., Basyuk, E., Cooper, L. W., Eisner, L., Farley, E.,
- 898 Iken, K. B., Grebmeier, J. M., Juranek, L., Khen, G., Jayne, S. R., Kikuchi, T., Ladd, C., Lu, K.,
- 899 McCabe, R. M., Moore, G. W. K., Nishino, S., Ozenna, F., Pickart, R. S., Polyakov, I., Stabeno,
- 900 P. J., Thoman, R., Williams, W. J., Wood, K., and Weingartner, T. J.: Manifestation and
- 901 consequences of warming and altered heat fluxes over the Bering and Chukchi Sea continental
- 902 shelves, Deep Sea Res. Part II Top. Stud. Oceanogr., 177, 104781,
- 903 https://doi.org/10.1016/j.dsr2.2020.104781, 2020.
- 904
- 905 Danielson, S.: Water temperature, conductivity, and others taken by CTD and Niskin bottles
- 906 from the research vessel Norseman II Data for Arctic Marine Biodiversity Observing Network,
- 907 AMBON, Program in the Chukchi Sea from 2017-08-07 to 2017-08-22 (NCEI Accession
- 908 0229072). NOAA National Centers for Environmental Information. Dataset.
- 909 https://doi.org/10.25921/afz7-0d98, 2021.
- 910
- 911 DeGrandpre, M. D., Lai, C.-Z., Timmermans, M.-L., Krishfield, R. A., Proshutinsky, A. and
- 912 Torres, D.: Inorganic Carbon and pCO₂ Variability During Ice Formation in the Beaufort Gyre of
- 913 the Canada Basin. Journal of Geophysical Research: Oceans 124, 4017–4028, 2019.
- 914

- 915 Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater from
- 916 273.15 to 318.15 K, Deep Sea Res. Part Oceanogr. Res. Pap., 37, 755–766,
- 917 https://doi.org/10.1016/0198-0149(90)90004-F, 1990.
- 918
- 919 Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO₂
- 920 measurements, PICES, Sydney, 191 pp., 2007.
- 921
- 922 DiGirolamo, N. E., C. L. Parkinson, D. J. Cavalieri, P. Gloersen, and H. J. Zwally: Sea Ice
- 923 Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data,
- 924 Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed
- 925 Active Archive Center. https://doi.org/10.5067/MPYG15WAA4WX, 2022.
- 926
- 927 Dorey, N., Lançon, P., Thorndyke, M., and Dupont, S.: Assessing physiological tipping point of
- 928 sea urchin larvae exposed to a broad range of pH, Glob. Change Biol., 19, 3355–3367,
- 929 https://doi.org/10.1111/gcb.12276, 2013.
- 930
- 931 Doney, S. C., Busch, D. S., Cooley, S. R. and Kroeker, K. J.: The Impacts of Ocean
- 932 Acidification on Marine Ecosystems and Reliant Human Communities. Annu. Rev. Environ.
- 933 Resour. 45, 83–112, 2020.
- 934
- 935 Duke, P. J., Else, B. G. T., Jones, S. F., Marriot, S., Ahmed, M. M. M., Nandan, V., Butterworth,
- 936 B., Gonski, S. F., Dewey, R., Sastri, A., Miller, L. A., Simpson, K. G., and Thomas, H.: Seasonal
- 937 marine carbon system processes in an Arctic coastal landfast sea ice environment observed with

939	https://doi.org/10.1525/elementa.2021.00103, 2021.
940	
941	Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.: Radiative forcing of carbon dioxide,
942	methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys.
943	Res. Lett., 43, 12,614-12,623, https://doi.org/10.1002/2016GL071930, 2016.
944	
945	Fang, Y.C., Weingartner, T.J., Dobbins, E.L., Winsor, P., Statscewich, H., Potter, R.A., Mudge,
946	T.D., Stoudt, C.A. and Borg, K.: Circulation and thermohaline variability of the Hanna Shoal
947	region on the northeastern Chukchi Sea shelf. Journal of Geophysical Research: Oceans, 125(7),
948	p.e2019JC015639, 2020.
949	
950	Fietzek, P., Fiedler, B., Steinhoff, T., and Körtzinger, A.: In situ quality assessment of a novel
951	underwater CO2 sensor based on membrane equilibration and NDIR spectrometry, J.
952	Atmospheric Ocean. Technol., 31, 181–196, https://doi.org/10.1175/JTECH-D-13-00083.1,
953	2014.
954	
955	Friis, K.: The salinity normalization of marine inorganic carbon chemistry data, Geophys. Res.
956	Lett., 30, 1085, https://doi.org/10.1029/2002GL015898, 2003.
957	
958	Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G., and Dupont, S.: Temperature
959	modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-

an innovative underwater sensor platform, Elementa: Science of the Anthropocene, 9 (1): 00103,

- 960 driven acidification, Mar. Environ. Res., 93, 70–77,
- 961 https://doi.org/10.1016/j.marenvres.2013.07.008, 2014.
- 962
- 963 Goethel, C. L., Grebmeier, J. M., Cooper, L. W., and Miller, T. J.: Implications of ocean
- 964 acidification in the Pacific Arctic: Experimental responses of three Arctic bivalves to decreased
- 965 pH and food availability, Deep Sea Res. Part II Top. Stud. Oceanogr., 144, 112–124,
- 966 https://doi.org/10.1016/j.dsr2.2017.08.013, 2017.
- 967
- 968 Gonzalez, S., Horne, J. K., and Danielson, S. L.: Multi-scale temporal variability in biological-
- 969 physical associations in the NE Chukchi Sea, Polar Biol., 44, 837–855,
- 970 https://doi.org/10.1007/s00300-021-02844-1, 2021.
- 971
- 972 Grebmeier, J. M., Bluhm, B. A., Cooper, L. W., Danielson, S. L., Arrigo, K. R., Blanchard, A.
- 973 L., Clarke, J. T., Day, R. H., Frey, K. E., Gradinger, R. R., Kędra, M., Konar, B., Kuletz, K. J.,
- 974 Lee, S. H., Lovvorn, J. R., Norcross, B. L. and Okkonen, S. R.: Ecosystem characteristics and
- 975 processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the
- 976 Pacific Arctic. Progress in Oceanography 136, 92–114,
- 977 https://doi.org/10.1016/j.pocean.2015.05.006, 2015.
- 978
- 979 Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, A.,
- 980 McDonnell, A. M. P., Munnich, M. and Plattner, G.-K.: Spatiotemporal variability and long-term
- 981 trends of ocean acidification in the California Current System. Biogeosciences 10, 193-216,
- 982 https://doi.org/10.5194/bg-10-193-2013, 2013.

- 983
- 984 Hauri, C., Danielson, S., McDonnell, A. M. P., Hopcroft, R. R., Winsor, P., Shipton, P., Lalande,
- 985 C., Stafford, K. M., Horne, J. K., Cooper, L. W., Grebmeier, J. M., Mahoney, A., Maisch, K.,
- 986 McCammon, M., Statscewich, H., Sybrandy, A., and Weingartner, T.: From sea ice to seals: a
- 987 moored marine ecosystem observatory in the Arctic, Ocean Sci., 14, 1423–1433,
- 988 https://doi.org/10.5194/os-14-1423-2018, 2018.
- 989
- 990 Hauri, C., Pagès, R., McDonnell, A. M. P., Stuecker, M. F., Danielson, S. L., Hedstrom, K.,
- 991 Irving, B., Schultz, C., and Doney, S. C.: Modulation of ocean acidification by decadal climate
- 992 variability in the Gulf of Alaska, Communications Earth & Environment 2, 191,
- 993 https://doi.org/10.1038/s43247-021-00254-z, 2021.
- 994
- 995 Hauri, C. and Irving, B.: pCO2 time series measurements from the Chukchi Ecosystem
- 996 Observatory CEO2 mooring deployed at 33 meters depth in the Northeast Chukchi Sea. Research
- 997 Workspace. https://doi.org/10.24431/rw1k7dq,
- 998 version: 10.24431_rw1k7dq_20230531T123002Z, 2023a.
- 999
- 1000 Hauri, C. and Irving, B.: pH, temperature, salinity, and oxygen time series measurements from
- 1001 the Chukchi Ecosystem Observatory CEO2 mooring deployed at 33 meters depth in the
- 1002 Northeast Chukchi Sea. Research Workspace. https://doi.org/10.24431/rw1k7dp,
- 1003 version: 10.24431_rw1k7dp_20230531T121136Z, 2023b.
- 1004

- 1005 Hauser, D. D. W., Whiting, A. V., Mahoney, A. R., Goodwin, J., Harris, C., Schaeffer, R. J.,
- 1006 Schaeffer, R., Laxague, N. J. M., Subramaniam, A., Witte, C. R., Betcher, S., Lindsay, J. M., and
- 1007 Zappa, C. J.: Co-production of knowledge reveals loss of Indigenous hunting opportunities in the
- 1008 face of accelerating Arctic climate change, Environ. Res. Lett., 16, 095003,
- 1009 https://doi.org/10.1088/1748-9326/ac1a36, 2021.
- 1010
- 1011 Hayes, D., Kemme, J., and Hauri C.: Ocean greenhouse gas monitoring: new autonomous
- 1012 platform to measure pCO₂, methane, Sea Technology, 63(10), 13-16, https://lsc-
- 1013 pagepro.mydigitalpublication.com/publication/?i=764237&p=13&view=issueViewer, 2022.
 1014
- 1015 Hennon, T. D., Danielson, S. L., Woodgate, R. A., Irving, B., Stockwell, D. A., and Mordy, C.
- 1016 W.: Mooring Measurements of Anadyr Current Nitrate, Phosphate, and Silicate Enable Updated
- 1017 Bering Strait Nutrient Flux Estimates, Geophys. Res. Lett., 49, e2022GL098908,
- 1018 https://doi.org/10.1029/2022GL098908, 2022.
- 1019
- 1020 Holmes, R.M., J.W. McClelland, S.E. Tank, R.G.M. Spencer, and A.I. Shiklomanov.: Arctic
- 1021 Great Rivers Observatory. Water Quality Dataset, https://www.arcticgreatrivers.org/data, 2021.
- 1022
- 1023 Horowitz, L. W., Naik, V., Sentman, L., Paulot, F., Blanton, C., McHugh, C., Radhakrishnan, A.,
- 1024 Rand, K., Vahlenkamp, H., Zadeh, N. T., Wilson, C., Ginoux, P., He, J., John, J. G., Lin, M.,
- 1025 Paynter, D. J., Ploshay, J., Zhang, A. and Zeng, Y.: NOAA-GFDL GFDL-ESM4 model output
- 1026 prepared for CMIP6 AerChemMIP hist-1950HC. doi:10.22033/ESGF/CMIP6.8568, 2018.
- 1027

1028	Huntington, H. P., Danielson, S. L., Wiese, F. K., Baker, M., Boveng, P., Citta, J. J., De	
1029	Robertis, A., Dickson, D. M. S., Farley, E., George, J. C., Iken, K., Kimmel, D. G., Kuletz, K.,	
1030	Ladd, C., Levine, R., Quakenbush, L., Stabeno, P., Stafford, K. M., Stockwell, D., and Wilson,	
1031	C.: Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway, Nat.	
1032	Clim. Change, 10, 342–348, https://doi.org/10.1038/s41558-020-0695-2, 2020.	
1033		
1034	Huntington, H. P., Zagorsky, A., Kaltenborn, B. P., Shin, H. C., Dawson, J., Lukin, M., Dahl, P.	
1035	E., Guo, P., and Thomas, D. N.: Societal implications of a changing Arctic Ocean. Ambio, 51(2),	
1036	298-306. https://doi.org/10.1007/s13280-021-01601-2, 2022.	
1037		
1038	ICC: Alaskan Inuit food security conceptual framework: how to assess the Arctic from an Inuit	
1039	perspective, Inuit Circumpolar Council-Alaska, Anchorage, 2015.	
1040		
1041	Irving, B., SUNA_V2_processing, GitHub repository, https://github.com/britairving/SUNA_V2,	
1042	2021.	
1043		
1044	Islam, F., DeGrandpre, M. D., Beatty, C.M., Timmermanns, ML., Krishfield, R. A., Toole,	
1045	J.M., and Laney, S.R.: Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic	
1046	Ocean, JGR Oceans, 122(2), 1425-1438, https://doi.org/10.1002/2016JC012162, 2017,	Deleted: 6
1047		
1048	Jay, C. V., Fischbach, A. S., and Kochnev, A. A.: Walrus areas of use in the Chukchi Sea during	
1049	sparse sea ice cover, Mar. Ecol. Prog. Ser., 468, 1–13, https://doi.org/10.3354/meps10057, 2012.	
1050		

- 1052 Jiang, L.-Q., Feely, R. A., Wanninkhof, R., Greeley, D., Barbero, L., Alin, S., Carter, B. R.,
- 1053 Pierrot, D., Featherstone, C., Hooper, J., Melrose, C., Monacci, N., Sharp, J. D., Shellito, S., Xu,
- 1054 Y.-Y., Kozyr, A., Byrne, R. H., Cai, W.-J., Cross, J., Johnson, G. C., Hales, B., Langdon, C.,
- 1055 Mathis, J., Salisbury, J., and Townsend, D. W.: Coastal Ocean Data Analysis Product in North
- 1056 America (CODAP-NA) an internally consistent data product for discrete inorganic carbon,
- 1057 oxygen, and nutrients on the North American ocean margins, Earth Syst. Sci. Data, 13, 2777-
- 1058 2799, https://doi.org/10.5194/essd-13-2777-2021, 2021.
- 1059
- 1060 Jung, J., Son, J. E., Lee, Y. K., Cho, K.-H., Lee, Y., Yang, E. J., Kang, S.-H., and Hur, J.:
- 1061 Tracing riverine dissolved organic carbon and its transport to the halocline layer in the Chukchi
- 1062 Sea (western Arctic Ocean) using humic-like fluorescence fingerprinting, Sci. Total Environ.,
- 1063 772, 145542, https://doi.org/10.1016/j.scitotenv.2021.145542, 2021.
- 1064
- 1065 Juranek, L. W., Feely, R. A., Peterson, W. T., Alin, S. R., Hales, B., Lee, K., Sabine, C. L., and
- 1066 Peterson, J.: A novel method for determination of aragonite saturation state on the continental
- 1067 shelf of central Oregon using multi-parameter relationships with hydrographic data, Geophys.
- 1068 Res. Lett., 36, L24601, https://doi.org/10.1029/2009GL040778, 2009.
- 1069
- 1070 Juranek, L. W., Feely, R. A., Gilbert, D., Freeland, H., and Miller, L. A.: Real-time estimation of
- 1071 pH and aragonite saturation state from Argo profiling floats: Prospects for an autonomous carbon
- 1072 observing strategy, Geophys. Res. Lett., 38, L17603, https://doi.org/10.1029/2011gl048580,
- 1073 2011.
- 1074

1075	Koch, C. W., Cooper, L. W., Lalande, C., Brown, T. A., Frey, K. E. and Grebmeier, J. M.:
1076	Seasonal and latitudinal variations in sea ice algae deposition in the Northern Bering and
1077	Chukchi Seas determined by algal biomarkers. PLoS ONE 15, e0231178, 2020.
1078	
1079	Kroeker, K. J., Powell, C., and Donham, E. M.: Windows of vulnerability: Seasonal mismatches
1080	in exposure and resource identity determine ocean acidification's effect on a primary consumer
1081	at high latitude, Glob. Change Biol., 27, 1042–1051, https://doi.org/10.1111/gcb.15449, 2021.
1082	
1083	Kuletz, K. J., Ferguson, M. C., Hurley, B., Gall, A. E., Labunski, E. A., and Morgan, T. C.:
1084	Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and
1085	western Beaufort seas: Identifying biologically important pelagic areas, Prog. Oceanogr., 136,
1086	175–200, https://doi.org/10.1016/j.pocean.2015.05.012, 2015.
1087	
1088	Lalande, C., Grebmeier, J. M., Hopcroft, R. R., and Danielson, S. L.: Annual cycle of export
1089	fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea, Deep Sea Res. Part II
1090	Top. Stud. Oceanogr., 177, 104730, https://doi.org/10.1016/j.dsr2.2020.104730, 2020.
1091	
1092	Lalande, C., Grebmeier, J. M., McDonnell, A. M. P., Hopcroft, R. R., O'Daly, S., and Danielson
1093	S. L.: Impact of a warm anomaly in the Pacific Arctic region derived from time-series export
1094	fluxes, PLOS ONE, 16, e0255837, https://doi.org/10.1371/journal.pone.0255837, 2021.
1095	
1096	Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Álvarez, M., Becker,
1097	S., Brown, P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M.,

- 1098 Ishii, M., Jeansson, E., Jutterström, S., Jones, S. D., Karlsen, M. K., Lo Monaco, C., Michaelis,
- 1099 P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo,
- 1100 A., Wanninkhof, R., Woosley, R. J., and Key, R. M.: An updated version of the global interior
- 1101 ocean biogeochemical data product, GLODAPv2.2021, Earth Syst. Sci. Data Discuss.,
- 1102 https://doi.org/10.5194/essd-2021-234, 2021.
- 1103
- 1104 Laws, E. A.: Photosynthetic quotients, new production and net community production in the
- 1105 open ocean, Deep Sea Res. Part Oceanogr. Res. Pap., 38, 143–167, https://doi.org/10.1016/0198-

1106 0149(91)90059-O, 1991.

- 1107
- 1108 Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.: The universal
- 1109 ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim.
- 1110 Cosmochim. Acta, 74, 1801–1811, https://doi.org/10.1016/j.gca.2009.12.027, 2010.
- 1111
- 1112 Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System Calculations,
- 1113 ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.,
- 1114 38 pp., https://salish-sea.pnnl.gov/media/ORNL-CDIAC-105.pdf, 1998.
- 1115
- 1116 Lewis, K. M., van Dijken, G. L., and Arrigo, K. R.: Changes in phytoplankton concentration now
- 1117 drive increased Arctic Ocean primary production, Science, 369, 198-202,
- 1118 https://doi.org/10.1126/science.aay8380, 2020.
- 1119

1120	Li, B., Watanabe, Y. W., and Yamaguchi, A.: Spatiotemporal distribution of seawater pH in the
1121	North Pacific subpolar region by using the parameterization technique, J. Geophys. Res. Oceans,
1122	121, 3435-3449, https://doi.org/10.1002/2015JC011615, 2016.
1123	
1124	Licker, R., Ekwurzel, B., Doney, S. C., Cooley, S. R., Lima, I. D., Heede, R., and Frumhoff, P.
1125	C.: Attributing ocean acidification to major carbon producers, Environ. Res. Lett., 14, 124060,
1126	https://doi.org/10.1088/1748-9326/ab5abc, 2019.
1127	
1128	Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO ₂ calculated from dissolved
1129	inorganic carbon, alkalinity, and equations for K 1 and K 2: validation based on laboratory
1130	measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119,
1131	https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
1132	
1133	Mathis, J. T. and Questel, J. M.: Assessing seasonal changes in carbonate parameters across
1134	small spatial gradients in the Northeastern Chukchi Sea. Continental Shelf Research 67, 42-51,
1135	https://doi.org/10.1016/j.csr.2013.04.041, 2013.
1136	
1137	Martz, T. R., Connery, J. G., and Johnson, K. S.: Testing the Honeywell Durafet for seawater pH
1138	applications, Limnol. Oceanogr. Methods, 8, 172–184, https://doi.org/10.4319/lom.2010.8.172,
1139	2010.
1140	
1141	Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen,
1142	M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D.

- 1143 S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la-
- 1144 Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop,
- 1145 G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis,
- 1146 B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H.,
- 1147 Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R.,
- 1148 Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six,
- 1149 K. D., Stein, L., Stemmler, I., Stevens, B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P.,
- 1150 Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
- 1151 Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO₂, J. Adv.
- 1152 Model. Earth Syst., 11, 998–1038, https://doi.org/10.1029/2018MS001400, 2019.
- 1153
- 1154 McDougall, T.J. and Barker, P.M.: Getting started with TEOS-10 and the Gibbs Seawater
- (GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5, 2011.
- 1157 McRaven, L. and Pickart, R.: Conductivity-Temperature-Depth (CTD) data from the 2018
- 1158 Distributed Biological Observatory Northern Chukchi Integrated Study (DBO-NCIS) cruise on
- 1159 USCGC (US Coast Guard Cutter) Healy (HLY1801). Arctic Data Center.
- 1160 doi:10.18739/A2HT2GC7Z, 2021.
- 1161
- 1162 Monacci, N. M., Cross, J. N., Pickart, R. S., Juranek, L. W., McRaven, L. T., and Becker, S.:
- 1163 Dissolved inorganic carbon (DIC) and total alkalinity (TA) and other hydrographic and chemical
- 1164 data collected from discrete sample and profile observations aboard the RV Sikuliaq Cruise
- 1165 SKQ202014S (EXPOCODE 33BI20201025) in the Bering and Chukchi Sea along transect lines

- 1166 in the Distributed Biological Observatory (DBO) from 2020-10-25 to 2020-11-11 (NCEI
- 1167 Accession 0252613). NOAA National Centers for Environmental Information. Dataset.
- 1168 https://doi.org/10.25921/pnsd-sv10, 2022.
- 1169
- 1170 Moore, S. E., Douglas P. deMaster, and Paul K. Dayton: Cetacean Habitat Selection in the
- 1171 Alaskan Arctic during Summer and Autumn, Arctic, 53(4), 432–47. JSTOR,
- 1172 http://www.jstor.org/stable/40512256, 2000.
- 1173
- 1174 Moore, S. E., and Stabeno, P. J.: Synthesis of Arctic Research (SOAR) in marine ecosystems of
- 1175 the Pacific Arctic, Progress in Oceanography, 136, 1-11,
- 1176 https://doi.org/10.1016/j.pocean.2015.05.017, 2015,
- 1177
- 1178 Moore, S. E., Clarke, J. T., Okkonen, S. R., Grebmeier, J. M., Berchok, C. L., and Stafford, K.
- 1179 M.: Changes in gray whale phenology and distribution related to prey variability and ocean
- 1180 biophysics in the northern Bering and eastern Chukchi seas. PLOS ONE 17(4):
- 1181 e0265934. https://doi.org/10.1371/journal.pone.0265934, 2022.
- 1182
- 1183 Mordy, C. W., Bell, S., Cokelet, E. D., Ladd, C., Lebon, G., Proctor, P., Stabeno, P., Strausz, D.,
- 1184 Wisegarver, E., and Wood, K.: Seasonal and interannual variability of nitrate in the eastern
- 1185 Chukchi Sea: Transport and winter replenishment, Deep-Sea Res. Part II Top. Stud. Oceanogr.,
- 1186 177, 104807, https://doi.org/10.1016/j.dsr2.2020.104807, 2020.
- 1187

1189	Updating Estimation of the Social Cost of Carbon Dioxide (Washington DC: The National
1190	Academies Press) https://doi.org/10.17226/24651, 2017.
1191	
1192	Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J.: Global ocean
1193	acidification observing network: requirements and governance plan, GOA-ON, Washington, 61
1194	pp., http://www.goa-on.org/docs/GOA-ON_plan_print.pdf, 2015.
1195	
1196	Orr, J. C.: Recent and future changes in ocean carbonate chemistry, in: Ocean acidification,
1197	edited by: Gattuso, JP. and Hansson, L., Oxford University Press, Oxford, 41-66, 2011.
1198	
1199	Orr, J. C., Epitalon, JM., Dickson, A. G., and Gattuso, JP.: Routine uncertainty propagation
1200	for the marine carbon dioxide system, Mar. Chem., 207, 84–107,
1201	https://doi.org/10.1016/j.marchem.2018.10.006, 2018.
1202	
1203	Orr, J. C., Kwiatkowski, L., and Pörtner, H. O.: Arctic Ocean annual high in pCO2 could shift
1204	from winter to summer, Nature, 610, 94-100, https://doi.org/10.1038/s41586-022-05205-y,
1205	2022.
1206	
1207	Ouyang, Z., Collins, A., Li, Y., Qi, D., Arrigo, K. R., Zhuang, Y., Nishino, S., Humphreys, M.
1208	P., Kosugi, N., Murata, A., Kirchman, D. L., Chen, L., Chen, J. and Cai, WJ.: Seasonal Water
1209	Mass Evolution and Non-Redfield Dynamics Enhance CO2 Uptake in the Chukchi Sea. Journal
1210	of Geophysical Research: Oceans 127, e2021JC018326,

National Academies of Sciences, Engineering and Medicine: Valuing Climate Damages:

1188

1212	
1213	Payne, C. M., Bianucci, L., van Dijken, G. L., and Arrigo, K. R.: Changes in Under-Ice Primary
1214	Production in the Chukchi Sea From 1988 to 2018, J. Geophys. Res. Oceans, 126,
1215	e2021JC017483, https://doi.org/10.1029/2021JC017483, 2021.
1216	
1217	Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in seawater, Mar.
1218	Chem., 21, 161–168, https://doi.org/10.1016/0304-4203(87)90036-3, 1987.
1219	
1220	Pipko, I. I., Semiletov, I. P., Tishchenko, P. Y., Pugach, S. P. and Christensen, J. P.: Carbonate
1221	chemistry dynamics in Bering Strait and the Chukchi Sea. Progress in Oceanography 55, 77-94,
1222	https://doi.org/10.1016/S0079-6611(02)00071-X,2 002.
1223	
1224	Qi, D., Chen, L., Chen, B., Gao, Z., Zhong, W., Feely, R. A., Anderson, L. G., Sun, H., Chen, J.,
1225	Chen, M., Zhan, L., Zhang, Y., and Cai, WJ.: Increase in acidifying water in the western Arctic
1226	Ocean, Nat. Clim. Change, 7, 195–199, https://doi.org/10.1038/nclimate3228, 2017.
1227	
1228	Qi, D., Ouyang, Z., Chen, L., Wu, Y., Lei, R., Chen, B., Feely, R. A., Anderson, L. G., Zhong,
1229	W., Lin, H., Polukhin, A., Zhang, Y., Zhang, Y., Bi, H., Lin, X., Luo, Y., Zhuang, Y., He, J.,
1230	Chen, J., and Cai, W. J.: Climate change drives rapid decadal acidification in the Arctic Ocean
1231	from 1994 to 2020, Science, 377, 1544-1550, https://doi.org/10.1126/science.abo0383, 2022a.
1232	

https://doi.org/10.1029/2021JC018326, 2022.

1233 Qi, D., Wu, Y., Chen, L., Cai, WJ., Ouyang, Z., Zhang, Y., Anderson, L. G., Feely, R.	233 Qi, D., Wu, Y., Chen, L., Cai, W	J., Ouyang, Z., Zhang,	, Y., Anderson, L. G., Feely, F	λ . Α.,
--	--------------------------------------	------------------------	---------------------------------	----------------

1234 Zhuang, Y., Lin, H., Lei, R., and Bi, H.: Rapid acidification of the Arctic Chukchi Sea waters

1235 driven by anthropogenic forcing and biological carbon recycling, Geophysical Research Letter,

1236 49(4), e2021GL097246, https://doi.org/10.1029/2021GL097246, 2022b.

1237

1238 Raimondi, L., Matthews, J. B. R., Atamanchuck, D., Azetsu-Scott, K., and Wallace, D.: The

1239 internal consistency of the marine carbon dioxide system for high latitude shipboard and in situ

1240 monitoring, Mar. Chem., 213, 49–70, https://doi.org/10.1016/j.marchem.2019.03.001, 2019.

1241

1242 Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K.,

1243 Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe

1244 since 1979, Commun. Earth Environ., 3, 1–10, https://doi.org/10.1038/s43247-022-00498-3,

1245 2022.

1246

1247 Rheuban, J. E., Doney, S. C., McCorkle, D. C. and Jakuba, R. W. Quantifying the Effects of

1248 Nutrient Enrichment and Freshwater Mixing on Coastal Ocean Acidification. Journal of

1249 Geophysical Research: Oceans 124(12), 9085–9100,

1250 https://doi.org/10.1029/2019JC015556, 2019.

1251

1252 Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J., and Christensen, P. B.: Inorganic carbon

1253 transport during sea ice growth and decay: A carbon pump in polar seas, J. Geophys. Res., 112,

1254 C03016, https://doi.org/10.1029/2006JC003572, 2007.

1256	Rysgaard, S., Glud, R. N., Lennert, K., Cooper, M., Halden, N., Leakey, R. J. G., Hawthorne, F.
1257	C., and Barber, D.: Ikaite crystals in melting sea ice – implications for pCO_2 and pH levels in
1258	Arctic surface waters, The Cryosphere, 6, 901–908, https://doi.org/10.5194/tc-6-901-2012, 2012.
1259	
1260	Sakamoto, C. M., Johnson, K. S., and Coletti, L. J.: Improved algorithm for the computation of
1261	nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer, Limnol.
1262	Oceanogr. Methods, 7, 132–143, https://doi.org/10.4319/lom.2009.7.132, 2009.
1263	
1264	Sandy, S. J., Danielson, S. L., and Mahoney, A. R.: Automating the Acoustic Detection and
1265	Characterization of Sea Ice and Surface Waves, J. Mar. Sci. Eng., 10, 1577,
1266	https://doi.org/10.3390/jmse10111577, 2022.
1267	
1268	Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press,
1269	Princeton, NJ, 526 pp., 2006.
1270	
1271	Seabird. Application Note 31: Computing temperature and conductivity slope and offset
1272	correction coefficients from lab calibration and salinity bottle samples. my.hach.com/asset-
1273	get.download.jsa?id=54627861537, accessed 20 June 2016.
1274	
1275	Seabird. Module 28. Advanced Biogeochemical Processing, www.seabird.com/cms-
1276	$portals/seabird_com/cms/documents/training/Module 28_Advanced_Biogeochem_Processing.pdf$
1277	. Accessed 30 May 2023.
1278	

1279 Seferian, R.:	CNRM-CERFACS	CNRM-ESM2-1	model output	prepared fo	r CMIP6
--------------------	--------------	-------------	--------------	-------------	---------

- 1280 AerChemMIP. doi:10.22033/ESGF/CMIP6.1389, 2019.
- 1281

1282	Semiletov, I	I., Pipko, I.,	Gustafsson,	Ö., Anderson,	L. G., Sergien	ıko, V., Pı	ugach, S., Duda	rev, O.,

- 1283 Charkin, A., Gukov, A., Bröder, L., Andersson, A., Spivak, E., and Shakhova, N.: Acidification
- 1284 of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nature
- 1285 Geosci 9, 361–365, https://doi.org/10.1038/ngeo2695, 2016.
- 1286
- 1287 Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification: A research
- 1288 synthesis, Glob. Planet. Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004,
 1289 2011.
- 1290
- 1291 Serreze, M. C. and Francis, J. A.: The Arctic amplification debate, Clim. Change, 76, 241–264,
- 1292 https://doi.org/10.1007/s10584-005-9017-y, 2006.
- 1293
- 1294 Serreze, M. C., Crawford, A. D., Stroeve, J. C., Barrett, A. P., and Woodgate, R. A.: Variability,
- 1295 trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea, J. Geophys.
- 1296 Res. Oceans, 121, 7308–7325, https://doi.org/10.1002/2016JC011977, 2016.
- 1297
- 1298 Sharp, J. D., Pierrot, D., Humphreys, M. P., Epitalon, J.-M., Orr, J. C., Lewis, E. R., and
- 1299 Wallace, D. W. R.: CO2SYSv3 for MATLAB, https://doi.org/10.5281/zenodo.7552554, 2023.
- 1300

1301	Shu, Q.,	Wang,	O., Årthun,	M., Wa	ng, S., So	ong, Z., Z	hang, M.,	and Qiao,	F: Arctic Ocean

- 1302 Amplification in a warming climate in CMIP6 models. Science Advances, 8(30), eabn9755.
- 1303 https://doi.org/10.1126/sciadv.abn9755, 2022.

- 1305 Stabeno, P. J., Mordy, C. W. and Sigler, M. F.: Seasonal patterns of near-bottom chlorophyll
- 1306 fluorescence in the eastern Chukchi Sea: 2010–2019. Deep Sea Research Part II: Topical Studies
- 1307 in Oceanography 177, 104842, https://doi.org/10.1016/j.dsr2.2020.104842, 2020.

1308

- 1309 Stackpoole, S., Butman, D., Clow, D., Verdin, K., Gaglioti, B., and Striegl, R. G.: Carbon burial,
- 1310 transport, and emission from inland aquatic ecosystems in Alaska, USGS Prof. Pap., 1826, 159-
- 1311 188, https://doi.org/10.3133/pp1826, 2016.
- 1312
- 1313 Stackpoole, S. M., Butman, D., Clow, D. W., Verdin, K. L., Gaglioti, B. V., Genet, H., and
- 1314 Striegl, R. G.: Inland waters and their role in the carbon cycle of Alaska, Ecol. Appl., 27, 1403-
- 1315 1420, http://onlinelibrary.wiley.com/doi/10.1002/eap.1552/full, 2017.
- 1316
- 1317 Silvers, L., Blanton, C., McHugh, C., John, J. G., Radhakrishnan, A., Rand, K., Balaji, V.,
- 1318 Dupuis, C., Durachta, J., Guo, H., Hemler, R., Lin, P., Nikonov, S., Paynter, D. J., Ploshay, J.,
- 1319 Vahlenkamp, H., Wilson, C., Wyman, B., Robinson, T., Zeng, Y. and Zhao, M.: NOAA-GFDL
- 1320 GFDL-CM4 model output prepared for CMIP6 CFMIP. doi:10.22033/ESGF/CMIP6.1641, 2018.

- 1322 Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The
- 1323 Arctic's rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 110, 1005–1027,
- 1324 https://doi.org/10.1007/s10584-011-0101-1, 2011.
- 1325
- 1326 Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.: Changes in Arctic melt season
- 1327 and implications for sea ice loss, Geophys. Res. Lett., 41, 1216–1225,
- 1328 https://doi.org/10.1002/2013GL058951, 2014.
- 1329
- 1330 Stumpp, M., Hu, M. Y., Melzner, F., Gutowska, M. A., Dorey, N., Himmerkus, N., Holtmann,
- 1331 W. C., Dupont, S. T., Thorndyke, M. C., and Bleich, M.: Acidified seawater impacts sea urchin
- 1332 larvae pH regulatory systems relevant for calcification, Proc. Natl. Acad. Sci. USA, 109, 18192-
- 1333 18197, https://doi.org/10.1073/pnas.1209174109, 2012.
- 1334
- 1335 Sulpis, O., Lauvset, S. K., and Hagens, M.: Current estimates of K₁* and K₂* appear inconsistent
- 1336 with measured CO₂ system parameters in cold oceanic regions, Ocean Sci., 16, 847-862,
- 1337 https://doi.org/10.5194/os-16-847-2020, 2020.
- 1338
- 1339 Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N.,
- 1340 Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., and Nojiri, Y.: Global sea-air CO₂ flux
- 1341 based on climatological surface ocean pCO₂, and seasonal biological and temperature effects,
- 1342 Deep Sea Res. Part II Top. Stud. Oceanogr., 49, 1601–1622, https://doi.org/10.1016/S0967-
- 1343 0645(02)00003-6, 2002.
- 1344

1345	Terhaar, J., Torres, O., Bourgeois, T., and Kwiatkowski, L.: Arctic Ocean acidification over the
1346	21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model
1347	ensemble, Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021, 2021.
1348	
1349	Thomsen, J., Casties, I., Pansch, C., Körtzinger, A., and Melzner, F.: Food availability outweighs
1350	ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments, Glob.
1351	Change Biol., 19, 1017–1027, https://doi.org/10.1111/gcb.12109, 2013.
1352	
1353	Thor, P. and Dupont, S.: Transgenerational effects alleviate severe fecundity loss during ocean
1354	acidification in a ubiquitous planktonic copepod, Glob. Change Biol., 21, 2261–2271,
1355	https://doi.org/10.1111/gcb.12815, 2015.
1356	
1357	Tian, F., Pickart, R.S., Lin, P., Pacini, A., Moore, G.W.K., Stabeno, P., Weingartner, T., Itoh,
1358	M., Kikuchi, T., Dobbins, E. and Bell, S.: Mean and seasonal circulation of the eastern Chukchi
1359	Sea from moored timeseries in 2013–2014. Journal of Geophysical Research: Oceans, 126(5),
1360	p.e2020JC016863, 2021.
1361	
1362	Tunnicliffe, V., Davies, K. T. A., Butterfield, D. A., Embley, R. W., Rose, J. W., and Chadwick
1363	Jr, W. W.: Survival of mussels in extremely acidic waters on a submarine volcano, Nat. Geosci.,

1364 2, 344–348, https://doi.org/10.1038/ngeo500, 2009.

- 1365
- 1366 Van Straalen, M. N.: Peer Reviewed: Ecotoxicology Becomes Stress Ecology, Environ. Sci.
- 1367 Technol., 37, 324A-330A, https://doi.org/10.1021/es0325720, 2003.

1	3	6	8
1	3	0	ð

- 1369 Vargas, C. A., Lagos, N. A., Lardies, M. A., Duarte, C., Manríquez, P. H., Aguilera, V. M.,
- 1370 Broitman, B., Widdicombe, S., and Dupont, S.: Species-specific responses to ocean acidification
- 1371 should account for local adaptation and adaptive plasticity, Nat Ecol Evol 1, 0084,
- 1372 https://doi.org/10.1038/s41559-017-0084, 2017.
- 1373
- 1374 Vargas, C. A., Cuevas, L. A., Broitman, B. R., San Martin, V. A., Lagos, N. A., Gaitán-Espitia,
- 1375 J. D., and Dupont, S.: Upper environmental pCO₂ drives sensitivity to ocean acidification in
- 1376 marine invertebrates, Nat. Clim. Change, 12, 200–207, https://doi.org/10.1038/s41558-021-
- 1377 01269-2, 2022.
- 1378
- 1379 Ventura, A., Schulz, S., and Dupont, S.: Maintained larval growth in mussel larvae exposed to
 1380 acidified under-saturated seawater, Sci. Rep., 6, 23728, https://doi.org/10.1038/srep23728, 2016.
- 1381
- 1382 Vergara-Jara, M. J., DeGrandpre, M. D., Torres, R., Beatty, C. M., Cuevas, L. A., Alarcón, E.
- 1383 and Iriarte, J. L: Seasonal Changes in Carbonate Saturation State and Air-Sea CO₂ Fluxes During
- 1384 an Annual Cycle in a Stratified-Temperate Fjord (Reloncaví Fjord, Chilean Patagonia). Journal
- 1385 of Geophysical Research: Biogeosciences 124, 2851–2865,
- 1386 https://doi.org/10.1029/2019JG005028, 2019.
- 1387
- 1388 Watanabe, Y. W., Li, B. F., Yamasaki, R., Yunoki, S., Imai, K., Hosoda, S., and Nakano, Y.:
- 1389 Spatiotemporal changes of ocean carbon species in the western North Pacific using

1390 parameterization technique, J. Oceanogr., 76, 155-167, https://doi.org/10.1007/s10872-019-

1391 00532-7, 2020.

- 1392
- 1393 Williams, N. L., Juranek, L. W., Johnson, K. S., Feely, R. A., Riser, S. C., Talley, L. D., Russell,
- 1394 J. L., Sarmiento, J. L., and Wanninkhof, R.: Empirical algorithms to estimate water column pH
- 1395 in the Southern Ocean, Geophys. Res. Lett., 43, 3415–3422,
- 1396 https://doi.org/10.1002/2016GL068539, 2016.
- 1397
- 1398 Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S.,
- 1399 Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T.,
- 1400 von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S.,
- 1401 Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L.,
- 1402 Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz,
- 1403 D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur,
- 1404 R., Schulzweida, U., Six, K., Stevens, B., Voigt, A. and Roeckner, E.: MPI-M MPI-ESM1.2-LR
- 1405 model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.6595, 2019.
- 1406
- 1407 Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.: Total
- 1408 alkalinity: The explicit conservative expression and its application to biogeochemical processes,
- 1409 Mar. Chem., 106, 287–300, https://doi.org/10.1016/j.marchem.2007.01.006, 2007.
- 1410

- 1411 Wood, K. R., Bond, N. A., Danielson, S. L., Overland, J. E., Salo, S. A., Stabeno, P. J., and
- 1412 Whitefield, J.: A decade of environmental change in the Pacific Arctic region, Prog. Oceanogr.,
- 1413 136, 12–31, https://doi.org/10.1016/j.pocean.2015.05.005, 2015.
- 1414
- 1415 Woosley, R. J.: Evaluation of the temperature dependence of dissociation constants for the
- 1416 marine carbon system using pH and certified reference materials, Marine Chemistry,
- 1417 229, 103914, https://doi.org/10.1016/j.marchem.2020.103914, 2021. 1418
- 1419 Woosley, R. J., Millero, F. J., and Takahashi, T.: Internal consistency of the inorganic carbon
- 1420 system in the Arctic Ocean, Limnol. Oceanogr. Methods, 15, 887–896,
- 1421 https://doi.org/10.1002/lom3.10208, 2017.
- 1422
- 1423 Woosley, R. J. and Millero, F. J.: Freshening of the western Arctic negates anthropogenic carbon
- 1424 uptake potential, Limnol. Oceanogr., 65, 1834–1846, https://doi.org/10.1002/lno.11421, 2020.
- 1425
- 1426 Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and Shimada, K.:
- 1427 Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt,
- 1428 Science, 326, 1098–1100, https://doi.org/10.1126/science.1174190, 2009.
- 1429
- 1430 Zeng, J., Chen, M., Zheng, M., Hu, W., and Qiu, Y.: A potential nitrogen sink discovered in the
- 1431 oxygenated Chukchi Shelf waters of the Arctic, Geochem. Trans., 18, 5,
- 1432 https://doi.org/10.1186/s12932-017-0043-2, 2017.
- 1433
- 1434

1435 Tables

1436 Table 1. Chukchi Ecosystem Observatory location and instrument sampling frequency. Sensor

1437 type and parameter measured (italicized) shown in top row. Values in parenthesis indicate the

1438 number of measurements averaged over the measurement interval window.

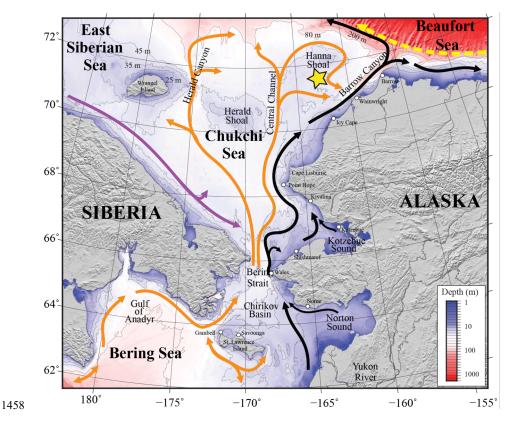
				SUNA	HydroC CO2	SBE16	SBE37	SeaFET	SBE63		Formatted: Subscript
	Deployment	Latitude	Longitude	NO ₃	pCO ₂	CTD+	CTD	pН	O 2		Formatted Table
				1105	<i>p</i> eo ₂	CID :	CID	pii	02		Deleted: -161.5184
	2016 2015				12 h (300/5						Formatted: Font: Times New Roman, 10 pt
	2016-2017	71°35'58.5600	"N.161°31'06.2400",W	1 h	min)*	1 h	-	-	-		Formatted: Font: 10 pt
)						Formatted: Font: Times New Roman, 10 pt
	2017 2010				101 (5/5	2.1	2.1	2 h (30/5	2.1		Formatted: Font color: Auto
	2017-2018	71°35'58_9200	"N.161°31'08.0400" . W	1 h	12 h (5/5 min)	2 h	2 h	min)	2 h		Deleted: 71.5996
)			Formatted: Font color: Auto
			"N.161°31'41.1600" , W		24 h (5/5 min)	1 h	2 h*	-	2 h*		Formatted: Normal, Left, Indent: Left: 0", Line spacing: single
	2019-2020	71°35'58.9200	"N 161°31'39.0000" W	1 h	12 h (5/5 min)	2 h	-	-	-		Deleted: -161.5189
	* indicates the	e sensor did no	return data over the w	hole vear o	due to battery fai	lure					Formatted: Font: Times New Roman, 10 pt
					, ,						Formatted: Font: 10 pt
	CTD+ indicate	es ancillary dat	a was available with th	e SBE16 f	file (e.g., chlorop	hyll fluor	escence)				Formatted: Font: Times New Roman, 10 pt
1439	Formatted: Normal, Left, Indent: Left: 0", Line spacing: single										
1440											Formatted: Font color: Auto
1440											Deleted: 71.5997
1441											Deleted: -161.5281
											Formatted: Font: Times New Roman, 10 pt
1442	Table 2. Ev	valuation of	H _{SeaFET} and pH ^{est}	using ref	erence pH from	n nearb	y discret	e sample	S		Formatted: Font: 10 pt
											Formatted: Font: Times New Roman, 10 pt
1443	(pH^{disc}_{calc}) .	Uncertainty,	uc, is the propagate	ed combi	ned standard ı	incertaii	nty from	errors.n	ı (Orr		Formatted: Font color: Auto
1444	et al., 2018)). pH _{SeaFET} a	nd pH ^{est} were interp	olated to	o the discrete t	imestan	ıp. Figu	re S1 for			Formatted: Normal, Left, Indent: Left: 0", Line spacing: single
											Deleted: 71.5999
1445	visualizatio	n of referen	e values.								Formatted: Left, Indent: Left: 0"
1446										illiilliin	Deleted: 71.5997
1440											Deleted: -161.5275
Г			Distance		Anomaly	J	Anom	alv			Formatted: Font: Times New Roman, 10 pt
	Date Ci	ruise Cast		$sc_{calc} \pm u_{c}$;			5	Sour	ce	Formatted: Font color: Auto
			(km)		(pHest-pHdiso	e _{calc}) (pH	I _{SeaFET} -p	$\mathrm{H}^{\mathrm{disc}}_{\mathrm{calc}}$			Formatted: Font: Times New Roman, 10 pt
					1						Formatted: Font color: Auto

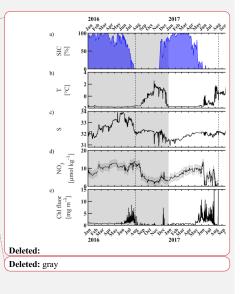
single

Formatted: Normal, Left, Indent: Left: 0", Line spacing:

2017-09-10	HLY1702	127	0.52	8.0123±0.0166	-0.0450*	-0.0354	Cross et al., 2020a		
2019-08-11	HLY1901	39	3.75	7.6423±0.012	0.0079*	-	Cross et al., 2021		
2019-08-19	OS1901	33	0.27	7.7367±0.0145	-0.0200	-	unpublished		
* indicates pH ^{disc} + was interpolated to mooring depth									

* indicates pH^{disc}_{calc} was interpolated to mooring depth





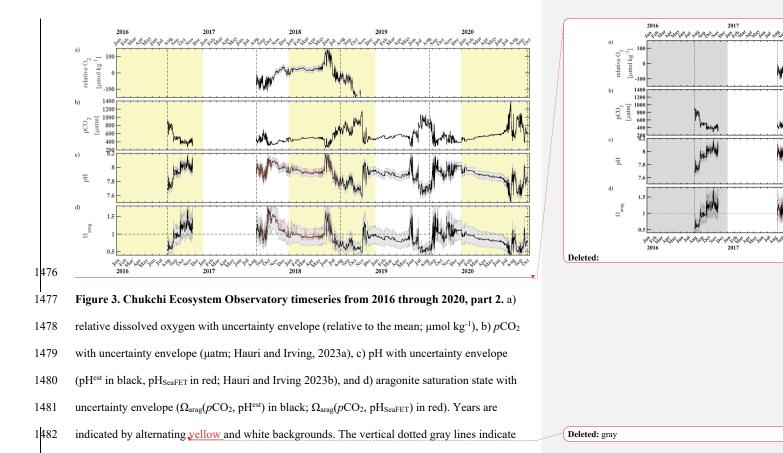
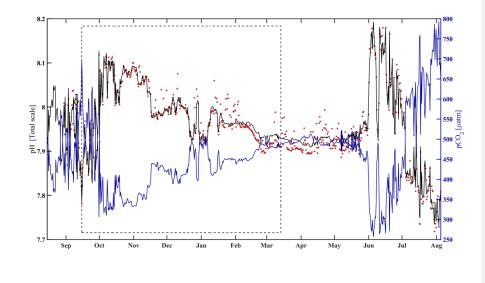

Figure 1. Map of the study area. Bathymetry of the Chukchi, northern Bering, East Siberian
and eastern Beaufort seas is shown in color. The Chukchi Ecosystem Observatory (CEO)
location near Hanna Shoal is marked with a yellow star. General circulation patterns are shown
with arrows: black – Alaskan Coastal Water and Alaskan Coastal Current, dividing into the
Shelf-break Jet (right) and Chukchi Slope Current (left, Corlett and Pickart, (2017)); orange –
Anadyr, Bering, and Chukchi Seawater; purple – Siberian Coastal Current; yellow – Beaufort
Gyre boundary current. Figure is from Hauri et al. (2018).

Figure 2. Chukchi Ecosystem Observatory timeseries from 2016 through 2020. a) sea ice concentration (blue shading to highlight coverage, %; DiGirolamo et al., 2022), b) temperature (°C), c) salinity, d) NO₃ with uncertainty envelope (µmol kg⁻¹), and e) chlorophyll fluorescence (mg m⁻³). Years are indicated by alternating <u>yellow</u> and white background shading. The vertical dotted gray lines indicate the mooring turn around timing.

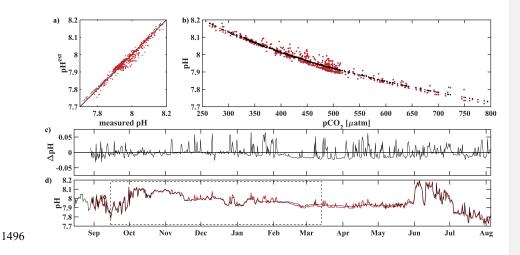

the mooring turn around timing.

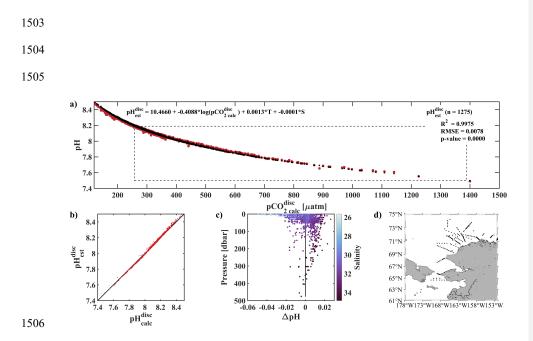
M

j.

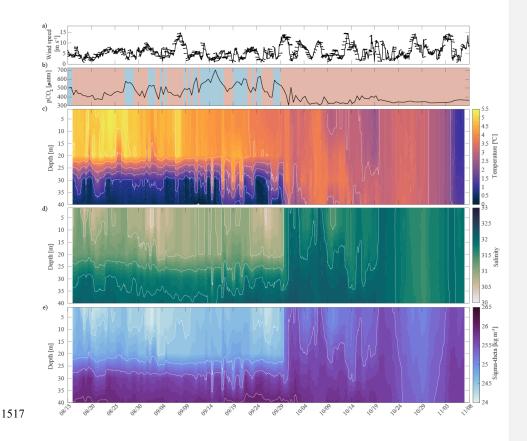
M

ەپىمىر ئەت يەن بەر بەت بەت بەت بەت بەت بەت بەت يەت يەت يەت بەت 2017

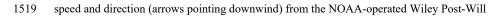



1489Figure 4. HydroC pCO2 and pH highlighting mirrored trend from mid-August 2017 to1490beginning of August 2018. Measured pH (pH_{SeaFET}, red dots) is interpolated onto the HydroC1491pCO2 timestamp (blue), and pH^{est} is shown as the solid black line. The dashed box shows the1492period over which pH^{est} was trained. The yellow faced diamond with error bars show reference

 $pH^{disc}_{calc} \pm u_c$ (Table 2; Cross et al., 2020a; Orr et al., 2018).



1497Figure 5. Performance of the pH algorithm. (a) pH_{SeaFET} vs pH^{est} with black line highlighting14981:1 ratio, (b) pCO_2 vs pH_{SeaFET} (red) and pCO_2 vs pH^{est} (black), (c) residual pH (pH_{SeaFET} –1499 pH^{est}), and (d) pH_{SeaFET} (red) and pH^{est} (black) vs. time, with dashed box highlighting the period1500over which pH^{est} was trained (15 September - 14 March 2017), and the yellow faced diamond1501with error bars showing reference $pH^{disc}_{calc} \pm u_c$ (Table 2; Cross et al., 2020).



1507 Figure 6. Evaluation of the pH algorithm. pH^{est} evaluation with pH^{disc}_{calc} from discrete

1508 samples collected during 4 cruises in the fall or early winter (August - November) of 2017-2020 1509 and pH^{disc}_{est} from our linear regression model (Equation 2). (a) $pCO_2^{disc}_{calc}$ (TA, DIC) vs pH (red 1510 pH^{disc}_{calc} and black pH^{disc}_{est}) with dashed black box showing the range of pH and pCO_2 observed 1511 at the CEO at 33 m depth, (b) pH^{disc}_{calc} vs pH^{disc}_{est} with black 1:1 ratio, (c) residual pH (pH^{disc}_{calc} -1512 pH^{disc}_{est}) vs depth with color shading by salinity and black vertical line at 0, and (d) map showing 1513 the locations of the 1275 discrete water samples used for evaluation (Monacci et al., 2022; Cross 1514 et al., 2021; 2020a; 2020b).

- 1520 Rogers Memorial Airport, b) pCO_2 (µatm) with blue background indicating the water was
- 1521 undersaturated regarding aragonite ($\Omega_{arag} < 1$) and red shading indicating aragonite
- 1522 oversaturation ($\Omega_{arag} \ge 1$), c) temperature (°C), d) salinity, and e) sigma-theta (kg m⁻³).
- 1523 Temperature (c) and salinity (d) were measured at 8, 20, 30, and 40 m by the Chukchi Ecosystem
- 1524 Observatory freeze-up detection mooring deployed in fall 2017. Density was calculated with the
- 1525 TEOS-10 GSW Oceanographic Toolbox (McDougall and Baker, 2011).

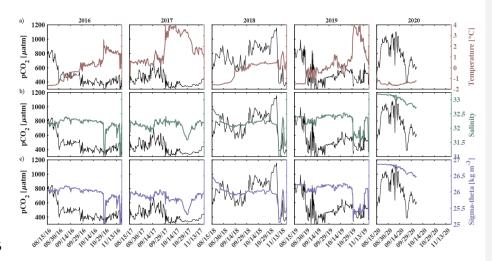
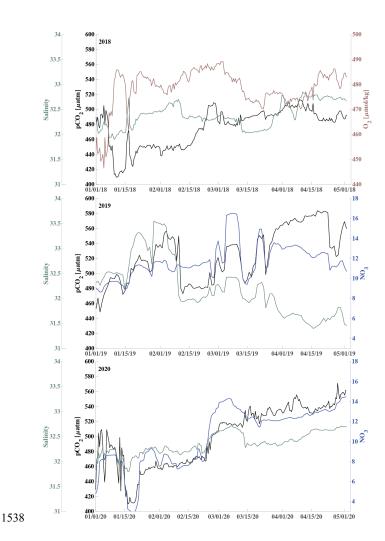
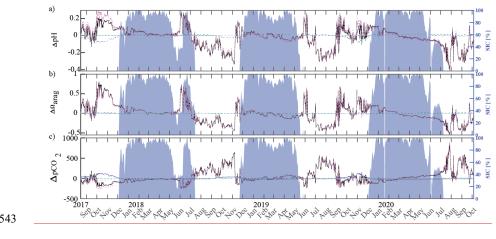
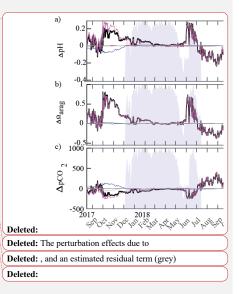
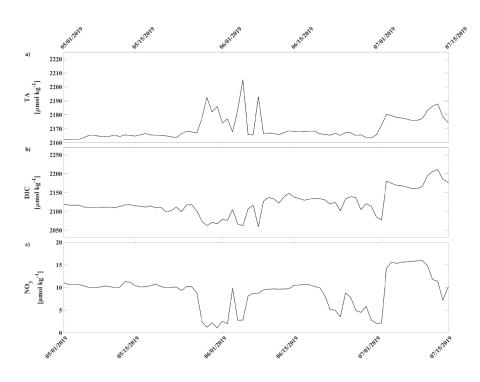


Figure 8. Impact of water column mixing on pCO₂. Timeseries of pCO₂ (black, left axis) and a) temperature (maroon, right axis), b) salinity (green, right axis), and c) density (purple, right axis) for 15 August to 1 December in 2016 -2020 measured at ~33m septh at the Chukchi Sea Ecosystem Observatory.


Figure 9. Respiration under the sea ice. Timeseries of pCO_2 (black) and salinity (green, left axis), and oxygen (O_2 , µmol kg⁻¹, maroon, top) and nitrate (NO₃, µmol kg⁻¹, blue, middle and bottom) concentration (right axis during January through April for 2018 (top), 2019 (middle) and 2020 (bottom).

1544 Figure 10. Drivers of the inorganic carbon system. Component timeseries of the linear Taylor 1545 decomposition of a) pH, b) Ω_{arag} , and c) pCO₂. <u>Contributions of changes in salinity (red)</u>, 1546 temperature (blue), biogeochemistry (pink), and freshwater mixing (green) to changes (black, relative to the mean of the timeseries), in pH, Ω_{arag} , and pCO_2 were computed following Rheuban 1547 1548 et al. (2019). The grey dotted line illustrates an estimated residual term. Sea ice concentration (blue shading, %; DiGirolamo et al., 2022) is shown on the right axes. 1549

1557 dissolved inorganic carbon (DIC, µmol kg⁻¹), and c) nitrate (NO₃, µmol kg⁻¹) from May 1st, 2019

1558 through July 15th, 2019.

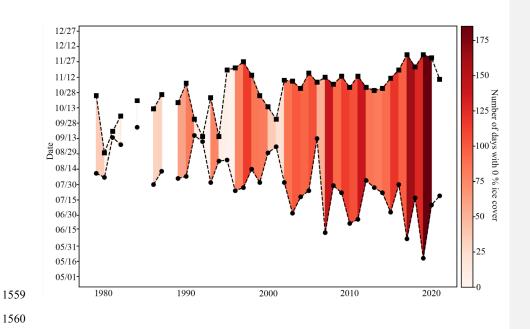


Figure 12. Low sea ice period at the Chukchi Sea Observatory. Timeseries of start (circle)
and end (square) of low sea ice (< 15 % per grid cell) period from 1982-2021. Shades of red
illustrate number of days with 0 % sea ice cover. The satellite sea ice cover at the observatory
site was taken from the NSIDC (DiGirolamo et al., 2022).