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Abstract. A novel generation of sea-ice models with Elasto-Brittle rheologies, such as neXtSIM, can represent sea-ice pro-

cesses with an unprecedented accuracy at the mesoscale, for resolutions of around 10km. As these models are computationally

expensive, we introduce supervised deep learning techniques for surrogate modeling of the sea-ice thickness from neXtSIM

simulations. We adapt a convolutional UNet architecture to an Arctic-wide setup by taking the land-sea mask with partial con-

volutions into account. Trained to emulate the sea-ice thickness on a lead time of 12 hours, the neural network can be iteratively5

applied to predictions up to a year. The improvements of the surrogate model over a persistence forecast prevail
:::::
persist from 12

hours to roughly a year, with improvements of up to 50% in the forecast error. The predictability of
::::::::
Moreover,

:::
the

:::::::::::
predictability

:::
gain

:::
for

:
the sea-ice thickness measured against a daily climatology additionally lays by around 8

::::
daily

::::::::::
climatology

:::::::
extends

::
to

:::
over

::
6
:
months. By using atmospheric forcings as additional input, the surrogate model can represent advective and thermo-

dynamical processes, which influence the sea-ice thickness and the growth and melting therein. While iterating, the surrogate10

model experiences diffusive processes, which result into a loss of fine-scale structures. However, this smoothing increases

the coherence of large-scale features and hereby the stability of the model. Therefore, based on these results, we see a huge

potential for surrogate modelling
:::::::
modeling

:
of state-of-art sea-ice models with neural networks.

1 Introduction

Caused by climate change, the Arctic sea ice is melting and becoming thinner (IPCC, 2022). Analysis from satellite observations15

(Laxon et al., 2013; Kwok, 2018; Kacimi and Kwok, 2022) as well as direct measurements (Renner et al., 2014) have shown a

decrease of the sea-ice volume. This loss may be unprecedented over the past century (Schweiger et al., 2019). It can lead to

changes in global ocean circulation (Kwok et al., 2013), weather patterns (Screen, 2013; Barnes and Screen, 2015; Jung et al., 2014)

with potential impacts on global sea levels, coastal communities, and commercial activities. Sea-ice models are used to sim-

ulate and predict the changes in sea-ice cover and its effects on the Arctic and global climate. These models are based on a20

combination of observational data and theoretical understanding of the physical processes that govern sea-ice dynamics. They

are essential conceptual and numerical tools to understand the past, current and future state of the Arctic sea-ice, and to identify

the key processes that drive its changes.
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Here, we present a novel way to make use of data coming from theoretical understanding of the physical processes: based

on neural networks, we build a surrogate model for the sea-ice thickness as simulated by the Arctic-wide neXtSIM model25

(Rampal et al., 2016; Ólason et al., 2022).

Several sea-ice modelsof the Arctic, like CICE (Hunke et al., 2017) and SI3 (Sievers et al., 2022), are concurrently developed

for operational purposes: short-term predictions for maritime road
::::
route

:
and weather forecast as well as long-term simulations

for climate projections. The recent development of models based on brittle rheologies (Girard et al., 2011; Rampal et al.,

2016; Dansereau et al., 2016), like neXtSIM, can represent the observed effects of small-scale processes onto the resolved30

mesoscale with ∼ 10km horizontal resolution (Bouchat et al., 2022). Small-scale sea-ice dynamics also impact the global sea-

ice mass balance (Boutin et al., 2022)
::::::::::::::::
(Boutin et al., 2023). Divergent features in the ice, like leadsand polynyas, are associated

with localized intense ocean heat loss that enhances sea-ice production in winter (Kwok, 2006; von Albedyll et al., 2022),

accounting for about 30% of the total ice production in the Arctic Ocean. Consequently,
:::
The

:::::::::
assumption

::::
that models correctly

representing the effects of such small-scale can
::::::::
processes

:::::
could have also an advantage in representing the thermodynamics of35

sea ice
:
is
:::
an

:::::::
ongoing

::::
topic

::
of

:::::::
research.

Geophysical models are computationally expensive, especially for operational forecasts. However, geophysical models can

be partially or completely emulated using data-driven surrogate models. Such surrogate models can speed up the forecasting

process, once their costly training phase is finished. Notably, the development of more powerful graphics processing units

(GPU) in the past few years benefit
:::::
favors the use of neural networks for surrogate modeling.40

Over the past years, emulating or replacing geophysical models by neural networks has become a promising topic of research,

with recent overviews by Bocquet (2023); Cheng et al. (2023). Emulating ERA5 data
::::::::::::::::::
(Hersbach et al., 2020), the European

Center for Medium-Range Weather Forecasts (ECMWF) reanalysis product, recent examples of global-scale surrogate mod-

els adopt developments from computer vision by using graph neural networks (Keisler, 2022; Lam et al., 2022) and vision

transformers (Bi et al., 2022; Nguyen et al., 2023).45

By employing convolutional neural network architectures, Liu et al. (2020) and Andersson et al. (2021) have successfully

shown that the
::::::::::
probabilistic sea-ice concentration

:::
and

:::::::
sea-ice

:::::
extent

:
can be predicted

::
in

:
a
:::::::::::
probabilistic

::::
way. Furthermore,

Horvat and Roach (2022) and Finn et al. (2023b) have recently presented neural network approaches to emulate wave-ice inter-

actions and high-resolution sea-ice dynamics.
::::::::::::
Convolutional

:::::::::::
LSTM-based

:::::
neural

::::::::
networks

::::
have

:::::::::
previously

:::::
been

::::::::::
investigated

::
by

::::::::::::::::::::::::::::::::
Liu et al. (2021a, b); Kim et al. (2020)

::
for

::::::
sea-ice

:::::::::::
concentration

:::::::::
forecasts.50

Encouraged by such examples, we introduce a neural network to emulate the sea-ice thickness from Arctic-wide neXtSIM

simulations. Using a convolutional U-Net architecture, we train the network to predict the thickness for a lead-time of 12 hours

based on initial thickness conditions and atmospheric forcings. This surrogate model can be then sequentially applied to obtain

sea-ice thickness predictions for seasonal time-scales.

We concentrate the surrogate model on the sea-ice thickness, as it is an important quantity for the forecast of sea ice and,55

yet, difficult to predict, especially on short time-scales (Zampieri et al., 2018; Xiu et al., 2022). Nonetheless, the thickness

contains useful information for seasonal forecast (Balan-Sarojini et al., 2021) with direct links to other important quantities,

like the sea-ice concentration and sea-ice extent. Our results show that neural networks can predict the sea-ice thickness at
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the mesoscale for daily and monthly time-scales with predictability up to half a year. The neural network learns to represent

the advection and thermodynamics needed for predictions at longer time-scales, whereas the effects of leads and subgrid-scale60

dynamics are diffused over time.

Our surrogate model is trained to minimize the L2 error. This type of error metric tends to smooth out features of the fields

that lead to double penalty errors, like leads in sea ice. Explained differently, the surrogate model is trained to reduce errors.

This diffusion process has been previously observed for deterministic neural networks (Ravuri et al., 2021), when optimized

on L2 error, but also within many forecasting and data assimilation problems in geosciences (e.g., Amodei and Stein, 2009;65

Farchi et al., 2016; Vanderbecken et al., 2023). To quantify the diffusion, we propose in this paper an analysis based on the

Power Spectral Density (PSD).

Section 2 introduces the dataset from which we learn
::::
train the data-driven model and its structure. Section 3 presents the

neural network framework, the choices we made about its architecture, and its optimization. Section 4 introduces the metrics

for evaluating the results on
::
of

:
the surrogate model. Section 5 delivers and discusses the results of the neural networks training,70

forecast skill abilities and advection capabilities of the surrogate model, as well as an analysis of the diffusion phenomenon

introduced above. The discussions and conclusions are given in Section 6 and Section 7. Appendices provide technical infor-

mation and further illustrations of the results.

2 Description of the dataset

Our goal is to train a neural network to surrogate model
::::::
emulate

:
the sea-ice thickness (SIT) for a lead time of 12h. As training75

dataset, we extract the SIT from neXtSIM simulations and atmospheric forcings from the ERA5 reanalysis, which we introduce

in the following.

2.1 neXtSIM model and the sea-ice thickness

NeXtSIM
::::::::
neXtSIM is a dynamic and thermodynamic sea-ice model (Rampal et al., 2016). It currently uses Brittle Bingham-

Maxwell rheology (Boutin et al., 2022; Ólason et al., 2022)
:::::::::::::::::::::::::::::::::
(Boutin et al., 2023; Ólason et al., 2022) to emulate the mechani-80

cal behavior of sea ice. NeXtSIM
::::::::
neXtSIM can represent the observed fine-scale dynamics of sea ice, including its scaling

and multifractal properties in space and in time (Rampal et al., 2019; Bouchat et al., 2022). The model is discretized on a

Lagrangian triangular mesh. The model output is projected on a static quadratic grid, on which our surrogate model is based.

The sea-ice model is coupled with the ocean part of NEMO, OPA, (version 3.6, Madec et al., 1998; Rousset et al., 2015). The

model configuration is further detailed in Appendix A.85

In this study, we extract only the sea-ice thickness, the variable predicted by the neural network. We rely on simulations

from 2006 to 2018. As
::::::::
simulation

:
model area, the simulations use the regional CREG025 configuration (Talandier and Lique,

2021), a regional extraction of the global ORCA025 configuration developed by the Drakkar consortium (Bernard et al.,

2006). This area encompasses the Arctic and parts of the North Atlantic down to 27◦
:::::
27◦N

:::::::
latitude with a nominal horizontal90
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resolution of 1
4

◦ (≃ 12km
:::::
0.25◦

::::::::
(≃ 12km

:
in the Arctic basin). The outputs projected onto the static grid can be seen as two-

dimensional images with 603× 528 grid-cells. Without degrading its informationcontent
::::
loss

::
of

::::::::::
information, we can crop the

data to 512× 512 grid-cells: lower latitudes are removed, as well as zones in Eastern Europe and America, where no sea ice

appears. An example model
:
of

:::
the

:::::::::
simulated

::::::
sea-ice

::::::::
thickness snapshot is presented in Fig. 1.

Figure 1. SIT simulated by neXtSIM at 15:00 UTC on 03/03/2009. The shaded area represent the cropped grid-cells that are further removed

in order to keep a 512× 512 grid cell SIT field , without degrading the
:::
loss

::
of

:
information

2.2 Forcing fields95

Several atmospheric forcings are added as input fields to the neural network, as the dynamics of the sea-ice thickness are

especially driven by the atmosphere (Guemas et al., 2014): the subseasonal to interannual variability in the Arctic surface

circulation is predominantly influenced by patterns in the atmospheric wind (Serreze et al., 1992). The atmospheric winds play

a crucial role in shaping and driving the circulation patterns of the Arctic Ocean, which in turn affects the movement and

distribution of sea ice. Additionally, fluctuations in the atmospheric surface temperature have a significant impact on the Arctic100

sea ice variability (Olonscheck et al., 2019). Changes in atmospheric temperature directly affect the growth, melt, and overall

state of sea ice in the Arctic region. Warmer atmospheric temperatures accelerate sea ice melting, leading to reductions in ice

extent and thickness, while colder temperatures can promote ice growth and expansion.

Based on these considerations, we supplemented to the sea-ice thickness the 2-meter
:::::::
2meters temperature (T2M), and the

atmospheric u- and v-velocities in 10meters height
:
at

::
a

:::::
height

:::
of

::::::::
10meters

:
(U10 and V10). Those forcings come from the105

ERA5 reanalysis dataset(Hersbach et al., 2020) of the ECMWF.

ERA5 forcings are interpolated on neXtSIM Lagrangian grid using a nearest neighbors scheme. Furthermore, to guide the

temporal development of the sea ice, forcings at time t+6h and t+12h are added as predictors to the neural network, as com-
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monly done in sea-ice forecasting (Grigoryev et al., 2022).
:::
We

:::::
chose

::
to

:::::::::
incorporate

::::::
future

:::::::
forcings

:::::
based

::
on

:::
the

::::::::::::
understanding110

:::
that,

::
in
::::::
sea-ice

:::::::::
modeling,

:::
the

::::::::
evolution

::
of

:::
sea

::
ice

::
is

:::::::
strongly

:::::::::
influenced

::
by

:::
the

::::::::::
atmospheric

::::::::
forcings.

::
In

::
the

::::::::::
simulations

::
on

::::::
which

:::
our

::::::
dataset

::
is

:::::
based

:::
on

::::::::::::::::
(Boutin et al., 2023)

:
,
::::::::
neXtSIM

::
is

:::::::::
uncoupled

::::
from

:::
an

::::::::::
atmospheric

::::::
model

:::
and

::::
uses

::::::
ERA5

:::::::
forcings.

:::
In

::::
such

:::::::::
uncoupled

:::::::
settings,

:::
the

:::::::::::
atmospheric

::::::
forcing

:::
can

:::
be

:::::
given

:::
by

::::::::
forecasts,

::::
and,

:::::
thus,

::::::
known

:::
for

:::
the

::::::
future.

::::::::::::
Consequently,

::::
using

::::::
future

:::::::
forcings

:::::
during

:::::::
training

::
is

:::::::::::
nonrestrictive

::
in
:::::
terms

:::
of

::
its

:::::::
potential

::::::::::
operational

:::::::::
capability.

Because these forcings are also to guide the neXtSIM simulations, we assume a perfect knowledge of the forcing, albeit115

operational
::
Let

:::
us

::::
note

::::
that

:::
for

::::::::
neXtSIM

::::::::::
simulations,

:::
the

:::::::::::
atmospheric

:::::::
forcings

::::::
consist

::
of
::::

the
:::
two

:::::::::
10meters

:::::
wind

:::::::
velocity

::::::::::
components,

:::
the

::::::::
2meters

:::::::::::
temperature,

:::
the

::::::
mixing

:::::
ratio,

:::
the

::::::
mean

:::
sea

::::
level

::::::::
pressure,

:::
the

:::::
total

:::::::::::
precipitation,

::::
and

:::
the

:::::
snow

:::::::
fraction.

:::
We

::::::
decided

::
to

::::
limit

::::::::
ourselves

::
to

:::
the

::::
first

::::
three

:::
for

:::
our

::::::::
surrogate

:::::
model.

::::::::::::::::::::::
Plueddemann et al. (1998)

:::
and

::::::::::::::::
Kwok et al. (2013)

:
,
::
for

::::::::
example,

::::
have

::::::
shown

::::
that

::
the

:
sea-ice forecasts use atmospheric forecasts as forcings . Note,

:::
drift

::
is
:::::::
strongly

::::::
linked

::
to

:::
the

::::
wind

:::::::
velocity.

:::::::
Hence,

:::::
there

:::::
exists

:
a
::::::

strong
:::::::::
correlation

::::::::
between

:::
the

::::::::::
atmosphere

:::::
winds

::::
and

:::
the

::::::
sea-ice

:::::::
motion,

:::
up

::
to

:::
0.8

:::
in120

::::::
Central

:::::
Arctic

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Thorndike and Colony, 1982; Serreze et al., 1989; Zhang et al., 2000)

:
.
:::::
Those

:::::::
forcings

:::
can

:::
be

:
a
:::::
good

:::::
proxy

:::
for

::
the

:::::::::
advection

::
of

:::
sea

:::
ice,

::::::
which

::
is

:::::::
required

::
to

:::::::
correctly

:::::::
emulate

:::
the

::::::::
dynamics

:::
of

:::
the

::::::
sea-ice

::::::::
thickness.

::::
Note

::::::::
however

:::
that

:
T2M

forcings from ERA5 are known to have an important bias during the freezing period (Yu et al., 2021; Wang et al., 2019; Køltzow

et al., 2022; Nielsen-Englyst et al., 2021). Nonetheless, in order to stay as close to the configuration of the neXtSIM simula-

tions, we maintain the ERA5 reanalysis as forcings.
::
We

::::
thus

:::::::
assume

:
a
:::::::

perfect
:::::::::
knowledge

::
of

:::
the

::::::::
forcings,

:::::
albeit

::::::::::
operational125

::::::
sea-ice

:::::::
forecasts

:::
use

:::::::::::
atmospheric

:::::::
forecasts

::
as

::::::::
forcings.

3 Learning the dynamics of sea-ice thickness with neural networks

In this section, we will provide a description of the neural network structure, its input and output, the training process, and the

various neural networks that were trained. During training, the neural network is trained in a supervised setting. The input to

the network consists of the concatenated sea-ice thickness and atmospheric fields, whereas the predicted target is the increment130

in sea-ice thickness over the subsequent 12-hour
:::
12h

:
period. One challenge in training the neural network is dealing with

unavailable data points caused by land grid-cells. To address this challenge, a technique called partial convolution is employed.

3.1 Preparation of the dataset for supervised learning

Let us represent the sea-ice thickness at time t by xt ∈ R512×512. The land-masked grid-cells are systematically assigned a

value of zero thickness. For small signal levels, the noise induced by the imperfections of the neural network can overshadow135

the signal contained in the data. Consequently, to increase the signal in the target and decrease the auto-correlation, we chose

a lead time of 12 hours, rather than the lead time of 6 hours as possible by the dataset
:::
12h,

:::::
even

::::::
though

:::
the

:::
data

::
is
::::::::
available

::
at

:
a
:::
6h

::::::::
frequency.

The neural network is trained to predict the increment in SIT instead of the absolute SIT. The increments of the SIT yt+∆t

for ∆t= 12hours
::::::::
∆t= 12h

:
are given by the difference to a persistence forecast,140

yt+∆t ≜ xt+∆t −xt. (1)
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Based on the current SIT xt and given forcings F, our objective is to construct a neural network fθ(xt,F) with its parameters

θ, which predicts the SIT increment yf
t+∆t,

yf
t+∆t = fθ(xt,F). (2)

The neural network is hereby trained to approximate the real increment estimated from neXtSIM simulations,
:::
Eq.

:
(1) such that145

yt+∆t ≈ yf
t+∆t approximately holds.

A table detailing the inputs and target for the neural network is shown in Tab. 1. In order to represent the temporal devel-

opment of the sea-ice thickness with the neural network, we
:::
also

:
add to the inputs the

::::
fields

::
at

::::
time

:::::::
t−∆t,

::::
both SIT and the

atmospheric forcingsat t−∆t. When the neural networks are trained on those fields at time t−∆t and t, there are called later

’with 2 inputs’. Otherwise, the neural networks are trained ’with 1 input’ which correspond to the last three columns of the150

inputs described in the table.

Table 1. Inputs and targets for the neural networks. The table shows the predictors, including sea-ice thickness (SIT) at different time steps,

and atmospheric variables: 2-meter
:::::::
2meters temperature (T2M), 10-meter

::::::::
10meters wind components (U10 and V10). The target is the

increment of the SIT 12hours
:::
12h later (∆t= 12h). The evaluated neural networks use either the last 3 columns as input, learning with a

single timestep for SIT (xt), :::
later

:::::
called

:::::
neural

:::::::
networks

::::
with

:
1
:::::
input,

:
or all columns, learning with both xt−∆t and xt,::::

later
:::::
called

:::::
neural

:::::::
networks

:::
with

::
2

::::
inputs. Note, as the SIT is the predicted quantity, there are no SIT values in the inputs for time steps larger than t.

Inputs Target

SIT(t−∆t) SIT(t) - -

∆ SIT(t+∆t)
T2M(t−∆t) T2M(t) T2M(t+∆t/2) T2M(t+∆t)

U10(t−∆t) U10(t) U10(t+∆t/2) U10(t+∆t)

V10(t−∆t) V10(t) V10(t+∆t/2) V10(t+∆t)︸ ︷︷ ︸
NN 2 inputs︸ ︷︷ ︸

NN 1 input

Data from 2009 to 2016 is used for training, giving 11584 training samples. 2017 is used for the validation of the learned

neural network and all the preliminary tests of the surrogate model. 2018 is used as year for testing: the results were evaluated

once and only once on this year at the end of the study, after the hyperparameters were chosen for the neural network. For

longer forecasts, to evaluate seasonal forecasts, another test dataset was selected between
::::
built

::::
from

:::
the

:::::
years 2006

:
,
::::
2007

:
and155

2008.

The input and target data are normalized by a global per-variable mean and standard deviation. These statistics are estimated

over the entire training dataset and applied to all datasets.
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3.2 Neural network architecture

Convolutional neural networks (CNN) are largely used in computer vision and have shown to be scalable to high-dimensional160

datasets (Pinckaers et al., 2022)
::::::::::::::::::::::
(e.g., Pinckaers et al., 2022). These networks are based on convolutional layers, designed to

recognize translation-invariant patterns. In the case of sea-ice thickness, the neural networks need to detect, e.g., leads, as well

as the marginal ice zone, irrespective of their actual locations.

The UNet (Ronneberger et al., 2015) is a
::
an

::::::::::::::
encoder-decoder convolutional neural network architecture with an encoder-decoder

structure
::::::::::::::
skip-connections. In the encoding part, convolutional layers and max-pooling layers are stacked in order to extract spa-165

tially more and more compressed features. As convolutional layers are localized by definition, the spatial compression helps the

network to extract more globalized features. The number of successive resolution reduction defines the depth of the UNet. At

the lowest resolution, in the bottleneck, several convolutional layers are stacked with 256 features (channels). In the decoding

part, the features are up-sampled through a nearest neighbor interpolation and convolutional layers. Skip connections couple

the encoding and decoding part at the same resolution level to facilitate training and to retain fine-granular information in the170

network. This neural network architecture is designed to extract multiscale features,
:::::
which

::
is

::::::
known

::
to

:::
be notably present in

sea-ice dynamics (Rampal et al., 2019). The UNet used here is described in detail in Appendix C and schematically outlined

in Fig. 2.

Figure 2. Architecture of the UNet-based neural networks. The UNet consists of three levels of depth with image sizes of 512, 256, and 128,

in x- and y-direction. The input of the UNet includes either 10 or 14 channels, depending on whether only the current time step (xt) or both

the current and previous time steps (xt and xt−∆t) are used, alongside their associated atmospheric forcings. The input channels comprise

sea-ice thickness, air velocities, and temperature. The number of channels for each convolution is indicated below it, with the first block

having 16
:
32

:
channels. The upward arrows represent skip connections, allowing the neural network to retain information from earlier stages

and incorporate it into subsequent stages, bypassing the bottleneck.
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The last layer of the neural network is a linear function without any activation, as we cast learning of the SIT increment

as a regression problem. For all other layers, the mish activation function (Misra, 2019)
::
is

::::
used. As opposed to the more-175

often used rectified linear unit(relu), mish is a continuously differentiable function and has been previously proven to be

effective in computer vision tasks (Bochkovskiy et al., 2020; Zhang et al., 2019), demonstrating improvements in training

CNNs, particularly in addressing issues such as gradient explosion and gradient dispersion.

3.3 Partial convolution

As we can see in Fig. 1, the information on sea-ice thickness is only defined for ice and ocean grid-cells. Land grid-cells are180

masked. When performing two-dimensional convolutions on land cells, the presence of masked values has a detrimental effect

on the local averages computed during the convolution operation. The convolution kernels then also includes the land cells with

an assigned value of 0. One solution is to use partial convolutions (Liu et al., 2018) in every convolutional layer of the neural

network. The key idea of partial convolutions is to separate the missing points from informative ones during convolutions,

such that the results of convolutions only depend on sea
:::::
ocean and ice grid cells; land grid cells are simply omitted in the185

convolutional kernel. Let us see how it works in a simple example for a single convolution window.

Let us define W ∈ Rks×ks and b ∈ R, as the weights and bias of a convolution filter. ks is the kernel-size of each convolution,

always set to 3, except for the last layer of the neural network where it is set to 1. X ∈ Rks×ks represents the pixel values (or

feature activation values) being convoluted and M ∈ Rks×ks is the corresponding binary mask which indicates the validity of

each pixel/feature value: 0 for missing (land) pixels and 1 for valid (ocean and ice) pixels. The output of the proposed partial190

convolution x′ ∈ R, computed in a convolution window, is then

x′ =

WT(X⊙M) sum(1)
sum(M) + b if

∑
i,jMi,j > 0

0 otherwise,
(3)

where ⊙ is an element-wise multiplication and 1 is a matrix of ones that has the same shape as M. In comparison, a normal

convolution would be defined as

x′ =WTX + b, (4)195

independent of the validity of the grid cells.

From Eq. (3), we can see that the results of the partial convolution only depend on the valid input values (as X⊙M). The

scaling factor sum(1)/sum(M) adjusts the results as the number of valid input values for each convolution varies. It has been

used previously in order to recover missing regions from observational datasets (Kadow et al., 2020). In this study, the goal is

not to recover data, but to avoid artifacts near land caused by the underestimation in normal convolutions. The algorithm for200

partial convolution is further described in Appendix C1.
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3.4 Global constraint on loss training

Emulating physical systems with neural networks can lead to a non-physical response (Beucler et al., 2021). In order to reduce

a systematic bias of the surrogate model and to ensure that the neural network can correctly predict the global amount of sea

ice, we add to the loss an additional penalty term
:
an

:::::::::
additional

::::::::::
penalization

::::
term

::
to
:::
the

::::
loss. The non-penalized loss is defined205

by a pixel-wise mean-squared error (MSE), with x and y two vectors of dimension (Nx, Ny)

Llocal(x,y) =MSE(x,y) =
1

Nx ·Ny

Nx,Ny∑
i,j

(xi,j − yi,j)
2. (5)

The penalization term is defined by the squared difference between the global mean of x and y
:
:

Lglobal(x,y) = (x̄− ȳ)2 =

 1

Nx ·Ny

Nx,Ny∑
i,j

xi,j − yi,j

2

. (6)

This term weighted against the local loss with the help of a scalar λ210

L(x,y) = Llocal(x,y)+λLglobal(x,y). (7)

:::
Let

::
us

::::
note

::::
that

:::::
Llocal:::::

refers
::
to

:::
the

:::::
local

::::::::
dynamics

::
of

:::
the

::::::
sea-ice

:::::::::
thickness,

:::
and

::::
that

::::::
Lglobal:::::

refers
:::

to
:::
the

:::::
global

::::::::
dynamics

:::
of

::
the

::::::
sea-ice

:::::::::
thickness.

λ is manually tuned to 100.
::::::
Details

::
on

::::
how

:::
this

:::::
value

::::
was

:::
set

:::
are

:::::::
provided

:::
in

::::
Sec.

::::
C3.2.

:
The local loss is approximatively

::::::::::::
approximately 4 orders of magnitude larger than the global loss. By setting λ= 100, the global loss is

::::::::
represents

:
1% of the215

local loss. In the following parts, we show the results for λ= 0 and λ= 100. The former case will be called unconstrained and

the latter constrained
:
.

3.5 Neural network training

The neural networks are trained on a single NVIDIA A100 GPU with a batch size of eight samples. As optimizer, AdamW

(Loshchilov and Hutter, 2017) is used with a learning rate of γ = 5× 10−5 and a weight decay, scheduled with a 3 steps220

piecewise constant decay, starting at w = 1×10−6. If the loss in the independent validation dataset plateaus for 20 epochs, the

training is stopped early.

We trained four different neural networks, as described in Table 2. By setting λ to either 0 or 100, we switch the addi-

tional loss function constrain on or off, checking its influence on the performance. Additionally, we test if additional temporal

guidance by giving an additional time step as input helps the neural network to predict the increment in the sea-ice thickness.225
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Table 2. Comparison of the trained UNet-based neural networks in the study. Four neural network configurations are evaluated, varying in

the number of inputs and the presence of a constraining term in the loss function. The inputs include either xt alone or both xt−∆t and

xt, representing sea-ice thickness and atmospheric variables. The addition of a constraining term in the loss function regulates the neural

network based on the global sea-ice thickness.

Neural network Constraint (λ) Inputs

NN 1 input - unconstrained 0 xt (10 channels)

NN 1 input - constrained 100 xt (10 channels)

NN 2 input - unconstrained 0 xt−∆t, xt (14 channels)

NN 2 input -constrained 100 xt−∆t,xt (14 channels)

4 Surrogate modeling and evaluation methods

4.1 Surrogate modeling

To emulate the physical model Mp, we built a surrogate model Ms by applying the neural network fθ(·, ·) that predicts the

sea-ice thickness increment. Initializing the model with given initial conditions, xt0 , and given forcings F, the surrogate model

propagates the sea-ice thickness forward in-time, predicting the sea-ice thickness ∆t= 12hours
::::::::
∆t= 12h later,230

xf
t0+∆t = xt0 + fθ(xt0 ,F) =Ms(xt0). (8)

Note, for the ease of notation, we incorporate
:::
omit

:
the forcings into the surrogate model

::::::
notation

::::
Ms. Using the forecasted

state xf
t0+∆t as next initial conditions, we can cycle the surrogate model and predict the sea-ice thickness for longer lead-times

than ∆t,

xf
t0+N∆t =Ms ◦Ms ◦ · · · ◦Ms(xt0)︸ ︷︷ ︸

N times

(9)235

= xt0 + fθ(xt0 + fθ(. . . ,F),F). (10)

The forecast at longer lead times is consequently the initial conditions plus a recursive increment term.

Our baseline for the model comparison is constantly predicting the initial conditions without any increment, a so-called

persistence forecast, i.e. the sea-ice thickness is unchanged over time. It is a commonly used baseline in sea-ice forecasting,

as the auto-correlation of the sea-ice thickness in time is high up to a 1 month-lead time (Lemke et al., 1980; Blanchard-240

Wrigglesworth et al., 2011). We also compare the surrogate model to the daily climatology, computed on a day-of-year basis

over the complete training dataset.

4.2 Evaluation metrics for the surrogate

The goal of the surrogate model is to predict as accurately as possible sea-ice thickness over longer lead times than 12 hours
::::
lead

::::
times

::::::
longer

::::
than

::::
12 h, i.e. after several iterations of the surrogate model. We define the forecast skill of the surrogate at the245

10



k-th iteration by computing the root-mean-squared error (RMSE) between the predicted SIT and the actual SIT as simulated

by neXtSIM,

RMSE(k) =
1

Ns

1

Ns
::

∑
n=1

Ns

√√√√ 1

Nx ·Ny

Nx,Ny∑
i,j

(
xf
tn+k∆t −xtn+k∆t

)2Ns

√√√√ 1

Nvalid

Nvalid∑
i

(
xf
tn+k∆t,i −xtn+k∆t,i

)2

:::::::::::::::::::::::::::::::::::

. (11)

The RMSE between the prediction xf
n+k∆t and the simulation xn+k∆t is computed over all pixels (i, j)

::::
valid

:::::
pixels

:
i
:

of the

field of size (Nx,Ny),
:::::
Nvalid,

::::
i.e.

:::::
pixels

::::::
which

:::
are

:::
not

::::
land

:::::::::
grid-cells,

:
for each sample n of the test set containing Ns :::

Ns250

trajectories, initialized at time tn.

The global RMSE is calculated by averaging the RMSE values obtained when the whole sea-ice thickness fields are treated

as single data point. It represents the discrepancy in averaged sea-ice thickness between the prediction and the simulation. By

considering the global RMSE, we can assess the performance of the surrogate model in accurately reproducing the average

sea-ice thickness compared to the reference model.255

In order to quantify systematic errors of the surrogate model, we compute its mean error (bias). This metric tells about the

ability of the neural network to correctly estimate the total amount of sea-ice in the full domain,

bias(k) =
1

Ns

1

Ns
::

∑
n=1

Ns
1

Nx ·Ny

Ns
1

Nvalid
:::::::

∑
Nx,Ny

i,j
Nvalid
i
::::

(
xf

tn+k∆ttn+k∆t,i
::::::

−xtn+k∆ttn+k∆t,i
::::::

)
. (12)

The sea-ice extent (SIE) can be derived from the sea-ice thickness. We define a threshold σacc = 0.1m for the SIT (see

Appendix B for its definition) above which a grid point is considered as sea ice. By obtaining a classification mask between260

ice and no ice, we can easily define an accuracy metric based on the SIE. We define two terms
:::::::
Similarly

::
to

:::
the

::::::::::::
ice-integrated

::::
edge

:::::
error,

::::::
defined

:::
by

:::::::::::::::::::
Goessling et al. (2016)

::
on

::::::
sea-ice

::::::::::::
concentration,

:::
we

:::::
define

::
a
::::::
metric

:::::
which

::::::
counts

:::
the

:::::
pixels

::::::
where

:::
the

:::::::
surrogate

::::::
model

::::::::
disagrees

::::
with

::::::::
neXtSIM

::
on

:::
the

:::::::
presence

::
or

:::
not

::
of

:::::::
sea-ice.

::::
Two

:::::
terms

::
are

:::::::
defined: the first one N>σacc

indicates

the number of pixels where xtn+k∆t and xf
tn+k∆t disagree on

:::::::::::
overestimates the presence of sea ice

:::::
sea-ice, and the second

one N<σacc
where the models disagree on

:::::::
surrogate

::::::
model

::::::::::::
underestimates

:
the presence of open water

::::::
sea-ice

::::::::
compared

:::
to265

:::::::
neXtSIM. The accuracy is averaged over all Ns samples,

::
Ns::::::::

samples:

accSIE(k) =
1

Ns

1

Ns
::

∑
n=1

NsNs

::

(
1− N>σacc

(tn + k∆t)+N<σacc
(tn + k∆t)

Nsea−icepixels

)
. (13)

4.3 Quantification of the diffusion effect

Diffusion can impact the accuracy and fidelity of the surrogate model’s predictions. Excessive diffusion may lead to the loss

of important details and reduce the model’s ability to capture complex patterns. By quantifying diffusion, we can evaluate the270

model’s performance and how the diffusion process evolves with increasing lead time.

To analyze the smoothing of features across multiple iterations, we want to find a metric that can describe the evolution

of these features across different scales. Mathematicians have proposed several metrics for quantifying multifracality, such
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as box-counting algorithms and computation of fractal dimensions (Xu et al., 1993). For two-dimensional geophysical fields,

the power spectrum
:::::::
spectral density (PSD) has the ability to detect spatial properties over the different space scales (Lovejoy275

et al., 2008). This quantity allows for a quantitative assessment of the changes in the features and its multiscale distribution as

a function of the forecast lead time. Let x be a snapshot of the sea-ice thickness at a given time, either from neXtSIM or from

the surrogate model. We define the PSD of x by:

P (kxh
:
,kyv) =

∥∥∥∥dft(x)(kxh:,kyv)
∥∥∥∥2 , (14)

where dft(x) is the discrete Fourier transform of x. The PSD P is indexed by the spatial wave numbers kx and ky::
kh::::

and
::
kv .280

The energy as a function of the wave vector is in turn related to P via

E(kxh
:
,kyv) = (P (kxh

:
,kyv))

2. (15)

The power-law behavior of a field’s energy spectrum can be justified
:::::
caused by the underlying self-similarity or fractal nature

of the image. Fractals are patterns or objects that display similar structures and statistical properties at various scales. In the case

of an image, this means that certain statistical characteristics, such as texture or pixel intensity variations, repeat themselves285

across different scales. This energy spectrum can be identified with a power-law,

E(k)∼ C
:
∥k∥−β , (16)

where β is called a spectral exponent . In practice, this exponent can be numerically estimated by a linear regression between

lnE and ln∥k∥
::
C

:::
the

:::::::::::
normalization

::::::::
constant.

::::::
Details

::
on

:::
the

::::::::::
computation

:::
of

::
the

:::::::
spectral

::::::::
exponent

:::
are

:::::::
provided

::
in

::::::::
Appendix

:::
D5.

The power-law nature of the energy spectrum reflects the scaling properties of the field, where the statistical variations remain290

consistent regardless of the scales being observed. The power-law exponent β determines the degree of self-similarity and how

quickly the energy decreases as the frequency or spatial scale increases.

We define the spectral exponents’ ratio Qβ after t iterations by

Qβ(t) =
1

Ns

1

Ns
::

∑
i=1

NsNs

::

βi
surr(t)

βi
neXtSIM(t)

, (17)

the average over the full testing set of the ratio between the spectral exponent of predicted fields from the surrogate model and295

the spectral exponent of the fields as simulated with neXtSIM at the same time. If the surrogate model exhibits processes which

lead to over-diffusion, then the spectral exponent of the predicted SIT should be larger than that of the actual SIT, resulting into

a ratio Qb > 1. Hence, the ratio corroborates the emergence of diffusion in the forecast.

5 Numerical results

In this section, the trained neural networks are assessed with their predictive performance in the test dataset, how they can300

be used for surrogate modeling on daily-time scales, and how they perform for seasonal scales. Additionally, the diffusive

behavior of the neural networks is quantified. Hereafter, we present the results for each model based on their best validation

loss.

12



5.1 Short-term forecasting

In this paragraph, we will assess the performance of the surrogate model on a short-term timescale, specifically up to a one-305

month lead time. The metrics mentioned in Sec 4.2 are computed using the 2018 test dataset. They are reported in Table 3.

We believe that the global RMSE serves as a proxy for the consistency of the surrogate model, which we define as the averaged

sea-ice thickness in the domain. Based on this idea, we anticipate that the globally-constrained neural network will demonstrate

improved performance for forecast lead times exceeding 12 hours
:::
12 h.

Table 3. Statistical indicators to assess the performance of the surrogate models. The table shows the results for two lead time scenarios:

12 hours and 15 days. Two types of surrogate models are evaluated: those with 1 input (representing sea-ice thickness at time xt) and those

with 2 inputs (with SIT and atmospheric forcings at time (xt−∆,xt)::::::::
(xt−∆t,xt)). The models are trained with and without the addition of

constrains, represented by a regularization parameter (Constrains). The evaluation metrics include RMSE, global RMSE, and SIE accuracy

(ACC). Climatology and persistence baselines are included for comparison. Bold numbers indicate the best performing model in a given

column.

12 hours lead time 15 days lead time

Surrogate Constraint (λ) RMSE ↓ Global RMSE ↓ RMSE ↓ Global RMSE ↓ ACC ↑

Climatology - 3.76× 10−1
:::::::::
7.75× 10−1 1.44× 10−1

:::::::::
2.97× 10−1 0.376

::::
0.775

:
1.44× 10−1

::::::::::
2.97× 10−1 0.953

Persistence - 6.20× 10−2
:::::::::
1.28× 10−1 1.46× 10−2

:::::::::
3.01× 10−2 0.293

::::
0.603

:
4.91× 10−2

::::::::::
1.01× 10−1 0.949

1 input 0 4.12× 10−2
:::::::::
8.49× 10−2 6.57× 10−3

:::::::::
1.35× 10−2 0.197

::::
0.406

:
6.96×10−5

::::::::::
1.43×10−4 0.963

1 input 100 4.17× 10−2
:::::::::
8.59× 10−2 3.88×10−4

::::::::::
8.00×10−4 0.195

:::::
0.401

:
8.53× 10−4

::::::::::
1.76× 10−3 0.970

2 input 0 3.56×10−2
::::::::::
7.34×10−2 1.81× 10−3

:::::::::
3.73× 10−3 0.216

::::
0.445

:
1.41× 10−3

::::::::::
2.91× 10−3 0.966

2 input 100 3.63× 10−2
:::::::::
7.48× 10−2 1.74× 10−3

:::::::::
3.59× 10−3 0.202

::::
0.416

:
8.77× 10−5

::::::::::
1.81× 10−4 0.966

The introduction of a global penalization term in the constrained neural network reduces the global RMSE by one order of310

magnitude within 12 hours compared to the absence of penalization. However, the impact of the global loss term (as defined

in Eq. 6) on the RMSE relatively small
:
is
:::::::::

relatively
:::::
small

::
on

:::
the

::::::::
classical

::::::
RMSE,

::
as

:::::::
defined

::
in

:::
Eq.

:::::
(11), compared to the

influence of including additional time steps.

On average, for the constrained neural network with one timestep as input, we observe a 33 % improvement after 12 lead

hours
:
a
::::
lead

::::
time

::
of

::::
12h, and a 33 % improvement after 15 lead days over the persistence on the RMSE. For the constrained neu-315

ral network with two timesteps in the input, we observe a 41 % improvement after 12 lead hours
:::
12h, and a 31 % improvement

after 15 lead days over the
:::
days

::::
over

:
persistence. It is worth noting that all surrogate models exhibit significant improvements

over climatology in forecasting sea-ice dynamics for a 15-day period. On average, these improvements amount to an
:
a
:
46 %

enhancement compared to relying solely on climatology-based predictions for RMSE. The impact of adding
::::::
Adding the pe-

nalization term slightly reduce
:::::::
increases

:
the RMSE of the surrogate after 12 hours

:::
12 h

:
but improves the surrogate RMSE320

after 15 days , of respectively 1% and 6 % for either one or two inputs (see Fig. 3a for the comparative evolution of the RMSE

for 1 input up to a lead time of 25 days). The major improvement of adding the penalization term come
:::::
comes

:
from the
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global RMSEevaluation: after 12 hours, the global RMSE has improved by a factor 9.4 for the one input surrogate. ,
::::::
which

::
is

::::::
reduced

:::
by

:
a
:::::
factor

::
9
::::
after

:::::
12h.

::::::::
Regarding

:::
the

::
2
:::::
inputs

:::::::::
surrogate,

:::
the

::::::
impact

::
on

:::
the

::::::
global

::::::
RMSE

::::
after

::::
12 h

::
is

::::
only

::::
4 %.

::::
The

:::::
global

::::::
RMSE

::
is

:::::
much

:::::
more

::::::
volatile

::::::
during

:::::::
training,

:::::
being

:::::::
smaller

::::
than

:::
the

::::
local

:::::::
RMSE.

::
In

:::
the

::::
case

:::
of

:::
the

:
2
::::::
inputs

::::
NN,

:::
the325

:::::::::::
unconstrained

::::::
model

:::
had

::
a

::::
given

::::::
global

::::::
RMSE

:::::
which

::::::::
happened

:::
to

::
be

::::::
similar

::
to

:::
the

::::::
model

::::::
trained

::::
with

:::
the

:::::::::
constraint,

::::::
despite

:::
not

:::::
being

::::::
trained

::::
with

:::
the

::::::
global

::::
term.

::::
The

::::
fact

:::
that

:::
the

::::::
results

:::
are

::::
still

:::::
better

::
in

:::
the

::::::::::
constrained

::::
case

:::::
after

::
15

::::
days

::
is
::::
also

::
a

::::
proof

::::
that

:::
the

:::::
model

::::::::
improves

::::
with

:::
the

::::::
global

:::
loss

:::::
term.

We note that the global RMSE after 15 days is better in average for the unconstrained surrogate. Yet, as seen in Fig. 3,

the strong advantage of the constrained surrogate is the important reduction of the bias standard deviation, represented in330

transparency in panel (b). This improvement is further supported by evaluating the averaged SIT over the entire year, as

illustrated in panel (c). During periods of significant sea-ice production and melting, the surrogate model with the global

constraint exhibits a closer alignment with the neXtSIM output, indicating a higher level of accuracy. These findings suggest

that integrating a global constraint term during the optimization process enhances the surrogate model’s ability to capture and

reproduce the complex dynamics associated with sea-ice formation and melting.335

As the neural network is trained for a 12 hours
:::
12h

:
lead time, the first iteration of the surrogate model corresponds to its

targeted lead time. In this first iteration, we observe that stacking two timesteps in the inputs of the neural network improves

the surrogate by 13 % in terms of RMSE. In preliminary tests, we observed no further gain in performance with more than two

timesteps as input.

The forecast skill for up to a lead time of 25 days highlights the overall improvement of the constrained surrogate model340

compared to the persistence forecast, Fig. 4, as similarly observed in Tab
:
. 3. For the constrained surrogates, the two inputs

surrogate gain 14 % after 12 hours
::::
12h over the one input surrogate, but the results are reversed after 15 days, with a 3 %

improvement for the one input surrogate, as we can also observe in the Fig. 4. If those results leaded us to select
::::
Even

::
if

:::::
those

:::::
results

::::::
would

:::::
favor the surrogate model with two inputs, we need to remind that both biases

:::::
biases

:::
for

::::::
either

:
1
:::
or

:
2
::::::
inputs

are close to 0 and thus perfectly acceptable. While it
::
are

::::
thus

::::::::::
acceptable.

::
It is expected that the neural network gives a better345

RMSE with more inputs in the neural network, we .
:::
We

:
hypothesize that increasing the number of inputs in the neural network

leads to a higher likelihood
:::::
bigger

:::::::::::
accumulation

:
of errors being introduced in the input data . As

::::
when

:::
we

::::::
predict

:::::
with

:::
the

:::::::
surrogate

::::::
model,

:::::
since

:::
the

:::::
model

::::
was

:::::::::::::::::
non-autoregressively

::::::
trained

::
on

::::::
perfect

:::::
input

::::
data.

::
In

:::::
other

::::::
words,

::
as we cycle the neural

network, the predictions from previous iterations are used as inputs for subsequent iterations. If
:
,
::
so

::::
that

::
if there are errors

or inaccuracies in these predictions, they can propagate and accumulate over time, potentially leading to a degradation in the350

quality of the inputs
::::::
outputs. As the surrogate learns the dynamics with "perfect" conditions, we increase the error of the inputs

by having two timesteps as the input of the neural network after several iterations. Even if the two timesteps neural network

provides better results for the first iterations and for the global RMSE, it seems more relevant to focus on longer lead times for

model selection. In the next paragraphs, we will only present results for a surrogate model with one timestep in the input.

355

The evaluation of sea-ice extent (SIE) accuracy supports and strengthens our previous findings, providing additional evi-

dence for the reliability of the results. In particular, we observe that the constrained neural network with one timestep as input
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Figure 3. Analysis of the additional constraint during neural network training on the surrogate model over several iterations. In panel (a), the

forecast skill of the surrogate model is depicted with solid lines representing the average. The unconstrained neural network is represented

by the green
::::
brown

::::::
dashed line, while the constrained network is shown in purple. The black

::::
dotted

:
line represents persistence. Panel (b)

displays the bias error associated with the surrogate, in transparency is represented the standard deviation, to outline the variance reduction of

the constrained surrogate. In panel (c), the global conservation of sea-ice is plotted. The full-year trajectory is constructed by concatenating

60 forecast iterations. Every 30 days, the forecast is initialized using neXtSIM at the corresponding time and run for 60 iterations. The

surrogate models are compared to the neXtSIM output over the same period.

consistently outperforms other models in predicting SIE. The higher accuracy achieved by the constrained neural network

with one timestep as input suggests that this configuration effectively captures the relevant information and patterns necessary
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for accurate sea-ice dynamics prediction. This indicates that the specific constraints imposed during training, along with the360

inclusion of a single timestep as input, contribute to a better understanding and modeling of the underlying dynamics of SIT.

The consistent performance of this model across different evaluation metricsand
:
,
:::
see

::::
Tab.

::
3,

:::
Fig.

::
3
:::
and

::::
Fig.

::
4,

::::
and scenarios

further validates its reliability and robustness. This surrogate configuration is able to capture the essential features and patterns

of SIT dynamics, enabling more accurate predictions compared to other configurations.

365

Figure 4. Comparison of Root Mean Square Error (RMSE) between the
::::::::
constrained surrogate model

:::::
models

::
for

:::::
either

:
1
::::::
(purple

::::
solid

::::
line)

:
or
::

2
:::::
inputs

:::::
(green

:::::
dashed

::::
line),

:
and

::
the persistence

::::
(black

:::::
dotted

::::
line) approach for sea-ice thickness (SIT) prediction over a 25-day forecast

horizon. The
::::
While

:::
the

:
1
:::::
input

:::::::
surrogate

:::::
yields

::::
better

:::::
results

::
in
:::::
terms

::
of RMSE values are plotted

::
for

::::
more

:::
than

::
5
::::
days, demonstrating the

superior performance
:::::::
surrogate

::::
with

:
2
:::::
inputs

::::
gives

::::
better

::::::
results

:
at
:::

the
::::::::
beginning

:
of the surrogate model

::::::
forecast,

::
as

:::
can

:::
be

:::::::
observed in

accurately predicting SIT compared to the persistence approach
::::
zoom

::::::
window.

Despite its ability to predict sea-ice thickness over the full domain, the forecast skill is not homogeneous over the different

regions of the Arctic. The delimitation of the region from the National Snow and Ice Data Center was interpolated on the

neXtSIM grid to then compute the forecast skill on the different regions, see Fig. 5 and numerical results for 25 lead days in

Tab. 4. In Central Arctic, the surrogate forecast skill has an improvement of the RMSE of 31 % in average for a 25-day lead

time over the persistence. The variability of the forecast skill is equal to 0.0590 and is 34 % lower than the variability of the370

persistence after the same lead-time. In Greenland Sea, the forecast skill of the surrogate is 35 % better than persistence for a

25-day lead time. The forecast skills of both the persistence and the surrogate are in
::
on average low because of the amount of

sea-only pixels in this region during the full year. In every region, we systematically observe an improvement in both RMSE

and its standard deviation of the surrogate over the persistence. This means that we improve over most samples the ability of

the surrogate to predict the dynamics, across all regions. Notably, the Beaufort Sea exhibits a higher RMSE compared to the375
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Table 4. Comparison of RMSE and its standard deviation (σRMSE :::::
σRMSE) between the surrogate model and persistence for different regions.

The table presents the mean RMSE and Std RMSE
:::::
σRMSE:

values for the Central Arctic, Greenland Sea, East Siberian Sea, Kara Sea, and

Beaufort Sea as defined in Fig. 5a.
:::
The

:::::
RMSE

:::
are

::::::::
computed

::
for

:
a
::::
lead

:::
time

::
of
:::
15

::::
days.

Surrogate Persistence

Regions RMSE σRMSE RMSE σRMSE

Central Arctic 0.267
::::
0.550

:
0.0590 0.377

::::
0.777

:
0.0892

Greenland Sea 0.139
::::
0.286

:
0.0591 0.205

::::
0.423

:
0.0786

East Siberian Sea 0.246
::::
0.507

:
0.0727 0.366

::::
0.754

:
0.0967

Kara Sea 0.230
::::
0.474

:
0.1103 0.374

::::
0.771

:
0.1822

Beaufort Sea 0.368
::::
0.758

:
0.0921 0.553

::::
1.140

:
0.1376

other regions. This discrepancy prompts further investigation into the surrogate model’s limitations in accurately predicting sea

ice dynamics near land in this region.

5.2 Advection

The surrogate model exhibits favorable advection properties, encompassing both large-scale and fine-scale dynamics. This

successful advection can be attributed to the incorporation of atmospheric forcings in the model. The atmospheric forcings,380

which capture the influence of atmospheric conditions such as winds and temperatures, play a crucial role in driving the

movement and behavior of sea ice.

The thickness field as well as the SIE are represented in Fig. 6 for neXtSIM (a) and the surrogate (b). Additional SIT fields

are presented in the appendix for lead time of 5 days and lead time of 25 days in Fig. D2 and Fig. D3. The surrogate model

seems to correctly advect the sea-ice sheet on the large scale. The inclusion of atmospheric forcings as inputs to the surrogate385

is crucial for capturing and learning the driving dynamics of sea-ice. By incorporating these forcings as inputs to the surrogate,

we provide the model with the necessary information to better understand and predict the dynamic changes in sea-ice thickness.

When training the surrogate model without incorporating any atmospheric forcings, the absence of advection becomes appar-

ent. Without the driving influence of atmospheric conditions such as winds and temperatures, the surrogate model lacks the

necessary information to simulate and reproduce the advection of sea ice, it tends to exhibit behavior similar to persistence.390

In order to verify this visual impression, we followed manually 4 remarkable features, (c) on the MIZ, (d) a feature in Beau-

fort Sea, (e) an important
:
a

::::::::
persistent crack in central Arctic and (f) on the MIZ in the Barents Sea for 1 month prediction and

compared the motion of those features between the surrogate model and the actual neXtSIM dynamics. The results depicting

the sea-ice advection are illustrated in Fig. 6 in the lower panel. Notably, several features, particularly in the MIZ, demonstrate395

nearly identical displacements over this one-month period. These features appear to be accurately captured and reproduced by

the surrogate model, reflecting its ability to simulate the advection of sea-ice. Slight deviations in trajectories are observed for
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Figure 5. Regional forecast skills. Panel (a) illustrates the delineation of regions used for computing the regional forecast skill. Panels (b) to

(f) show the averaged forecast skill over the full test year for specific regions: (b) Central Arctic, (c) Greenland Sea, (d) East Siberian Sea,

(e) Kara Sea, and (f) Beaufort Sea. The purple
:::
solid

:
line represents the surrogate model forecast skill, while the black

:::::
dashed line represents

persistence.

features such as cracks within the sea-ice, but these differences do not indicate incoherent or erratic behavior. :
:::
the

::::::::::
trajectories

::::
keep

::::::
similar

:::::
paths,

:::::
which

:::::
could

:::
be

:::
due

::
to

:::
the

::::::::
advection

:::
of

::
the

:::::::
features

:::
by

::::::::::
atmospheric

::::::::
forcings.

5.3 Diffusion quantification400

The observation of a smoothing effect on fine-scale features which increases with the forecast lead time aligns with our

expectations. The optimization
::
the

:::
L2:::::::::::

optimization
::
of

::
a
:::::::::::
deterministic

::::::
neural

::::::::
network:

:::::::
although

:::::::
scoring

::::
well,

::::
the

::::::::
surrogate

:::::
model

:::
can

::::::
deviate

:::::
from

:::
the

:::::::
genuine

::::::
physics

::::
with

:
a
:::::::::
prominent

:::::::::
smoothing

::
of

:::
the

::::
fine

:::::
scales.

::::
The

:
goal of training is to minimize

the mean square error (MSE), which entails reducing discrepancies and errors by creating an average over the features. This

smoothing effect can be seen in the upper panel of Fig. 7. While the surrogate model is able to predict the global and local405

advection patterns of sea-ice, it tends to average out the fine-scale features over successive iterations. The observed smoothing

effect highlights the trade-off between capturing large-scale dynamics and preserving fine-scale features in the surrogate model.
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Figure 6. Evaluation of
::
the

:::::::
advection

:::::
from

::
the

::
1

::::
input

:::::::::
constrained surrogate modeladvection performance. (a) neXtSIM sea-ice thickness

(SIT) on May 30, 2018, with zoomed regions indicated for panels c), d), e), and f). (b) Surrogate model output on May 30, 2018, after a 30-

day forecast initialized on May 15, with sea-ice extent (SIE) computed from neXtSIM (red) and the surrogate (yellow). Similar delimitation

of sea-ice edges is observed in both curves. Panels c), d), e), and f) depict manual feature tracking in different Arctic regions: c) MIZ in

Greenland Sea, d) Beaufort Sea, e) Central Arctic, and f) Barents Sea. The trajectories for 30 days are shown in red
:::::
purple for neXtSIM and

yellow
::::
white

:
for the surrogate model.

19



Figure 7. Comparison of neXtSIM (a) and surrogate (b) runs for a 30-day
:::::
25-day period in the Central Arctic. The fine-scale dynamics

observed in panel (a) are smoothed in the surrogate model (b).

While the model may sacrifice some fine-scale details, it still retains the essential advection patterns and provides reliable

predictions on a global scale.

This smoothness can be quantified by computing the power spectral density (PSD) (Hess et al., 2023; Neuhauser et al.,410

2022) and the Qb ratio as defined in Sect. 4.3. The results are presented in
:::
Fig. 8. After 12 hours, the PSD of neXtSIM

and the surrogate are close: the surrogate model exhibit similar multiscale properties than the physical model. We found

the spectral exponent to be a good quantitative measurement of the diffusion process of the surrogate model. When
:::
As the

number of iteration of the surrogate model increase,
::::::
grows,

:::
we

:::::::
observe

:::
that

:
the smoothness of the field is visually more

important
:::::::
increases. This means that

::
we

::::
lose

::::::::::
information at high frequencies, we lose information, thus the PSD decrease on415

high frequency
:::::::
decreases

:::
for

:::::
high

::::::::::
frequencies,

:
see Fig. 8 (b). The reduction in high-frequency PSD

:::
This

:::::::::
reduction

:::
for

::::
high

:::::::::
frequencies

:
further supports the notion that the diffusion process

::::::::
processes within the surrogate model leads to a loss of detailed

information and finer-scale features. When computing β, we see a fast increase of β when the number of cycle increase,
:::
see

:::
Fig.

:
8 (c). In 10 lead-day time, we have an increase of the β exponent of 8%

:::
6% averaged over the full year. Interestingly,

the spectral exponent does stabilize after 10
::
20

:
lead days and then slowly decrease. We hypothesize that the neural network420

has attained its resolution capacity
:::::::
reached

::
its

::::::
highest

:::::::
possible

:::::::::
resolution for a correct advection of the

::::::::::::
representation

::
of

:
sea-

ice on the
:::::::
advection

::
at
:

global scale by reducing the fine-scale dynamics that is inherently chaotic and stochastic .
::::::::
fine-scale

::::::::
dynamics.

::
In

:::::
other

::::::
words,

:::
the

::::::::
surrogate

::::::
model

::
is

::::
able

::
to

::::::::
correctly

::::::
advect

::::::
sea-ice

::::::::
thickness

::
up

:::
to

:
a
:::::
given

:::::::::
resolution,

:::::::
beyond

:::::
which

:::::::::
smoothing

:::
the

::::::::
fine-scale

::::::::
dynamics

:::::
yields

:::::
lower

::::::::
RMSEs.

5.4 Long-term forecast425

In this section, we will discuss the ability of the surrogate model to forecast the dynamics of the sea-ice thickness at a seasonal

scale,
::::::::

focusing
:::
on

:::
the

::::::::::
constrained

:
1
:::::

input
::::::::
surrogate

::::::
model. Seasonal forecast of arctic

:::::
Arctic

:
sea-ice is complex (Sigmond

et al., 2013), and even more so on a high resolution
::::::::::::
high-resolution

:
grid. While previous results were presented with at most
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Figure 8. Evaluation of Power Spectrum Density
:::::
power

::::::
spectral

::::::
density

:::::
(PSD)

:
and Diffusion Process

:::::::
diffusion

::::::
process

:
in Surrogate

Modeling
:::::::
surrogate

:::::::
modeling. (a) Power spectrum density

:::
PSD of one neXtSIM output (blue

:::::
orange

:
points) and one surrogate output after 12

hours (purple points), indicating a close match. (b) Power spectrum density
:::
PSD

:
after 30 lead-day time of the surrogate model compared to

neXtSIM at the same time, showing lower values for high spatial frequencies in the surrogate model. (c) Qβ values quantifying the diffusion

process for the surrogate, with the blue
:::::
orange

::::::
dashed line representing neXtSIM for comparison.
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60 iterations of the surrogate model, we present here runs of the surrogate with 720 iterations which correspond to 360 days

forecast of the
:::
day

:::::::
forecasts

::
of
:
sea-ice . Those forecast

::::::::
thickness.

:::::
Those

::::::::
forecasts

:
are initialized from January 2006 to January430

2008, with several initialization periods evenly distributed during that period. We
::::
initial

:::::::::
conditions

:::::::
sampled

:::::
every

:::
30

:::::
days.

::
In

::::
total,

:::
we

:
have 25 year-long runs

:::
runs

::
of

::::
360

::::
days

:
to evaluate the surrogate model(,

:
see Fig. 9). In the appendix see Fig. D4,

we propose .
::
In

:::::::::
Appendix

:::
D2,

:::
we

:::::
show some snapshots of the seasonal forecast model over the full year, accompanied by the

SIE delimitation.
:
,
:::
see

:::
Fig.

::::
D4. The surrogate model is stable over the full year, and the RMSE reach the climatology after 5

::
is

:::::
lower

:::
than

::::
that

::
of

:::
the

:::::
daily

::::::::::
climatology

:::
for

:
6
:
months. In the bottom panel of the figure

:::
Fig.

::
9, the global averaged SIT for the435

surrogate model aligns with both the neXtSIM output and the climatology-based approach. The non-negligible bias of the cli-

matology come from the fact that the daily climatology is computed over 2009−2016 and is directly linked to sea-ice thinning.

This consistency is partially
:::
can

:::
be attributed to the low bias exhibited by the constrained surrogate model, as demonstrated

earlier.
:::
see

::::
Fig.

::
3. The constrained model’s reduced

:::
low

:
bias helps maintain a physically realistic behavior of the sea-ice, even

during long-term forecasts. The low error values
::
of

:::
the

:::
bias

:
observed during each iteration contribute to maintaining the physi-440

cal integrity and conservation of the sea-ice in the surrogate model. This indicates that the surrogate model’s predictions remain

consistent with the overall dynamics of sea-ice, supporting its ability to capture the essential characteristics and behavior of the

system. However, it is worth noting that when testing the surrogate model on a two-year forecast, difficulties were encountered

in accurately predicting the dynamics beyond one year due to the constant, albeit slow, increase of the error of the surrogate.

. In terms of sea-ice extent (SIE) prediction, the surrogate model demonstrates the capability to accurately forecast the edge445

of the sea-ice throughout the year, regardless of the initialization period, as shown in Figure 10. As anticipated, the surrogate

model performs significantly better than persistence during periods of high variation, particularly during summer and autumn.

::
In

::::::
periods

::::::
where

:::
the

:::
ice

::::
edge

::
is
::::::
almost

::::::
static,

:::
the

:::::::::
persistence

::
is
::
a

::::
good

::::::::
baseline

::::::::
prediction

:::
for

:::
the

:::::::
position

:::
of

:::
the

:::
ice

:::::
edge.

:::::
While

:::
our

::::::::
surrogate

::::::
model

:::
still

::::::::
correctly

:::::::
advects

::::
SIT,

:::
the

::::::
results

:::
for

:::
the

:::
SIE

::::::::
accuracy

:::
do

:::
not

:::::
differ

:::::
much

:::::
from

::::
those

:::
of

:::
the

:::::::::
persistence.

:::::::
Indeed,

::::
since

:::
the

::::
SIE

:
is
:::::::::::::
post-processed

::::
from

::::
SIT,

:::
and

::::
only

:::::::
partially

:::::
relies

:::
on

::
the

:::::::
position

::
of

:::
the

:::::
MIZ,

:::
we

:::
lose

:::::
most450

::
of

:::
the

::::::
benefit

::
of

:
a
::::::
correct

::::
SIT

:::::::::
prediction

::
by

:::
the

::::::::
surrogate

::::::
model.

:::::
Even

::::::
though

::
it
::
is

:
a
::::::
useful

::::::
marker

:::
for

:::
the

::::::::
marginal

::
ice

:::::
zone

:::::
(MIZ),

::::
this

::::::::::::
post-processed

:::::::
variable

::
is
::::::::::
inadequate

::
to

::::::::
represent

::::
large

:::::
scale

::::::::
dynamics

::
of

::::
SIT,

::::
e.g.,

::
in

:::
the

:::::::
Central

::::::
Arctic.

::
It

::::
only

::::::::
compares

:::
the

::::::
position

::
of

:::
the

:::
ice

:::::
edge,

:::
and

:::::::
removes

:::
the

::::::::::
information

:::::
about

:::::
global

::::::
motion

::
of

::::::
sea-ice

::::::::
thickness

:::::
inside

:::
the

:::
ice

:::::
sheet.

6 Discussion455

6.1
:::
Fast

:::::::::
emulation

::
of

::::::::::::::
high-resolution

::::
SIT

Our proposed surrogate model based on a UNet neural network can emulate the large-scale sea-ice thickness as simulated by

neXtSIM on daily and seasonal timescales. The main advantage of the emulator is the computational time needed for a forecast.

Once the neural network is trained, computing one iteration of the surrogate, a 12 hours
:::
12h

:
forecast, takes approximately

72 ms
:::::
72ms

:
on a single NVIDIA A100 GPU. A forecast for one year takes under 1 min

::::
1min. This opens the perspective to460

run a large ensemble of simulations for complex sea-ice models, which can
:::::
could facilitate data assimilation.

:::
Yet,

:::
the

::::::::
observed
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Figure 9. Performance evaluation of constrained surrogate model and comparison with persistence and climatology for seasonal forecast. (a)

Forecast skill of the constrained surrogate model for year-long forecasts, based on 25 runs with different initialization times. The surrogate

model
::::
(solid

::::::
purple)

:
is compared against persistence

::::::
(dashed

:::::
black)

:
and daily climatology

:::::
(dotted

:::::
green). (b) Global averaged sea-ice

thickness throughout the year, starting in January 2006
::::
2008, comparing the surrogate model

::::
(solid

:::::
purple), the physical model neXtSIM

::::::
(dashed

::::::
orange), and the daily climatology

:::::
(dotted

:::::
green). The seasonality of the SIT is well-preserved by the surrogate

:
.
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Figure 10. Estimation of sea-ice extent forecasting performance for different initialization times and forecast horizons. The left panel illus-

trates the sea-ice extent (SIE) accuracy on the 2006−2008 test dataset with varying initialization times. The right panel displays the relative

difference between the SIE accuracy of the surrogate model and persistence.

::::::::
smoothing

::::::
effects

::::::
might

:::::
cause

::
a
:::::::
collapse

:::
of

:::
the

::::::::
ensemble

:::
for

::::::
longer

::::
lead

::::::
times.

::::
This

::::::
would

::::::
require

::::::
further

::::::::
analysis

::
or

::
a

:::::::::
subsequent

:::::::::::
improvement

::
of

:::
the

::::::::
surrogate

::::::
model.

Note that the training of the neural network remains slightly costly, around 20 h
::::
18h on a single NVIDIA A100 GPU.465

Approximately, 10000 hours
::::::
10000h

:
on NVIDIA A100 GPUs were necessary to conduct this study.

Using the PSD as a quantification of the diffusion shows that the diffusion process attains a threshold. We hypothesize that

the surrogate model has reached its resolution capacity for correctly simulating the advection of sea-ice on a global scale.

By reducing
:::::::
Training

:
a
::::::::
surrogate

::::::
model

:::
for

::
a
::::::
coarser

:::::::::
resolution

::
is

::::::
faster,

:::::::
however,

::
a
::::::::
surrogate

::::::
model

:::
for

::::
high

::::::::::
resolutions

:::
can

::::::
resolve

:::::
more

:::::::::
processes.

::
To

::::::::
showcase

::::
this,

:::
we

:::::::
display

:::::
results

:::
for

:::::::::
additional

::::::::::
experiments

:::
on

:
a
::::::::::::
coarse-grained

:::::::
dataset

::::
with470

::::::::
128× 128

::::
grid

::::
cells

::::::::
compared

::
to
:::::::::
512× 512

::::
grid

::::
cells

::
at

:::
the

::::
high

:::::::::
resolution.

:::
The

::::::
neural

:::::::
network

:::
has

:::
the

::::
same

::::::::::::
configuration

::
as

::
for

:::
the

::::
high

:::::::::
resolution

::::::
dataset,

:::
and

:::::::
follows

::
the

:::::
same

:::::::
training

::::::::
procedure.

:::
To

:::::::
compare

:::
the

::::::::
surrogate

::::::
trained

::
on

:::
the

:::::::::::::
high-resolution

::::::
dataset

::
to

::
the

::::::::
surrogate

::::::
trained

:::
on

:::
the

:::::::::::::
aforementioned

:::::
coarse

:::::::::
resolution,

:::
we

::::
plot

:::
the

:::::::::::::::
root-mean-squared

:::::
error

:::::::
(RMSE)

:::
for

::::
both

:::::::::
resolutions

::
in

::::
Fig.

:::
D1.

:::::::::
Surrogate

::::::::
modeling

::
at

:::
the

:::::::::::::
high-resolution

:::::::::
decreases

:::
the

::::::
RMSE

::
by

:::::
31%

::::
after

:::
12

:::::
hours

::::::::
compared

:::
to

::
the

::::::
coarse

:::::::::
surrogate.

::::
This

:::::::::::
improvement

:::::::
similarly

:::::
holds

::::::::::
throughout

::::::::
resolution

:::::
levels

::::
and

::::
also

::
for

::::::
longer

::::
lead

:::::
times.

:::::
Since

::::
this475
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:::::::::::
improvement

::
is

::::::
visible

::
at

:::
all

::::::::::
resolutions,

::
it

:::
can

:::
be

::::::
linked

::
to

:
a
::::::

better
::::::::::::
representation

::
of

:::
the

::::::::::
small-scale

:::::::::
dynamics

:::
and

:::::
their

::::::
impacts

:::
on

:::::
larger

::::::
scales

::
for

::::
the

::::::::::::
high-resolution

:::::::::
surrogate.

:::::
While

::::
the

::::::
training

::::
and

::::::::
inference

::
of

::::
this

:::::::::::::
high-resolution

::::::::
surrogate

:::::
model

:::
are

::::::::::
significantly

:::::
more

::::::::::::::
time-consuming

::::
than

::
the

:::::::::::::
coarse-grained

::::::::
surrogate,

::
it

::
is

:::
still

:::::
about

::::
100

:::::
times

:::::
faster

::::
than

:::::::
physical

:::::
model

::::::::::
simulations.

::::::::::::
Consequently,

:::
we

::::
see

:
a
::::
gain

:::
by

:::::
using

:::::::::::::
high-resolution

::::
data

:::
for

::::::::
surrogate

::::::::
modeling,

:::::
even

::
if

:::
the

::::::::
surrogate

::::
leads

::
to

::::::::
smoothed

:::
out

:::::::::
forecasts.480

6.2
::::::::::

Architecture
::
of
::::
the

::::::
neural

:::::::
network

::::::
Several

:::::
neural

::::::::
networks

::::
have

::::
been

::::::::::
investigated

:::
on

:
a
:::::
lower

::::::::
resolution

::::::
set-up,

::
by

:::::::::::::
coarse-graining

:::
the

::::::
dataset

:::::
down

::
to

:
a
:::::::::
128× 128

::::::::
grid-cells

:::::
arrays.

:::
On

::::
this

:::::
lower

::::::::
resolution

::::::
setup,

::::
both

::::::
ResNet

::::::::::::::
(He et al., 2016)

:::
and

::::::::::
ConvLSTM

:::::::::::::::
(Shi et al., 2015)

::::::::::
architectures

::::
have

::::
been

:::::::
studied,

:::::::
yielding

::::
quite

::::::
similar

::::::
results

::
in

:::::
terms

::
of

:::::::
forecast

:::::
skills

::
on

:::
the

:::::::::
validation

::::::
dataset.

:::::
From

:::
our

:::::::::::
experiments,

:::
the485

::::::
specific

::::::::::
architecture

::
of

:::
the

::::::::::::
convolutional

:::::
neural

:::::::
network

::::
does

:::
not

::::::
matter

:::::
much.

::::
The

:::::::::::
LSTM-based

::::::::
approach

::::
with

::
a

::
lag

:::
of

::::
48 h

::
led

::
to
::::::::::
satisfactory

:::::::
forecast

:::::
skills;

::::
but,

:::::::
because

::
of

:::
the

::::
high

::::::
training

:::::
costs

:::::::::::
(441s/epoch)

::::::::
compared

::
to
:::
the

:::::
UNet

::::::::::::
(108s/epoch),

:::
we

:::::
chose

::
to

::::
focus

:::
on

:::
the

::::
UNet

::::::::
structure

:::
for

:::
the

::::::::::::
high-resolution

:::::::
dataset.

:::::::::
Regarding

::
the

:::::::
ResNet

::::::::::
architecture,

::::
also

:::::::::::
implemented

::::
with

:::::
partial

:::::::::::
convolution,

::
the

::::::
results

:::::
were

:::
also

:::::
quite

::::::
similar,

::::::
despite

::::::
higher

:::::::
training

::::
costs

::::::::::::
(172s/epoch).

6.3
::::::::::

Smoothness
::
of

:::
the

:::::
fields

::::
and

:::::::::::
deterministic

::::::
neural

:::::::::
networks490

:::::
Using

:::
the

::::::
power

:::::::
spectral

::::::
density

:::
as

:
a
::::::::::::
quantification

::
of

:::
the

::::::::
diffusion

::::::
shows

::::
that

:::
the

::::::::
diffusion

:::::::
process

::::::
reaches

::
a
:::::::::
threshold.

::
By

::::::::
omitting the inherently chaotic fine-scale dynamics, which exhibit an apparently

:
a
:
stochastic behavior, the surrogate model

achieves a balance between capturing the essential large-scale patterns and minimizing the impact of unpredictable fluctuations:

chaotic and stochastic processes lead to a high sensitivity to initial conditions, making these processes difficult to model

accurately. By prioritizing the larger-scale dynamics and averaging out fine-scale features, the surrogate model mitigates the495

influence of these chaotic and stochastic processes. This mitigation results into more stable and reliable predictions on a global

scale. This hypothesis implies that the surrogate model focuses on capturing the dominant advection patterns that drive the

overall behavior of sea ice, while sacrificing some of the finer details. Whereas this trade-off may result in a loss of information

for fine-scale dynamics, it allows the model to provide valuable insights into global-scale advection patterns.

:::
The

:::::::::
smoothing

::::::
effects

:::
are

:::::::
directly

:::::
linked

::
to
:::

the
:::::::

training
:::
of

:::
the

:::::
neural

:::::::
network

:::
as

:
a
:::::::::::
deterministic

::::::::
surrogate

::::::
model.

:::
We

::::
can500

:::::
expect

::::
less

:::::::::
smoothing

::
for

:::::
better

:::::::
models

::
as

:::
the

:::::::::
uncertainty

::
is

:::::::::
decreased.

::::::::
However,

::::::
caused

::
by

:::
the

:::::::::
availability

::
of

:::
the

:::::::
training

::::
data

:::
and

::
by

::::::::::::
computational

:::::::::::::
considerations,

:::
we

:::::
focus

::
on

:::::::::
predicting

::::
lead

::::
times

:::
of

::::
12h,

:::
and

:::::
there

:::
are

::::::
always

::::::::
situations

:::
that

::::::
cannot

:::
be

:::::::
predicted

:::::
from

:::
the

:::::::
available

::::
data.

:::
By

::::::::::
maintaining

:
a
:::::::::::
deterministic

::::::
neural

:::::::
network,

::::
there

::::
will

:::::::::::
consequently

::
be

:
a
:::::::::
smoothing

::::::
effect,

:::
and

:::
we

::::::::
generally

::
do

:::
not

:::::::::
anticipate

::::::::
significant

::::::::::::
improvements

::
in
:::
the

::::::
quality

:::
of

::::::
details.

:::
By

:::::::
adapting

:::::::::
generative

:::::
neural

:::::::::
networks,

:::::::
however,

:::
the

::::::::
surrogate

::::::
model

:::::
could

:::::
learn

::
to

::::::::
properly

::::::
sample

:::::
from

:::
the

:::::::
forecast

::::::::::
distribution

:::
and

::::::
hence

:::::::
increase

:::
the

::::
level

:::
of505

::::::::
fine-scale

:::::
details

:::::::::::::::::
(Ravuri et al., 2021)

:
.
:
It
::
is
:::::
worth

::::::
noting

:::
that

:::::::::
generative

:::::::
models

:::
and

::::::::
especially

:::::::::
denoising

:::::::
diffusion

:::::::
models

:::
are

:::::::
currently

:::::
under

:::::::::::
investigation

::
by

:::::::
different

:::::
teams

:::
for

::::::
diverse

:::::::::::
geoscientific

:::::::
problems

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Finn et al., 2023a; Leinonen et al., 2023; Mardani et al., 2023; Price et al., 2023)

:
.
::::::::::
Nonetheless,

:::
the

:::::::
training

::
of

::::
such

:::::::
models

:
is
::::::::::
notoriously

:::::
more

::::::
difficult

::::
than

::::
that

::
of

:::::::::::
deterministic

:::::::
models.
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::::::
Smooth

:::::
fields

:::
are

:::::
good

::
in

:::::
terms

::
of

::::::
RMSE.

:::::::
Caused

::
by

:::
the

::::::::::::::::
discrete-continuous

::::::
sea-ice

:::::::::
processes,

:::
the

::::::
RMSE

:::::
might

:::
not

::
be

:::
an

::::::
optimal

:::::::::
evaluation

::::::
metric.

:::::::
Training

:::
for

:::::
other

::::::
metrics

::::
can

::::::
become

:::::::::::
increasingly

::::
more

:::::::::::
complicated

:::
and

::::::
would

::::::
exceed

:::
the

:::::
scope510

::
of

:::
the

:::::
study.

:::::::::::
Furthermore,

:::
the

::::::::
surrogate

::::::
model

::
is

::::::::
statistical

::::::
driven,

:::::::
whereas

:::::::
models

:::
like

::::::::
neXtSIM

:::
are

::::::
based

::
on

:::
our

::::::::
physical

::::::::::::
understanding.

::::
Such

:::::::
models

:::::
based

::
on

::::::::
physical

::::::::
principles

:::
can

:::::
have

:::::::::
advantages,

:::::::::
especially

:::
for

::::::
futures

:::::
cases

:::::
where

:::
we

::::
have

:::
an

:::::::::::
extrapolation

:::
task

::::::
caused

:::
by

::::::
climate

:::::::
change.

6.4
:::::::

Seasonal
::::::::
forecasts

Regarding seasonal forecasts, the model is stable for lead times up to one year, even if the climatology has a smaller fore-515

cast error after 5 months. With this found ability to generate a year-long forecast, we can run a data assimilation scheme to

estimate the initial conditions. Using
:
6

::::::
months.

::::
Our

::::::::
surrogate

:::
can

::::::::
conserve

:::
the

::::::
average

::::::
sea-ice

::::::::
thickness

::::
over

:
a
::::
full

::::
year,

:::::
while

:::
also

::::::::
represent

:::::::::
advection.

::::
This

::::::::
indicates

:::
that

:::
our

::::::::
surrogate

::::::
model

:::
can

:::::::
capture

:::
the

:::::::::
large-scale

:::::::::
dynamical

:::
and

:::::::::::::::
thermodynamical

:::::::
evolution

:::
of

:::
the

:::
sea

::
ice

::::
over

:::
the

::::
full

::::
year.

:::::
These

::::::::::::
phenomenons

:::
are

:::::
driven

:::
by

:::::::
external

:::::::
forcings

::::
from

:::
the

::::::::::
atmosphere

:::
and

::::::
ocean.

:::
Yet,

:::
the

:::::::::
surrogate

:::::
model

::::
can

::::::::
represent

:::
the

::::::::
influence

:::
of

:::
the

:::::::
forcing

::
on

:::::
SIT,

:::::::::
something

:::
that

::
a
::::::::::
climatology

:::::
and,

:::::::::
especially,520

:
a
::::::::::
persistence

:::::::
forecast

::::::
cannot

:::::::
exhibit.

:::::::::::
Furthermore,

:::
for

:::::::::
short-term

:::::::::
forecasts,

:::
the

::::::::
surrogate

::::::
model

::::::::::
consistently

:::::::::::
outperforms

:::::::::
persistence

:::
and

:::
the

:::::
daily

::::::::::
climatology,

::::
and

::
it

:::::
shows

:::::
better

::::::::
forecasts

::::
than

:
a
:::::
daily

::::::::::
climatology

:::
for

:::::
more

::::
than

:
6
:::::::
months

::
in

:::::
terms

::
of

::::::
forecast

:::::
skill.

6.5
:::::::
Towards

::::
data

:::::::::::
assimilation

::::
and

:::::::::::
multivariate

:::::::::
emulation

:::
The

::::::::::::::
implementation

::
of

:
the surrogate model

::
as

::::::
neural

:::::::
network

:
allows us to simply compute an adjointfor the model by525

backpropagating through time
:::::
easily

:::::::
compute

::
its

::::::
adjoint. Thus, we can easily

:::::
could use a four-dimensional

::::::::
variational

::::::::
(4D-Var)

data assimilation scheme.
:::
Our

::::::
current

:::::::
4D-Var

::::::::
approach

:::::
under

:::::::::::
investigation

::::
uses

:::
the

:::::::
surrogate

::::::
model

::::::::
primarily

:::
for

:::::::::
short-term

:::::::::
forecasting.

:::::::
Despite

:::
the

:::::::::
smoothing

:::::
effect,

:::
we

::::::
believe

::::
that

:::
the

::::::::
utilization

:::
of

:::
the

::::::
adjoint

:::::
could

:::::
prove

::::::::
beneficial.

:

:::
The

::::::::
definition

::
of
:::
an

::::::
adjoint

::
is

:::::::::
meaningful

:::
for

:::
the

::::::
sea-ice

::::::::
thickness

:::
on

:::
the

::::::::
projected

::::
grid.

:::::
While

::::::::::
performing

:::::::::
variational

::::
data

::::::::::
assimilation

::
on

::::
this

::::
grid

:::::
poses

:::
no

::::::
issues,

:
it
::

is
:::::::::

important
::
to

:::::::::::
acknowledge

::::
that

:::
the

::::::::::
constructed

::::::
adjoint

::::::
would

:::::
differ

:::::
from

:::
the530

:::
one

::
of

::::::::
neXtSIM

:::
on

:::
the

::::::
original

:::::::::
triangular

:::::
mesh.

::::::::
However,

::
a

:::::::
common

::::::::
approach

::
in

::::::::::
operational

:::::::::
variational

::::
data

::::::::::
assimilation

::
is

::
to

:::::
apply

::::
inner

::::
and

::::
outer

:::::
loops

:::::::::::::::::::::
(e.g., Rabier et al., 2000).

:::
In

::::
inner

::::::
loops,

:::::::
cheaper

::::::::
surrogate

:::::::
models,

:::
e.g.,

::::
the

:::::
model

::
at

::
a

:::::
lower

::::::::
resolution,

::::
are

::::
used,

::::::::
whereas

:::
the

:::
full

:::::::::::::
high-resolution

:::::
model

::
is
:::::

only
:::
run

::
in

::
a

:::
few

:::::
outer

:::::
loops.

::::
This

::::::
could

::
be

:::::::::::
implemented

:::
by

:::::::
applying

::::
our

::::::
neural

:::::::
network

::::::::
surrogate

::
for

:::::
inner

:::::
loops

:::
and

:::
the

::::
full

:::::::
neXtSIM

::::::
model

::
in

:::::
outer

:::::
loops.

This study only focuses on predicting the sea-ice thickness, an important variable
:
, especially in operating forecast. However,535

other variables, like the sea-ice velocity components, have important information for the prediction from the physical model
::
as

::::::::
prognostic

:::::::::
variables,

:::::
could

:::
be

::::::::
predicted

::
at
::::

the
::::
same

:::::
time. Using the interactions between different variables can provide

valuable information to the surrogate model. Hence, learning to emulate these variables has the potential to improve the

prediction of the sea-ice thickness. Nevertheless, multivariate modeling is a more complex objective for the neural network than

univariate modeling.
:::
Yet,

::
a
:::::::::
successful

::::::::::
multivariate

::::::::
surrogate

:::::
model

::::::
might

::::
offer

::::
new

:::::::::::
perspectives

::
for

:::::::::::
multivariate

:::::::::
variational540

:::
data

:::::::::::
assimilation.
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6.6
:::::::

Influence
:::
of

:::
the

::::::
forcing

:::::
fields

In this study, we use ERA5 reanalysis forcings, the same forcing product that has forced the simulations with neXtSIM

:::::::
neXtSIM

:::
in

:::
our

::::
used

::::::::::
simulations. Preliminary results of running the surrogate model with a

:::::::
forcings

:::::::
derived

::::
from

:
CMIP6

product
:::::
model

:::::
output

:
show that the surrogate is still stable on the long term

::
can

:::
be

:::
run

::::
with

::::
other

:::::::
forcings, Fig. D5. The forcing545

derived from the CMIP6 is
::::
Since

::::
this

::::::
forcing

::::
data

::
is

:::::
based

:::
on a free-running simulationand, consequently,

:
,
::
it results into a

different instantiation
:::::::
evolution

:
of the sea-ice thickness than with the ERA5 reanalysis product. Yet, the model is still stable

:::::
stable

::::
even for others types of forcing. Therefore, the surrogate model has learned to represent the large-scale sea-ice dynamics

needed to simulate the sea-ice thickness on daily and seasonal timescales.

7 Conclusions550

A neural network can emulate the sea-ice thickness at a resolution of 10km as similarly simulated by neXtSIM. Trained for

prediction of a 12 h lead time, the neural network can be iteratively applied for surrogate modelling
::::::::
modeling to forecast the

thickness for up to one year. The advantage of the surrogate model over a persistence forecast prevails from the daily timescales,

with improvements of around 36 %, to seasonal time scales with more than 50% improvement.

We introduce a regularization method for the training of the neural network, constraining the deviations of the global aver-555

aged sea-ice thickness from the targeted simulations. This regularization reduces the bias of the neural network and increases

the global consistency. The increased consistency then results into a decreased forecast error on daily to weekly timescales.

By adding atmospheric forcings, the surrogate model can represent advective and thermodynamical processes that influence

the sea-ice thickness on a large, Arctic-wide, scale. Hence, the seasonal predictions with the surrogate have a predictabilty of

up to 8 months, measured by comparison to the daily climatology.560

When the surrogate model is iterated, it exhibits diffusive processes, which lead to a smoothing of the prediction. These

processes are gaining importance
:::
The

:::::::::
predictions

:::
are

::::::::
smoothed

:
during the first iterations, as shown by a power spectral density

analysis. Whereas the smoothing induces a loss of fine-scale features, it allows the model to stay coherent for the large-scale

dynamics that impact the sea-ice thickness. Thanks to this coherency, the surrogate model correctly manages to estimate the

global amount of sea ice over the full Arctic. Consequently, the surrogate model offers
:::
can

::::
offer

:
a stable low-resolution adjoint565

for the sea-ice thickness in neXtSIM, for example useable in a variational data assimilation framework.

The surrogate model can make year-long forecasts within a minute. Therefore, the surrogate model presents itself as an op-

portunity to estimate a large ensemble of simulations. Such a large ensemble can allow us
:::::
enable the assimilation of previously

unused observations into the sea-ice thickness.
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Appendix A: neXtSIM configuration570

In this Appendix, we will describe more precisely the configuration of neXtSIM used. The model relies for its rheology on

the combination of the
:::::
brittle

:
Bingham-Maxwell constitutive model (Bingham, 1922) and

::::::::::::::::
(Ólason et al., 2022)

:
,
:::::
which

::
is
:::
an

:::::::::::
improvement

::::
from

:
the Maxwell-Elasto-Brittle (MEB) rheology (Dansereau et al., 2016). The model equations are solved on

an adaptive Lagrangian triangular mesh (Rampal et al., 2016) using a finite element method with a re-meshing protocol. This

method helps preserve the gradients in the sea-ice fields which can come from the formations of leads and ridge. The main575

parameters used for the model are presented in table A1. neXtSIM in this case is coupled with a sea
:
an

::::::
ocean model (NEMO).

Table A1. neXtSIM main parameters, see (Boutin et al., 2022)
:::::::::::::::

(Boutin et al., 2023) for more details about the model coupling.

Parameter Symbol Value

Ice-atmosphere drag coefficient Ca 1.6× 10−3

Ice-ocean drag coefficient Cw 6.7× 10−3

Scaling parameter for the ridging threshold P 3kPa/m3/2

Main model time step ∆tm 450s

Time step for sea-ice dynamics solver ∆t 6s

Maximum thickness of newly formed ice hmax 18cm

Sea-ice albedo aice 0.57

Snow albedo asnow 0.8

Critical thickness parameter for ice grounding k1 5

Appendix B: Definition of the accuracy

In order to build an accuracy metric to evaluate the ability of the surrogate to predict the sea-ice thickness, it is necessary to

define a threshold value to differentiate non sea-ice grid points from sea-ice grid points. Sea-ice experts commonly define the

Marginal Ice Zone (MIZ) with sea-ice concentration between 0.15 and 0.8 (Strong, 2012; Comiso, 2006; Rolph et al., 2020).580

On one month of neXtSIM output (124 snapshots), we compute the grid-points included in this MIZ definition, and then we

compute the cumulative distribution of SIT on those grid-points, see Fig. B1. We select a value of σacc = 0.1 for the threshold

on SIT to define sea-ice extent. If the grid-point has a SIT above σacc, it is considered a sea-ice pixel, otherwise it is considered

either open sea or land.
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Figure B1. Choice of the SIT thickness threshold. On the left panel is shown the SIT thickness on the MIZ commonly defined with SIC. On

the right panel is shown the cumulative distribution of this MIZ SIT. The blue vertical line outlines the mean of this distribution and the red

line the 25% percentile which coincide with our chosen threshold for the SIT to define the SIE.

Appendix C: Neural networks architecture585

We detail in this section the structure of the neural networks used in the paper. The models are implemented using Tensorflow

and Keras. The next sections describe the implementation of partial convolution, and detailed structure of the UNet and ResNet

neural networks
:::::
neural

:::::::
network.

C1 Partial Convolution algorithm

Instead of
:::
the (Liu et al., 2020; Kadow et al., 2020) implementation of the partial convolution where the masks are convoluted590

alongside the images, we want to keep the mask constant only to represent the land around the sea-ice. Let ’s
::
us define M

the mask for which 0 means a land pixel and 1 a valid pixel representing either ice or sea.
:::
Our

::::::::::::::
implementation

::
of

::::::
partial

:::::::::
convolution

::
is
:::::::
reported

::
in
:::::::::
Algorithm

::::
C1.
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Algorithm C1 Partial Convolution pseudocode,
::
it

::::
takes

::
as

:::::
input

:
a
::::::
tensor

::
of

:::
size

:::::::::::::
(nb,nx,ny,nc),::::

with
:::
nb:::

the
:::::
batch

::::
size,

::
nx::::

and

::
ny:::

the
:::::
image

::::
size

:::
and

:::
nc:::

the
::::::
number

:::
of

::::::::
channels.

:
It
::::
also

:::::::
requires

:
a
:::::
mask

::
M

::
of
::::
size

::::::::
(nx,ny), :::

the
:::::
kernel

::::
size

::
of

:::
the

::::::::::
convolution

::
ks,:::

an
:
ϵ
::::::::
hereafter

::
set

::
to
::::::
10−8,

:::
and

::
an

:::::::::
activation

:::::::
function

::
σ.

Require: X(nb,nx,ny,nc),M(nx,ny),ks ::::::::::
X,M,ks, ϵ,σ

Compute image kernel

Compute
::
np:::

the zero-padding around (nx,ny)::::::
(nx,ny):

M̃ =M+ padding

:::::::
X̃ =X+

::::::
padding

:

Compute W =#ks

Compute V =M
.
= 1windowsize::::::::::::

V =
∑

[M = 1]
:

Compute rm = W×M
V +ϵ :::::::::

rm = W×M
V +ϵ

X̃ =X+ padding Apply
:::
X̃ =

:
Conv2D(X̃ + M̃ )

X̃ =X × rm X̃ = X̃ + b X̃ = σ(X̃)
::::::::::::
X̃ = σ(rmX + b

:
)
:

return X̃

C2 UNet

The detailed structure of the neural network is described in table C1.
:
It
::::
has

:
3
:::::
levels

:::
of

:::::
depth,

::::::
which

:::::
means

::::
that

:::
the

:::::
fields

:::
are595

::::::::::::
coarse-grained

:::::
down

::
to

::::::::::
(128× 128)

::::::
pixels,

:::
and

:
a
::::
total

:::::::
number

::
of

::::::::
2.4× 106

::::::::::
parameters.

:

C3 Neural Network training

C3.1
::::::
Losses

:::::::
during

:::::::
training

The losses as described in Section 3 are shown in Fig. C1 for the neural network with 1 input. The validation losses are plotted

in transparency for each associated training losses. We do not observe overfitting which validate the size of the UNet with600

regard to the size of the dataset.
:::
The

:::::::
training

::
of

:::
one

:::::
UNet

:::::
takes

::
18

:::::
hours

:::
on

:
a
:::::
single

::::::
Nvidia

:::::
A100

:::::
GPU.

:

C3.2
::::::
Tuning

::
of

::
λ

::
In

:::
this

:::::::
section,

:::
we

:::::::
describe

::::
how

:::
the

:::::
value

:::
for

::
λ

:::
was

::::::::
selected.

::::
The

:::::
value

:::
was

::::::
chosen

::::
out

::
of

::::::
several

::::::::::
experiments

:::
for

::::::::
different

:::::
values

::
of

::
λ

:
:
::
1,

:::
10,

::::
100,

::::
and

:::::
1000.

::::
After

:::::::
training

:::
the

::::::::
surrogate

::::::
models

::::
with

:::::
those

::::::
values

::
of

::
λ,

:::
an

::::::::
evaluation

:::::
based

:::
on

:::
the

::::
bias

:::
and

:::
the

:::::::
forecast

::::
skill

::::
(see

::::
Sec.

:::
4.2)

::::
was

:::::
done

::
on

:::
the

:::::::::
validation

:::::::
dataset.

:::
The

::::::
impact

:::
of

:
λ
:::
on

:::
the

:::::::
forecast

::::
skill

::::
was

:::::::::
negligible,605

:::
and

::::
was

::::::::
important

::
on

:::
the

:::::
bias.

::::::::
Selecting

:
a
:::::
value

:::
for

:
λ
::::
that

::
is

:::::::::
excessively

:::::
large

:::::
could

:::::
result

::
in

:
a
::::
loss

::
of

::::::::::
information

::
at

:::
the

::::
fine

::::
scale.

::
A
:::::
value

::
of

::::::::
λ= 100

:::::
seems

::
to

::::
keep

::
a

::::
good

:::::::
balance

:::::::
between

::::::::
fine-scale

::::::::
dynamics

::::
and

:::::
global

::::::
sea-ice

:::::::::
thickness.
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Stage Layer # params nx ny nchannels

Input PConv 3776 512 512 32

Down 1

PConv 9248 512 512 32

PConv 9248 512 512 32

PConv 9248 512 512 32

BatchNormalization 128 512 512 32

MaxPooling2D 0 256 256 32

Down 2

PConv 18496 256 256 64

PConv 36928 256 256 64

PConv 36928 256 256 64

BatchNormalization 256 256 256 64

MaxPooling2D 0 128 128 64

Bottleneck

PConv 14771 128 128 256

PConv 59008 128 128 256

PConv 59008 128 128 256

PConv 59008 128 128 256

BatchNormalization 1024 128 128 256

Up 2

UpSampling2D 0 256 256 256

PConv 14752 256 256 64

Concatenate 0 256 256 96

PConv 55360 256 256 64

PConv 36928 256 256 64

BatchNormalization 256 256 256 64

Up 1

UpSampling2D 0 512 512 64

PConv 18464 512 512 32

Concatenate 0 512 512 64

PConv 18464 512 512 32

PConv 9248 512 512 32

Output
PConv 9248 512 512 32

BatchNormalization 128 512 512 32

PConv 33 512 512 1

Table C1. UNet architecture

Appendix D: Surrogate modeling

In this section, we present more visual results for
::::::::
snapshots

::
of

:
the surrogate model prediction and

::::::::::
predictions, results with

different type of forcings .
:::
and

:::::::::
resolution.

:
610
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Figure C1. Training and validation (in transparency) losses for the neural networks with 1 timestep in the input. Yellow line represent the

unconstrained neural network and purple the constrained neural network. We observe that adding the global term in the loss during training

allows an important decrease of the global RMSE.

D1
:::::::
Impact

::
of

:::
the

:::::::::
resolution

:::::
While

:::
we

:::::::
observe

::::
some

::::::::::
smoothing,

:::
we

::::::
wonder

:::::
about

:::
the

::::
gain

::
in
:::::::
training

::
a

::::::::
surrogate

:::::
model

:::
on

::::
such

:
a
:::::::::::::
high-resolution

::::::
model

:::::
output

:::::
from

::::::::
neXtSIM

:::::
since

:::
the

:::::::::
fine-scale

::::::::
dynamics

::
in
::::

the
::::
data

:::
are

:::::::::
smoothed

::
by

::::
the

::::::::
surrogate

::::::
model.

:::::::::::
Experiments

:::::
were

::::::::
conducted

:::
on

:
a
::::::
smaller

:::::::::
resolution

::::
grid,

:::
by

:::::::::::::
coarse-graining

:::
the

::::::
original

::::::
dataset

:::::
down

::
to

:::::::::
128× 128

::::::
pixels.

:::
The

::::::::
surrogate

::::::
model

:
is
::::::
trained

:::
on

:::
this

::::::
coarse

::::::
dataset

::::
with

:::
the

:::::
exact

::::
same

:::::::
method

::
as

:::::::::
previously

:::::::::
described.

:::
The

:::::::
RMSEs

::::
from

::::::
several

::::::::::
resolutions

:::
are615

::::::
plotted

::
in

:::
Fig.

::::
D1.

:
It
::::::
shows

:
a
:::::::::
systematic

:::::::::::
improvement

::::
over

::
all

::::::::::
resolutions

::
of

:::
the

:::::::
surrogate

::::::
model

::::::
trained

::
on

:::
the

::::
high

:::::::::
resolution

::::::::
compared

::
to

:::
the

:::::
coarse

::::::::
surrogate

::::::
model,

:::
for

::::::::
different

:::
lead

::::::
times.

D2 Short-term forecast

In Fig. D2 and D3 we display several snapshots obtained from the constrained surrogate model alongside its corresponding

neXtSIM state.620

D3 Seasonal forecast

In Fig. D4 we can observe several snapshots obtained from the stable constrained surrogate model alongside its corresponding

neXtSIM state. For every timestep shown, the surrogate model correctly manages to estimate the global state of the system.

Yet, the smooth advection appears at the leading process. It is nonetheless a good approximation of the sea-ice structure during

the full year.625
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Figure D1.
:::::::
Evaluation

::
of

:::
the

:::::::
surrogate

:::::
model

:::::
RMSE

::
at

::::::
various

::::::::
resolutions.

::::
Two

:::::::
surrogate

::::::
models

:::::
trained

::
on

::::
high

:::::::
resolution

:::::
(solid

::::
line)

:::
and

:::::::::::
coarse-grained

:::::::
resolution

::::::
(dashed

::::
line)

:::
are

::::::
assessed

::
in

::::
terms

::
of
::::::
RMSE,

::
in

:::::::::
comparison

::
to

:::::::
neXtSIM,

::
at

:::::::
different

::::
scales

:::
and

::::
lead

:::::
times:

:::
after

::
1

::::::
iteration

:::::
(round

::::::::
markers),

:::
after

:::
10

:::::::
iterations

:::
(star

::::::::
markers),

:::
and

:::
after

:::
20

:::::::
iterations

::::::::
(hexagonal

::::::::
markers).

D4
::::::
CMIP

::::::::
Forcings

As explained in Sect. 6, we evaluate our surrogate model approach with another type of forcings. The forcings are taken from

the ECMWF-IFS-HR (25 km atmosphere and 25 km ocean) climate model (Roberts et al., 2017). The surface temperature and

velocities are taken, projected on neXtSIM grid and normalized to be able to be fit in the input of the surrogate model. The

results are presented in Fig. D5. We see that there is after 50 days a constant bias differences between the surrogate with the630

different forcings, with the same global behavior. The surrogate model with CMIP6 forcings correctly handle the decrease of

the SIE during September, but it has difficulties to match neXtSIM during the next refreezing period. We hypothesize this is

caused by the important bias difference between the forcings, neXtSIM being simulated with ERA5 forcings. In any case, our

surrogate model remains stable when changing the forcings.
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Figure D2. The figure presents the surrogate model using three different initialization states (May 15, July 1, and September 1). The surrogate

model, with constrained inputs and 1-timestep configuration, is run for 5 lead days. The top panel illustrates the neXtSIM output, while the

middle panel showcases the surrogate model output. Contour lines representing the sea-ice extent are displayed on the neXtSIM panel for

both neXtSIM (red) and the surrogate (yellow), while the surrogate model examples omit these contours for clarity.
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Figure D3. The figure presents the surrogate model using three different initialization states (May 15, July 1, and September 1). The surrogate

model, with constrained inputs and 1-timestep configuration, is run for 25 lead days. The top panel illustrates the neXtSIM output, while the

middle panel showcases the surrogate model output. Contour lines representing the sea-ice extent are displayed on the neXtSIM panel for

both neXtSIM (red) and the surrogate (yellow), while the surrogate model examples omit these contours for clarity.
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Figure D4. Snapshots for seasonal forecast of neXtSIM and the surrogate. The surrogate model is run starting from January 1st 2006, for

720 iterations. Results after 100, 300, and 600 iterations are presented in this figure. Results are plotted with the neXtSIM output above and

the surrogate model in the middle panel. On the neXtSIM panel are plotted the contour of the sea-ice extent for both neXtSIM (red) and the

surrogate (yellow). For better clarity, those contours are not represented on the surrogate model examples.
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Figure D5. Seasonal forecast of the surrogate model while changing the type of forcings .
:
in

:::::
2018. The neural network remains exactly the

same as the trained one. It is thus trained with ERA5 forcings. In the test part, the forcings are changed to CMIP6 forcings (blue
:::::
dotted

line). This forecast skill is compared with neXtSIM and ERA5 forcings (red
:::::
purple

::::
solid line), persistence (black

:::::
dashed

:
line) and daily

climatology (green
:::::
dashed

:
line).

D5
:::::::::::::
Quantification

::
of

::::::::
diffusion635

::
In

:::
this

:::::::
section,

:::
we

:::::::
describe

::::
how

::::
the

::::::
spectral

::::::::
exponent

:::
of

:::
the

:::::::::
power-law

::
is

:::::::::
computed,

::::::::
following

:::::::::::::::::
Clauset et al. (2009)

:
.
:::::
After

::::::::::
normalizing

:::
the

:::
data

:::::::
coming

::::
from

::::
Eq.

::::
(15),

::::
with

:::::::::
Simpson’s

::::
rule,

:::
we

::
fit

:::
the

::::::::::
distribution

::::
with

:
a
:::::::
function

::
of

:::
the

:::::
form

p(x) =
β− 1

xmin

(
x

xmin

)−β

,

:::::::::::::::::::::

(D1)

::
for

:::::::::
x > xmin,

:::::
which

::
is

::::::::
manually

:::::::
chosen.

:::
The

::::::::::::
log-likelihood

:::::::
function

::::::::
becomes

L(β) = log

n∏
i=1

β− 1

xmin

(
xi

xmin

)−β

,

:::::::::::::::::::::::::::

(D2)640

::::
with

::::::::
xi∈(1,...,n)::::

the
:
n
::::::

points
:::::
above

:::::
xmin.

:::
By

::::::::::::
differentiating

::::
this

:::::::::
likelihood

::::
with

::::::
respect

::
to

:::
β,

:::
and

::::::
setting

:::
the

:::::
result

:::
to

::
0,

:::
we

:::::
obtain

:::
its

::::::::::
maximum,

:::::
which

:::::
yields

:::
the

::::::::
estimator

::::::::
equation:

β̂ = 1+n

[
n∑

i=1

log
xi

xmin

]−1

.

:::::::::::::::::::::::

(D3)

:::
The

:::::::::::
computation

::
of

:::
the

::::::
spectral

::::::::
exponent

::
is

:::::::::
performed

::::
using

::::
this

::::::::
technique

:::::
across

:::
all

:::::::
samples

::
of

:::
the

:::
test

::::::
dataset

:::
and

:::
all

::::
lead

:::::
times,

:::::
under

:::
the

::::
same

::::::::::
restrictions.

:::
We

:::::::
exclude

:::
the

::::
first

::
10

:::::
points

::::
and

:::
the

:::
last

::
20

::::::
points

::
of

:::
the

:::::::::
distribution

::
to
:::::
focus

:::
on

:::
the

:::::
linear645

:::
part

::
of

:::
the

:::::
PSD.

::::::
Indeed,

:::
as

:::::::
depicted

::
in

::::
Fig.

:::
8b,

::::
after

:::::
some

::::
time,

::
a
::::::::
flattening

::
of

:::
the

::::
PSD

::
is
::::::::
observed

:::
on

::
the

::::
fine

:::::
scale,

:::::::
directly

:::::
linked

::
to

:::
the

:::::::::
smoothing

::
of

:::
the

::::::::
emulated

::::::
sea-ice

::::::::
thickness.

:

37



Code and data availability. The authors will provide access to the data and weights of the neural networks upon request. The source code

for the experiments and the neural networks is publicly available under https://github.com/cerea-daml/nextsim-surrogate. The outputs of

neXtSIM model will be made available upon requests. Forcings data are publicly available in the Copernicus Data Store https://cds.climate.copernicus.eu650

Video supplement. A video of the seasonal forecast for the year 2017 is available at https://doi.org/10.5446/62131

.

Author contributions. EO provided the data and the insigths about neXtSIM. GB runned the simulation of neXtSIM and build the SIT

dataset. CD, TSF, AF, and MB refined the scientific questions and prepared an analysis strategy. CD performed the experiments. CD, TSF,

AF, and MB analyzed and discussed the results. CD wrote the manuscript with TSF, AF, MB, GB, and EO reviewing.655

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors acknowledge the support of the project SASIP (grant n°
::
nr. 353) funded by Schmidt Futures – a philan-

thropic initiative that seeks to improve societal outcomes through the development of emerging science and technologies. This work was

granted access to the HPC resources of IDRIS under the allocations 2021-AD011013069 and 2022-AD011013069R1 made by GENCI. The

authors would like to thank Pierre Rampal, Laurent Bertino, Anton Korosov, Julien Brajard and their colleagues from NERSC for their660

insightful inputs.
:::
The

::::::
authors

:::::
would

:::
also

::::
like

::
to

::::
thank

::::
two

::::::::
reviewers,

:::
Nils

:::::
Hutter

::::
and

:::
one

:::::::::
anonymous

:::::::
reviewer,

:::
for

:::
their

:::::::::
comments

:::
and

::::::
remarks

:::
that

:::::
helped

:::::::
improve

::
the

:::::::::
manuscript.

:
CEREA is a member of

::
the

:
Institut Pierre-Simon Laplace (IPSL).

38

https://doi.org/10.5446/62131


References

Amodei, M. and Stein, J.: Deterministic and fuzzy verification methods for a hierarchy of numerical models, Meteorological Applications,

16, 191–203, https://doi.org/10.1002/met.101, 2009.665

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne,

J., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice

forecasting with probabilistic deep learning, Nature Communications, 12, https://doi.org/10.1038/s41467-021-25257-4, 2021.

Balan-Sarojini, B., Tietsche, S., Mayer, M., Balmaseda, M., Zuo, H., de Rosnay, P., Stockdale, T., and Vitart, F.: Year-round impact of winter

sea ice thickness observations on seasonal forecasts, The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, 2021.670

Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIREs Climate Change,

6, 277–286, https://doi.org/10.1002/wcc.337, 2015.

Bernard, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Sommer, J. L., Beckmann, A., Biastoch, A., Böning, C., Dengg, J.,

Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and Cuevas, B. D.: Impact of partial

steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynamics, 56, 543–567,675

https://doi.org/10.1007/s10236-006-0082-1, 2006.

Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.: Enforcing Analytic Constraints in Neural Networks Emulating Physical

Systems, Physical Review Letters, 126, https://doi.org/10.1103/physrevlett.126.098302, 2021.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global

Weather Forecast, https://doi.org/10.48550/ARXIV.2211.02556, 2022.680

Bingham, E.: Fluidity and plasticity, McGraw-Hill, 1922.

Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and Inherent Predictability of Arctic Sea Ice in a

GCM Ensemble and Observations, Journal of Climate, 24, 231–250, https://doi.org/10.1175/2010jcli3775.1, 2011.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M.: YOLOv4: Optimal Speed and Accuracy of Object Detection,

https://doi.org/10.48550/ARXIV.2004.10934, 2020.685

Bocquet, M.: Surrogate modelling for the climate sciences dynamics with machine learning and data assimilation, Front. Appl. Math. Stat.,

9, https://doi.org/10.3389/fams.2023.1133226, 2023.

Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M., Maslowski, W.,

Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx):

1. Scaling and Statistical Properties of Sea-Ice Deformation Fields, Journal of Geophysical Research: Oceans, 127, e2021JC017 667,690

https://doi.org/10.1029/2021JC017667, 2022.

Boutin, G., Òlason Einar, and et al, R. P.: Arctic sea ice mass balance in a new coupled ice-ocean model using a brittle rheology framework,

The Cryosphere, https://doi.org/https://doi.org/10.5194/tc-2022-142, 2022.

Boutin, G., Ólason, E., Rampal, P., Regan, H., Lique, C., Talandier, C., Brodeau, L., and Ricker, R.: Arctic sea ice mass balance in a

new coupled ice–ocean model using a brittle rheology framework, The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023,695

2023.

Cheng, S., Quilodran-Casas, C., Ouala, S., Farchi, A., Liu, C., Tandeo, P., Fablet, R., Lucor, D., Iooss, B., Brajard, J., Xiao, D., Janjic, T.,

Ding, W., Guo, Y., Carrassi, A., Bocquet, M., and Arcucci, R.: Machine learning with data assimilation and uncertainty quantification for

dynamical systems: a review, IEEE/CAA Journal of Automatica Sinica, –, –, https://doi.org/–, in press, 2023.

39

https://doi.org/10.1002/met.101
https://doi.org/10.1038/s41467-021-25257-4
https://doi.org/10.5194/tc-15-325-2021
https://doi.org/10.1002/wcc.337
https://doi.org/10.1007/s10236-006-0082-1
https://doi.org/10.1103/physrevlett.126.098302
https://doi.org/10.48550/ARXIV.2211.02556
https://doi.org/10.1175/2010jcli3775.1
https://doi.org/10.48550/ARXIV.2004.10934
https://doi.org/10.3389/fams.2023.1133226
https://doi.org/10.1029/2021JC017667
https://doi.org/https://doi.org/10.5194/tc-2022-142
https://doi.org/10.5194/tc-17-617-2023
https://doi.org/--


Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in Empirical Data, SIAM Review, 51, 661–703,700

https://doi.org/10.1137/070710111, 2009.

Comiso, J. C.: Abrupt decline in the Arctic winter sea ice cover, Geophysical Research Letters, 33, n/a–n/a,

https://doi.org/10.1029/2006gl027341, 2006.

Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell Elasto-Brittle Rheology for Sea Ice Modelling, The Cryosphere, 10, 1339–

1359, https://doi.org/10.5194/tc-10-1339-2016, 2016.705

Farchi, A., Bocquet, M., Roustan, Y., Mathieu, A., and Quérel, A.: Using the Wasserstein distance to compare fields of

pollutants: application to the radionuclide atmospheric dispersion of the Fukushima-Daiichi accident, Tellus B, 68, 31 682,

https://doi.org/10.3402/tellusb.v68.31682, 2016.

Finn, T. S., Disson, L., Farchi, A., Bocquet, M., and Durand, C.: Representation learning with unconditional denoising diffusion models for

dynamical systems, Nonlinear Processes in Geophysics, https://doi.org/10.5194/egusphere-2023-2261, 2023a.710

Finn, T. S., Durand, C., Farchi, A., Bocquet, M., Chen, Y., Carrassi, A., and Dansereau, V.: Deep Learning of Subgrid-Scale

Parametrisations for Short-Term Forecasting of Sea-Ice Dynamics with a Maxwell-Elasto-Brittle Rheology, EGUsphere, pp. 1–39,

https://doi.org/10.5194/egusphere-2022-1342, 2023b.

Girard, L., Bouillon, S., Weiss, J., Amitrano, D., Fichefet, T., and Legat, V.: A new modeling framework for sea-ice mechanics based on

elasto-brittle rheology, Annals of Glaciology, 52, 123–132, https://doi.org/10.3189/172756411795931499, 2011.715

Goessling, H. F., Tietsche, S., Day, J. J., Hawkins, E., and Jung, T.: Predictability of the Arctic sea ice edge, Geophysical Research Letters,

43, 1642–1650, https://doi.org/10.1002/2015gl067232, 2016.

Grigoryev, T., Verezemskaya, P., Krinitskiy, M., Anikin, N., Gavrikov, A., Trofimov, I., Balabin, N., Shpilman, A., Eremchenko, A., Gulev,

S., Burnaev, E., and Vanovskiy, V.: Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting, Remote Sensing, 14, 5837,

https://doi.org/10.3390/rs14225837, 2022.720

Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J., Fučkar, N. S., Germe, A., Hawkins, E.,
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