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Correspondence: Liviu Ivănescu (Liviu.Ivanescu@usherbrooke.ca)

Abstract. We explored the improvement in starphotometry accuracy using a multi-star Langley calibration in lieu of the more

traditional one-star Langley approach. Our goal was a 0.01 calibration-constant repeatability accuracy, at an operational sea-

level facility such as our Arctic site at Eureka. Multi-star calibration errors were systematically smaller than single star errors

and, in mid-spectrum, approached the 0.01 target for an observing period of 2.5 h. Filtering out coarse mode (super µm)

contributions appears mandatory for improvements. Spectral vignetting, likely linked to significant UV/blue spectrum errors5

at large airmass, may be due to limiting field-of-view and/or sub-optimal telescope collimation. Starphotometer measurements

acquired by instruments that have been designed to overcome such effects may improve future star magnitude catalogues and

consequently starphotometry accuracy.

1 Introduction

Starphotometry involves the measurement of attenuated starlight in semi-transparent atmospheres as a means of extracting the10

spectral optical depth, and thereby estimating columnar properties of absorbing and scattering constituents such as aerosols,

trace gases and optically thin clouds. One of the earliest comprehensive investigations of starphotometry errors and their

influence on calibration was reported in the astronomical literature by Young (1974). Calibration strategies for retrieving

accurate photometric observations in variable optical depth conditions were proposed by Rufener (1964, 1986). Those studies

were recently updated and complemented using starphotometer measurements from our High Arctic, sea-level observatory at15

Eureka, NU, Canada (Ivănescu (2015), Baibakov et al. (2015), Ivănescu et al. (2021)). This, more recent work, underscored

certain challenges in performing calibration at such a high-latitude/low-altitude site. The remoteness of the Eureka site and

the significant infrastructure requirements of the starphotometer render calibration campaigns at, say, a dedicated mountain

site, onerous. The alternative to a calibration campaign for operational sites (particularly at an Arctic site like Eureka) is to

improve on-site calibration methods by overcoming the relatively large optical depth variability at operational sites. Much can20

be learned by exploring this option at an Arctic location like Eureka(see O’Neill et al. (2016) for a discussion of optical depth

variability at Eureka).

Star-dependent (one-star) Langley calibration that depends on large airmass variations is the current standard in starpho-

tometry (see Pérez-Ramírez et al. (2008)Pérez-Ramírez et al. (2011)). This is mainly due to the limited accuracy of available

extraterrestrial star magnitudes Ivănescu et al. (2021). A good number of High Arctic stars cannot, however, be so calibrated25

since they do not go through large elevation (i.e. airmass) changes (in the extreme case of a site at the pole, there are no eleva-
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tion changes). Our goal is to demonstrate that a sub 0.01 optical depth error (partly linked to calibration errors) can be achieved

by performing the type of instrument-dependent, star-independent calibration referred to in Ivănescu et al. (2021).

2 Calibration methodology

2.1 Langley calibration30

The starphotometer retrieval algorithm is based on extraterrestrial and atmospherically attenuated magnitudes of non-variable

bright stars, denoted by M0 (usually provided by a catalog) and M , respectively (see Ivănescu et al. (2021) for the nomenclature

details). Their corresponding (instrument) signals, expressed in terms of a magnitude (logarithmic) formulation, are S0 and S,

respectively. The star-independent conversion factor between the catalog and instrument magnitudes is (ibid)

C = M −S (1)35

C = M0−S0 (2)

The C factor accounts for the optical and electronic throughput of the starphotometer, as well as the photometric system

transformation between the instrument signal magnitude and the extraterrestrial catalog magnitude. In terms of magnitude, the

Beer-Bouguer-Lambert atmospheric attenuation law is

M = M0 + (m/0.921)τ (3)40

where m is the observed airmass and τ is the total optical depth. Inserting equation (1) yields

M0−S =−τx + C (4)

where x = m/0.921. This expression can be used to retrieve C from a linear regression of M0−S versus x, if τ is assumed

constant. Such a procedure is referred to as the Langley calibration technique, or Langley plot. In the absence of an accurate

M0 spectrum, equation (2) can be used to transform equation (4) into45

S = τx + S0 (5)

for which a catalog is no longer required. This linear regression enables the retrieval of S0 instead of C and thus represents a

star-dependent calibration.

The right side of equation (4) notably indicates that M0−S is star independent: it thus represents a linear regression that

any star can contribute to and, accordingly, a framework for multi-star Langley calibration.50
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3 Calibration errors

3.1 Measurement accuracy

The differential of (rearranged) equation (4) yields the calibration accuracy error

δC = (δxτ + xδτ )− δS + δM0 (6)

The (δxτ+xδτ ) component underscores the rationale for performing calibrations at a high altitude site (where τ , δτ and δxτ are55

typically smaller) and the advantage of maintaining small x in order to minimize the xδτ contribution to δC . The sky stability

during the retrieval of C may be monitored by computing τ for each sample, with equation (4). The δS error component

accounts for any systematic signal changes: optical transmission degradation, misalignment error, star spot vignetting etc. The

δM0 component accounts for any magnitude bias in the bright star catalog (i.e., it is the average of accuracy-error spectra

for all catalog stars: see Ivănescu et al. (2021) for a detailed discussion of error bias in the catalog stars). Because it is a60

catalog-specific constant, the optical depth accuracy will not be affected by its consistent use1.

3.2 Regression precision

A linear regression applied to a plot of y = M0−S versus x yields the slope (−τ̂ ) and intercept (Ĉ) of the Langley equation (4).

The regression equation is then ŷ =−τ̂x + Ĉ and the linear-fit residuals are represented by r = y− ŷ. The standard error of

the regression slope and intercept for a large number of measurements2 can be expressed as (see, for example, Montgomery65

and Runger (2011))

στ̂ =
σr

σx
, σĈ = στ̂

√
x2 (7)

It should be noted that r (the mean of the residual) = 0 is a corollary of the linear regression constraints.

The Langley calibration y-axis embodies two independent sets of measurements: N "measurements" of M0 and n mea-

surements of S. From a pure noise standpoint, the residuals can be represented by an ensemble of individual measurements70

(r = (M0−S)− (−τx+C)) where each parameter (except C) is subject to noisy variation. Excluding the typically negligible

random errors in x yields3

σ2
r =

σ2
ϵS

n
+

σ2
ϵτ

x2

n
+

σ2
ϵM0

N
= σ2

ϵS
+ σ2

τx2 + σ2
ϵM0

(8)

where the standard error expression for a linear combination of random variables was employed (Barford (1985)). The subscript

ϵ represents a single instance of a random (noise) measurement in S, τ or M0 and σϵ is its zero-mean standard deviation.75

σϵτ was replaced by στ because no systematic variation was assumed in τ during the calibration period. ϵM0 represents the

1Such an error becomes part of the C value extracted from the Langley calibration of equation (4) and becomes part of the operational retrieval process

when equation (4) is inverted to yield individual values of τ .
2n > 10 where n =

∑
ni (ni being the number of observations associated with star i)

3Where the variance of the ϵτ x product (Goodman (1960)) is σ2
ϵτ x = σ2

xϵ2τ + σ2
ϵτ

x2 = σ2
τ x2, since ϵτ = 0 and σϵτ = στ .
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difference between an individual star’s M0 accuracy-errors and the averaged M0 catalog bias. The σϵM0
term is specific for the

use of multiple stars during the calibration.

4 Observing conditions

The assumption of constant τ in time (t) and observational direction (expressed in terms of m) may be problematic over long80

observation periods and large airmass changes. It is a useful exercise to assess the average time period and airmass range over

which a degree of τ constancy (sky stability) is maintained.

Variations of a sky instability parameter (σδτ ) were analyzed using δτ differences for τ measurements acquired during the

2019-2020 season in Eureka. δτ values were placed into (a) fixed ∆t bins to generate δτ histograms for high stars (where

δτ = τf − τi is computed from a later time (f) relative to an earlier time (i), and (b) fixed ∆m bins from high- to low-star m85

pairs. Since δ of each bin generally come from distinct periods, τf and τi are expected to be uncorrelated: the τi versus τf

correlation coefficient was determined to be < 0.25 when τp < 0.1, ∆t < 1 h and∼ 0.1 otherwise (see the legend of Figure 1 for

the definition of τp). This is negligible for the purposes of our analysis and, accordingly, they can be considered as independent

variables. The approximation στ
∼= σδτ/

√
2 (Soch et al. (2021)) can accordingly be employed for each ∆m or ∆t bin.

Those histograms often included anisotropic outliers typical of lognormal τ statistics (Sayer and Knobelspiesse (2019)). A90

median approach was chosen to render the statistics approximately independent of the outliers: the MAD (Median Absolute

Deviation) parameter was employed as a robust measure of histogram width (see equation (1.3) in Rousseeuw and Croux (1993)

for MAD details). In order to eventually convert the statistics to those of a normal distribution, an outlier cutoff of 4.5 ·MAD

was defined4. This particular cutoff is equivalent to the classical normal distribution outlier cutoff of 3σ since σ = 1.5 ·MAD.

Figure 1 shows στ (computed after the outlier cut-off and using the στ approximation given above) as a function of (a) ∆t95

and (b) ∆m. It can be shown5 that a calibration period of 2 h, for which n≃ 46 at the standard sampling rate of starphotometer,

yields στ ≃ 1.4σĈ . This means that the calibration error (σĈ) is limited to < 0.01 only if στ < 0.014. An 8-h observing period

enables a more generous limit of στ < 0.028 to achieve the same calibration precision. Contour curves of στ = 0.014 and 0.028

are superimposed on Figure 1.

Figure 2 shows the στ variability estimation for the 2-h "fast" and the 8-h "long" calibration periods, as well as a third100

scenario with ∆m = 1 to 5. The three curves represent the standard deviation (after cut-off) of the corresponding range-

aggregated data. They tend to converge with decreasing τp: the 2-h and 8-h στ values of 0.014 and 0.028 correspond to τp values

of 0.13 and 0.15, respectively (blue and red dashed vertical lines defined by the intersection with the corresponding horizontal

0.014 and 0.028 lines). The cases τp ≤ 0.13 and 0.15 were labeled as "clear-sky" conditions because of their tendency to

promote calibration stability. Their corresponding clear-sky statistics are presented in appendix A.105

4A cutoff liberty that we availed ourselves of because one is free to chose the duration of the calibration period and/or to perform outlier filtering prior to

Langley regressions.
5Using σ2

τ ≃ σ2
Ĉ

n/k3 (obtained from equation (B3)), with the terms in S and M0 neglected, and inserting στ /
√

n (i.e. στ ) into equation (7) and noting

that a typical range of x ∈ [1.086,5] yields k3 ≃ 23 (see Figure B1).
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Figure 1. Two dimensional sky instability (στ ) patterns for the 2019-2020 season at Eureka. The colour coded στ values are computed

relative to a reference τ value but plotted as a function of its associated particulate optical depth (τp = τ − τm, where τm is the molecular

scattering optical depth) and a) time difference (∆t), or b) air mass difference (∆m). The magenta and purple curves represent the column-

wise averaged στ = 0.014 and 0.028 contour lines. There was much more data associated with ∆t than with ∆m bins (i.e. more robust bin

statistics are expected in the former case). Note that ∆m and ∆t were chosen to be positive.
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Figure 2. στ vs τp for the three calibration scenarios defined.

Many high Arctic stars are circumpolar (i.e. they never set) and thus their airmass range is limited. Figure 3 shows airmass

variation as a function of time past the transit for our dataset of the 13 brightest (and stable) stars at Eureka. A well defined

separation is notable between high stars (m(12h) < 3.1) and low stars (m(0h) > 2.2). A large airmass range is clearly only

available for the low stars (i.e. about 2/3 of our Eureka bright-star dataset). However, star vignetting, due to turbulence-inducing

star-spot expansion beyond the boundaries of the Field of View (FOV), may affect the optical throughput of the Eureka system110

at m > 5 (Ivănescu et al. (2021)). This type of airmass constraint, combined with the low star constraints of Figure 3, results in

only moderate ∆m excursions (at the expense of substantial ∆t) if only a single star is employed in a Langley type calibration.

A multi-star calibration can be exploited to mitigate such ∆m and ∆t limitations.

5

https://doi.org/10.5194/egusphere-2023-1383
Preprint. Discussion started: 10 July 2023
c© Author(s) 2023. CC BY 4.0 License.



0 2 4 6 8 10 12

1

2

3
4
5

7

10

15

Figure 3. Airmass versus time past the transit for the bright stars observable at Eureka (identified by their HR catalog index). The transit of

a given star occurs when it crosses the local meridian (minimum airmass).

5 Multi-star calibration

This type of calibration exploits a singular advantage of starphotometry over moonphotometry and sunphotometry: the capabil-115

ity of employing multiple extraterrestrical light sources in a relatively short period of time. In comparison with a C-determining

Langley calibration using one star, the multi-star approach enables a synergistic Langley calibration that employs several stars

exhibiting a wide range of airmass values over a significantly shorter period of time.

One- and multi-star Langley calibrations acquired with the Eureka starphotometer on 2019/12/07 and 2020/01/10, respec-

tively, are shown in Figure 4. The observations for x > 5 were carried out to highlight any vignetting effect due to the afore-120

mentioned star-spot expansion. The one-star case (small black dots and their associated "1-lin" regression line) are the results

for the low Procyon star (HR 2943, spectral type F5V). Its colder temperature ensures a near infrared (NIR) brightness that

is larger than all the other bright stars of Figure 36. That reason aside, it is also, arguably, the most optimal one-star Langley-

regression choice since no other Figure 3 bright star can duplicate its large and rapid airmass change (c.f. the lowest black

curve).125

5.1 Calibration precision

The resulting one- and multi-star τ̂ spectra (each spectral point representing a linear-regression Langley slope) are shown in

Figure 5a. Their associated precision errors (στ̂ ) of equation (7) are shown in Figure 5b. One should note that the estimated

multi-star error is substantially and consistently smaller than that of the one-star calibration. The Ĉ and σĈ spectra from the

Langley regressions are shown in Figure 6a and Figure 6b, respectively. The σĈ values are, in the multi-star case, significantly130

smaller and closer to the 0.01 target.

The generally smaller στ̂ values of the multi-star case are partly attributable to the one-star case being limited to a relatively

smaller x range (i.e. smaller σx in equation (7)) while the smaller σĈ values are partly attributable to the smaller στ̂ values

6The other bright stars, being of similar A-B type (ibid), generally exhibit lower signal-to-noise (SNR) in the NIR.
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Figure 4. One- and multi-star Langley calibrations (both lasted about 2.5 h, see appendix A). The one-star and multi-star measurement points

are represented, respectively, by small black dots and large solid-colored circles, while their linear regression fits appear as solid lines (1-lin

and M-lin, respectively). Each point represents an average of five 6 s exposures. Each star is identified by their HR IDs (Ivănescu et al.

(2021)).
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Figure 5. a) One- and multi-star Langley-regression slopes (expressed as τ̂p = τ̂ − τm). b) στ̂ values derived from eq. (7).

and the generally lower values of x (c.f. equation (7b)). The σĈ increases in the ultraviolet (UV) and NIR are discussed in

subsection 6.2. The peak around 940 nm is likely associated with a faint and noisy star signal induced by strong attenuation in135

the water vapour absorption band, coupled with the non-linear nature of the optical depth in that spectral region (Pérez-Ramírez

et al. (2012)).
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Figure 6. a) Ĉ retrieved from the one- and multi-star Langley calibrations. b) σĈ values computed using equation (7).

5.2 Repeatability

The robustness of the σĈ spectra of Figure 6b and the impact of potential systematic errors can be investigated with repeatability

experiments. The Ĉ spectra employed to produce the standard deviations7 shown in Figure 7 were derived from three one-star140

and three multi-star Langley calibrations that were well separated in time (i.e., they were optically independent in terms of any

significant correlations between the τp variations of each period) and nearly satisfied the clear-sky calibration constraints of

section 4. The Figure 7 error spectra are, with the exception of larger differences in certain spectral regions, roughly coherent

with the Figure 6b spectra (including the fact that the one-star errors are significantly larger than the multi-star errors).

400 500 600 700 800 900 1000

10-2

10-1

Figure 7. σĈ curves derived for three one-star Langley calibrations acquired using the Procyon (HR 2943) star on 2019/12/07, 2020/01/05

and 2020/01/16, as well as three multi-star calibrations acquired on 2018/03/10, 2019/12/07 and 2020/01/10. These spectra are generally

similar to Figure 6b results.

7Standard deviations that, we would argue, are also standard errors (each of the three Ĉ spectra that were averaged were more akin to means).
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Figure 8. One-star calibrations at two spectrally distinct channels (400 and 1000 nm) for different dates and stars. The black lines represent

the full regression line for all data points over the entire x range. Star measurements for the a) and b) cases started at the smallest x values,

while the c) case measurements began at the largest x value. The solid (varying) curves were generated by averaging (M0−S) over ∆x = 1.5

sliding windows. The three colored (dotted) vertical lines correspond to the colors of the three xmax cases of Figure 10.

6 Regression error discussion145

6.1 Data processing

Figure 8 shows dual wavelength (400 and 1000 nm) regression tests for two of the three one-star calibrations of the previous

section (two of the three dates given in the legend of Figure 7 for the HR 2943 star) plus a third hotter star (HR 3982, spectral

type B7) that was specifically chosen to better understand the influence of temperature-driven spectral differences in the target

star. The smaller regression-slope and point dispersion about the HR 3982 regression line, compared with the two HR 2943150

cases, is noticeable at both wavelengths (notably at 1000 nm) and is an indicator of generally clearer sky conditions.

The C values retrieved from linear regressions over an increasing x range in Figure 8 (from the smallest x value to an

artificial maximum of xmax) are plotted in Figure 9. The damping out of regression noise and the asymptotic approach to the

horizontal pan-x regression value as xmax increases can be readily observed in all three plots.
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Figure 9. C values retrieved from linear regressions over an increasing x range, i.e. from the smallest x to an increasing xmax for all the

cases plotted in Figure 8. The horizontal reference lines represent regressions over the entire x range (the solid lines of Figure 8), while the

three colored (dotted) vertical lines correspond to the colors of the three xmax cases of Figure 10.
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Figure 10. Optical depth (slope) spectrum retrieved from calibration performed at different x ranges.
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The corresponding slope-derived τp spectra are shown in Figure 10 for three xmax cases (the three colored spectra were155

derived for xmax values corresponding to the matching colors of the three vertical lines in Figure 8 and Figure 9). The x-

dependent regression error dynamics are investigated in appendix C. The next subsection describes potential competing causes

of C variations and makes a link to τp errors8.

6.2 Regression error interpretation

The sky instability plots of Figure 1 show that the standard deviation of the optical depth increases with time and airmass160

separation between any two stars (this applies equally well to the variation between two positions of the same star). A systematic

optical depth drift during the calibration leads to a common-signed bias (positive or negative) of the regression slope and the

calibration value, relative to drift free conditions. Figure 10a and 10b show spectrum-wide τp reduction as xmax and calibration

time increase. This suggests spatial and/or temporal sky transparency instability during calibration. Such rapid and spectrally

neutral variation is consistent with the domination of coarse mode (super µm) particles: a (post cloud-screened) mode that is165

mostly dominated by spatially homogeneous cloud particles at Eureka (O’Neill et al. (2016)). The near-superposition of all τp

spectra above 500 nm in Figure 10c indicates stable transparency that is characteristic of a cloud-free atmosphere dominated

by fine-mode (sub µm) particles. A number density induced drift of similar fine-mode aerosol particles will generate spectrally

independent variations in ∆τp/τp: the larger τp value (corresponding to the larger absolute difference in the blue/UV part of

the spectrum) could explain the increasingly larger UV deviations (such as between the magenta and black/green curves in170

Figure 10c).

The two bullet-lists below summarize the specific processes that can lead to variations of calibration slope (τp) and intercept

(C), traceable to real or apparent optical depth variations.

Instances of τp and C overestimation

• A systematic coarse-mode τp increase (as described above) can have a dramatic spectrum-wide effect: flagging and175

discarding such measurements is, accordingly, essential. A fine-mode τp increase will predominantly affect the UV/blue

part of the spectrum.

• Recent tests indicate that the optical collimation of the Eureka Celestron C11 telescope requires correction. Mis-collimation

is responsible for a significant part of the star spot size reported in Ivănescu et al. (2021). Correcting the attendant vi-

gnetting problem (whose consequence is a decreased star flux and apparent increase in τp) may enable reliable measure-180

ments at x values well above the limit of x≃ 5 reported by Ivănescu et al. (2021).

• The angular star spot size (ω), being proportional to λ−1/5x3/5 (equations 4.24, 4.25 and 7.70" of Roddier (1981)),

effectively leads to spectrally dependent vignetting (i.e. apparent τp and C increase) as a function of x: an increase in

x from 7 to 9.5 would be equivalent to 20% increase for a spectral change from 400 to 1000 nm. This coupled spectral

and airmass vignetting influence is consistent with Figure C1 with the blue (0.4 µm) curve increasing at x≃ 7 while the185

8The strong, positive correlation between C and τp and between their errors is the result of variations in the regression lines being effectively driven by

rotations about a cluster of pivot points whose x position changes little.
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increase of the red (1.0 µm) curve occurs only at x > 9. This dynamic potentially dominates the large UV/blue errors

seen in Figure 7 and Figure 10.

• Noisier star spots, attributable to increased turbulence and scintillation at large x, may induce larger centering errors and

exacerbate apparent increases in τp and C due to vignetting.

Instances of τp and C underestimation190

• A systematic τp decrease during the calibration period (notably when the calibration starts at large τp).

• Weak signals, usually at large x and notably for hot stars in the NIR, may lead to sensitivity loss due to ADC (analog to

digital conversion) limitations and attendant slope and intercept (τp and C) reductions.

These factors contribute to Figure 10 τp dynamics and likely relate to the one-star σĈ spectra shown in Figure 7. A very

similar spectrum is indeed observed in the case of one faint star at large airmass (Figure 11). Such spectral dynamics, possibly195

dominated by the aforementioned spectral influence of vignetting, are also likely related to the similar M0 bias spectra shown

in Figures 4 and 11 of Ivănescu et al. (2021). The identification of the M0 bias source is of paramount importance, as it may

guide strategical observation choices made to improve the accuracy of future star catalogues. The error envelopes about the

M0 bias (quantified in Figure 12) add an additional, roughly flat spectral component (in spectral regions other than those those

that are dominated by H-absorption bands).

400 500 600 700 800 900 1000

10-2

10-1

Figure 11. Standard deviation of S magnitude measurements at large airmass for a faint catalogue star (HR 6556, V=2.08).
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0
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Figure 12. Standard deviation of M0 errors deduced from the error bars of Figure 4 in Ivănescu et al. (2021).
200

The smoother NIR errors in the one-star case (comparing the black one-star curve with the red multi-star curve of Figure 5a

for λ > 1050 nm) is likely due to the strong NIR signal of the much colder Procyon star. One can take advantage of this effect

12
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and develop an observing strategy that avoids using faint stars at large airmass at Eureka and still employ 12 catalogue stars

at x<8 in a multi-star calibration lasting 2.5 h (c.f. Figure A2). The star selection operation for a given multi-star calibration

should also include a random airmass selection to mitigate accuracy errors attributable to systematic optical depth variations205

(as an alternative to the Rufener (1986) method). Mitigation of both, starlight reduction impacts at large airmass and systematic

optical depth variations is a singular advantage of the multi-star vs one-star calibration.

7 Conclusions

It was determined that no Eureka star movement satisfied an optimal sky-transit scenario of maximum possible airmass range

within the constraint of x being ≲ 5. The solution to this intrinsic shortcoming of a High Arctic site is to perform multi-star cal-210

ibrations: this approach incorporates the fundamental advantage of reducing the calibration period and thus minimizing optical

depth variability. It is, by its very nature, a calibration that enables the retrieval of a star-independent calibration parameter.

Multi-star calibration repeatability errors (σĈ) were systematically smaller than the single star errors and, in the central part

of the spectrum, approached the target value of 0.01 for an observing period of 2.5 h. Those errors were partly affected by

less than optimal clear sky conditions (notably in the presence of cloud), with τp larger than the recommended "clear-sky"215

value of 0.13: c.f. section 4 and appendix A). Coarse mode filtering algorithms, that ideally eliminate all influences of coarse

mode optical depth specifically in a calibration scenario, are necessary to ensure the best calibration9. Large UV and NIR

errors can be reduced by avoiding faint stars at large x and by improving the current telescope collimation. The mitigation

of mis-collimation problems can, in the short term, be affected by a constraint of x < 7. This can be achieved at Eureka by

employing 12 constrained-magnitude stars over a 3 h calibration period (c.f. appendix A). A constraint of τp<0.13 may bring220

the calibration errors in the blue-to-red spectral range closer to the 0.01 target, with the remaining UV and NIR spectral regions

being subject to the influence of M0 errors.

In summary, the advantages of multi-star versus one-star calibration, are star-independent calibration, faster coverage of

larger airmass ranges, more calibration opportunities and star selection capability for both mitigating the impact of starlight

reduction with increasing airmass and systematic optical depth variations. These singular benefits were shown to override the225

drawbacks of specific star catalogue errors (i.e. the multi-star calibration performs better than the one-star case, even if the

former is uniquely affected by M0 errors). Further improvement will only be achieved by developing a more accurate ex-

traterrestrial star-magnitude catalog: their UV/blue errors, likely linked to large-x spectral vignetting, are endemic to current

ground-based star catalogues. This improvement may be affected from a space-borne platform or at a high-elevation observa-

tory (the primary goal being to reduce turbulence-induced star-spot size and optical depth variability). The use a large aperture230

telescope (limiting scintillation and low-starlight measurement errors) and a larger FOV instrument (less prone to vignetting)

will, in general, provide better results.
9Clouds are usually the dominant coarse mode component but coarse mode aerosols can have diverse effects which are typically but not always minor.
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Figure A1. τp histogram for measurements acquired during the 2019-2020 observing season at Eureka (total of 25914 measurements). The

blue and red vertical lines are the clear-sky cutoff values of 0.13 and 0.15 determined in section 4. The probability is normalized so that its

sum is unity (a). Frequency of occurrence vs duration of clear-sky periods (b).

Code and data availability. Final MATLAB code and data employed in the generation of the figures is freely available (see Ivănescu (2023))

Appendix A: Calibration opportunities

Figure A1a shows the τp histogram for data acquired during the 2019-2020 observing season at Eureka10. The blue and235

red vertical lines respectively indicate the clear-sky cutoff values of 0.13 and 0.15 determined in section 4 for the 2-h and 8-h

calibrations. Operational conditions occurred 37% of the time (i.e. those periods of time when measurements were not impeded

by persistent thick clouds or the performance of maintenance tasks). A frequency curve of clear-sky periods (a period for which

all τp values are less than the cutoff value) is presented in Figure A1b. Measurements acquired during 2-h and 8-h clear-sky

periods represented, respectively, 35.5% and 39% of all measurements. These numbers, transformed into an estimation of clear-240

sky fraction of the total measurement time, yield values of 13% and 14% of the total contiguous seasonal time (0.37 · 0.355

and 0.37 · 0.39, respectively). Since the measurement season is ~160 days (or ~5.3 months11) and given that there were 246

clear-sky periods of 2 h with τp < 0.13, one may expect 46 such calibration periods per month. There were, on the other hand,

29 clear sky periods of 8 h with τp < 0.15 (or ~5.5 per month). If a calibration can be successfully completed in ~2 h then there

is a significantly larger probability-of-occurrence incentive for doing so.245

The weakening of star signals with increasing airmass will progressively impact calibration quality. Figure A2 shows the

availability of catalogue stars for a multi-star calibration over Eureka as a function of calibration period and maximum airmass.

10We could speculate that the two histogram peaks near τp values of 0.1 and 0.16 are associated with the background fine mode optical depth and the

enhanced fine mode optical depth incited by the presence of wind blown seasalt (O’Neill et al. (2016))
11Which we pragmatically define as the number of nights for which reliable measurements can be carried out for ≥ 30 minutes.
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Figure A2. Number of available catalogue stars for a multi-star calibration, during a 24 h period. The following constraints were employed

in generating the tri-color contours: at least one star at x < 1.2, exclusion of any star of visual magnitude V > 1.5 for x > 6, as well as

V > 2 at x > 5.

A calibration can, for example, be carried out in 2 h with only 11 stars of our 13 star dataset (Figure 3). A 12 star calibration

can be carried out only if x < 9.5, or if the calibration period is > 2.5 h.

Appendix B: Relative importance of component errors250

From equation (7) and (8) one gets the error propagation into the τ Langley retrieval

σ2
τ̂ =

σ2
r

σ2
x

=
1
σ2

x

(
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ϵM0

)
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Error propagation into the calibration constant (C) retrieval is, in a similar fashion, expressed as

σ2
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2
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(B4)

The coefficients k1, k2 and k3 are displayed in Figure B1b, c and d, respectively, for the x protocols of Figure B1a. The blue

curve shows uniformly distributed values of x, while the red curve shows a more realistic observing configuration of constant

time intervals12. In order to investigate more practical (smaller) ranges, the working range is incrementally truncated from both,

the right and left (the solid and dashed curves, respectively). The focus is on two particular ranges: x < 5 (red-filled circles),260

where k1 ≃ 1.2, k2 ≃ 5.3 and k3 ≃ 23 (approximately-stabilized for X ≳ 4), and x > 5 (open red circles), where k1 ≃ 0.5,

k2 ≃ 25 and k3 ≃ 1250 (i.e. > 50 times greater than that for x < 5). This strong weighting towards large x drives the standard

error in C. The term σϵS
is typically ∼ στ , which is, in turn ∼ σϵM0

Ivănescu et al. (2021). The σ2
τ̂ term may, accordingly, tend

to dominate the ϵS
2 and σ2

ϵM0
terms in equation (B3)13 and thus the σĈ calibration error.

12Both conditions apply to a star crossing the meridian at zenith.
13Since, as per Figure B1e, 4 < x2 < 50.
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Figure B1. Variation of x as a function of the number of observation samples for measurements made in equal increments of x (blue curve)

and equal increments of time (red curve) (a). The next three panels show the x dependent variation of k1, k2 and k3 (see text for more

details). The legend in panel (b) applies to all the subsequent panels. Panel (e) shows x2, the σ2
τ̂ to σ2

Ĉ
conversion factor of equation (B3).
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Figure C1. The variable curves show the calibration (C) variation for regressions associated with the low frequency (sliding window) curves

of Figure 8. The horizontal lines correspond to the single C value retrieved from the full (pan-x) regression lines of Figure 8, while the three

colored (dotted) vertical lines correspond to the colors of the three xmax cases of Figure 10.

Appendix C: Error discussion supplement265

The C values, derived from tangents applied to the Figure 8 solid curves (the means of a ∆x = 1.5 sliding window), are

plotted in Figure C1. The objective of this plot is to highlight more robust (lower frequency) C variations (and thus C errors)

as a function of x. The 400 nm C values are relatively stable up to x ≃ 7 to 7.5 where they are subject to a large increase. The

1000 nm C pattern is similar with an increase beginning at ≃ 9 (observations that are roughly consistent with the vignetting

arguments of subsection 6.2).270
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Ivănescu, L.: Une application de la photométrie stellaire à l’observation de nuages optiquement minces à Eureka, NU, Master in science

thesis, UQAM, www.archipel.uqam.ca/id/eprint/8417, 2015.
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