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RC: Reviewer Comment; AR: Author Response

RC: The paper presents a strong case of surrogate modeling by using
neural networks to emulate the increase in sea ice thickness, how-
ever, the paper lacks clarity at several places in the manuscript
and requires minor revisions:

AR: We deeply appreciate the reviewer’s thorough and insightful review of our
work. In the following, we will comment on the raised issues and the
changes planned for our revised manuscript.

RC: 1. There is little information provided on the choice of atmo-
spheric variables considered as forcings. Please provide more
evidence from literature on this.

AR: We will add more references and comments in the manuscript to explain
our choice of forcings. Firstly, let’s note that for neXtSIM simulations, the
atmospheric forcings consist of the 10m wind velocities, the 2m temper-
ature, mixing ratio, mean sea level pressure, total precipitation and the
snow fraction. We decided to limit ourselves to the first three. Pluedde-
mann et al. (1998) and Kwok et al. (2013), for example, have shown that
the sea-ice drift is strongly linked to wind velocities. There is a strong cor-
relation between the atmosphere winds and the sea-ice motion, up to 0.8 in
Central Arctic (Thorndike and Colony, 1982; Serreze et al., 1989; Zhang
et al., 2000). Those forcings are a good proxy for the advection of the
sea-ice, which is also necessary for emulating sea-ice thickness dynamics.
Observational studies have shown that interannual variability in sea ice
conditions is caused by the variability in the large-scale atmospheric cir-
culation which locally manifests itself as surface air temperature and wind
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anomalies, (Deser et al., 2000; Prinsenberg et al., 1997). Experiments were
originally conducted with additional forcings, including sea-surface tem-
perature (SST); however, SST was later excluded because the simulation
was coupled with the ocean in this version of neXtSIM.

RC: 2. If the neural network is designed for future forecasting, none
of the input features should belong to the same timestep as the
target. In case of this paper, all the atmospheric variables are
of same timestep whereas like SIT, they should also be up till ’t’
timestep. You can justify through experiments how the current
setting performs better than the one suggested.

AR: We chose to incorporate ’future forcings’ based on the understanding that,
in sea-ice modeling, the advection of sea ice is strongly influenced by the
forecast atmospheric forcings. Experiments were also performed without
those future forcings, up until t. The impact on forecast skills was non-
negligible, as displayed in Fig. 1. Note that the results presented here
are evaluated on the validation dataset. In the simulations on which our
dataset is based on (Boutin et al., 2023), neXtSIM is uncoupled from an
atmospheric model and uses just ERA5 forcings. In such settings, the
atmospheric forcing can be given by forecasts, and, thus, known for the
future. Consequently, using future forcings during training is nonrestric-
tive in terms of its potential operational capability.

RC: 3. There are some minor errors that should be corrected: UNet
by definition is not a convolutional architecture but it is an
encoder-decoder Neural Network architecture with skip-connections.
There are several papers utilizing LSTM-based UNet or ConvLSTM-
based UNet. Andersson et al. did not propose IceNet for SIC
prediction. Their work targets SIP predictions which is slightly
different from SIC.

AR: Thank you for your remarks. We will add references for more LSTM-based
UNet or ConvLSTM-based UNet, correct the mention of the IceNet paper
to SIP predictions, and the definition of UNet. We will define the UNet
as an encoder-decoder-based CNN.

RC: 4. There are several other recent papers that utilize CNN, Con-
vLSTM and LSTM for SIC predictions. There is not enough
convincing argument present on just relying on UNet for the
surrogate model. Did the authors try a CNN or ConvLSTM
based architecture for surrogate modeling?

AR: Several architectures have been tested on a coarse-grained dataset (128×
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Figure 1: Forecast skills of surrogate models depending on the addition of future
forcings. Two surrogate models are evaluated on the validation dataset: one
with atmospheric forcings, up to t (red curve) and another with the addition
of future atmospheric forcings, up to t+ 12hours (blue curve). Averages of the
RMSE are shown with solid curves, and their associated standard deviations
are outlined with transparency.

128 grid cells) to reduce computation costs. Both mentioned ResNet
and ConvLSTM structures have been investigated, yielding quite simi-
lar results in terms of forecast skills on the validation dataset. From our
experimentation, the specific structure of the convolutional neural net-
work does not matter much. Our LSTM-based approach, with a lag of
48 hours, led to satisfactory forecast skills; caused by the high computa-
tional costs (441 s/epoch) compared to the UNet (108 s/epoch), we focus
on the UNet structure when we moved to the high-resolution dataset.
Regarding the ResNet architecture, also implemented with partial convo-
lution, the results were also quite similar, despite higher computational
costs (172 s/epoch). Forecasts skills results are presented in Fig. 2 for
UNet, ResNet and ConvLSTM. As no extensive study for those different
architectures have been conducted afterwards, and the results presented
here are on a coarser resolution, not necessarily fully hyper-optimized,
those experiments will not be presented in the manuscript.
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Figure 2: Forecast skills for different neural network architecture on a coarse-
grained dataset (128 × 128 grid-cells) on the validation dataset. (a) Compar-
ison between a ConvLSTM architecture (red) and a UNet architecture (blue).
(b) Comparison between a ResNet architecture (red) and a UNet architecture
(blue). The solid curves represent the averaged normalized root-mean-squared
error (nRMSE) and in transparency is represented its associated standard de-
viation. The persistence baseline is also indicated in purple (a) and black (b).

RC: 5. How was 100 decided as the optimal value of lambda? Did
you experiment with other values of lambda in calculating the
global loss?

AR: This value was chosen after experimenting with several values. The impact
of λ on the forecast skill is negligible, while having an important impact
on the bias. The value of λ = 100 was chosen based on the evaluation on
the validation dataset. Others values of λ were not evaluated on the test
dataset. Please find the experiments on the validation dataset in Fig. 3.
Selecting a value for λ that is excessively large could result in a loss of
information at the fine scale. A value of λ = 100 seems to keep a good
balance between fine-scale dynamics and global sea-ice thickness. We will
add more explanation for the tuning of λ in our manuscript.

RC: 6. What is the timestep used in case of longterm forecasting?

AR: For the long-term forecast, the NN trained with one timestep is used. We
will add this remark in the manuscript.

RC: 7. Did the authors consider using custom loss function instead of
partial convolution to incorporate land-mask into the modeling?

AR: The loss function is already custom and takes the mask into account.
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Figure 3: Impact of the choice of λ on the forecast skill and bias error on the
validation dataset. On the left panel is presented the forecast skill, as defined
on the manuscript. The solid curves represent the averaged normalized root-
mean-squared error (nRMSE) and in transparency is represented its associated
standard deviation. On the right panel is shown the bias error, as defined
on the manuscript. The solid curves represent the averaged bias error and
in transparency is represented its associated standard deviation. Results for
several values of λ are shown for both panel : λ = 0 (blue), λ = 10 (red),
λ = 100 (yellow), λ = 1000 (green). The persistence baseline forecast skill is
also indicated in black.

Should we use normal convolutions instead of partial convolutions, we
would zero-pad land pixels. The effect of the land masses would be then
similar to effects of zero padding at image boundaries, which can lead to
artifacts (Liu et al., 2018). Consequently, by taking the mask only for
the loss function into account, we would possibly generate artifacts in re-
gions with a lot of land masses. Additionally, without masking operations,
during cycling of the neural network for longer lead times than 12 h, er-
rors could rapidly accumulate on land and lead to physically inconsistent
results.

RC: Ref: 1. Ebert-Uphoff, Imme, et al. ”CIRA Guide to Custom
Loss Functions for Neural Networks in Environmental Sciences–
Version 1.” arXiv preprint arXiv:2106.09757 (2021).
2. Ali, Sahara, and Jianwu Wang. ”MT-IceNet-A Spatial and
Multi-Temporal Deep Learning Model for Arctic Sea Ice Fore-
casting.” 2022 IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies (BDCAT). IEEE, 2022.
3. Kim, Eliot, et al. ”Multi-task deep learning based spatiotem-
poral arctic sea ice forecasting.” 2021 IEEE International Con-
ference on Big Data (Big Data). IEEE, 2021.
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AR: Thank you for the references.
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