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1 Response to Referee 1

RC: In this manuscript, the authors present a machine-learning based
surrogate model of the numerical sea-ice model neXtSIM. The
presented surrogate model simulates sea-ice thickness and its
predictions outperform the climatology benchmark for lead times
up to 8 months. The findings of this study are a valuable addi-
tion to the field and illustrate how machine learning can be used
to reduce the computational costs of sea-ice simulations, e.g. in
the context of ensemble forecasting. The main shortcoming of
the surrogate model presented, however, is that it simulates very
smooth thickness fields compared to the feature-rich neXtSIM
input data used for training that includes for example leads. The
authors address and analyze this issue in the manuscript, but I
still have the major comments outlined below regarding the pre-
sentation, analysis, and interpretation of this point that should
be addressed before I can recommend this paper for publication.

AR: We deeply appreciate the reviewer’s thorough and insightful review of our
work. In the following, we discuss the raised concerns and what we have
changed in our revised manuscript.

RC: Major comments:
Smoothness of simulated ice thickness fields:
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RC: The authors use simulations of neXtSIM, known for its ability
to resolve deformation features and heterogeneous sea ice fields,
to train the NN emulator. The surrogate model presented in
this manuscript is not able to retain these features over multi-
ple iterations and quickly smoothes the sea ice fields, resulting
in thickness fields much more similar to coarse-resolution sea-
ice simulations. The authors argue that the smoothed version
better minimizes the RMSE (MSE used for training) compared
to a model that retains these features and potentially gets pe-
nalized for misplacing them. Therefore, the model learns to
predict smooth fields and mimics large-scale circulation. While
this makes sense in light of the cost function used, I have the
following issues with how this fact is presented and interpreted:

RC: Why do you use high resolution in the first place? In the ab-
stract and introduction, the authors make the valid point that
current models that simulate small-scale features, like e.g. leads,
are computationally very expensive and that a surrogate model
would be of great benefit here. However, the presented surro-
gate model is not able to simulate these fine-scale features, but
“just” the large-scale dynamics. Now, I am wondering why it is
necessary to use the feature-rich simulations for training. In the
introduction the authors suggest that “small-scale effects have
an advantage on representing the thermodynamics of sea ice”,
but I am not aware of modeling studies that have proven this
point comprehensively. Now I am wondering if the same results
could also be achieved with a coarse resolution model that also
resolves the large-scale circulation (and is much cheaper to run).
Once having trained the NN on coarse resolution model output,
the authors should comment on whether there is an additional
benefit in using the high-resolution input data that is currently
used.

AR: Our justification for training a surrogate model in high resolution was
added to the discussion section, as well as in the appendix, in section D1,
with the insertion of the Fig. 1. Training a surrogate model for a coarser
resolution is faster, however, a surrogate model for high resolutions can
resolve more processes. To showcase this in the following, we displayed re-
sults for additional experiments on a coarse-grained dataset with 128×128
grid cells compared to 512×512 grid cells at the high resolution. The neu-
ral network has the same configuration as the high resolution dataset, and
follows the same training procedure. To compare the surrogate trained
on the high-resolution data to the surrogate trained on the aforemen-
tioned coarse resolution, we present the root-mean-squared error (RMSE)
depending on the resolution in Fig. 1. The RMSE of the high-resolution
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surrogate model is decreased by 31% after 12 hours compared to the coarse
surrogate. This improvement similarly holds throughout resolution levels
and also for longer lead times. Since this improvement results out of dif-
ferent modelled resolutions, it can be linked to a better representation
of the small-scale dynamics and their impacts on larger scales for the
high-resolution surrogate. While the training and inference of this high-
resolution surrogate model are significantly more time-consuming than the
coarse-grained surrogate, it still maintains a rapid processing speed com-
pared to physical model simulations. Consequently, we see a gain by using
high-resolution data for surrogate modelling, even if the surrogate leads
to smoothed out forecasts.

RC: Are the smoothed fields really simulating large-scale dynamics
and are the presented methods sufficient to show this? The
authors compare their NN results against persistence and find
increased skill of the surrogate model. They attribute this skill
to the fact that the model learned the large-scale dynamics. In
Fig. 10 one can see that the model only outperforms persistence
forecasts in periods of rapidly changing ice cover and thickness
(melt and early freeze period). Couldn’t we find the same behav-
ior as well, if the model learned the climatology of ice thickness
and relaxes the input sea ice thickness to this climatology? This
would be a better benchmark to beat to justify the authors’
claim of learned physics. In general, there should be a more in-
depth analysis to demonstrate that the model learned large-scale
dynamics, for example, how does the integrated ice edge error
(Goessling et al., 2016) varies for different lead times (a quanti-
tative analysis of the qualitative comparison in Appendix D), or
a more quantitative evaluation of ice drift started in Fig. 6. An-
other possibility would be to compare the model skill at different
spatial scales by e.g. coarse-graining the predictions. Currently,
metrics based on pixel values are shown that always include the
effect of missing features. In a scale-dependent analysis, the au-
thors could see up to which scale the model has improved skill
and if the large-scale variations are represented appropriately.
Or can similar information be extracted from your power spec-
trum analysis?

AR: A specific paragraph with the better analysis of the SIE results is proposed
in Sec. 5.4. Even though it is a useful marker for the marginal ice zone
(MIZ), this post-processed variable is inadequate to represent large scale
dynamics of SIT, e.g., in the Central Arctic. It only compares the position
of the ice edge, and removes the information about global motion of sea-ice
thickness inside the ice sheet. A better definition of the accSIE is provided
in Sec. 4.2, with an explanation to its link to the Ice Integrated Edge
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Figure 1: Evaluation of surrogate model RMSE at various resolutions. Two
surrogate models trained on high resolution (solid line) and coarse-grained reso-
lution (dashed line) are assessed in terms of RMSE, in comparison to neXtSIM,
at different scales and lead times: after 1 iteration (round markers), after 10
iterations (star markers), and after 20 iterations (hexagonal markers).
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Error. the variable under consideration for the evaluation of long-term
forecast is an accuracy based on sea-ice extent (SIE). We define the SIE
with a SIT threshold of 10 cm and then define an accuracy. As written
in the paper : By obtaining a classification mask between ice and no ice,
we can easily define an accuracy metric based on the SIE. We define two
terms: the first one N>σacc indicates the number of pixels where xtn+k∆t

and xf
tn+k∆t disagree on the presence of sea ice, and the second one N<σacc

where the models disagree on the presence of open water. The accuracy is
averaged over all Ns samples:

accSIE(k) =
1

Ns

Ns∑
n=1

(
1− N>σacc

(tn + k∆t) +N<σacc
(tn + k∆t)

Nsea−ice pixels

)
. (1)

This definition is actually extremely close to the Integrated Ice Edge
Error (IIEE), the main difference being that our threshold is based on
SIT and not on the sea-ice concentration (SIC). Secondly, regarding the
justification of the learning of the physics, we added a paragraph in the
discussion. Our surrogate can conserve the average sea-ice thickness over
a full year, while it also can represent advection. This indicates that our
surrogate model can capture the large-scale dynamical and thermodynam-
ical evolution of the sea ice over the full year. These phenomenons are
driven by external forcings from the atmosphere and ocean. Yet, the sur-
rogate model can represent the influence of the forcing on SIT, something
that a climatology and, especially, a persistence forecast cannot exhibit.
Furthermore, for short-term forecasts, the surrogate model consistently
outperforms persistence and the daily climatology and it shows better
forecasts than a daily climatology for more than 6 months in terms of
forecast skill.

RC: If smooth fields are better for prediction, why should the scien-
tific community then at all pursue developing feature-rich mod-
els like neXtSIM in a prediction context?

AR: This is just a first step in surrogate modeling of a rich model like neXtSIM,
and we can hope that more advancement would bring more fine-scale fea-
tures even at longer lead times. Smooth fields are good in terms of RMSE.
Caused by the discrete-continuous sea-ice processes, this might not be an
optimal evaluation metric. Training for other metrics can become increas-
ingly more complicated and would exceed the scope of the study. Fur-
thermore, the surrogate model is statistical driven, whereas models like
neXtSIM are based on our physical understanding. Such models based
on physical principles can have an advantage especially for futures cases
where we have an extrapolation task, caused by climate change. We dis-
cussed this point in Sect. 6.
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Figure 2: Time evolution of the IIEE over 2018 for the surrogate model at
different lead time and daily climatology. IIEE scores are based with neXtSIM
as the ground truth.

RC: The authors suggest that the surrogate model will be of great
advantage in computing the adjoint model in variational data
assimilation or generating larger ensemble sizes. I have four
comments on this: 1) The surrogate model smoothened the in-
put fields and by doing so will reduce the spread of an ensem-
ble, potentially limiting its use for data assimilation. 2) Given
the smoothness of the simulated thickness fields and the strong
differences with the feature-rich input fields, do you think the
surrogate and the numerical model are similar enough to use
the surrogate for the adjoint, especially over longer assimilation
windows? 3) Does using the surrogate model as adjoint work
that easily given the interpolation from unstructured to regular
grid? 4) To properly use the surrogate model in data assimila-
tion for both creating an ensemble or the adjoint, more model
variables should be simulated than just sea ice thickness. Please
comment on all these points in the manuscript.

AR: Thank you for your feedback. We appreciate your remarks, and we incor-
porated more details on these points in the discussion section. Regarding
your first point, it is a valid consideration, and a sentence was added in the
discussion. Yet, it is important to note that our initial emphasis will be
on variational data assimilation, we do not necessarily think of employing
ensembles. Note however that most ambitious implemented 4D-Var are in
practice based on approximate adjoints, or exact adjoints of a simplified
model.
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On the second point, our current approach involves using the surrogate
model primarily for short-term forecasting. Despite the smoothing, we
anticipate obtaining meaningful results and believe that the utilization of
the adjoint could still prove beneficial. This remark was added to the
discussion.
Concerning the third point, this is a relevant point. The definition of an
adjoint is meaningful concerning the sea-ice thickness field on the pro-
jected grid. While performing variational data assimilation on this grid
poses no issues, it is important to acknowledge that it might involve a
different adjoint compared to the original triangular mesh. However, a
common approach in operational variational data assimilation is to use
inner and outer loops. In inner loops, cheaper surrogate models, e.g. the
model at a lower resolution, are used, whereas the full high-resolution
model is only run in the outer loops. Compared to the raw minimization
of the variational cost function by employing the full model, there is no
guarantee of convergence. This methodology is nevertheless used with
much success and might also also a way for such hybrid approaches. This
remark was added to the discussion.
On the fourth point, we completely agree. Our upcoming objectives in-
clude the training of a multivariate surrogate model, which can be also
used for data assimilation. This remark was added to the discussion.

RC: Is it in general not possible to achieve a higher degree of details
in the ice thickness or is it your outlined training and network
architecture that hinders it? In the introduction, you state that
the cost function plays a major role here, but the manuscript
lacks suggestions how to potentially overcome this issue. Please
outline potential ways forward in the paper.

AR: The smoothing effects are highly related to the training of the neural net-
work as deterministic surrogate model. We can expect less smoothing for
better models as the uncertainty is decreased. However, caused by the
availability of the training data and by computational considerations, we
focus on predicting lead times of 12 hours, and there are always futures
that cannot be predicted with the available data. By maintaining a de-
terministic neural network, there will consequently be always a smoothing
effect, and we generally do not anticipate significant improvements in the
quality of details. By adapting generative neural networks, however, the
surrogate model could learn to properly sample from the possible futures
and achieve a higher level of fine-scale dynamics. It is worth noting that
generative models are currently under investigation by different teams for
diverse geoscientific problems Finn et al. (2023). Nonetheless, the training
of such models is notoriously more difficult than for deterministic models.
We expanded on this in the discussion part of the manuscript.

7



RC: Text quality: The manuscript follows a clear structure, but the
text is in passages hard to read and follow and clearly requires
further editing. In parts, words are missing or sentences are
half-finished. In times of automated language editing tools, more
thorough language editing is possible also for non-native speak-
ers, and I highly encourage the authors to make use of these
tools in the future.

RC: L27: “of the Arctic” → Consider removing “of the Arctic” as
neither CICE nor SI3 are limited to the Arctic

AR: We removed those terms from the sentence.

RC: L28: “road” → route?

AR: We corrected this term, it comes from a bad translation from french.

RC: L32: “Divergent features in the ice, like leads and polynyas” →
Polynyas are not necessarily formed by divergence.

AR: Thank you for your remark, we modified the sentence accordingly, by
removing ’polynyas’.

RC: L34-35: “Consequently, models correctly representing the effects
of such small-scale can have also an advantage in representing the
thermodynamics of sea ice.” → Could you please add references,
on which studies you base this general statement? In my eyes,
it is still an ongoing research question if and what advantage
these directly resolved small-scale features have in contrast to
parameterizations currently used in climate models.

AR: We agree this is an ongoing research problem and there is no citation
available to make this statement, we modified the sentence in this sense
to make it clearer.

RC: L34: “small-scale” → features? Processes? A word seems miss-
ing here.

AR: Thank you for your remark, indeed, we meant ’processes’ and we corrected
the sentence accordingly.

RC: L39: “benefit” → benefits
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AR: Thank you for your remark, we corrected the sentence.

RC: L60: “Explained differently, the surrogate model is trained to
reduce errors” → I do not see how this explains the sentences
before differently, it basically says the same as the first sentence
in L59. Please clarify.

AR: Thank you for your remark, we removed this sentence as the first sentence
is already clear enough.

RC: L65: “learn” → train?

AR: Thank you for your remark, we meant ’train’ and we corrected the sentence
accordingly.

RC: L72: “surrogate model” → simulate?

AR: Thank you for your remark, we meant ’emulate’ and we corrected the
sentence accordingly.

RC: L84: “model area” → It is not clear if this is the area of the
neXtSIM simulations or of the NN. Please clarify the text ac-
cordingly.

AR: We clarified the sentence, we meant the simulations area.

RC: L106: “Because these forcings are also to guide the neXtSIM
simulations” → From this statement I assume that the neXtSIM
simulations are also forced with ERA5. Please clarify this al-
ready earlier on in the text to prevent confusion.

AR: We clarified this in section 2.2, neXtSIM simulations are indeed forced
with ERA5.

RC: L131: “add to the inputs the SIT” → Didn’t you write above
that SIT is already an input? Why add it again? Please clarify.

AR: This sentence meant that we also included in the training dataset SIT
and forcings at time t − ∆t, we made this addition more explicit in the
sentence.
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RC: L133-134: “there are called later ’with 2 inputs’. Otherwise, the
neural networks are trained ’with 1 input’ “ → Could you please
add those labels for clarity to Table1.

AR: Thank you for your remark, we added those labels to the Table for clarity

RC: L152: “(Rampal et al., 2019)” → This reference is somehow
misleading at it is not clear that it only refers to the multi scale
features in sea-ice dynamics, and not to the ability of CNNs to
represent those. Please clarify this, or remove the citation here.

AR: Thank you for your remark, this citation is indeed misleading, and we
corrected the sentence accordingly.

RC: Figure 2 Caption: “512, 256, and 128,” → The figure also shows
images of size 64. Please correct.

AR: Thank you for your remark, there is one additional layer of depth in the
figure, we corrected it accordingly.

RC: L165: “sea” → ocean?

AR: Thank you for your remark, we meant ”ocean” and we corrected the sen-
tence accordingly.

RC: L188: “global mean of x and y” → As x and y have a physical
meaning, it would be helpful for readers if you could also write
what the local and global loss mean with respect to sea ice, e.g.
local and global trends in sea ice thickness.

AR: Thank you for your remark, we added this clarification in the sentence.

RC: L192: “λ is manually tuned to 100” → What do you optimize
for, how do you manually decide on best performance? Please
clarify.

AR: Thank you for your remark, we added the detail of the tuning choices
in the manuscript, in the appendix, section C3.2. The choice was made
with an evaluation on the validation dataset, for several values of λ, of the
forecast skill and the bias. Non-chosen values for λ were not evaluated on
the testing dataset. The change in the value of λ did not have a significant
influence on the forecast skill, except for λ = 1000, in which case there is
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an important decrease of the forecast skill. The influence of λ was more
pronounced on the bias error and has guided our choice towards λ = 100.

RC: L224-225: “over all pixels (i, j) of the field of size (Nx , Ny )” →
Also over land pixels? Including land pixels in the RMSE will
artificially reduce its value.

AR: Yes, we compute the RMSE over all pixels, but since it is also done for
every baseline, this artificial reduction does not change the meaning of the
results. Yet, we corrected this, and modify accordingly all the figures and
tables.

RC: L235-237: “We define two terms: the first one N > σacc indicates
the number of pixels where xtn+k∆t and xftn+k∆t disagree on
the presence of sea ice, and the second one N < σacc where the
models disagree on the presence of open water.” → This is not
clear to me. For all pixels, where the two masks disagree, one
will show ice and the other will show open water. Shouldn’t
therefore not also both terms be the same? Please check those
definitions and clarify.

AR: As mentioned above, this is actually really similar to the IIEE definition,
with the overestimation term and the underestimation term. We clarified
this in the paragraph as it is indeed misleading.

RC: L250: “kx and ky” → Please rename the indexes x and y to not
confuse them with the input of the model x and the output y.

AR: Thank you for your remark, we corrected the indices to avoid the confu-
sion, by using kh, kv.

RC: L254: “justified” → caused?

AR: Thank you for your remark, we changed the word ’justifed’ for better
clarity.

RC: L259-260: “In practice, this exponent can be numerically esti-
mated by a linear regression between lnE and ln|k|.” → multiple
studies show that linear fits in double logarithmic plots are not
ideal for determining power-law exponents, e.g. Clauset et al.
(2009). Please elaborate why you chose this method. Also how
does you metric takes into account if such a scaling actually ex-
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ists or not, or are you computing exponents regardless of the
distribution?

AR: Thank you for your remark; we were not aware of those studies, and
chose this method for its simplicity. We corrected this computation with
a better alternative. We are also computing the regression score for this
power law, which were checked, and are systematically high, for the short-
term forecast. We changed to the method mentionned in Clauset et al.
(2009), and added a description of this computation in the appendix, in
section D5. The value of the coefficient does not change much in absolute
value, but, as the lead time increases, with a flattening of the curve on the
small scale, the spectral exponent decreases less than with the previous
computation, which has more sense with our analysis.

RC: L 270: “in” → on

AR: Thank you for your remark; we corrected the sentence accordingly.

RC: L281-282: “However, the impact of the global Eq. 6) on the
RMSE relatively small compared to the influence of including
additional time steps.” → This sentence does not fit to the ob-
served results. When adding the constraint to the 1 input NN
the global RMSE reduces by an order of magnitude (as written in
the sentence before). Comparing both unconstrained NNs, the
global RMSE reduces to about 25% when including additional
time steps, so a much lower reduction compared to including
the constraint.

AR: Thank you for your remark. This analysis was related to the RMSE and
not the global RMSE, for which it remains true. We made this more
evident in the sentence.

RC: L. 283: “The impact of adding..” → Just “Adding. . . ”

AR: Thank you for your remark; we corrected the sentence accordingly.

RC: L288: “reduce” → the RMSE increases!

AR: Indeed we meant increase... we correct this in the manuscript.

RC: L 289: “surrogate RMSE” → what is the surrogate RMSE?
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AR: It meant the RMSE of the surrogate, but this ’surrogate’ work is indeed
misleading, we removed it for better clarity.

RC: L291-292: “after 12 hours, the global RMSE has improved by a
factor 9.4 for the one input surrogate” → Please comment why
there is so little improvement for the 2 input NN.

AR: The global RMSE, with a smaller value than the RMSE, during the train-
ing, is much more volatile. While the training takes into account the
global loss, and try to reduce it, in the case of the 2 inputs NN, the best
model, according to validation loss (the sum of the local and global losses,
weighted by λ), add a given global RMSE which happened to be similar
to the model trained without the constant. The fact that the results are
still better in constrained case after 15 days, is also a proof that we indeed
learned from the global loss term. We added these discussion points to
the manuscript.

RC: P 307: “leaded” → ??

AR: We corrected this sentence; we meant ’could have lead’.

RC: L308: “both biases” → which biases?

AR: We clarified this sentence: we meant both constrained biases for 1 and 2
inputs.

RC: L310: “higher likelihood of errors being introduced in the input
data” → What kind of errors are you talking about here? The
input data is taken from a model simulation where all data points
should be consistent with each other. Except for numerical pre-
cision, these data should not have a considerate uncertainty as
for instance satellite observations. Please clarify.

AR: We clarified this sentence: we meant while cycling the surrogate model,
we introduce more errors at each iteration.

RC: L310-316: “As we cycle the neural network, . . . ” → Do you want
to say that the 2-input NN is able to represent a higher degree
of nonlinear physics and therefore shows more chaotic behavior?

AR: We clarified this sentence, we simply meant that in the inference stage,
adding more errors in the neural network logically lead to an increase of
the errors in the output of the neural network.
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RC: L 324-326: “The consistent performance of this model across
different evaluation metrics and scenarios further validates its
reliability and robustness. This surrogate configuration is able
to capture the essential features and patterns of SIT dynamics,
enabling more accurate predictions compared to other configu-
rations.” → Please add references to the Tables and Figures with
the results you are referring to.

AR: Thank you for your remark. We added the references in the sentence.

RC: Figure 4. → Please add which NN are displayed with or without
constraint.

AR: Thank you for your remark. We added in the caption to specify this is
the constraint surrogates.

RC: L334: “in” → on

AR: Thank you for your remark. We corrected the sentence accordingly.

RC: Table 4: 1) Please add at which lead time these statistics are
computed. 2) Fig. 5 → Fig. 5a

AR: Thank you for your remark. We added the lead time, those RMSEs are
computed after 15 days.

RC: Figure6. “surrogate model” → which of the four models is ac-
tually shown here?

AR: We added in the caption, the surrogate model shown is the constrained
NN with 1 input, note that in L315, we mention that in the rest of the
manuscript, we will focus on the 1 input NN.

RC: Figure 6. “The trajectories for 30 days are shown in red for
neXtSIM and yellow for the surrogate model.” → Please use
different colors to not confuse them with the ice extent plotted
in the same colors in subfigure a) and b).

AR: Thank you for your remark. We changed the color scheme accordingly.

RC: L.354-360: “In order to verify this visual impression,. . . ” → This
entire paragraph requires a more in-depth analysis. What is the
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separation of the two trajectories over time, etc. Also, more than
just the four trajectories would be helpful to better quantify
these errors.

AR: Thank you for your remark. We believe this ’small’ analysis really makes
sense to show the advection capability of the surrogate model, we added
more details on our analysis.

RC: L 356. “important crack” → What is important about the crack?

AR: It was meant as ’big and persistent’, which makes it easy to track over
one month, we corrected the term with ’persistent’.

RC: L 360: “but these differences do not indicate incoherent or er-
ratic behavior.” → Unclear what is meant by this. The devia-
tions are errors?

AR: The deviations are indeed errors, but the trajectories are still following
coherent paths. we added more details on our analysis.

RC: L363-365: “The observation of a smoothing effect on fine-scale
features which increases with the forecast lead time aligns with
our expectations” → This sentence is unfortunately formulated
in a misleading way. If properly forecasted fine scale feature
would improve the forecast skill. Only if assumed that the model
is unable to properly place the features a smoothed forecast
might outperform the fine-scale forecast.

AR: Thank you for your remark. The sentence was indeed misleading; we
corrected it.

RC: L371: “8” → Fig. 8

AR: Thank you for your remark; we corrected this typo.

RC: L374: “important” → important for what?

AR: AR: We corrected the sentence. We wished to say that the smoothness
increases, as the number of iterations of the surrogate increases.

RC: L.375: “decrease” → decreases
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AR: Thank you for your remark, we corrected this sentence.

RC: L379-380: “We hypothesize that the neural network has attained
its resolution capacity for a correct advection of the sea-ice on
the global scale by reducing the fine-scale dynamics that is in-
herently chaotic and stochastic.” → It is unclear to me what is
meant by this sentence and how it would lead to more structure
in the forecasted ice fields. Please elaborate.

AR: Thank you for your remark. We added more details in the revised manuscript.
We meant that the surrogate model is able to correctly advect sea-ice
thickness until a given resolution, over which by smoothing the fine-scale
dynamics give better forecast fields in terms of RMSE.

RC: L 383: “arctic” → Arctic

AR: Thank you for your remark; we corrected this sentence.

RC: L386: “initialization periods evenly distributed during that pe-
riod” → Be more specific: initialized every month?

AR: Thank you for your remark; we were more specific: forecasts are initialized
every 30 days.

RC: L. 387: “In the appendix see Fig. D3” → Does not fit to the
rest of the sentence, please rewrite.

AR: Thank you for your remark; we corrected the sentence.

RC: L 387: “propose” → ?

AR: We corrected the sentence; we meant ’show’.

RC: L.389: “In the bottom panel of the figure” → Which figure are
you talking about? Fig.D3 does not show global average SIT. . .

AR: The mention of the snapshot in the sentence above is misleading, we cor-
rected the sentence, we meant Fig. 9.

RC: L391-401: “This consistency. . . ” → This paragraph is hard to un-
derstand and the described hypothesis is hard to follow. Please
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clarify and add a more comprehensive analysis to justify your
points raised.

AR: We will add a more comprehensive explanation, but the main idea is that
by having a really low bias, at 12 hours, the surrogate model is correctly
able to follow on the long-term the global dynamics of the SIT.

RC: L400-401: “As anticipated, the surrogate model performs sig-
nificantly better than persistence during periods of high varia-
tion, particularly during summer and autumn.” → What is in
the other seasons? From Fig.10 it looks like the surrogate model
only clearly outperforms persistence from August/September to
January, while in spring there seems to be no skill. Please elab-
orate on this and clarify in which periods there is no gain over
persistence.

AR: As mentioned in the major comment, in Fig.10, the variable exhibited is
the SIE, which is post-processed from SIT, and in which we only get the
accuracy of the position of the MIE. In other seasons where the ice edge
is not moving much, the persistence gives a good baseline for the position
of the ice edge, and while our surrogate model still correctly advects SIT,
the results for the SIE accuracy are not really different from persistence.
We clarified this point in the revised manuscript.

RC: L406: “This opens the perspective to run a large ensemble of
simulations for complex sea-ice models, which can facilitate data
assimilation.” → Please discuss how this fits to the smoothening
effect of the model. It might be hard to create an ensemble
spread if the model blurs all features. (See major comment
above)

AR: We raised this point in the manuscript. Our main idea in this sentence
was the computational cost. The smoothening might cause a collapse, but
the development of better surrogate models might solve this issue.

RC: Figure 8 caption: “blue” → orange?

AR: Thank you for your remark; we corrected the sentence.

RC: L411: “has reached its resolution capacity for correctly simulat-
ing the advection of sea ice on a global scale.” → This sentence
appears the second time in the text and it is unclear to me what
is meant with it.
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AR: We modified the paragraph, we meant that the surrogate model is good
at advecting sea-ice thickness until an efficient resolution under which it
diffuses the field.

RC: L417: “This hypothesis implies that the surrogate model focuses
on capturing the dominant advection patterns that drive the
overall behavior of sea ice, while sacrificing some of the finer
details.” → This sounds a bit too active for a computer model to
me. Isn’t that focus determined by the researchers defining the
cost function that the model aims to minimize while training?
Please comment on strategies how to overcome this issue, e.g.
new loss functions, more training data, etc. Or do you think a
NN is unable to reproduce these fine-scale features at all? (See
major comment above)

AR: Thank you for your remark. As mentioned above, deterministic neural
networks won’t be able to significantly improve this behavior. Stochastic
neural networks have better chances to overcome this issue. We clarified
this in the new discussion part.

RC: L 425: “have important information for the prediction from the
physical model” → Unclear what is meant with this!

AR: This sentence was indeed unclear and was corrected. We will correct it, we
meant that those variables are important for sea-ice models itself, as they
are prognostic variables, and might offer some insights about the physical
model.

RC: L432: “instantiation” → ?

AR: We corrected this sentence. We meant that the results are different, espe-
cially since neXtSIM simulation was forced with ERA5, and that we are
trying to predict SIT with fundamentally different forcings.

RC: L436: “similarly simulated” → The simulated fields are very
smooth and hardly similar in nature to the feature-rich fields
that neXtSIM is capable of simulating.

AR: Indeed this sentence is misleading; we changed it.

RC: Appendix C1 “Partial Convolution algorithm” → Here seems to
be text missing.
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AR: We added a more in-depth description of the algorithm.

2 Response to Referee 2

RC: The paper presents a strong case of surrogate modeling by using
neural networks to emulate the increase in sea ice thickness, how-
ever, the paper lacks clarity at several places in the manuscript
and requires minor revisions:

AR: We deeply appreciate the reviewer’s thorough and insightful review of our
work. In the following, we discuss the raised concerns and what we have
changed in our revised manuscript.

RC: 1. There is little information provided on the choice of atmo-
spheric variables considered as forcings. Please provide more
evidence from literature on this.

AR: We added a paragraph in section 2.2, regarding the justification for the
use of atmospheric forcings, as mentionned in the response to the referee.
Firstly, let’s note that for neXtSIM simulations, the atmospheric forcings
consist of the 10m wind velocities, the 2m temperature, mixing ratio,
mean sea level pressure, total precipitation and the snow fraction. We
decided to limit ourselves to the first three. Plueddemann et al. (1998)
and Kwok et al. (2013), for example, have shown that the sea-ice drift is
strongly linked to wind velocities. There is a strong correlation between
the atmosphere winds and the sea-ice motion, up to 0.8 in Central Arctic
(Thorndike and Colony, 1982; Serreze et al., 1989; Zhang et al., 2000).
Those forcings are a good proxy for the advection of the sea-ice, which
is also necessary for emulating sea-ice thickness dynamics. Observational
studies have shown that interannual variability in sea ice conditions is
caused by the variability in the large-scale atmospheric circulation which
locally manifests itself as surface air temperature and wind anomalies,
(Deser et al., 2000; Prinsenberg et al., 1997). Experiments were origi-
nally conducted with additional forcings, including sea-surface tempera-
ture (SST); however, SST was later excluded because the simulation was
coupled with the ocean in this version of neXtSIM.

RC: 2. If the neural network is designed for future forecasting, none
of the input features should belong to the same timestep as the
target. In case of this paper, all the atmospheric variables are
of same timestep whereas like SIT, they should also be up till ’t’
timestep. You can justify through experiments how the current
setting performs better than the one suggested.
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AR: We chose to incorporate ’future forcings’ based on the understanding that,
in sea-ice modeling, the advection of sea ice is strongly influenced by the
forecast atmospheric forcings. Experiments were also performed without
those future forcings, up until t. The impact on forecast skills was non-
negligible, as displayed in Fig. 3. Note that the results presented here
are evaluated on the validation dataset. In the simulations on which our
dataset is based on (Boutin et al., 2023), neXtSIM is uncoupled from an
atmospheric model and uses just ERA5 forcings. In such settings, the
atmospheric forcing can be given by forecasts, and, thus, known for the
future. Consequently, using future forcings during training is nonrestric-
tive in terms of its potential operational capability. As those experiments
were not conducted on a test dataset, but at a previous stage of the analy-
sis, they were not included in the manuscript. Nonetheless, a remark was
added in Sec.2.2 about this choice.

Figure 3: Forecast skills of surrogate models depending on the addition of future
forcings. Two surrogate models are evaluated on the validation dataset: one
with atmospheric forcings, up to t (red curve) and another with the addition
of future atmospheric forcings, up to t+ 12hours (blue curve). Averages of the
RMSE are shown with solid curves, and their associated standard deviations
are outlined with transparency.
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RC: 3. There are some minor errors that should be corrected: UNet
by definition is not a convolutional architecture but it is an
encoder-decoder Neural Network architecture with skip-connections.
There are several papers utilizing LSTM-based UNet or ConvLSTM-
based UNet. Andersson et al. did not propose IceNet for SIC
prediction. Their work targets SIP predictions which is slightly
different from SIC.

AR: We added references for more LSTM-based UNet or ConvLSTM-based
UNet papers, corrected the mention of the IceNet paper to SIP predictions,
and the definition of UNet.

RC: 4. There are several other recent papers that utilize CNN, Con-
vLSTM and LSTM for SIC predictions. There is not enough
convincing argument present on just relying on UNet for the
surrogate model. Did the authors try a CNN or ConvLSTM
based architecture for surrogate modeling?

AR: Several architectures have been tested on a coarse-grained dataset (128×
128 grid cells) to reduce computation costs. Both mentioned ResNet
and ConvLSTM structures have been investigated, yielding quite simi-
lar results in terms of forecast skills on the validation dataset. From our
experimentation, the specific structure of the convolutional neural net-
work does not matter much. Our LSTM-based approach, with a lag of
48 hours, led to satisfactory forecast skills; caused by the high computa-
tional costs (441 s/epoch) compared to the UNet (108 s/epoch), we focus
on the UNet structure when we moved to the high-resolution dataset.
Regarding the ResNet architecture, also implemented with partial convo-
lution, the results were also quite similar, despite higher computational
costs (172 s/epoch). Forecasts skills results are presented in Fig. 4 for
UNet, ResNet and ConvLSTM. As no extensive study for those different
architectures have been conducted afterwards, and the results presented
here are on a coarser resolution, not necessarily fully hyper-optimized. Yet,
a description of those experiments and our justification towards focusing
on the UNet are provided in the discussion section.

RC: 5. How was 100 decided as the optimal value of lambda? Did
you experiment with other values of lambda in calculating the
global loss?

AR: A more thorough description of the choice of λ has been provided in the
appendix, in the section C3.2. This value was chosen after experimenting
with several values. The impact of λ on the forecast skill is negligible, while
having an important impact on the bias. The value of λ = 100 was chosen
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Figure 4: Forecast skills for different neural network architecture on a coarse-
grained dataset (128 × 128 grid-cells) on the validation dataset. (a) Compar-
ison between a ConvLSTM architecture (red) and a UNet architecture (blue).
(b) Comparison between a ResNet architecture (red) and a UNet architecture
(blue). The solid curves represent the averaged normalized root-mean-squared
error (nRMSE) and in transparency is represented its associated standard de-
viation. The persistence baseline is also indicated in purple (a) and black (b).

based on the evaluation on the validation dataset. Others values of λ
were not evaluated on the test dataset. Please find the experiments on the
validation dataset in Fig. 5. Selecting a value for λ that is excessively large
could result in a loss of information at the fine scale. A value of λ = 100
seems to keep a good balance between fine-scale dynamics and global sea-
ice thickness. The experiments, being conducted on the validation dataset,
were not added to the manuscript.

RC: 6. What is the timestep used in case of longterm forecasting?

AR: We added at the beginning of section 5.4 that for the long-term forecast,
the NN trained with one timestep was used.

RC: 7. Did the authors consider using custom loss function instead of
partial convolution to incorporate land-mask into the modeling?

AR: As we discussed in the referee’s answer, we have not considered using only
a custom loss function instead of partial convolution, thus further exper-
iments were not added to the manuscript. The loss function is already
custom and takes the mask into account. Should we use normal convolu-
tions instead of partial convolutions, we would zero-pad land pixels. The
effect of the land masses would be then similar to effects of zero padding
at image boundaries, which can lead to artifacts (Liu et al., 2018). Con-
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Figure 5: Impact of the choice of λ on the forecast skill and bias error on the
validation dataset. On the left panel is presented the forecast skill, as defined
on the manuscript. The solid curves represent the averaged normalized root-
mean-squared error (nRMSE) and in transparency is represented its associated
standard deviation. On the right panel is shown the bias error, as defined
on the manuscript. The solid curves represent the averaged bias error and
in transparency is represented its associated standard deviation. Results for
several values of λ are shown for both panel : λ = 0 (blue), λ = 10 (red),
λ = 100 (yellow), λ = 1000 (green). The persistence baseline forecast skill is
also indicated in black.

sequently, by taking the mask only for the loss function into account, we
would possibly generate artifacts in regions with a lot of land masses.
Additionally, without masking operations, during cycling of the neural
network for longer lead times than 12 h, errors could rapidly accumulate
on land and lead to physically inconsistent results.

RC: Ref: 1. Ebert-Uphoff, Imme, et al. ”CIRA Guide to Custom
Loss Functions for Neural Networks in Environmental Sciences–
Version 1.” arXiv preprint arXiv:2106.09757 (2021).
2. Ali, Sahara, and Jianwu Wang. ”MT-IceNet-A Spatial and
Multi-Temporal Deep Learning Model for Arctic Sea Ice Fore-
casting.” 2022 IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT). IEEE, 2022.
3. Kim, Eliot, et al. ”Multi-task deep learning based spatiotem-
poral arctic sea ice forecasting.” 2021 IEEE International Con-
ference on Big Data (Big Data). IEEE, 2021.

AR: Thank you for the references.
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