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Abstract. Wildfires are key to landscape transformation and vegetation succession, but also to socio-ecological values loss. 10 

Fire risk mapping can help to manage the most vulnerable and relevant ecosystems impacted by wildfires. However, few 11 

studies provide accessible daily dynamic results at different spatio-temporal scales. We develop a fire risk model for Sicily 12 

(Italy), an iconic case of the Mediterranean basin, integrating a fire hazard model with an exposure and vulnerability analysis 13 

under present and future conditions. The integrated model is data-driven but can run dynamically at a daily time-step, providing 14 

spatially and temporally explicit results through the k.LAB software. K.LAB provides an environment for input data 15 

integration, combining methods and data such as Geographic Information System, Remote Sensing and Bayesian Network 16 

algorithms. All data and models are semantically annotated, open and downloadable in agreement with the FAIR principles 17 

(Findable, Accessible, Interoperable and Reusable). The fire risk analysis reveals that 45% of vulnerable areas of Sicily are at 18 

high probability of fire occurrence in 2050. The risk model outputs also include qualitative risk indexes, which can make the 19 

results more understandable for non-technical stakeholders. We argue that this approach is well suited to aid in landscape and 20 

fire risk management, both under current and climate change conditions.  21 

1 Introduction 22 

Fire, as a natural disturbance, has played an important role in shaping forest structure, increasing biodiversity and leading the 23 

species' evolution (Bond and Keeley, 2005; Pausas et al., 2004). However, the balance between the natural fire regime and the 24 

ecosystem is often disrupted when humans modify the environment to their needs. In recent years, the rural depopulation and 25 

simultaneous spread of urban areas as residential buildings into the countryside have increased the fire frequency and burned 26 

areas (Faivre et al., 2014; Robinne et al., 2016). Although this is a worldwide problem, the Mediterranean climatic area has 27 

experienced a great impact (Kocher and Butsic, 2017; Leone et al., 2009; Pausas and Fernández-Muñoz, 2012). 28 

Sicily (Italy), the largest island of the Mediterranean Sea with 25,711 km², has been the cradle of several civilizations and their 29 

traditions, with continuous and intense human exploitation of natural resources (forestry, grazing, agriculture) (Antrop, 2005; 30 

Sereni, 1961), encompassing multiple agricultural and agroforestry landscapes (Baiamonte et al., 2015; Di Maida, 2020). Due 31 

to its great variability of topography, lithology, pedology (Catalano et al., 1996) and climate (Bazan et al., 2015), Sicily is rich 32 
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in biodiversity and ecosystems (Cullotta and Marchetti, 2007; Peruzzi et al., 2014). Therefore, the island can be viewed as 85 

representative of the Mediterranean basin as a whole. 86 

Moreover, Sicily is the most populated island in the Mediterranean Sea with nearly 5 million inhabitants, similar to Denmark 87 

or Finland (Planistat Europe and Bradley Dunbar Association, 2003). As a consequence, year after year the environment has 88 

undergone degradation due to the increase of intensive farming practices, the urbanization growth in the most populated and 89 

tourist areas and the loss of traditional agricultural and forest management because of the rural population abandonment (Bazan 90 

et al., 2019; Falcucci et al., 2007; Prestia and Scavone, 2018). In the last 50 years, the increase of forest and scrub mass due to 91 

the abandonment of traditional land management (Bonanno, 2013; Ragusa and Rapicavoli, 2017) and the increase in the 92 

frequency of long droughts created optimal conditions for the occurrence of wildfires (Mouillot et al., 2005; Ruffault et al., 93 

2020). The population living in the wildland-urban interface zone is particularly at risk due to exposure to fire and difficulty 94 

in evacuation. 95 

Uncontrolled wildfires in Sicily have increased in recent years, making Sicily the Italian region with the highest number of 96 

fire events and the largest burned area between 2009 and May 2016 (Fig. 1). The probability of fire occurrence is mainly linked 97 

to ignition source, forest fuels and environmental conditions (Ganteaume et al., 2013; Hantson et al., 2015; Ricotta and Di 98 

Vito, 2014). The ignition sources are usually divided into natural causes (mainly lightning but geological causes too) and 99 

human (accidentally or intentionally) (Aldersley et al., 2011; Ganteaume et al., 2013; Rodrigues and de la Riva, 2014). The 100 

main causes of wildfires in Sicily are human-driven (Corrao, 1992; Ferrara et al., 2019). Arson and accidental wildfires, set up 101 

to create new pasture resources or to burn stubble, are the first causes of wildfires, especially in areas where vegetation 102 

interfaces with urban structures. 103 
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 114 

Figure 1: Total number of fire ignitions and percentage of area burned (over 30 ha) in Italy by region between 2009 and May 2016. 115 
Source: Fire activity statistics, Servizi AntiIncendio Boschivo (Italian Forest Fire Services). 116 

The consequences of wildfires exceed the loss of forest cover, vary over time and can be long-lasting. Some ecosystem 117 

properties and functions that deliver benefits to humans (Daily et al., 1997; Roces-Díaz et al., 2022), including biodiversity, 118 

may be lost depending on fire extension, intensity and frequency.  For example, after the wildfires in summer, with the arrival 119 

of the first heavy rains, there can be extensive erosion in burned areas, loss of organic matter or pollution of adjacent water 120 

bodies (Bisson et al., 2005; Certini, 2005). In general, burned areas lose their carbon sequestration capacity and desirability 121 

for outdoor recreation (Moreira and Russo, 2007). 122 

The literature on fire modeling at different spatio-temporal scales is vast (Ganteaume et al., 2013; Jain et al., 2020; Tymstra et 123 

al., 2020). Due to its drought sensitivity, most studies focus on the Mediterranean climatic region (Oliveira et al., 2012; Satir 124 

et al., 2016; Wittenberg and Malkinson, 2009). Among the different methods applied, machine learning models are gaining 125 

traction due to increased computing power and data access. Many algorithms have been tested, including artificial neural 126 

networks, support vector machines, maximum entropy and random forest (Jain et al., 2020).  127 

Risk fire mapping has been one of the most widely studied approaches in the forest fire literature. Even so, many models have 128 

become obsolete and have not been renewed (Ager and Finney, 2010; Mohajane et al., 2021). The spatial-temporal resolution 129 
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is too coarse (Lozano et al., 2017) or does not take into account the distribution of forest fuel types (Bacciu et al., 2021; Michael 190 

et al., 2021), which is essential for risk reduction (Castellnou et al., 2019). Moreover, risk conditions for society are induced 191 

by progressive changes in environmental conditions. For this reason, it is indispensable to create open models that can 192 

incorporate new transdisciplinary data and knowledge (Nikolakis and Roberts, 2022; Wunder et al., 2021) that have arisen 193 

since 2016 (Artés et al., 2019; Duane et al., 2021). 194 

On the society side, knowledge plays a key role in risk reduction, decision-making, coordinated policy action, and re-learning 195 

on fire. Vulnerability is associated with a lack of risk communication, especially a lack of sufficient information that can lead 196 

to a misunderstanding of risk (Birkmann et al., 2010). This has important implications for motivation and perceptual capacity 197 

to act and adapt to climate change (Grothmann and Patt, 2005). Moreover, understanding the fire risk processes can help 198 

society to comprehend the landscape transformation needed for a lower-risk environment (Otero et al., 2018). Although efforts 199 

are being made, few resources are allocated to the accessibility, sharing, and integration of knowledge at multiple scales across 200 

different stakeholders (Weichselgartner and Pigeon, 2015). Therefore, it is crucial to develop accessible tools and methods for 201 

fire risk assessment, where managers and stakeholders can consider social and environmental consequences. 202 

Similarly, on the scientific side, lack of transparency has been one of the traditional characteristics of modeling (i.e. black box 203 

model), even within the decision support system leading to several scientific, organizational and ethical issues (Guidotti et al., 204 

2018). Moreover, most of the models and resources developed by scientific research are not transferable or shared between 205 

different programming languages or modelling infrastructures. To connect the scientific knowledge, we applied the Integrated 206 

Modeling approach of ARtificial Intelligence for Environment & Sustainability (ARIES, 207 

https://aries.integratedmodelling.org/), which integrates a network of web accessible data, models, and other resources, 208 

implementing the FAIR principles (Wilkinson et al., 2016) through the k.LAB software, a semantic web-based modelling 209 

platform. The FAIR principles apply to the generated data and models, which must be: 210 

 Findable: simple to identify by humans and computers;  211 

 Accessible: easy access to metadata and resources stored; 212 

 Interoperable: should be ready to be exchanged, interpreted and combined in a (semi)automated way with other 213 

datasets; 214 

 Reusable: sufficiently well-described to be reused in future research and integrated with other data sources. 215 

 216 

This study analyses wildfire activity for the years 2007-2020, to model fire risk in Sicily. We have adopted the definition of 217 

fire risk provided by the AR6 report of IPCC, i.e. the dynamic interaction between the components of ‘climate related hazards 218 

with the exposure and vulnerability of the affected human or ecological system to the hazards’ (IPCC, 2012). Thus, in this 219 

article, we focus on answering three questions: where it is likely to occur?, what ecosystem services might be affected? and, 220 

what is the impact on the environment and the society?. 221 
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To this end, we have developed a set of models in the k.LAB software and we integrated them into the ARIES network. These 301 

models are modular, interconnected, and semantically explicit under k.LAB, where we simulated the current wildfires and 302 

their interaction with key human and biophysical drivers, using a machine learning algorithm. Furthermore, as proof of the 303 

advantages of using FAIR data and resources, it has been possible to analyze future fire risk under climate change and consider 304 

the consequences for different ecosystem services using models included in ARIES and developed by other experts. 305 

2 Material and Methods 306 

2.1 Study area 307 

The case study was carried out on the island of Sicily, the largest and most populated island in the Mediterranean. Within its 308 

2,571 ha, the altitudinal range reaches 3,357 m at the peak of one of the most active volcanoes in the world (Thomaidis et al., 309 

2021). The island has a Mediterranean climate with mild and wet winters and dry and hot summers, highlighting the southwest 310 

coast, where the climate is affected by the African currents and summers. Rainfall is scarce leading to water deficits in some 311 

provinces. Moreover, the change in land use has gradually modified the climate, with less rainfall and drier rivers (Drago, 312 

2005; Ragusa and Rapicavoli, 2017). 313 

The land use change caused mainly by the intense deforestation throughout Sicily's history had favored intense agricultural 314 

practices, especially in the center and southwest. Thus, agricultural areas cover 57% of the island, whose 35% are arable lands 315 

and 22% permanent crops. Roughly a third of Sicily is forest, shrublands and open areas. Woodlands and semi-natural areas 316 

are sparse in the agricultural area and denser in areas with special protection, the most important being the Mount Etna 317 

surroundings, in the Nebrodi Mountains Regional Park and the Natural Reserve of Bosco della Ficuzza (Sicilia Assessorato 318 

beni culturali ed ambientali e pubblica istruzione, 1996). Due to its long-lasting socio-ecological history, location in the 319 

Mediterranean Sea, its fragility to climate change, and increasing fire regime, Sicily represents an ideal study area 320 

representative of the Mediterranean socio-ecological context. 321 

2.2 Fire risk analysis 322 

The interaction of environmental and social processes drives the risk (Table 1), determined by the combination of a physical 323 

hazard and the vulnerability of the socio-ecological elements exposed (IPCC, 2012). 324 

Table 1.  Fire risk is defined by vulnerability and hazard components (IPCC, 2012). 325 

RISK 

The potential likelihood of negative consequences for the elements of value in a context considering the 

probability of occurrence of fire hazards. Fire risk results from the interaction of vulnerability, exposure, and 

hazard. 
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1. Hazardxposure  3.Vulnerability 

Probability of occurrence of a 

physical event (natural or human-

induced) that may damage the 

elements in the same time-space 

context. For instance, the 

probability of fire occurrence. 

Elements (and their values) that 

are in a context where a 

hazardous event, such as fire, may 

happen. 

The tendency of exposed elements 

to be adversely affected by a 

hazardous event. For example, 

predisposition, susceptibility, 

fragility, weakness, of the exposed 

elements. 

Fire hazard components: 

 Weather: 

o Temperature 

o Weekly Maximum 

temperature 

o Days without 

precipitation 

o Weekly precipitation 

o Solar radiation 

 Biophysical drivers: 

o Forest fuel 

o Elevation 

o Slope 

 Human drivers: 

o Distance to protected 

area 

o Distance to road 

o Distance to human 

settlement 

Ecosystem services exposed: 

 Vegetation carbon mass 

 Pollination 

 Outdoor recreation 

 Soil retention 

 Biodiversity* 

 

*Technically not an ecosystem 

service but added here as an 

associated element of exposure.   

Vulnerability 

 Wildland-Urban Interface 

(WUI) 

 Wildland-Agricultural 

Interface (WAI) 

 Nationally designated areas 

(CDDA) 

Fire hazard captures the probability of fire occurrence, based on historical wildfires and drivers such as biophysical factors 335 

and human-modified areas. The fire hazard interacts with the elements exposed; we highlight exposed ecological values and 336 

ecosystem services such as biodiversity, pollination, carbon mass, soil retention and outdoor recreation that may be affected 337 

by fire occurrence.  338 

Vulnerability identifies exposed elements that are more susceptible to being highly or irreparably damaged due to their intrinsic 339 

or contextual characteristics. Wildland-Urban Interface (WUI) is particularly fire-prone because it is a forested area less than 340 

200 meters from an urban area (Ganteaume et al., 2021; Intini et al., 2020), due to the relationship between the ignition points 341 

and populated areas (Chappaz and Ganteaume, 2022). It also represents a high weakness for human settlement, as they are 342 

extremely close to the forest, becoming a problem in fire management (Cohen, 2008). Wildland-Agricultural Interface (WAI) 343 

is a forest area in close proximity (less than 200 meters) to an agricultural area and highly predisposed to burning due to the 344 

fire used for clearing forest and pasture or crop establishment (Leone et al., 2009; Ortega et al., 2012). Moreover, fire impacts 345 

agricultural land, making food safety susceptible to hazards (Baas et al., 2018). Natural areas with special protection (UNEP-346 
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WCMC and IUCN, 2022) are particularly fragile with species with different endemism ranges and sensitive to social, climate 365 

and environmental changes (Baiamonte et al., 2015).  366 

Fire risk is considered to be the cumulative consequence given by the interplay context-specific elements. Those elements 367 

capture vulnerability, exposure, and hazard components emerging from the probability of fire occurrence. In this study we 368 

quantify fire risk by measuring the potential area affected, the hot spots of biodiversity and ecosystem services potentially 369 

exposed and their vulnerability. We also assess fire risk both in current and future conditions (S1, Fig. S1) to consider the 370 

impact of climate change. 371 

2.2.1 Fire hazard model 372 

The model presented in this study is developed using the k.LAB software to achieve interoperability from the data sources to 373 

the generated modeling results (Villa et al., 2017). Within k.LAB, an ontology-driven language called Knowledge-Integrated 374 

Modeling (k.IM), provides the basis for the semantic annotations (i.e., explicit definitions) of resources, such as external 375 

datasets, and individual modeling tasks (S1, Fig. S2). Once the resources are assembled in the resulting computational 376 

workflow, k.LAB returns in output contextualized models’ results visualized on a map. To ensure transparency, textual 377 

documentation of the process followed to achieve the results with annexed references and the details about the workflow are 378 

also provided to the users. 379 

Accurate spatio-temporal detection of fire hazard is essential for the modeling and analysis of fire risk; thus, a system that 380 

transparently keeps track of the origin and reliability of input data is crucial. The input data used in this study were collected 381 

from different sources and can be classified into two categories: (i) historical wildfires and (ii) explanatory variables, which 382 

include weather, human and biophysical drivers. The data collection and processing are discussed in the following paragraphs. 383 

All the data and resources are semantically annotated, openly accessible and interoperable within k.LAB.  384 

Historical fire data from 2007 to 2020 were collected from two different sources: The Regional Agency of Fire Control in 385 

Sicily was used to identify the fire perimeter and the Fire Information for Resources Management System (FIRMS) satellite 386 

data to locate the ignition point (Table 2).  387 

Table 2. Information about historical fire data 388 

 Historical fire perimeter Historical fire ignition 

Source Regional Agency of Fire Control 

in Sicily 

FIRMS  

Spatial resolution GPS error, less than 10m MODIS: 1km   

VIIRS: 375m . 

Formatted ...

Deleted:  433 

Formatted ...

Deleted: ¶434 

Formatted ...

Deleted: potential…umulative consequence consequence in an area 481 ...

Formatted ...

Deleted: socio-ecological values will be vulnerable in those 480 ...

Formatted ...

Deleted:  model for443 

Formatted ...

Deleted: ,444 

Formatted ...

Deleted: .¶479 ...

Formatted ...

Formatted ...

Deleted: for this case447 

Formatted ...

Deleted: ,…a community-based solution which was developed 448 ...

Formatted ...

Field Code Changed ...

Formatted ...

Deleted: k449 

Formatted ...

Deleted: which is grounded on an internal knowledge-based, 478 ...

Formatted ...

Deleted: the 453 

Formatted ...

Deleted: engendering traceability and knowledge integration 477 ...

Formatted ...

Deleted: models456 

Formatted ...

Deleted: resolved457 

Formatted ...

Deleted: a t458 

Formatted ...

Deleted: a computation 459 

Formatted ...

Deleted: ¶476 ...

Formatted ...

Deleted:  phasesanalyzing the probability of fire risk.463 

Formatted ...

Deleted: as k.LAB …hat allows tracking464 ...

Formatted ...

Deleted: , .and Tthrough  k.LAB, it is possible to allows to track 475 ...

Formatted ...

...

Formatted ...

Formatted ...

Formatted ...

Formatted ...



8 

 

Temporal coverage and time 

consistency 

1 January 2007  - 31 December 

2020 (Daily) 

MODIS Collection 6: 11 

November 2000 – present (Daily) 

 

VIIRS: 20 January 2012 – present 

(Daily) 

 

Coordinate  Reference  System 

(CRS) 

EPSG:102092 - 

Monte_Mario_Italy_2 - Projected 

for the years 2009 and 2017: 

EPSG:3004 - Monte Mario / Italy 

zone 2 - Projected 

EPSG:4326 - WGS 84 - 

Geographic 

Feature Type Polygon Point 

The regional agency collects the perimeter data of historical fires and provides the fire start and end dates collected by the 482 

Forestry Information System (SIF – Sistema Informativo Forestale) and the forestry command corps of the Sicilian region 483 

(Comando Del Corpo Forestale Della Regione Siciliana). FIRMS was developed by the University of Maryland, to locate 484 

active fires in near real-time by data from MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible 485 

Infrared Imaging Radiometer Suite) (Giglio et al., 2016; Schroeder et al., 2014). MODIS is an instrument aboard Terra and 486 

Aqua satellites that provides global coverage every 1-2 days and VIIRS sensor is on board the Suomi JPSS-1 satellites and 487 

provides full global coverage every 12 hours. When there was information from both satellites for the same fire perimeter, 488 

VIIRS was prioritized. Due to its spectral and spatial resolution, VIIRS sensor is more accurate in fire detection (omission and 489 

commission of errors) thanks to the detection of the radiative power of the fire, especially in low biomass areas (Fu et al., 490 

2020). 491 

Satellite data was used to locate the fire ignition point inside the perimeter provided by the regional agency. The centroid was 492 

considered the ignition point for the perimeters when it wasn’t identifiable using satellite data. To prevent double-counting 493 

from the data sources, each fire perimeter was double-checked to verify that there was only one ignition point fire perimeter. 494 

We obtained a total of 7,492 points linked with their ignition date (day, month and year). 495 

In addition to the ignition data, we prepared an equal number of locations without fire events. This is needed to preserve a 496 

balanced dataset of observations that considers the explanatory variables values both in case of ignition and the absence of 497 

ignition. The result of an imbalanced training dataset is a "skewed data bias" and a model not capable of discriminating relevant 498 

patterns in data (Rennie et al., 2003). The weights for the class with less training data, will be lower when the training data is 499 

skewed. Consequently, classification will be unfairly biased in favor of one class over another. The learning algorithm becomes 500 

too specific, leading to overfitting (Li et al., 2021).  501 
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The points without ignition were randomly generated with seeds within the study area between the 01-01-2007 and 31-12-546 

2020 periods. It was verified that none of these points overlap with historically burned perimeters in date and location. The 547 

“ign” attribute differentiates ignition points (1) from non-ignition points (0) (Fig. 2). 548 

 549 

Figure 2: Distribution of historical wildfires (category 1, black color) and no wildfires (category 0, grey color) in the Sicily region 550 
from 2007 to 2020.  551 

The data feeding the machine learning model comes from open resources on the cloud provided by well-known and reliable 553 

institutions. Those input data are incorporated automatically, depending on the spatio-temporal needs of the model. In the 554 

Sicily model, the data comes from the Regional Government of Sicily, the University of Catania or E-OBS (Ensembled 555 

OBservation) project, among others (Table 3).  556 

Table 3. Variables in the BN model 557 

Variable 

(semantic 

language)  

Description Type Unit Source 

occurrence of Fire 

within Site 

Present and absent Discrete 1 (fire) - 0 (no fire) ARIESa,   SIFb and 

FIRMSc 

Atmospheric 

Temperature 

Mean temperature Continuous Celsius degrees E-OBSd 

Weekly Maximum 

Atmospheric 

Temperature 

Mean of maximum 

temperature in the 

last week 

Continuous Celsius degrees ARIESa (based on 

E-OBSd data) 

count of Day Counting days Continuous # ARIESa (based on 
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without 

Precipitation 

since last 

precipitation 

E-OBSd data) 

Weekly 

Precipitation 

Volume 

Accumulated 

precipitation during 

a week 

Continuous mm ARIESa (based on 

E-OBSd data) 

Solar Radiation Total solar 

radiation 

Continuous J/m^2 E-OBSd 

value of Forest 

during Fires 

Forest fuel type Discrete see in S2, Table S1 University of 

Catania 

Elevation Geographical 

elevation above sea 

level, as described 

by a digital   

elevation model 

Continuous m SITRe 

Slope Inclination of the 

above-water terrain 

in a geographical 

region 

Continuous grade ARIESa (based on 

elevation from 

SITRe) 

distance to 

ProtectedArea 

Distance to 

protected area 

Continuous m k.LABf (based on 

OSMg) 

distance to Road Distance to road Continuous m k.LABf (based on 

OSMg) 

distance to Human 

Settlement 

Distance to human 

settlement 

Continuous m k.LABf (based on 

OSMg) 

a ARIES: ARtificial Intelligence for Environment & Sustainability 587 

b SIF: Sistema Informativo Forestale (Forestry Information System) 588 

c FIRMS: Fire Information for Resources Management System 589 

d E-OBS: Ensembled OBservation 590 

e SITR: Sistema Informativo Territoriale Regionale (Regional Spatial Information System) 591 

f k.LAB: Knowledge Laboratory 592 

g OSM: Open Street Map (OpenStreetMap contributors, 2020) 593 

In the case of Sicilian wildfires, the human factor is one of the main triggers that lead to the depopulation of country areas by 594 

land managers and the increasing number of tourists and visitors. The human drivers used as explanatory variables in the model 595 

are distance to protected areas, distance to road and distance to human settlement. Those variables are calculated using 596 

semantics in the k.LAB software. K.LAB is able to compute geographical distances (Euclidean distance) between spatial 597 
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objects. Additionally to human drivers, the fire hazard also depends on (i) weather (especially due to long dry seasons), (ii) 632 

topography and (iii) environment, characterized by the high flammability of the Mediterranean forests (Corrao, 1992). Some 633 

of the weather variables, based on E-OBS data, were integrated into the ARIES network. Those drivers influence fuel type, 634 

moisture levels and fire behavior. 635 

Meteorological data were obtained from the E-OBS Copernicus project (Cornes et al., 2018). We used the last version released 636 

in March 2021 to obtain data from 2007-01-01 to 2020-12-31. The data were processed with R software to obtain the 637 

meteorological data needed on each specific day as daily temperature and daily solar radiation (Table 3). 638 

In addition, heatwaves and long periods of drought are great drivers for the majority of extreme wildfires (Narcizo et al., 2022; 639 

Nojarov and Nikolova, 2022; Parente et al., 2018). Moreover, with climate change, these episodes will increase in number, 640 

frequency and intensity, especially for the projections for RCP 8.5 (Molina et al., 2020). We have taken into account variables 641 

such as the mean of maximum temperatures, the number of days without rain and the precipitation accumulated during the 642 

previous week.  643 

The topographic factors used (slope and elevation) are constant components of the fire risk model. They have a strong influence 644 

on other parameters such as fuel conditions and weather. Slope and elevation were generated from a Digital Elevation Model 645 

(DEM) at a 10 meters’ resolution.  646 

Fuel type and land cover composition have a significant effect on fire ignition. Deep knowledge of the fuel bed is key to fire 647 

management, as it is one of the main components of fire risk. Fuel bed has been reformulated into fuel models for easier use 648 

in models and systems. The characteristics and properties of fuel types used categorical ranges between 1 to 7 (S2, Table S1) 649 

according to the Prometheus project (Lasaponara et al., 2006). The latter defines fuel type as a recognizable combination of 650 

fuel components with distinct species, shapes, dimensions, structures, and continuity that will display a particular fire behavior 651 

under specific burning conditions (Merrill and Alexander, 1987). The land cover map source is based on the Italian Nature 652 

Map (Angelini et al., 2009). Landcover is mainly composed of extensive crops and complex farming systems (46%) so, the 653 

main fuel type is ground fuels such as grass (50% of land in Sicily). 29% of the land cover on the island is non-combustible. 654 

Among the models that were tested, one of them had the fire frequency as input, calculated with the historical wildfires from 655 

2007-2020. This model had an accuracy above 95%. After several literature searches and discussions with experts, it was 656 

decided not to incorporate fire frequency into the model. Although the accuracy was much better than the model finally chosen 657 

(83.6%), the main disadvantage was the possibility of overfitting. In addition, it may lower the likelihood of detecting wildfires 658 

in unusual areas due to changes in land use or phenomena such as climate change. Finally, the difficulty of accessing new 659 

wildfires to incorporate into the frequency variable was another important reason. 660 
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2.2.2 A Bayesian Network model of fire hazard 674 

Bayesian Networks (BN) (Pearl, 1988) have been widely used in recent years and have been highlighted as a powerful tool for 675 

modeling complex problems, representing uncertainty and assisting stakeholders when the data is highly interlinked 676 

(Henriksen et al., 2007; Kangas and Kangas, 2004; Penman et al., 2011). Thus, the BN model is especially useful in 677 

environmental modeling as wildfire risk because (i) involves a high level of uncertainty, (ii) has limited or incomplete data on 678 

key system variables, (iii) contains both qualitative and quantitative information or data in different forms, and (vi) integrates 679 

multidisciplinary systems (Chen and Pollino, 2012). In addition, the system is transparent in its process, as its nodes table 680 

shows the dependency's strength between nodes and their parents in terms of conditional probability distribution and the 681 

relationships between variables are made explicit. 682 

A BN is a model that graphically represents causal assertions between variables as patterns of probabilistic dependencies. The 683 

Directed Acyclic Graph (DAG) of a BN is built with nodes (variables) and edges between the nodes (dependencies and mutual 684 

relationships between variables). Each successor node (children) is only determined by the values of its immediate 685 

predecessors (parents) known as parental Markov property (Pearl, 2009). Roots are the nodes without any parent and with 686 

marginal distribution (Borsuk, 2008).  687 

The BN has been learned using the WEKA (Waikato Environment for Knowledge Analysis) library  integrated into the k.LAB 688 

software (Bouckaert, 2004; Frank et al., 2016; Willcock et al., 2018). WEKA is an open source JAVA library providing a 689 

collection of machine learning algorithms. The WEKA interface provides graphical and text components to inspect some BN's 690 

properties as basic algorithm information, the BN structure, the probability distribution table or the accuracy by class. 691 

The model has been written in a semantically explicit way using the aforementioned k.IM language (S1, Fig. S2), which 692 

compiles in Web Ontology Language (OWL) (Bao et al., 2012) and allows to ontologically define and model natural language-693 

like logical expressions. In addition, a model written in k.IM is able to interoperate with other models available in the k.LAB 694 

environment. When modeling in k.IM concepts that have been previously defined in a knowledge-base are invoked, examples 695 

are earth:Site and chemistry:Fire as depicted in (S1, Fig. S2). Those concepts carry out meanings facilitating a semantic 696 

integration within the system (Villa et al., 2017). 697 

Since the BN is built with categorical values, continuous data need to be discretized. Discretization allows the establishment 698 

of non-linear values between variables and more complex distributions (Friedman and Goldszmidt, 1996). Discretizing the 699 

data helps to interpret the results more easily when it comes to decision-making processes by facilitating communication 700 

between modelers and end users. However, the interval selection interferes with the final results. We have been taking into 701 

account that the higher the number of intervals, the more data is needed to find significant dependencies (Aguilera et al., 2011); 702 

the nodes become weak when there are many intervals because there is less data for each distribution. 703 
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Among the methods to discretize (Beuzen et al., 2018), in this study we use both the equal-width and equal-frequency binning 744 

unsupervised methods, according to the input data distribution (see the data histograms in S3). In the first case, the algorithm 745 

divides the data into k intervals of equal size and in the case of equal frequency, the user specifies the sub-ranges that result in 746 

k intervals (bins) with approximately the same number of values. After modeling with different discretization ranges and 747 

obtaining similar accuracy results, we have chosen for each of the variables the minimum number of intervals in order to keep 748 

ecological sense, statistical significance and minimize information loss (S4, Table S2). The discretization applied is shown in 749 

Table 4. Discretization applied to the variables used in the fire occurrence modeling. 750 

Semantic  Method Bins 

AtmosphericTemperature in Celsius equal-width 10 

Weekly Maximum AtmosphericTemperature in 

Celsius 

10 

SolarRadiation in J/m^2 5 

Weekly PrecipitationVolume in mm 10 

Count of Day without Precipitation 

 

equal-frequency 5 

Slope in grade 5 

Elevation in m 5 

distance to ProtectedArea in m 5 

distance to Road in m 5 

distance to Human Settlement in m 5 

 751 

To learn the BN, 80% of the dataset was used to actually learn the model and 20% to test the relationship between historical 752 

wildfires (observations) and explanatory variables. On the learning side, we selected the K2 algorithm (Cooper and Herskovits, 753 

1992). This type of score-based algorithm searches for the most probable belief-network structure through a heuristic search. 754 

The K2 algorithm processes each node in turn and greedily considers adding edges from previously processed nodes to the 755 

current one, adding the edges that maximizes the network's score. It turns to the next node when any of the following 756 
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requirements are met: (i) it has reached the maximum number of parents, (ii) there are no more parents to add, (iii) the score 790 

has not improved (Chen et al., 2008). The number of parents for each node can be restricted to a predefined maximum (e.g. 791 

maxparents = 1) to mitigate overfitting. 792 

The BN predictors have been distributed in a Directed Acyclic Graph (DAG) as shown in Figure 3. DAG is assigning 793 

probabilities to each variable’s predictor; anthropogenic and biophysical factors such as meteorology, topography and 794 

environment.  The most influential variable of a BN results from the following characteristics: (i) the strength of influence of 795 

each edge connecting the nodes (Balbi et al., 2019) and (ii) how “far”, in terms of number of edges, is an input node from the 796 

final output (Marcot et al., 2006). The strength of influence is calculated from the conditional probability tables and expresses 797 

the difference between the probability distributions of two nodes by looking at the posterior probability distribution of a node, 798 

for each possible state of the parent or child node. To summarize this difference, we report normalized Euclidean distance, 799 

although other types of distances (e.g. Hellinger) are also used (Balbi et al., 2019). Table 5 quantifies numerically the strength 800 

of influence as the thickness of the edges between Fire Hazard node and its children. The predictors with the highest strength 801 

of influence are (i) atmospheric temperature, (ii) days without precipitation, (iii) fuel type and (iv) solar radiation (Table 5), 802 

all of which are directly linked to the final output (fire occurrence). While atmospheric temperature, number of days without 803 

precipitation, and solar radiation are expected to increase in variability and increase fire hazard with limited options for human 804 

mitigation, fuel type can be managed with punctual landscape interventions reducing its combustibility level where it is more 805 

necessary. 806 
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 816 

Figure 3. Directed Acyclic Graph (DAG) of the fire hazard Bayesian Network model where arcs width shows the strength of influence 817 
between nodes. Nodes show the relative probability of each interval of the variable, described in Supplementary Materials (S4, Table 818 
S2).  819 

Table 5. Strength of influence between fire occurrence and its child nodes. 820 

Variable  Strength of influence 

Atmospheric Temperature 0.338 

Day without Precipitation 0.193 

Fuel type 0.192 
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Solar Radiation 0.191 

Elevation 0.158 

Maximum Weekly Atmospheric Temperature 0.154 

Distance to Protected Area 0.145 

Slope 0.138 

Distance to Road 0.117 

Weekly Precipitation Volume 0.113 

Distance to Human Settlement 0.112 

Finally, to be more understandable for end-users and stakeholders, the results of the model were divided into 3 equal intervals, 838 

related to the level of fire occurrence (high: more than 66% chance, medium: between 33 and 66%, low: probability of fire 839 

less than 33%). 840 

2.2.3. Drivers of vulnerability and exposed elements  841 

Social and environmental vulnerability have been assessed as the tendency of exposed elements to be potentially damaged by 842 

a fire hazard due to its intrinsic or contextual conditions (IPCC, 2012). First, we used models developed in previous projects 843 

in k.LAB to determine the socio-ecological exposed elements. The ecosystem services models and biodiversity considered are 844 

those included in the ARIES global model set (Martínez-López et al., 2019). Once the fire hazard model is in k.LAB, all the 845 

data and models can interoperate between them through the explicit semantics (Villa et al., 2017). Thus, we can reuse previous 846 

ecosystem services models developed (Martínez-López et al., 2019; Willcock et al., 2018) applying them to a different context 847 

and creating new knowledge. In this case, due to the specificities of Sicily and the relevance of ecosystem services affected by 848 

wildfires, we choose to consider the following models: (i) vegetation carbon mass, (ii) pollination, (iii) outdoor recreation, (iv) 849 

biodiversity and (v) soil retention. These models, published in (Martínez-López et al., 2019; Willcock et al., 2018), are briefly 850 

described below:  851 

 Vegetation carbon mass: calculates the above- and below-ground carbon storage in vegetation (T/ha), in accordance 852 

with Tier 1 Intergovernmental Panel on Climate Change (IPCC) methodology (Gibbs and Ruesch, 2008; IPCC, 2006). 853 

 Pollination: based on land use, cropland, and weather patterns, the pollination model generates spatially explicit data 854 

of the supply and demand for insect pollination services. 855 

 Outdoor recreation: calculates the accessibility of recreational features of the natural landscape, and the demand for 856 

them, based on the methods by (Paracchini et al., 2014). 857 
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 Soil retention: the model provides biophysical estimates of soil loss and retention by plants (in tons of sediment per 915 

hectare per year) using the widely used Revised Universal Soil Loss Equation (RUSLE; (Renard et al., 1997).  916 

 Biodiversity: a Bayesian Network approach used to learn from site-based expert estimations of "biodiversity value" 917 

to create a map of the entire Sicilian region (Willcock et al. 2018). 918 

To create a comprehensive indicator of ecosystem services and biodiversity, we converted the above-mentioned modeling 919 

output to a common scale, using quantitative and qualitative criteria. In order to calculate the potentially reduced social and 920 

ecological services, we used the normalization method, instead of others such as qualitative categorization and probabilistic 921 

approaches (normal, Poisson, binary) (Chuvieco et al., 2003). We transformed each modeling output rescaling it from 0 to 1, 922 

using the minimum and maximum value within the Sicily context. The quantitative scale was classified into 3 categories (1-923 

low, 2-medium, 3-high) using equidistant intervals; thus integrating all modelling outputs into a single value. In this 924 

quantitative cross-assessment, the most valuable component was prioritized. The final map was overlaid with wildland areas. 925 

Once exposure was identified, we located the most vulnerable elements that were exposed to fire. Spatial data were generated 926 

for WUI, WAI and protected areas. In order to create the WUI area, we generated a 200 m buffer map from the human 927 

settlements, then overlaid it with the forest areas. The WAI map followed the same procedure, but with the buffer map from 928 

the agricultural areas. Finally, we use the FAO map (UNEP-WCMC and IUCN, 2022) for the protected areas. Vulnerable 929 

areas were overlapped with the exposure map. 930 

Finally, the fire hazard model was used to predict how the most vulnerable exposed elements could be affected in the current 931 

and future climatic conditions. The future climate data was drawn from the Coupled Model Intercomparison Project 5 (CMIP5) 932 

for RCP 8.5 from COordinated Regional climate Downscaling EXperiment (CORDEX) (Giorgi et al., 2009). The data are 933 

bias-corrected and simulated by state-of-the-art global and regional climate model pairs. To generate the climatic variables, 934 

we used the same process as the current variables. We kept the other variables (solar radiation, fuel, slope, elevation, distance 935 

to road, protected area and human settlement) with the current conditions. 936 

3. Results 937 

3.1. Historical data analysis 938 

During the analysis period (2007-2020) 28,814.698 ha were burnt in 12,749 fire perimeters and the data shows significant 939 

variability between years (Fig. 4). The average area burnt is equivalent to 20,630 ha with 910 ignitions per year, being 2012 940 

the worst year, with 1,274 ignitions and 55,699 ha burnt. However, the monthly distribution over this period is skewed toward 941 

July and August (Fig. 5), due to the weather's favorable fire conditions. August is clearly the month with more wildfires in all 942 

the years analyzed, with 4,166 ignitions and 118,481 ha burnt in total (26% more area than July, the second worst month).  943 
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 1026 

  1027 

  1028 

Figure 4: Number of ignitions vs. burned area by year from 2007 to 2020. Source: Regional Agency of Fire Control in Sicily and 1029 
FIRMS. 1030 

 1031 

Figure 5: Historical ignitions vs. burned area by month from 2007 to 2020. Source: Regional Agency of Fire Control in Sicily and 1032 
FIRMS. 1033 
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Fire frequency analysis (Fig. 6) showed that a quarter of the area affected during 13 years (from 2007 to 2020) has burnt once, 1037 

34.8% twice. 23.1% have burned three times or more, and nearly 6% have been burnt more than 5 times in 13 years.  Burned 1038 

area is spread throughout Sicily, however, areas close to cities, such as Palermo, have been burnt more than others. 1039 

 1040 

 1041 

Figure 6: Fire frequency aggregated by year. The legend shows how many times the same area has been burnt during the period of 1042 
2007-2020. 1043 

Fire ignition causes have been recorded since 2010. Figure 7 shows that, every year, more than 70% of wildfires are caused 1044 

by arson, with 2010, 2011 and 2012 being particularly relevant. The percentage of wildfires caused by negligence or natural 1045 

effects is of little relevance. In general, it seems that the trend of arson is decreasing significantly over the years, from 91.54% 1046 

to 67.06%. A large part of the percentage that decreases due to arson is replaced by wildfires of unknown origin, so we cannot 1047 

be confident that this trend is real. 1048 
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 1061 

Figure 7: Relative frequency of fires by main fire causes in Sicily in 2010–2020.10 the total wildfires  1062 

3.2. The Bayesian data-driven approach 1063 

The Bayesian network model shows the probability of each child node under the probability of fire occurrence (where fire 1064 

hazard is the parent node). For this purpose, in Figure 3, the state of the parent node based on historical fire is set to 100%, 1065 

indicating that wildfire is certain. The posterior probability of each state of the explanatory variables is then obtained given 1066 

the Conditional Probability Table (CPT) of each node (Fig. 3). 1067 

Accordingly, the fire occurrence probability at “Atmospheric temperature” is highest between 24.71ºC and 28.65ºC (S4, Table 1068 

S2) and the weekly maximum temperature is between 27.93ºC and 31.69ºC. In over 80% of the cases, the weekly precipitation 1069 

accumulated is below 0.05 mm for fire occurrence. Moreover, the more days without precipitation and higher solar radiation, 1070 

the higher the probability of fire occurrence. As for the topographic variables, the most important is the slope, since the 1071 

probability of fire is directly proportional to the slope. The same is observed in the case of elevation but in a less obvious 1072 

pattern. The probability of fire is higher in locations that are closer to human activities such as roads or buildings and protected 1073 

areas. Finally, in the case of the environmental variables, the highest fire probability in fuel forest type (S2, Table S1) is when 1074 

ground fuel is grass (type 1), followed by high shrubs (between 2.0 and 4.0 m) and young trees resulting from natural 1075 

regeneration or forestation (type 4). The third riskier fuel type is type 5, which occurs when the ground fuel is removed either 1076 

by prescribed burning or by mechanical means. This situation may also occur in closed canopies in which the lack of sunlight 1077 

inhibits the growth of surface vegetation. 1078 

The most influential variables (in terms of connection strength) according to our BN algorithm are atmospheric temperature, 1079 

days without precipitation and fuel type (Table 5). While atmospheric temperature and the number of days without precipitation 1080 
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are expected to increase in variability and increase fire hazard with limited options for human mitigation, fuel type can be 1175 

managed with punctual landscape interventions reducing its combustibility level where it is more necessary. 1176 

The k-fold cross-validation algorithm has been used to estimate the model's accuracy. This algorithm uses the training/testing 1177 

process “k” times and averages the results. The results for k=10 showed that 83.997% of the instances were correctly classified 1178 

in two values: occurrence and non-occurrence of wildfires. 1179 

We use the confusion matrix to measure the performance of the classification (Table 6). The results show 12,172 correctly 1180 

classified instances, but also 1,426 false positives and 893 false negatives. The type I error (false positive), i.e. detecting a fire 1181 

where it, in reality, is not, could lead to allocating efforts to unnecessary areas. Type II error (false negative), could not identify 1182 

the probability of fire in risk situations and, therefore, would not be managed properly. A false negative rate (0.11) is calculated 1183 

as the number of incorrect positive predictions divided by the total number of negatives; the best false positive rate is 0.0. 1184 

Table 6: Confusion matrix of fire hazard BN modeling. 1185 

  Real  

  No fire Fire Sum 

Predicted 

No 

fire 
5,573  

893 

(type II error) 
6,466 

Fire 
1,426  

(type I error) 
6,599  8,025 

 Sum 6,999 7,492 14,491 

The Bayes theorem is key to interpreting the output of binary classification problems using the calculated confusion matrix. 1186 

Precision is the confusion matrix probability P(Fire/TotalPredictedFire) = 6,599/8,025 = 0.822. It is the probability that the 1187 

fire predicted as fire is true. Recall P(Fire/TotalActualFire) = 6,599/7,492 = 0.881 is the percentage of the actual fires that were 1188 

correctly predicted by our classification algorithm. Table 7 also shows that the precision for the negative class (no fire) is 1189 

0.822. Moreover, the overall accuracy (weighted average between fire and no fire) is 0.841 and 0.840 for precision and recall 1190 

respectively and gives an overall picture of our model. These weighted results are close to our precision and recall values for 1191 

fire variables because our model is balanced (7,492 wildfires (51.70%) vs. 6,999 no wildfires (48.29%). Hence, the overall 1192 

accuracy (0.84) is a good metric in this situation. 1193 

Table 7: Sensitivity analysis of fire hazard model. 1194 

 TP FP Precision Recall F- MCC ROC PRC 
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Rate Rate Measure 

No fire 0.796 0.119 0.862 0.796 0.828 0.681 0.915 0.922 

Fire 0.881 0.204 0.822 0.881 0.851 0.681 0.915 0.903 

Weighted 

Avg. 

0.84 0.163 0.841 0.84 0.84 0.681 0.915 0.912 

The confusion matrix is also useful for measuring other significant metrics such as the ROC (Receiver Operating 1206 

Characteristic) curve that summarizes the performance of the Bayesian classifier over all possible thresholds (Bradley, 1997; 1207 

Fawcett, 2006). It measures accuracy in a weighted sort and is appropriate when the observations are balanced between each 1208 

class, as in this case. For example, we used a sorting-based method called Area Under the ROC Curve (AUC) that measures 1209 

the two-dimensional region below the ROC curve from (0,0) to (1,1). Not only the model presents a strong AUC result of 1210 

0.915 for fire hazard, because the result is close to 1, but it also shows a significant F-Measure (a harmonic mean of the 1211 

precision and recall) with 0.847. The model performs well also in terms of uncertainty of the results. In Supplementary 1212 

Materials (S4, Figure S6) we display the uncertainty map associated with the standard deviation of the probability distribution 1213 

of fire hazard. 1214 

As an example, we present the fire hazard model results (i.e. the mean values of the simulated probability distributions) for 1215 

August 2050 because this is the month with the most critical historical wildfires in Sicily (Fig. 5), assuming no changes in 1216 

ecosystem management. Given the ease of access and reuse of models and data in k.LAB, any user of the modelling platform 1217 

can run the fire hazard model at any time in the future until 2055, as the input data are on the platform and are openly available. 1218 

As anticipated, the results of the model were divided into 3 equal intervals, related to the level of fire hazard (low: probability 1219 

of fire less than 33%, medium: between 33 and 66%, high: more than 66% of chance). Figure 9 shows the comparison between 1220 

the average results for August in 2020 and 2050 at 50 m of resolution. 1221 
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 1281 

Figure 9. Example of fire hazard in (a) August 2020 (b) and 2050 classified by low, medium, or high probability of fire occurrence. 1282 

When comparing simulated outcomes for 2020 and 2050, the increase of areas with high fire probability and decrease of those 1283 

with low fire probability becomes evident. The area with low fire probability changed from 12,300 km² to 4,887 km², 1284 

representing a reduction of almost 40%. The extension of area with medium probability of fire occurrence increased from 29% 1285 

of the total wildland area to 48%. Finally, the wildland area with high fire probability occurrence changed from 8% (1,675.26 1286 

km²) to 27% (5,357.62 km²), an increase of 319.8% between the two scenarios. We here highlight the most significant change: 1287 

from low to medium probability of fire occurrence, which has increased by 7,112.58 km2. Conversely 4,504.34 km2 of wildland 1288 

areas with low probability of fire occurrence remain unchanged between 2020 and 2050. 1289 

3.3. Wildfire risk levels 1290 

The wildfire risk map at 50 m of resolution integrates a set of variables related to exposure and vulnerability (Table 1). In this 1291 

study, we analyze the areas with important ecological values and ecosystem services for both humans and nature, which would 1292 

be potentially affected in case of fire due to its exposition.  1293 

Figure 10 compares the average spatial variability of the ecosystem services and ecological values exposed in August 2020 1294 

and August 2050. In the horizontal axes, the figures are distributed by levels of fire occurrence probability. (low, medium, and 1295 

high), according to the fire hazard model. The 2020 column shows that the most exposed area corresponds to the low fire 1296 

hazard level. As the level of fire hazard increases, the exposed area decreases. In contrast, the 2050 column shows that the 1297 

most exposed area corresponds to the medium fire hazard level, followed by high and low probabilities of fire occurrence. 1298 
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 1363 

Figure 10: Exposure map of ecological values and ES (Ecosystem Services) that may interact with levels of forest fire probability. 1364 
(low, medium, and high), in 2020 and 2050. 1365 

Linked to Figure 10, Figure 11 shows the changes (in km²) broken-down by ES (Ecosystem Services). As we observed in the 1366 

exposure maps (Fig. 10), the fire hazard increases in all ES. For example, the exposure to the Carbon Mass ecosystem service 1367 

and Biodiversity will increase by more than 150% in the exposed areas with high fire probability (S5, Table S3). Outdoor 1368 

recreation, Soil retention, and Pollination ecosystem services will increase by 117%, 100%, and 56%, respectively. In contrast, 1369 

the exposure with low fire probability will decrease between 50% and 65% each. 1370 
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 1384 

Figure 11: Comparison of the fire hazard level -low (grey), medium (yellow), high (red)- by the importance of the socio-ecological 1385 
elements exposed in different color tones (low, medium or high). Values show the surface average (km²) in August 2020 and 2050. 1386 

Figure 12 shows how the percentage of vulnerable areas is distributed in each of the variables analyzed as a function of the 1387 

fire probability. Therefore, following the same trend as exposed areas, ecosystem services and ecological values increase fire 1388 

risk with the influence of climate change. The WUI (Wildland-Urban Interface) case, increases by 19% for high fire 1389 

probabilities in 2050 and almost half of the wildfires will be at medium risk. In both WAI (Wildland-Agriculture Interface) 1390 

and protected areas, half of their area could face a high fire risk in the future, doubling the 2020 data.  1391 
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1399 

 1400 

Figure 12: Percentage of the vulnerable areas distributed in each of the variables analyzed (WUI, WAI, Protected Areas) as a 1401 
function of the fire probability.  1402 

Most of the vulnerable locations close to agricultural areas have a high probability of fire. However, one of the areas with high 1403 

vulnerability in the protected area overlaps with sites that are difficult to access for the population, such as the Nebrodi Regional 1404 

Park or the Madonie Regional Natural Park (Fig. 13). 1405 

Overall, the area with the highest socio-ecological value is in the northeastern quadrant of the island, coinciding with the areas 1406 

of highest fire risk. In contrast, low-protected regions are primarily agricultural areas, urban surroundings, or areas that have 1407 

been affected by fire in the recent past. These non-vulnerability areas dominate most of the Sicilian territory. 1408 
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 1412 

Figure 13: Risk map of hot spots of biodiversity and ecosystem services exposed in protected areas, Wildland-Urban Interface and 1413 
Wildland-Agricultural Interface in August 2020. Colored from blue with a value of 0 (low socio-environmental value) to red with a 1414 
value of 3 (high socio-environmental value). Exposed but not vulnerable areas are shaded in grey. No wildland areas and no exposed 1415 
are in white. 1416 

4. Discussion and Summary 1417 

Although historical fire data are becoming more accessible and findable, there is still much to be done for enhancing their full 1418 

use (e.g. their interoperability and reusability). The most reliable data are those collected in the field by authorized public or 1419 

private institution, but in many cases, it is extremely difficult to access and download field data for the general public. In 1420 

contrast, satellite data are becoming increasingly accessible. However, not always fire can be properly detected by satellites 1421 

due to the following reasons: (i) they need a minimum fire size or intensity (linked to the resolution), (ii) there can be false 1422 

alarms (commission errors), (iii) the information can be obscured by clouds or overstory vegetation, or the time of satellite 1423 

overpass may not coincide with the fire (Hantson et al., 2013; Schroeder et al., 2008). 1424 

In this study, we use both satellite data and field data to verify and complement the fire-related information. Overall, satellite 1425 

and field common problems are the scarce harmonization among data formats and the lack or bad quality of metadata. In this 1426 

study, the main difficulties were the differences in parameters such as coordinate reference system, lack of metadata 1427 

information and fire attributes between the yearly perimeters of fire. By integrating the data in k.LAB, all the data resources 1428 

were harmonized, properly classified, and made available online with complete metadata. 1429 
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Concerning the model quality, model errors are related to data location, spatio-temporal resolution or logical consistency 1517 

(Guptill and Morrison, 2013; Kraak and Ormeling, 2020). Utilizing multiple data sources adds strength to the model and has 1518 

been especially useful for detecting small wildfires related to land management: the vast majority of wildfires in Sicily. These 1519 

kinds of wildfires may be too short-lived for the administration technicians or not intense enough to be captured by satellites. 1520 

Moreover, we consider that this strategy avoided a bias in the estimation of predictors' probabilities (Roy et al., 2005). 1521 

The historical fire set was analyzed, filtered, cleaned and processed prior to fire hazard modeling. The frequency of wildfires 1522 

from 2007 to 2020 was analyzed; some areas have burned more than once in the same year or more than 5 years during the 1523 

13-year period. We suggest that future studies would have to study why this phenomenon can happen and how it could be 1524 

avoided, as such a high frequency of wildfires disrupts the cycle of natural processes of plants and animals, the loss of 1525 

vegetation structure and composition and the associated ecosystem services. 1526 

Once the perimeters of each of the wildfires were identified, the associated information from the administration's wildfires was 1527 

combined with the active fire points from the satellites to find the fire ignition area. Some differences were observed in the 1528 

satellite and the government data. This may be due to reasons mentioned above: wildfires not detectable by satellites, or 1529 

agricultural burnings detected as wildfires when the administration does not consider them as such. A great deal of effort was 1530 

spent on data collection, cleaning, validation, pre-processing, and storage that complies with FAIR principles obtaining a 1531 

reliable and open dataset: the basis of the occurrence of the fire model.  1532 

The model strength has been improved by extracting information from the predictors’ data with dynamic and static variables 1533 

such as meteorological or topographic data, respectively. Thus, the predictors have informed the model with values specific to 1534 

each fire event. In addition, the predictors come from reliable and tested sources such as Copernicus or the Italian government 1535 

as well as expert researchers and technicians. Some of the resources already existed within k.LAB such as protected areas or 1536 

human settlement distribution and others were added, as fuel types or high resolution digital elevation model. The new 1537 

information has been annotated in the semantic language k.IM and, like the historical fire data, now is open to any user and 1538 

can interact with other k.LAB models in line with the FAIR principles.  1539 

It should be noted that this model has taken into account some of the explanatory variables at the time of ignition, but also 1540 

some variables describing the ex-ante situation. Variables such as the average maximum temperature of the previous week, 1541 

the accumulated precipitation or the number of days without rain were prior to the fire. The influence of climatic factors can 1542 

help to predict the occurrence of wildfires related to climate change and the stress to which the forest was exposed (Halofsky 1543 

et al., 2020; Trumbore et al., 2015). 1544 

The machine learning algorithm used, BN (Bayesian Network), provides a flexible and adaptable approach to structure the 1545 

peculiarities of fire hazard modeling: different data sources, changes in spatio-temporal resolution and dynamic versus static 1546 
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input data. BNs are useful in conducting probabilistic risk assessments since they are capable of directly modelling the whole 1559 

probability distributions for stable conditions and trade-offs which is crucial for risk assessments such as fire risk of complex 1560 

ecological systems.  They also provide insights or quantification of the influence of a particular node on others (Kumar and 1561 

Banerji, 2022). In addition, the evaluation of BNs presents much lower costs and efforts than other options, even when the 1562 

dataset is partly incomplete, which is quite common for environment-related data (Bielza and Larrañaga, 2014). Most of the 1563 

remaining issues are related to meteorological conditions and environmental data, either due to the punctual failure of nearby 1564 

stations or problems in post-processing. However, these problems can be solved by integrating data with higher spatial 1565 

resolution, which, once semantically annotated, will automatically substitute lower-quality resources.  1566 

Another advantage of BNs is that they are not a black box models: the direct interpretation of the results, based on the 1567 

probabilities of the predicting variables, is given in each node probability distribution. Traditional modeling it is often difficult 1568 

to access the details of the model accuracy for the end user, leading to a lack of reliability. Thanks to k.LAB and its web 1569 

browser k.Explorer, the accuracy of the model is accessible and interpretable for non-expert end-users as stakeholders or land 1570 

managers as we showed in the results. In line with FAIR principles, the final output and all the variables needed to compute 1571 

the fire occurrence are supported by a narrative report produced at runtime to facilitate its interpretation. All these outputs are 1572 

open and downloadable.  1573 

The algorithm used has provided significant values to detect areas with a high probability of fire occurrence. Thus, BNs provide 1574 

a fast, reliable and accessible tool for land managers through k.LAB and semantics. The metrics related to type I and II errors 1575 

can have great implications in practice, their acceptable values give credibility to the application and use of the model in real 1576 

situations.  1577 

The integrated model has been able to simplify a problem as complex as the occurrence of wildfires by combining very 1578 

disparate datasets. Given the results, we successfully identified the different degrees of fire hazard. The model results change 1579 

according to the most influential variables that can change over time and space, such as meteorological, biophysical data and 1580 

human pressure on the landscape.  1581 

By using k.LAB, a modeler can reutilize the model at any point in time, including calculating the fire hazard in real-time or in 1582 

future scenarios. For example, we have run the model with future data for 2050 assuming forest management does not change. 1583 

It has been analyzed how, due to extreme temperatures and the stress that they will place on vegetation, the probability of 1584 

wildfires will be higher in a large part of Sicily and, therefore, new areas will be affected. The easy adaptation of the BN 1585 

models together with k.Explorer visualization facilities by the stakeholders simplifies the incorporation of new data in the 1586 

future to test different land management alternatives. 1587 
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As the fire hazard model was incorporated into the k.LAB modeling environment,, this new model was able to interact and 1601 

connect with existing models (Villa et al., 2017). Thus, we overlapped the future fire hazard with ecosystem services that were 1602 

already developed and published by scientific researchers. We choose the ecosystems that are directly affected by fire such as 1603 

pollination, soil retention, outdoor recreation, biodiversity and carbon mass. 1604 

5. Conclusions 1605 

Models informing environmental decisions are usually developed in isolation, self-contained and with results mostly accessible 1606 

to code owners and their collaborators. However, in a globalized world with increasingly complex  and intertwined problems, 1607 

it is key to connect knowledge and develop methods that can identify integrated solutions (Balbi et al., 2022). The application 1608 

of appropriate and reliable risk assessment techniques is key to understanding and potentially preventing future damage, but 1609 

so is making this knowledge accessible to stakeholders. This study combines the power of Artificial Intelligence and, in 1610 

particular, machine learning, knowledge representation and machine reasoning to model the risk of fire to ecosystem services 1611 

in Sicily, the largest island in the Mediterranean Sea. We used the k.LAB technology, which provides a common platform to 1612 

make data and models interoperable and accessible to non-technical users (Balbi et al., 2022). 1613 

In this study, we integrated historical fire data from 2007 to 2020 and other explanatory variables to identify the areas at the 1614 

highest risk in present and future scenarios. We developed a data-driven model using a Bayesian Network (BN) classifier. 1615 

Model analysis demonstrates that the BN algorithm applied to the historical wildfires data and their real-time variables achieves 1616 

a high range of predictive accuracy. Despite the identified limitations as the resolution of meteorological data or detect small 1617 

wildfires, the findings reveal the usefulness of the method, including the possibility to rerun the model at different time steps, 1618 

and spatial scales statically or dynamically.  1619 

The fire risk spatial results are easily accessible through a web browser that can be used freely by land managers and 1620 

stakeholders. This can help to create new prevention guidelines or focus on the risky areas. Moreover, the model gives scientists 1621 

and land managers indications about the variables that mostly affect fire probability and how they can mitigate this 1622 

environmental risk.  1623 
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