Response To Referee 1
for ’Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic’

Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, and Einar Ölason

December 2023

RC: Reviewer Comment; AR: Author Response

AR: We deeply appreciate the reviewer’s thorough and insightful review of our work. In the following, we respond to the comments and raised issues and point to the changes in our manuscript.

RC: Major comments:
Smoothness of simulated ice thickness fields:

RC: The authors use simulations of neXtSIM, known for its ability to resolve deformation features and heterogeneous sea ice fields, to train the NN emulator. The surrogate model presented in
this manuscript is not able to retain these features over multiple iterations and quickly smooths the sea ice fields, resulting in thickness fields much more similar to coarse-resolution sea-ice simulations. The authors argue that the smoothed version better minimizes the RMSE (MSE used for training) compared to a model that retains these features and potentially gets penalized for misplacing them. Therefore, the model learns to predict smooth fields and mimics large-scale circulation. While this makes sense in light of the cost function used, I have the following issues with how this fact is presented and interpreted:

RC: Why do you use high resolution in the first place? In the abstract and introduction, the authors make the valid point that current models that simulate small-scale features, like e.g. leads, are computationally very expensive and that a surrogate model would be of great benefit here. However, the presented surrogate model is not able to simulate these fine-scale features, but “just” the large-scale dynamics. Now, I am wondering why it is necessary to use the feature-rich simulations for training. In the introduction the authors suggest that “small-scale effects have an advantage on representing the thermodynamics of sea ice”, but I am not aware of modeling studies that have proven this point comprehensively. Now I am wondering if the same results could also be achieved with a coarse resolution model that also resolves the large-scale circulation (and is much cheaper to run). Once having trained the NN on coarse resolution model output, the authors should comment on whether there is an additional benefit in using the high-resolution input data that is currently used.

AR: Training a surrogate model for a coarser resolution is faster, however, a surrogate model for high resolutions can resolve more processes. To showcase this in the following, we display results for additional experiments on a coarse-grained dataset with 128×128 grid cells compared to 512×512 grid cells at the high resolution. The neural network has the same configuration as the high resolution dataset, and follows the same training procedure. To compare the surrogate trained on the high-resolution data to the surrogate trained on the aforementioned coarse resolution, we present the root-mean-squared error (RMSE) depending on the resolution in Fig. 1. The RMSE of the high-resolution surrogate model is decreased by 31% after 12 hours compared to the coarse surrogate. This improvement similarly holds throughout resolution levels and also for longer lead times. Since this improvement results out of different modelled resolutions, it can be linked to a better representation of the small-scale dynamics and their impacts on larger scales for the high-resolution surrogate. While
the training and inference of this high-resolution surrogate model are significantly more time-consuming than the coarse-grained surrogate, it still maintains a rapid processing speed compared to physical model simulations. Consequently, we see a gain by using high-resolution data for surrogate modelling, even if the surrogate leads to smoothed out forecasts. To clarify the use of high-resolution data in our manuscript, we will add Fig. 1 with a brief discussion to the appendix. Additionally, we will add to the discussion (Sect. 6) a paragraph about the use of high-resolution data to emulate neXtSIM sea-ice thickness (SIT).

RC: Are the smoothed fields really simulating large-scale dynamics and are the presented methods sufficient to show this? The authors compare their NN results against persistence and find increased skill of the surrogate model. They attribute this skill to the fact that the model learned the large-scale dynamics. In Fig. 10 one can see that the model only outperforms persistence forecasts in periods of rapidly changing ice cover and thickness (melt and early freeze period). Couldn’t we find the same behavior as well, if the model learned the climatology of ice thickness and relaxes the input sea ice thickness to this climatology? This would be a better benchmark to beat to justify the authors’ claim of learned physics. In general, there should be a more in-depth analysis to demonstrate that the model learned large-scale dynamics, for example, how does the integrated ice edge error (Goessling et al., 2016) varies for different lead times (a quantitative analysis of the qualitative comparison in Appendix D), or a more quantitative evaluation of ice drift started in Fig. 6. Another possibility would be to compare the model skill at different spatial scales by e.g. coarse-graining the predictions. Currently, metrics based on pixel values are shown that always include the effect of missing features. In a scale-dependent analysis, the authors could see up to which scale the model has improved skill and if the large-scale variations are represented appropriately. Or can similar information be extracted from your power spectrum analysis?

AR: Firstly, in Fig. 10 of the original submitted manuscript, the variable under consideration for the evaluation of long-term forecast is an accuracy based on sea-ice extent (SIE). We define the SIE with a SIT threshold of 10 cm and then define an accuracy. As written in the paper: By obtaining a classification mask between ice and no ice, we can easily define an accuracy metric based on the SIE. We define two terms: the first one \(N_{>\sigma_{acc}} \) indicates the number of pixels where \(x_{t_n+k\Delta t} \) and \(x_{t_n+t\Delta t} \) disagree on the presence of sea ice, and the second one \(N_{<\sigma_{acc}} \) where the models disagree on the presence of open water. The accuracy is averaged over all
Figure 1: Evaluation of surrogate model RMSE at various resolutions. Two surrogate models trained on high resolution (solid line) and coarse-grained resolution (dashed line) are assessed in terms of RMSE, in comparison to neXtSIM, at different scales and lead times: after 1 iteration (round markers), after 10 iterations (star markers), and after 20 iterations (hexagonal markers).
\(N_s \) samples:

\[
\text{accSIE}(k) = \frac{1}{N_s} \sum_{n=1}^{N_s} \left(1 - \frac{N_{>\sigma_{acc}}(t_n + k\Delta t) + N_{<\sigma_{acc}}(t_n + k\Delta t)}{N_{\text{sea-ice pixels}}} \right). \tag{1}
\]

This definition is actually extremely close to the Integrated Ice Edge Error (IIEE), the main difference being that our threshold is based on SIT and not on the sea-ice concentration (SIC). Even though it is a useful marker for the marginal ice zone (MIZ), this post-processed variable is inadequate to represent large scale dynamics of SIT, e.g., in the Central Arctic. It only compares the position of the ice edge, and removes the information about global motion of sea-ice thickness inside the ice sheet.

Secondly, our surrogate can conserve the average sea-ice thickness over a full year, while it also can represent advection. This indicates that our surrogate model can capture the large-scale dynamical and thermodynamical evolution of the sea ice over the full year. These phenomena are driven by external forcings from the atmosphere and ocean. Yet, the surrogate model can represent the influence of the forcing on SIT, something that a climatology and, especially, a persistence forecast cannot exhibit. Furthermore, for short-term forecasts, the surrogate model consistently outperforms persistence and the daily climatology and it shows better forecasts than a daily climatology for more than 8 months in terms of forecast skill. The IIEE over the full year exhibits different behavior between the climatology and the surrogate model score, as presented in Fig. 2, where the skill of the surrogate is decreased for longer lead times compared to the climatology. If the surrogate model would have only learned to relax the forecast towards the climatology, we would expect the IIEE score to be much closer to the climatology for longer lead times. We will add more comments in the discussion and openings about its implication and to clarify those points.

RC: If smooth fields are better for prediction, why should the scientific community then at all pursue developing feature-rich models like neXtSIM in a prediction context?

AR: This is just a first step in surrogate modeling of a rich model like neXtSIM, and we can hope that more advancement would bring more fine-scale features even at longer lead times. Smooth fields are good in terms of RMSE. Caused by the discrete-continuous sea-ice processes, this might not be an optimal evaluation metric. Training for other metrics can become increasingly more complicated and would exceed the scope of the study. Furthermore, the surrogate model is statistical driven, whereas models like neXtSIM are based on our physical understanding. Such models based on physical principles can have an advantage especially for futures cases where we have an extrapolation task, caused by climate change. We will discuss this point in Sect. 6.
Figure 2: Time evolution of the IIEE over 2018 for the surrogate model at different lead time and daily climatology. IIEE scores are based with neXtSIM as the ground truth.

RC: The authors suggest that the surrogate model will be of great advantage in computing the adjoint model in variational data assimilation or generating larger ensemble sizes. I have four comments on this: 1) The surrogate model smoothened the input fields and by doing so will reduce the spread of an ensemble, potentially limiting its use for data assimilation. 2) Given the smoothness of the simulated thickness fields and the strong differences with the feature-rich input fields, do you think the surrogate and the numerical model are similar enough to use the surrogate for the adjoint, especially over longer assimilation windows? 3) Does using the surrogate model as adjoint work that easily given the interpolation from unstructured to regular grid? 4) To properly use the surrogate model in data assimilation for both creating an ensemble or the adjoint, more model variables should be simulated than just sea ice thickness. Please comment on all these points in the manuscript.

AR: Thank you for your feedback. We appreciate your remarks, and we will incorporate more details on these points in the discussion section. Regarding your first point, it is a valid consideration. Yet, it is important to note that our initial emphasis will be on variational data assimilation, we do not necessarily think of employing ensembles. Note however that most ambitious implemented 4D-Var are in practice based on approximate adjoints, or exact adjoints of a simplified model. Nevertheless, we recognize the relevance of your remark.
On the second point, our current approach involves using the surrogate model primarily for short-term forecasting. Despite the smoothing, we anticipate obtaining meaningful results and believe that the utilization of the adjoint could still prove beneficial.

Concerning the third point, this is a relevant point. The definition of an adjoint is meaningful concerning the sea-ice thickness field on the projected grid. While performing variational data assimilation on this grid poses no issues, it is important to acknowledge that it might involve a different adjoint compared to the original triangular mesh. However, a common approach in operational variational data assimilation is to use inner and outer loops. In inner loops, cheaper surrogate models, e.g. the model at a lower resolution, are used, whereas the full high-resolution model is only run in the outer loops. Compared to the raw minimization of the variational cost function by employing the full model, there is no guarantee of convergence. This methodology is nevertheless used with much success and might also be a way for such hybrid approaches.

On the fourth point, we completely agree. Our upcoming objectives include the training of a multivariate surrogate model, which can be also used for data assimilation.

RC: Is it in general not possible to achieve a higher degree of details in the ice thickness or is it your outlined training and network architecture that hinders it? In the introduction, you state that the cost function plays a major role here, but the manuscript lacks suggestions how to potentially overcome this issue. Please outline potential ways forward in the paper.

AR: The smoothing effects are highly related to the training of the neural network as deterministic surrogate model. We can expect less smoothing for better models as the uncertainty is decreased. However, caused by the availability of the training data and by computational considerations, we focus on predicting lead times of 12 hours, and there are always futures that cannot be predicted with the available data. By maintaining a deterministic neural network, there will consequently be always a smoothing effect, and we generally do not anticipate significant improvements in the quality of details. By adapting generative neural networks, however, the surrogate model could learn to properly sample from the possible futures and achieve a higher level of fine-scale dynamics. It is worth noting that generative models are currently under investigation by different teams for diverse geoscientific problems Finn et al. (2023). Nonetheless, the training of such models is notoriously more difficult than for deterministic models. As suggested, we will expand on this in the proper place at the discussion part of the manuscript.

RC: Text quality: The manuscript follows a clear structure, but the
text is in passages hard to read and follow and clearly requires further editing. In parts, words are missing or sentences are half-finished. In times of automated language editing tools, more thorough language editing is possible also for non-native speakers, and I highly encourage the authors to make use of these tools in the future.

RC: L27: “of the Arctic” → Consider removing “of the Arctic” as neither CICE nor SI3 are limited to the Arctic

AR: We will remove those terms from the sentence.

RC: L28: “road” → route?

AR: We will correct this term, it comes from a bad translation from french.

RC: L32: “Divergent features in the ice, like leads and polynyas” → Polynyas are not necessarily formed by divergence.

AR: Thank you for your remark, we will modify the sentence accordingly.

RC: L34-35: “Consequently, models correctly representing the effects of such small-scale can have also an advantage in representing the thermodynamics of sea ice.” → Could you please add references, on which studies you base this general statement? In my eyes, it is still an ongoing research question if and what advantage these directly resolved small-scale features have in contrast to parameterizations currently used in climate models.

AR: We agree this is an ongoing research problem and there is no citation available to make this statement, we will modify the sentence in this sense to make it clearer.

AR: Thank you for your remark, indeed, we meant ‘processes’ and we will correct the sentence accordingly.

RC: L39: “benefit” → benefits

AR: Thank you for your remark, we will correct the sentence.
RC: L60: “Explained differently, the surrogate model is trained to reduce errors” → I do not see how this explains the sentences before differently, it basically says the same as the first sentence in L59. Please clarify.

AR: Thank you for your remark, we will remove this sentence as the first sentence is already clear enough.

RC: L65: “learn” → train?

AR: Thank you for your remark, we meant ’train’ and we will correct the sentence accordingly.

RC: L72: “surrogate model” → simulate?

AR: Thank you for your remark, we meant ’emulate’ and we will correct the sentence accordingly.

RC: L84: “model area” → It is not clear if this is the area of the neXtSIM simulations or of the NN. Please clarify the text accordingly.

AR: We will clarify the sentence, we meant the simulations area.

RC: L106: “Because these forcings are also to guide the neXtSIM simulations” → From this statement I assume that the neXtSIM simulations are also forced with ERA5. Please clarify this already earlier on in the text to prevent confusion.

AR: We will clarify this in the paragraph above, neXtSIM simulations are indeed forced with ERA5.

RC: L131: “add to the inputs the SIT” → Didn’t you write above that SIT is already an input? Why add it again? Please clarify.

AR: This sentence meant that we also included in the training dataset SIT and forcings at time \(t - \Delta t \), we will make this addition more explicit in the sentence.

RC: L133-134: “there are called later ’with 2 inputs’. Otherwise, the neural networks are trained ’with 1 input’ “ → Could you please add those labels for clarity to Table1.
AR: Thank you for your remark, we will add those labels to the Table for clarity.

RC: L152: “(Rampal et al., 2019)” → This reference is somehow misleading at it is not clear that it only refers to the multi scale features in sea-ice dynamics, and not to the ability of CNNs to represent those. Please clarify this, or remove the citation here.

AR: Thank you for your remark, this citation is indeed misleading, and we will correct the sentence accordingly.

RC: Figure 2 Caption: “512, 256, and 128,” → The figure also shows images of size 64. Please correct.

AR: Thank you for your remark, there is one additional layer of depth in the figure, we will correct it accordingly.

RC: L165: “sea” → ocean?

AR: Thank you for your remark, we meant ”ocean” and we will correct the sentence accordingly.

RC: L188: “global mean of x and y” → As x and y have a physical meaning, it would be helpful for readers if you could also write what the local and global loss mean with respect to sea ice, e.g. local and global trends in sea ice thickness.

AR: Thank you for your remark, we will add this clarification in the sentence.

RC: L192: “λ is manually tuned to 100” → What do you optimize for, how do you manually decide on best performance? Please clarify.

AR: Thank you for your remark, we will add the detail of the tuning choices in the manuscript. The choice was made with an evaluation on the validation dataset, for several values of λ, of the forecast skill and the bias. Non-chosen values for λ were not evaluated on the testing dataset. The change in the value of λ did not have a significant influence on the forecast skill, except for λ = 1000, in which case there is an important decrease of the forecast skill. The influence of λ was more pronounced on the bias error and has guided our choice towards λ = 100.
RC: L224-225: “over all pixels (i, j) of the field of size (Nx, Ny)” → Also over land pixels? Including land pixels in the RMSE will artificially reduce its value.

AR: Yes, we compute the RMSE over all pixels, but since it is also done for every baseline, this artificial reduction does not change the meaning of the results. Yet, we will correct this, and modify accordingly all the figures.

RC: L235-237: “We define two terms: the first one $N > \sigma_{acc}$ indicates the number of pixels where $x_{tn+k\Delta t}$ and $x_{ftn+k\Delta t}$ disagree on the presence of sea ice, and the second one $N < \sigma_{acc}$ where the models disagree on the presence of open water.” → This is not clear to me. For all pixels, where the two masks disagree, one will show ice and the other will show open water. Shouldn’t therefore not also both terms be the same? Please check those definitions and clarify.

AR: As mentioned above, this is actually really similar to the IIEE definition, with the overestimation term and the underestimation term. We will clarify this in the paragraph as it is indeed misleading.

RC: L250: “kx and ky” → Please rename the indexes x and y to not confuse them with the input of the model x and the output y.

AR: Thank you for your remark, we will correct the indices to avoid the confusion.

RC: L254: “justified” → caused?

AR: Thank you for your remark, we will change the work ‘justified’ for better clarity.

RC: L259-260: “In practice, this exponent can be numerically estimated by a linear regression between $\ln E$ and $\ln|k|$.” → multiple studies show that linear fits in double logarithmic plots are not ideal for determining power-law exponents, e.g. Clauset et al. (2009). Please elaborate why you chose this method. Also how does your metric takes into account if such a scaling actually exists or not, or are you computing exponents regardless of the distribution?

AR: Thank you for your remark; we were not aware of those studies, and chose this method for its simplicity. We will correct this computation with a
better alternative. We are also computing the regression score for this power law, which were checked, and are systematically high, for the short-term forecast.

RC: L 270: “in” → on

AR: Thank you for your remark; we will correct the sentence accordingly.

RC: L281-282: “However, the impact of the global Eq. 6) on the RMSE relatively small compared to the influence of including additional time steps.” → This sentence does not fit to the observed results. When adding the constraint to the 1 input NN the global RMSE reduces by an order of magnitude (as written in the sentence before). Comparing both unconstrained NNs, the global RMSE reduces to about 25% when including additional time steps, so a much lower reduction compared to including the constraint.

AR: Thank you for your remark. This analysis was related to the RMSE and not the global RMSE, for which it remains true. We will make this more evident in the sentence.

AR: Thank you for your remark; we will correct the sentence accordingly.

RC: L288: “reduce” → the RMSE increases!

AR: Indeed we meant increase... we will correct this in the manuscript.

RC: L 289: “surrogate RMSE” → what is the surrogate RMSE?

AR: It meant the RMSE of the surrogate, but this 'surrogate' work is indeed misleading, we will remove it for better clarity.

RC: L291-292: “after 12 hours, the global RMSE has improved by a factor 9.4 for the one input surrogate” → Please comment why there is so little improvement for the 2 input NN.

AR: The global RMSE, with a smaller value than the RMSE, during the training, is much more volatile. While the training takes into account the global loss, and try to reduce it, in the case of the 2 inputs NN, the best
model, according to validation loss (the sum of the local and global losses, weighted by λ), add a given global RMSE which happened to be similar to the model trained without the constant. The fact that the results are still better in constrained case after 15 days, is also a proof that we indeed learned from the global loss term. We will add these discussion points to the manuscript.

RC: P 307: “leaded” \rightarrow ??

AR: We will correct this sentence; we meant ‘could have lead’.

RC: L308: “both biases” \rightarrow which biases?

AR: We will clarify this sentence: we meant both constrained biases for 1 and 2 inputs.

RC: L310: “higher likelihood of errors being introduced in the input data” \rightarrow What kind of errors are you talking about here? The input data is taken from a model simulation where all data points should be consistent with each other. Except for numerical precision, these data should not have a considerate uncertainty as for instance satellite observations. Please clarify.

AR: We will clarify this sentence: we meant while cycling the surrogate model, we introduce more errors at each iteration.

RC: L310-316: “As we cycle the neural network, . . .” \rightarrow Do you want to say that the 2-input NN is able to represent a higher degree of nonlinear physics and therefore shows more chaotic behavior?

AR: We will clarify this sentence, we simply meant that in the inference stage, adding more errors in the neural network logically lead to an increase of the errors in the output of the neural network.

RC: L 324-326: “The consistent performance of this model across different evaluation metrics and scenarios further validates its reliability and 325 robustness. This surrogate configuration is able to capture the essential features and patterns of SIT dynamics, enabling more accurate predictions compared to other configurations.” \rightarrow Please add references to the Tables and Figures with the results you are referring to.

AR: Thank you for your remark. We will add the references in the sentence.
RC: Figure 4. → Please add which NN are displayed with or without constraint.

AR: Thank you for your remark. We will add in the caption to specify this is the constraint surrogates.

RC: L334: “in” → on

AR: Thank you for your remark. We will correct the sentence accordingly.

RC: Table 4: 1) Please add at which lead time these statistics are computed. 2) Fig. 5 → Fig. 5a

AR: Thank you for your remark. We will add the lead time, those RMSEs are computed after 15 days.

RC: Figure 6. “surrogate model” → which of the four models is actually shown here?

AR: We will add in the caption, the surrogate model shown is the constrained NN with 1 input, note that in L315, we mention that in the rest of the manuscript, we will focus on the 1 input NN.

RC: Figure 6. “The trajectories for 30 days are shown in red for neXtSIM and yellow for the surrogate model.” → Please use different colors to not confuse them with the ice extent plotted in the same colors in subfigure a) and b).

AR: Thank you for your remark. We will change the color scheme accordingly.

RC: L354-360: “In order to verify this visual impression,...” → This entire paragraph requires a more in-depth analysis. What is the separation of the two trajectories over time, etc. Also, more than just the four trajectories would be helpful to better quantify these errors.

AR: Thank you for your remark. We believe this ‘small’ analysis really makes sense to show the advection capability of the surrogate model, we can provide a more ‘in-depth’ analysis in the appendix, and we will include more trajectories.

RC: L 356. “important crack” → What is important about the crack?
AR: It was meant as 'big and persistent', which makes it easy to track over one month.

RC: L 360: “but these differences do not indicate incoherent or erratic behavior.” \(\rightarrow\) Unclear what is meant by this. The deviations are errors?

AR: The deviations are indeed errors, but the trajectories are still following coherent paths. We will correct the sentence.

RC: L363-365: “The observation of a smoothing effect on fine-scale features which increases with the forecast lead time aligns with our expectations” \(\rightarrow\) This sentence is unfortunately formulated in a misleading way. If properly forecasted fine scale feature would improve the forecast skill. Only if assumed that the model is unable to properly place the features a smoothed forecast might outperform the fine-scale forecast.

AR: Thank you for your remark. The sentence was indeed misleading; we will correct it.

RC: L371: “8” \(\rightarrow\) Fig. 8

AR: Thank you for your remark; we will correct this typo.

RC: L374: “important” \(\rightarrow\) important for what?

AR: We will correct the sentence. We wished to say that the smoothness increases, as the number of iterations of the surrogate increases.

RC: L.375: “decrease” \(\rightarrow\) decreases

AR: Thank you for your remark, we will correct this sentence.

RC: L379-380: “We hypothesize that the neural network has attained its resolution capacity for a correct advection of the sea-ice on the global scale by reducing the fine-scale dynamics that is inherently chaotic and stochastic.” \(\rightarrow\) It is unclear to me what is meant by this sentence and how it would lead to more structure in the forecasted ice fields. Please elaborate.
AR: Thank you for your remark. We will add more details in the revised manuscript. We meant that the surrogate model is able to correctly advect sea-ice thickness until a given resolution, over which by smoothing the fine-scale dynamics give better forecast fields in terms of RMSE.

RC: L 383: “arctic” → Arctic

AR: Thank you for your remark; we will correct this sentence.

RC: L386: “initialization periods evenly distributed during that period” → Be more specific: initialized every month?

AR: Thank you for your remark; we will be more specific: forecasts are initialized every 30 days.

RC: L. 387: “In the appendix see Fig. D3” → Does not fit to the rest of the sentence, please rewrite.

AR: Thank you for your remark; we will correct the sentence.

RC: L 387: “propose” → ?

AR: We will correct the sentence; we meant 'show'.

RC: L.389: “In the bottom panel of the figure” → Which figure are you talking about? Fig.D3 does not show global average SIT...

AR: The mention of the snapshot in the sentence above is misleading, we will correct the sentence, we meant Fig. 9.

RC: L391-401: “This consistency...” → This paragraph is hard to understand and the described hypothesis is hard to follow. Please clarify and add a more comprehensive analysis to justify your points raised.

AR: We will add a more comprehensive explanation, but the main idea is that by having a really low bias, at 12 hours, the surrogate model is correctly able to follow on the long-term the global dynamics of the SIT.

RC: L400-401: “As anticipated, the surrogate model performs significantly better than persistence during periods of high variation, particularly during summer and autumn.” → What is in
the other seasons? From Fig.10 it looks like the surrogate model only clearly outperforms persistence from August/September to January, while in spring there seems to be no skill. Please elaborate on this and clarify in which periods there is no gain over persistence.

AR: As mentioned in the major comment, in Fig.10, the variable exhibited is the SIE, which is post-processed from SIT, and in which we only get the accuracy of the position of the MIE. In other seasons where the ice edge is not moving much, the persistence gives a good baseline for the position of the ice edge, and while our surrogate model still correctly advects SIT, the results for the SIE accuracy are not really different from persistence. We will clarify this point in the revised manuscript.

RC: L406: “This opens the perspective to run a large ensemble of simulations for complex sea-ice models, which can facilitate data assimilation.” → Please discuss how this fits to the smoothening effect of the model. It might be hard to create an ensemble spread if the model blurs all features. (See major comment above)

AR: This is a relevant point. Our main idea in this sentence was the computational cost. The smoothening might cause a collapse, but the development of better surrogate models might solve this issue.

RC: Figure 8 caption: “blue” → orange?

AR: Thank you for your remark; we will correct the sentence.

RC: L411: “has reached its resolution capacity for correctly simulating the advection of sea ice on a global scale.” → This sentence appears the second time in the text and it is unclear to me what is meant with it.

AR: We will modify the sentence, we meant that the surrogate model is good at advecting sea-ice thickness until an efficient resolution under which it diffuses the field.

RC: L417: “This hypothesis implies that the surrogate model focuses on capturing the dominant advection patterns that drive the overall behavior of sea ice, while sacrificing some of the finer details.” → This sounds a bit too active for a computer model to me. Isn’t that focus determined by the researchers defining the
cost function that the model aims to minimize while training? Please comment on strategies how to overcome this issue, e.g. new loss functions, more training data, etc. Or do you think a NN is unable to reproduce these fine-scale features at all? (See major comment above)

AR: Thank you for your remark. As mentioned above, deterministic neural networks won’t be able to significantly improve this behavior. Stochastic neural networks have better chances to overcome this issue. We will clarify this in the new discussion part.

RC: L 425: “have important information for the prediction from the physical model” → Unclear what is meant with this!

AR: This sentence was indeed unclear. We will correct it, we meant that those variables are important for sea-ice models itself, as they are prognostic variables, and might offer some insights about the physical model.

RC: L432: “instantiation” → ?

AR: We will correct this sentence. We meant that the results are different, especially since neXtSIM simulation was forced with ERA5, and that we are trying to predict SIT with fundamentally different forcings.

RC: L436: “similarly simulated” → The simulated fields are very smooth and hardly similar in nature to the feature-rich fields that neXtSIM is capable of simulating.

AR: Indeed this sentence is misleading; we will change it.

RC: Appendix C1 “Partial Convolution algorithm” → Here seems to be text missing.

AR: We will add a more in-depth description of the algorithm.
References