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 12 

ABSTRACT 13 

The element mercury (Hg) is a key pollutant, and much insight has been gained by studying the present-day 14 

Hg cycle. However, many important processes within this cycle operate on timescales responsive to 15 

centennial to millennial-scale environmental variability, highlighting the importance of also investigating the 16 

longer-term Hg records in sedimentary archives. To this end, we here explore the timing, magnitude, and 17 

expression of Hg signals retained in sediments over the past ~90 ka from two lakes, linked by a 18 

subterranean karst system: Lake Prespa (Greece/North Macedonia/Albania) and Lake Ohrid (North 19 

Macedonia/Albania).  Results suggest that Hg fluctuations are largely independent of variability in common 20 

host phases in each lake, and the recorded sedimentary Hg signals show distinct differences first during the 21 

late Pleistocene (Marine Isotope Stages 2 – 5). The Hg signals in Lake Prespa sediments highlights an 22 

abrupt, short-lived, peak in Hg accumulation coinciding with local deglaciation. In contrast, Lake Ohrid shows 23 

a broader interval with enhanced Hg accumulation, and, superimposed, a series of low-amplitude oscillations 24 

in Hg concentration peaking during the Last Glacial Maximum, that may result from elevated clastic inputs. 25 

Divergent Hg signals are also recorded during the early and middle Holocene (Marine Isotope Stage 1). 26 

Here, Lake Prespa sediments show a series of large Hg peaks; while Lake Ohrid sediments show a 27 

progression to lower Hg values. Around 3 ka, anthropogenic influences overwhelm local fluxes in both lakes. 28 

The lack of coherence in Hg accumulation between the two lakes suggests that, in the absence of an 29 

exceptional perturbation, local differences in sediment composition, lake structure, Hg sources, and water 30 

balance all influence the local Hg cycle, and determine the extent to which Hg signals reflect local or global-31 

scale environmental changes. 32 

 33 

1. Introduction  34 

Mercury (Hg) is a volatile metal released into the environment from both natural and anthropogenic 35 

sources, and actively cycled between surface reservoirs (e.g., atmosphere, ocean, lakes). Emissions 36 
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of Hg by geological processes are unevenly distributed across the Earth’s surface, and are generally 37 

concentrated where tectonic, volcanic, and geothermal activities are most intense (Rytuba, 2003; 38 

Edwards et al., 2021; Schlüter, 2000). Geological processes have been major drivers of variability in 39 

the global Hg cycle throughout Earth’s history (Selin, 2009), leading to the use of sedimentary Hg to 40 

reconstruct periods of intense volcanism (e.g., large igneous provinces (LIPs)) in Earth’s geological 41 

past (e.g., Grasby et al., 2019; Percival et al., 2018).  In recent times, Hg release associated with 42 

industrialisation, the extraction and combustion of fossil fuels, and natural resources (metals) has 43 

overwhelmed the natural background flux (Outridge et al., 2018; Streets et al., 2019; United Nations 44 

Environment Programme, 2018).  45 

Existing in the atmosphere primarily in the form of gaseous elemental mercury, Hg has an 46 

atmospheric lifetime of up to 2 years, facilitating its deposition far from the original source (Lyman et 47 

al., 2020). Once removed from the atmosphere, Hg may enter vegetation and soils where it is cycled 48 

between reservoirs by a complex series of processes, many of which occur on timescales that exceed 49 

present-day monitoring (Fig. 1) (Branfireun et al., 2020; Selin, 2009). Evasion back to the 50 

atmosphere, consumption by living organisms, or sequestration within aquatic sediments all represent 51 

ways in which Hg may ‘leave’ the terrestrial environment, and aquatic sediments are known to be 52 

particuarly effective sinks within the global Hg cycle (Bishop et al., 2020; Selin, 2009). Here, microbial 53 

processes lead to the formation of methylmercury (MeHg), which is the most bio-accumulative Hg 54 

species and can cause severe neurological and physiological damage to complex organisms if 55 

ingested (Driscoll et al., 2013; Wang et al., 2019).  56 

The ecological and societal risks of environmental Hg contamination underscore the importance of 57 

quantifying how natural and anthropogenic processes may influence Hg sequestration within aquatic 58 

systems, and the timescales upon which they are effective. Time-resolved sediment records sourced 59 

from marine and lacustrine basins are highly suitable for assessing these roles further back in time, as 60 

the Hg deposited may originate from one of several potential sources in the atmospheric (e.g., 61 

precipitation, dust), terrestrial (e.g., soils, detrital matter), aquatic, and/or lithospheric domain (Fig. 1). 62 

Thus, they can provide time-resolved records of Hg deposition, cycling, burial, and accumulation 63 

relative to changing environmental conditions on a local, regional, or even global-scale (Cooke et al., 64 

2020; Zaferani and Biester, 2021), and so can offer new insights into the cycling of Hg in the 65 

terrestrial realm.  66 

Analysis of pre-industrial marine and lacustrine sediment records suggest that Hg concentration 67 

broadly reflects variability in climate (Li et al., 2020). On orbital (>103-year) timescales, oceanic Hg 68 

signals manifest as low-amplitude fluctuations corresponding to global-scale climate shifts from warm 69 

(interglacial) to colder (glacial) conditions; for example due to changes in atmospheric composition 70 

(e.g., mineral dust loading) and circulation, biogeochemical cycling (Figueiredo et al., 2022), and/or 71 

ocean circulation (Figueiredo et al., 2020; Gelety et al., 2007; Jitaru et al., 2009; Kita et al., 2016). On 72 

centennial to millennial (102-103-years) timescales, lacustrine Hg signals correspond more closely to 73 

transient changes in hydrology, landscape dynamics, and ice/permafrost extent on local/regional 74 

scales (Chede et al., 2022; Cordeiro et al., 2011; de Lacerda et al., 2017; Fadina et al., 2019; Li et al., 75 



3 
 

2023; Pérez-Rodríguez et al., 2018, 2015) (Fig. 1). Importantly, climate-associated Hg signals 76 

retained in lacustrine records integrate a range of processes and some records show higher 77 

sedimentary Hg concentrations during cold, arid conditions (e.g., Li et al., 2020), while other records 78 

tend to have higher Hg concentrations with warm and wet climates. For example, increases in 79 

catchment-sourced detrital input have been proposed as the primary cause of Hg enrichment in 80 

temperate lakes (Pan et al., 2020; Schütze et al., 2018), and near-shore marine records (Fadina et 81 

al., 2019). Conversely, lakes located in glaciated regions may show dilution of Hg by the same inputs 82 

(Schneider et al., 2020). Local, site-specific factors are therefore likely to influence sedimentary Hg 83 

records. Yet, the combined effects of global and local processes complicate study of how changes in 84 

the terrestrial Hg cycle may translate to measurable sedimentary signals and signals that are 85 

comparable between different regional or global archives.   86 
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Sedimentary Hg presence (or absence) at discrete intervals can be quantified using the total Hg 88 

concentration (HgT) (Bishop et al., 2020; Kohler et al., 2022; Nasr et al., 2011). However, internal 89 

changes in bioproductivity, organic matter type and/or flux, sedimentation rate, pH, and redox 90 

conditions could all produce a distinct, local, transient, sedimentary Hg enrichment without a 91 

meaningful change in the total amount of Hg present and/or mobile in the broader aquatic system. In 92 

light of these complexities, it has become common practice to examine total Hg concentration (HgT) 93 

alongside Hg concentration divided by (normalised to) the concentration of various chemical species. 94 

Normalisation is often applied when it can be shown that the abundance of a carrier (or “host”) phase 95 

directly impacts Hg content. Normalisation (e.g. Hg/total organic carbon (TOC), Hg/total sulphur (TS)) 96 

may, in those cases, then reveal broader changes in environmental Hg availability (Grasby et al., 97 

2019; Percival et al., 2015; Shen et al., 2020; Them et al., 2019). Such an approach is particularly 98 

beneficial for studies typically spanning >102-year timescales, where the goal is to isolate the effects 99 

of catchment-scale depositional and/or transport processes on Hg signals recorded in the sediment 100 

through time. 101 

Organic matter (hereafter represented by total organic carbon (TOC)) is generally considered the 102 

dominant carrier phase of sedimentary Hg (Chakraborty et al., 2015; Ravichandran, 2004). For 103 

records in which TOC and Hg co-vary linearly, Hg is generally normalized to TOC (Chede et al., 2022; 104 

Figueiredo et al., 2022, 2020; Kita et al., 2016; Outridge et al., 2019). Some systems do not exhibit a 105 

relation to TOC and Hg may instead be adsorbed onto (fine-grained) detrital minerals and detected by 106 

a correlation between Hg and mineral-dominating elements such as aluminium (Al), titanium (Ti), 107 

zirconium (Zr), rubidium (Rb), or potassium (K) (Sanei et al., 2012; Sial et al., 2013; Them et al., 108 

2019). In few cases, sulphide minerals may act as important Hg hosts (Benoit et al., 1999; Han et al., 109 

2008), however this is less common in freshwater lacustrine systems where sulphate-reduction is 110 

often limited and only a small fraction of non-organic sulfur is buried (Ding et al., 2016; Holmer and 111 

Storkholm, 2001; Tisserand et al., 2022; Watanabe et al., 2004).  112 

Mercury’s relationship with other sedimentary components is often complex. For example, HgT may 113 

also be suppressed through dilution by Hg-poor detrital or biogenic (carbonate, silica) material, and 114 

Hg in many sediments is not exclusively or clearly modulated by balances between host-phase 115 

abundance and dilution. Notably, this can also occur when the host-phases are always present in 116 

sufficient quantities to sequester available Hg. In such cases, and where (single) host-phase 117 

abundance or dilution cannot be easily accounted for, Hg accumulation rate (HgAR) may provide the 118 

most optimal assessment of Hg availability through time as long as a robust age model is available for 119 

the archive.  120 

Sedimentary TOC, total sulphur (TS), and detrital and biogenic mineral concentrations change in 121 

space and time, underscoring the need to assess how Hg covaries in relation to different host phases 122 

and other sedimentary materials. Hydrology, sedimentation regime, and geochemistry may each 123 

influence mercury host-phase availability and burial in a lacustrine system, and are likely to change 124 

through time, highlighting the importance of investigating the longer-term records of Hg burial and 125 

accumulation in sedimentary archives. 126 
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This study explores the timing, magnitude, and expression of Hg signals retained in the sediment 127 

records of Lake Prespa (Greece/Albania/North Macedonia) and Lake Ohrid (North 128 

Macedonia/Albania) over the past ~90 ka. The two lakes are located only ~10 km apart (Fig. 2), are 129 

hydrologically connected by karst aquifers with ~50% of water inflow to Lake Ohrid originating from 130 

Lake Prespa (Matzinger et al., 2006), and their sediments encode records of environmental change in 131 

southeast Europe over the last ~90 ka (Damaschke et al., 2013; Francke et al., 2016; Leng et al., 132 

2010; Panagiotopoulos et al., 2014; Sadori et al., 2016; Wagner et al., 2010).  Comparison of their 133 

sedimentary records provides a rare opportunity to explore three important questions. First, we test 134 

how the local sedimentary environment (e.g., host phase availability and sources) influences Hg 135 

burial. Second, we investigate whether Hg signals reflect changes in catchment hydrology, structure, 136 

and/or varying degrees of interaction between the two lake systems. Finally, we explore whether 137 

regional-scale climate variability could have measurably affected the Hg signals retained in the 138 

sediments. 139 

 140 

2. Site Description  141 

2.1. Regional Climate  142 

The Mediterranean Sea and the European continent are both major influences on present-day climate 143 

of the region surrounding lakes Prespa and Ohrid. Summer months (July to August) are hot and dry 144 

(average monthly air temperature +26 °C) while winter months (November to January) are cold, 145 

cloudy and wet, with an average monthly air temperature of −1 °C (Matzinger et al., 2006). Annual 146 

precipitation in the region averages ~750 mm yr−1, with winter precipitation falling predominantly as 147 

snow at high elevations (Hollis and Stevenson, 1997). Present-day vegetation in the Prespa/Ohrid 148 

region comprises a mixture of Balkan endemic, central European, and Mediterranean species 149 

(Donders et al., 2021; Panagiotopoulos et al., 2014, 2020; Sadori et al., 2016).  150 

Major shifts in sedimentation and catchment structure of lakes Prespa and Ohrid generally 151 

correspond to the large-scale climate oscillations captured by proxy records across southern Europe 152 

throughout the last glacial-interglacial cycle (~100-kyr) (e.g., Rasmussen et al., 2014; Sanchez Goñi 153 

and Harrison, 2010; Tzedakis et al., 2006). Generally higher local temperatures and moisture 154 

availability are observed during the last interglacial (pre-74 ka), following which conditions became 155 

distinctly colder and/or drier. This resulted in the rapid recession of forest ecosystems, intense erosion 156 

of local soils and catchments, and elevated aeolian activity (e.g., Panagiotopoulos et al., 2014; Sadori 157 

et al., 2016; Francke et al., 2016). Although slightly warmer conditions were restored between ~57 158 

and 29 ka, both moisture availability and temperature dropped again during the Last Glacial Maximum 159 

(LGM; ~29 – 12 ka) – favouring the growth and development of glaciers and (peri)glacial features 160 

(e.g., moraines) in the Prespa/Ohrid catchment (Ribolini et al., 2018; Gromig et al., 2018; Ruszkiczay-161 

Rüdiger et al., 2020), but also across the Balkan peninsula (Allard et al., 2021; Hughes and 162 

Woodward, 2017; Leontaritis et al., 2020). Lake Prespa’s sediments host evidence for millennial scale 163 

climate varaiblity during the Last Glacial, which were tentatively correlated to Heinrich Events in the 164 
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North Atlantic (Wagner et al., 2010). At ~12 ka, the Pleistocene to Holocene transition saw the rapid 165 

propagation of warmer, wetter conditions across the region (known as Termination I) with only brief 166 

excursions from this warming trend, such as episodes of transient drying and/or cooling at 8.2 ka and 167 

4.2 ka (Bini et al., 2019; Aufgebauer et al., 2012a). Anthropogenic influence on the Balkan landscape 168 

becomes increasingly clear from ~2.5 ka onwards, mainly in the form of increased erosion regimes, 169 

forest clearance, agricultural land modification, and evidence for metallurgic practices 170 

(Panagiotopoulos et al., 2013; Cvetkoska et al., 2014; Radivojević and Roberts, 2021).  171 

 172 

2.2. Lake Prespa 173 

The Prespa lake system (40o54’ N, 21o02’ E) is composed of two lakes separated by an isthmus and 174 

located on the tripoint of North Macedonia, Albania and Greece, at an altitude of 844 metres (m) 175 

above sea level. The ~1300 km2 catchment of the Prespa lakes encompasses the Pelister Mountains 176 

to the east and the Galiçica Mountains to the southwest and west (Fig. 2). Here we focus on Megali 177 

Prespa (hereafter referred to as Lake Prespa), the larger of the two lakes, which has a surface area of 178 

254 km2, a maximum water depth of 48 m, and a mean water depth of 14 m. The total inflow into Lake 179 

Prespa averages ~16.9 m3 s−1 (Matzinger et al., 2006). Water input is sourced from surface runoff 180 

(56%), direct precipitation (35%), and inflow from the smaller of the two lakes (Mikri Prespa; 9%) 181 

(Matzinger et al., 2006). Lake Prespa has no surface outflow. The residence time of the lake’s waters 182 

is ~11 years (Matzinger et al., 2006) and water is predominantly lost through evaporation (52%), 183 

underground karst channels into Lake Ohrid located 10 km to the west (46%), and irrigation (2%). The 184 

lake is currently mesotrophic with an average total phosphorus (TP) concentration of 31 mg m−3 in the 185 

water column, basal anoxia in summer months, and generally clear waters; all signalling moderate 186 

biological productivity (Hollis and Stevenson, 1997). However, the lake likely held a more oligotrophic 187 

(low) nutrient status during the colder late Pleistocene, where biological producity reduced 188 

substantially (Matzinger et al., 2006; Wagner et al., 2010).  189 

 190 

2.3. Lake Ohrid 191 

Lake Ohrid (41°02′ N, 20°43′ E) lies 693 m above sea level. Separated from Lake Prespa by the 192 

Galiçica Mountains, the lake straddles the boundary between North Macedonia and Albania (Fig. 2). 193 

The lake is ~30 km long and 15 km wide, with a maximum water depth of 293 m, water volume of 194 

55.4 km3, and hydraulic residence time of ~70 years. Water input is sourced from direct precipitation 195 

(23%), river inflow (24%), and karst springs (53%) fed by precipitation and water from Lake Prespa 196 

(Matzinger et al., 2006; Lacey and Jones, 2018), and this hydrological link increases the Ohrid 197 

catchment by ~1300 km2 to ~2610 km2. Evaporation (40%) and outflow via the river Crn Drim (60%) 198 

are the dominant pathways for water loss from Lake Ohrid, and complete mixing of the lake occurs 199 

only every few years (Matzinger et al., 2006). The present-day lake shows low levels of biological 200 
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productivity (oligotrophic) with an average dissolved phosphorus content of 4.5 mg m−3, and regular 201 

mixing maintains moderately oxygenated bottom waters (Matzinger et al., 2006; Wagner et al., 2010).  202 

 

Figure 2:  (a) Map showing the location of lakes Prespa and Ohrid within Southern Europe (yellow shaded box). Volcanoes 

from which tephra has been identifed in Co1215 (Prespa) and/or 5045-1 (Ohrid) are coloured as black triangles, and 

numbered as: 1 – Vesuvius, 2 – Campi Flegrei, 3 – Ischia, 4 - Pantelleria, 5 – Etna. Volcanoes of the South Aegean 

Volcanic Arc with known explosive eruptions (>magnitude 4.0) between 90 and 0 ka are also numbered: 6 – Santorini, 7 – 

Nisyros, 8 – Yali. Sites referred to in this study are also labelled as follows: (red squares) MT – Mount Tymphi, MO – Mount 

Olympus, MC – Mount Chelmos; (red star) VRB – Voidomaitis river basin.  (b) Aerial photo showing the coring locations of 

Co1215 and 5045-1, and illustrating the vegetation distributions of the area surrounding lakes Prespa and Ohrid. Mikri 

Prespa is labelled as ‘MP’ Base image sourced from GoogleEarth v 9.177.0.1TM. (c) Hillshade map of the Prespa/Ohrid 

region and bathymetric data of lakes Prespa and Ohrid (Jovanovska et al., 2016; Wagner et al., 2022). Grey dashed lines 

denote watershed boundaries for lakes Prespa and Ohrid , respectively adapted from Panagiotopoulos et al. (2019). 

Basemap sourced from ArcGIS v 10.0TM (spatial reference 102100 (3857)). Orange shading denotes mountain ranges are 

labelled as: P/BMC – Pelister/Baba mountain chain (circle marking the location of Mount Pelister: 2601 m a.s.l), GMR – 

Galičica mountain range, and JMR – Jablanica mountain range (circle marking the location of Jablanica Mountain - 2257 m 

a.s.l). All mountain ranges contain evidence for the presence of glaciers and/or (peri)glacial features of late Pleistocene age 

(Hughes et al., 2022, 2023) 
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3. Methods  203 

3.1. Lake Prespa (Co1215) 204 

Composite core Co1215 was recovered in autumn 2009 and summer 2011 from the central-northern 205 

section of Lake Prespa (40o57’50” N, 20o58’41” E, Fig. 2). Sediment recovery was performed using a 206 

floating platform, with a gravity corer for surface sediments and a 3-m-long percussion piston corer 207 

(UWITEC Co. Austria) for deeper sediments. Overlapping 3-m-long sediment cores were cut into 208 

segments of up to 1 m in length for transport and storage. After splicing and correlation of core 209 

segments according to geocemical and optical infromation, the resulting 17.7 m composite core was 210 

continuously sampled at 2-cm-resolution, yielding a total of 849 samples. It is comprised of three 211 

major lithofacies, which differ in colour, sediment structure, grain size, organic-matter and carbonate 212 

content, and geochemistry. There are no lithological indications of any hiatuses or instances of non-213 

contiguous sedimentation in core Co1215. A detailed lithostratigraphic characterisation of the entire 214 

succession (90–0 ka) is presented in Damaschke et al. (2013), along with details of the six visible 215 

tephra layers and five cryptotephra layers identified in Co1215 (Table S3). 216 

Published data for Lake Prespa (Co1215) includes: total carbon (TC), total inorganic carbon (TIC), 217 

and total sulphur (TS) analyses (Aufgebauer et al., 2012; Damaschke et al., 2013). These data were 218 

measured at ~2 cm resolution with a DIMATOC 200 (DIMATEC Co., Germany), and TS using a Vario 219 

Micro Cube combustion CNS elemental analyser (VARIO Co.) at the University of Cologne. TOC was 220 

calculated as the difference between TC and TIC by Aufgebauer et al. (2012) for the upper ~3.2 m, 221 

and by Damaschke el a. (2013) for the full ~17 m succession. The inorganic chemistry of the 222 

sediments was determined by X-ray fluorescence (XRF) data, generated using an ITRAX core 223 

scanner (COX Ltd., Sweden) equipped with a Mo-tube set to 30 kV and 30 mA, and a Si-drift chamber 224 

detector (Wagner et al., 2012). Core Co1215 was scanned with a resolution of 2 mm and a scanning 225 

time of 10 seconds per measurement. Elemental intensities were obtained for potassium (K), titanium 226 

(Ti), manganese (Mn), strontium (Sr), iron (Fe), calcium (Ca), and rubidium (Rb) (Wagner et al., 227 

2012).  228 

 229 

3.1.1. Chronology 230 

A chronology for Co1215 was previously produced by linear interpolation using volcanic ash layers, 231 

coupled with 14C and electron spin resonance (ESR) dates obtained for bulk organic, fish, and aquatic 232 

plant remains (Aufgebauer et al., 2012). Here, we update this chronology with a Bayesian age-depth 233 

model that re-calculates previously obtained 14C-dates (Table S4) with the latest (Intcal2020) 234 

radiocarbon calibration (Fig. 3) (Reimer et al., 2020). We used rBacon v 2.5.7 (Blaauw and Christen, 235 

2011), and the new age model includes updated 40Ar/39Ar dates of two eruptions geochemically 236 

correlated to specific tephra layers within the Prespa core (Damaschke et al., 2013); the Y-5 (39.85 ± 237 

0.14 ka, 2σ (Giaccio et al., 2017)) and Y-6 (45.50 ± 1 ka , 2σ (Zanchetta et al., 2018; Scaillet et al., 238 

2013)) tephra units. Every tephra layer is assumed to have been deposited instantaneously. The final 239 
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model used herein presents the median of all the iterations (generally indistinguishable from the 240 

mean), and when referring to ages of specific depths within the core we include the 95% confidence 241 

intervals. The upper 2 m (Holocene) section of core Co1215 is chronologically well constrained by 10 242 

14C dates and two tephra layers, with modelled age uncertainties in this section ranging from ~5 to 243 

580 years. Uncertainty increases with depth due to the lack of independent chronological anchors 244 

available. For example, three ESR dates for a shell fragment layer (~14.6 m depth) give an average 245 

age of 73.6 ± 7.7 ka, and form the only tie point currently available below 8.5 m. All twenty-seven tie-246 

points and accompanying chronological details are presented in Text SI3 and Table S3. Our revised 247 

model shows broad agreement with the interpolation-based chronology presented by Damaschke et 248 

al. (2013), and suggests that core Co1215 provides a continuous record of sedimentation over the 249 

past ~90-kyr (Fig. S1), with each 2 cm sample equating to ~100 years (on average).  250 

 251 

 

Figure 3: A Bayesian age-depth model for core Co1215 from Lake Prespa. Calibrated ages for the twenty-seven tie points 
used in model generation are displayed by type: radiocarbon-dated bulk organic, fish, or aquatic plant remains (light grey 
triangles), volcanic tephra layers (black squares) and electron-spin resonance (ESR)-derived dates for a shell layer 
(Dreissena) located at 14.63–14.58 m depth (dark grey diamonds). Uncertainties for ESR dates at 1σ are presented as dark 
grey vertical lines. Black line marks the median core age predicted by the model, which is generally indistinguishable from 
the predicted mean. Minimum and maximum model ages at 95% (2σ) confidence are marked with orange shading. Grey 
bars mark the stratigraphic placement of tephra layers used as tie-points, and widths of these bars are proportional to the 
thickness of the tephra layers within the core, respectively. Uncertainties for radiocarbon and tephra dates are within the 
displayed point sizes, and presented in Table S4. 

 252 

3.2. Lake Ohrid (core 5045-1) 253 

The 5045-1 coring site (“DEEP”) is located in the central part of Lake Ohrid (41o02’57” N, 20o42’54” E) 254 

(Fig. 2).  The uppermost 1.5 m of sediments at DEEP were recovered in 2011 using a UWITEC 255 

gravity and piston corer. Sediments below 1.5 m depth were recovered from six closely-spaced drill 256 

holes at the site in 2013 (5045-1A to 5045-1F), with a total composite field recovery amounting to > 257 
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95% (545 m); accounting for overlap between cores (Wagner et al., 2014b). Sediment cores were 258 

spliced to a composite record using optical and geochemical information. For sedimentological and 259 

geochemical analyses, 2 cm thick slices (40.7 cm3) were removed from the core at a resolution of 16 260 

cm (~480-yr) at the University of Cologne. For this study, we analysed 217 samples from between 0 261 

and 36.27 m composite depth. We cannot entirely rule out that changes in sedimentation occurred 262 

between samples, however, recent seismic (Lindhorst et al., 2015), borehole logging (Ulfers et al., 263 

2022) and sedimentological studies (Wagner et al., 2022, 2019) suggest that sedimentation at the 264 

DEEP site has been near-continuous since ~1.3 Ma, with no clear evidence for any major (>1-kyr) 265 

hiatuses. A detailed lithostratigraphic characterisation of the 5045-1 core succession is presented by 266 

Francke et al. (2016). Details of the six microscopic and two visible tephra layers identified in the ~36 267 

m section analysed in this study are presented by Leicher et al. (2021), and listed in Table S5.  268 

The Hg data obtained from core 5045-1 (Lake Ohrid) are presented herein alongside two previously 269 

existing datasets. The first dataset comprises TC and TIC measured using a DIMATOC 200 (TOC 270 

calculated as the difference between TC and TIC), and TS using a Vario Micro Cube combustion CNS 271 

elemental analyser at the University of Cologne - both by Francke et al. (2016). The second dataset 272 

comprises XRF data obtained using an ITRAX XRF core scanner at the University of Cologne at 2.56 273 

m increments, carried out on 2 cm thick samples, and processed using QSpec 6.5 software (Cox 274 

Analytical) by Francke et al. (2016). Elemental intensities were obtained for K, Ti, Fe, Zr, and Ca. To 275 

validate the quality of the XRF scanning data, conventional wavelength dispersive XRF (WDXRF, 276 

Philips PW 2400, Panalytical Cor.) was conducted on the 2-cm-thick samples at 2.56-m resolution. 277 

ITRAX data for each WDXRF sample was averaged to ensure comparability with the conventional 278 

XRF data, and r2 values were to compare ITRAX and WDXRX datasets (Francke et al. (2016).  279 

 280 

3.2.1. Chronology 281 

This study uses the age-depth model generated by Francke et al. (2016), and extended by Wagner et 282 

al. (2019) for the upper ~248 m and ~447 m of core 5045-1, respectively. Both combined 283 

tephrochronological data with orbital parameters using a Bayesian age modelling approach (Bacon 284 

2.2). Tephra layers were used as first-order constraints. From the eleven total 39Ar/40Ar dated tephra 285 

layers employed in Wagner et al. (2019), seven are found in the upper ~36 m section analysed in this 286 

study. The age of the eighth tie-point (OH-DP-0009) is defined following geochemical correlation of 287 

this tephra layer to the AD472/512 eruption of Somma-Vesuvius, Italy (Francke et al., 2019; Leicher et 288 

al., 2021). This chronological information was coupled with climate-sensitive proxy data (TOC and 289 

TIC) to define cross-correlation/inflection points with orbital parameters, which were included in the 290 

age–depth model as second-order constraints (Table S6). Four of these points correspond to the ~36 291 

m interval analysed in this study (Wagner et al., 2019). The 95% confidence intervals of ages for 292 

specific depths produced by the model average at ±5.5 kyr, with a maximum of ±10.6 kyr. The 293 

resulting chronology suggests that the 0.97-36.27 m core section analysed here covers the time 294 

interval 1.6 – 89.6 ka, with each sample possessing a resolution of ~400 years (Francke et al., 2016; 295 
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Wagner et al., 2019). Full description of the 5045-1 chronology and associated methods are 296 

presented in Supplementary Text SI4. 297 

 298 

3.3. Mercury measurements  299 

Total Hg concentrations (HgT) in the bulk sediments of cores 5045-1 (Ohrid) and Co1215 (Prespa) 300 

were measured using an RA-915 Plus Portable Mercury Analyzer with PYRO-915 Pyrolyzer, Lumex 301 

(Bin et al., 2001) at the University of Oxford. Samples were analysed for HgT at a resolution of ~2 cm 302 

for Co1215 (Lake Prespa), and ~16 cm for 5045-1 (Lake Ohrid) (see sections 3.1 and 3.2). 303 

Approximately 2 cm3 of sediment was homogenized to fine powder for TOC (Wagner et al., 2019; 304 

Francke et al., 2016; Aufgebauer et al., 2012a; Damaschke et al., 2013) and Hg analyses (this study). 305 

For Hg analysis, powdered samples were weighed into glass measuring boats, with masses ranging 306 

between 35–96 mg for Co1215, and between 27–78 mg for 5045-1. For samples particularly rich in 307 

inorganic fractions (e.g., samples coinciding with tephra layers), masses needed to be greater in order 308 

to yield a sufficiently high peak area (Lumex output) for calculation of sediment mercury 309 

concentrations. Samples were then placed into the pyrolyzer (Mode 1) and heated to ~700oC, 310 

volatilizing any Hg in the sample. Spectral analysis of the gases produced yields the total Hg content 311 

of the sample. Six measures of standard material (paint-contaminated soil – NIST Standard 312 

Reference Material ® 2587) with an expected Hg concentration of 290 ± 9 ng g-1 (95% confidence) 313 

were run to calibrate the instrument prior to sample analysis, and then one standard between every 314 

10 lacustrine samples (calibration results in Supplementary Information). Long-term observations of 315 

standard measurements with total Hg yield similar to the sediment samples analysed here indicate 316 

reproducibility is ±6 % or better for Hg concentrations >10 ng g-1 (Frieling et al., 2023), and with Hg 317 

recovery close to 100% as expected from pyrolysis-based instrumentation (Bin et al., 2001).  Details 318 

of standard runs for each core are included as a supplementary file. 319 

 320 

3.3.1. Mercury accumulation 321 

Rates of Hg accumulation in both cores were calculated by: 322 

HgAR = HgT (DBD  SR)  (eqn. 1)  323 

where HgAR is the total Hg mass accumulation rate (mg m-2 kyr-1), HgT is the total mercury 324 

concentration (expressed in mg g-1), DBD is the dry bulk density (g m−3), and SR is the sedimentation 325 

rate (SR) in m kyr−1. Values for HgAR are also calculated with respect to the median age estimate for 326 

each sample, meaning that uncertainties increase with depth. 327 

Sedimentation rates for both Prespa and Ohrid were calculated by combining stratigraphic and 328 

lithological observations with the age-depth relationship ascertained for each core, respectively. For 329 

Lake Prespa, we calculate the sedimentation rate using the updated age-depth model presented in 330 

section 3.1.2. Dry bulk density values were calculated on the basis of sedimentological data available 331 
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for each core. For the Lake Ohrid dataset, DBD values were already available following the analyses 332 

of Francke et al. (2016). To acquire these values for Lake Prespa, we employed the formula:  333 

DBD = Msolid /Vtotal  (eqn. 2) 334 

where Msolid is the mass of dry solid material (g) measured in each sample, and Vtotal is the volume of 335 

each respective sample (2 cm3). Values for Msolid were calculated based on recorded weight loss 336 

between wet and dry samples taken for CNS analyses by Aufgebauer et al. (2012), assuming an 337 

average wet density of 1 g cm-3 for wet sediments, and 2.6 g cm-3 (grain density) for dry sediments.  338 

For Lake Ohrid, we utilise the sedimentation rate values calculated by Wagner et al. (2019), and dry 339 

bulk density measurements measured by Francke et al. (2016) (see these publications for full 340 

methods).  341 

 342 

3.4. Mercury normalization  343 

The availability of specific host phases is often assumed to exert control on the sedimentary burial of 344 

Hg. Here, we test if the Hg deposited into the sediments of lakes Prespa and Ohrid may be impacted 345 

by abundance of a suite of phases. To do this, we assess both HgT records relative to quantitative 346 

estimates of TOC and TS (assuming sulphides contribute to TS): both considered potential host 347 

phases of Hg in sedimentary successions (Chakraborty et al., 2015; Garcia-Ordiales et al., 2018; 348 

Ravichandran, 2004; Shen et al., 2020).  349 

Detrital minerals constitute another potential host phase of Hg in sedimentary records. Elements such 350 

as Al, Ti, K, Zr, and Rb are commonly used as proxies for this purpose (Kongchum et al., 2011; 351 

Percival et al., 2018b; Shen et al., 2020). We observe a close correlation between K and Ti in Lake 352 

Prespa, and quartz in Lake Ohrid (Fig. S2): all proxies for fine-grained material inputs to a lake basin 353 

(Grygar et al., 2019; Warrier et al., 2016). To facilitate direct comparison of the two cores, we assess 354 

the relative abundances of (fine-grained) detrital material using XRF-based K counts.  To account for 355 

differences in resolution between Hg and XRF data, K measurements were averaged to the thickness 356 

of each discrete Hg sample, and K values corresponding to the Hg sample depths extracted. 357 

In line with previous studies (Shen et al., 2020), we assume that the strongest positive-sloped linear 358 

correlation with Hg among the analysed elements TS, TOC, and K signals the most likely dominant 359 

influence on Hg loading in each core, which may then be interpreted as the ‘host-phase’. However, it 360 

is conceivable that different host phases may dominate in different sections of the individual cores or 361 

that no single host-phase clearly dominates, and so the same approach is also applied restricted to 362 

the data within each individual marine isotope stage (MIS) (Table 1).  363 

 364 

 365 
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4. Results & Discussion 366 

Sediment cores extracted from Lake Prespa (Co1215) and Lake Ohrid (5045-1) provide a detailed, 367 

time-resolved record of Hg cycling between ~90 and 0 ka. Results are presented with direct reference 368 

to key stratigraphic intervals: the Holocene (12–0 ka; MIS 1), and the late Pleistocene (120 –12 ka; 369 

MIS 2–5). Widespread proxy-based evidence for warmer temperatures, forest expansion, and 370 

increased precipitation representative of interglacial climatic conditions marks the start of the 371 

Holocene epoch (~12 ka) in SE Europe (Kern et al., 2022; Panagiotopoulos et al., 2014; Sadori et al., 372 

2016; Tzedakis et al., 2006). For simplicity, we hereafter equate “MIS 1” to the Holocene, allowing a 373 

clearer distinction between glacial (late Pleistocene) and interglacial (Holocene) climate conditions. 374 

We use these time-slices, that also represent broad climate and environmental ‘modes’, as a 375 

framework upon which the Hg composition of both cores can be directly compared relative to local 376 

changes in sediment lithology and geochemistry (Table 1), and a foundation upon which local and 377 

regional-scale environmental changes can be assessed relative to global shifts in glaciation, climate, 378 

sea level, and ocean circulation. We first consider the extent to which soft sediment processes 379 

(section 4.1) and lithological features (section 4.2.) may have influenced the Hg variability observed 380 

in Figures 5 and 6, before adopting a catchment-scale perspective in section 4.3 to explore the role 381 

of diverse environmental processes in Hg cycling through these two systems.   382 
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Table 1: A comparison of the features of cores Co1215 (Lake Prespa) and 5045-1 (Lake Ohrid) relative to the late Pleistocene 383 

(LP; 120 – 12 ka), the Holocene (H; 12 – 0 ka), and the marine isotope stage (MIS) stratigraphic framework defined in Lisiecki 384 
& Raymo (2005)*. HgT is given in ng g-1, and HgAR is given in mg m-2 kyr-1. 385 

 

 

  

 
Depth 

(m) 

Mean Sedimentology** 

 HgT HgAR Lithology Key Features 

L
a
k
e
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re
sp

a
 

H
o

lo
c
e

n
e
 

MIS 1 2.4–0 64.6 11.9 Silt gyttja. Decreasing sand 

content with depth. 

High lake levels. One  visible and one microscopic 

tephra layer. High microcharcoal and green algae 

concentrations. High TOC/TN ratios. High 

sedimentation rate. 

L
a

te
 P

le
is

to
c
e

n
e
 

MIS 2 6–2.4 41.9 12.6 

2.9–2.4 m – High fine sand 

(<250 μm), with clayey silt  

and evidence of lamination. 

Increasing lake level. Two cryptotephra layers. 

Transient nutrient pulse 12.8–11.7 ka. Moderate 

TOC and low TIC. 

6–2.9 m – Homogenous 

sediment structure. Silt, 

distinct lamination and 

siderite precipitation. 

Evidence for ice-rafted debris deposition. Low 

productivity and lake level. High K and organic 

δ13C. Low water δ18O. Declining C/N ratios. High 

sedimentation rate. 

MIS 3 11–6.1 32.8 7.2 

6.6–6.1 m - Massive 

sediment structure. Silt with 

distinct lamination. 

Steady decrease in lake level. High oxygen index. 

11–6.6 m – Massive 

sediment structure. Silt. 

Increasing lake level. Four visible and three 

microscopic tephra layers. High C/N ratios. 

Moderate TOC, very low TIC. 

MIS 4 13.9–11 33.7 9.4 Massive sediment structure. 

Clayey silt. 

High sedimentation rate. Very low TOC. No tephra 

layers. Low productivity. Declining C/N ratios. High 

K content gives evidence for ice-rafted debris 

deposition. 

MIS 

5a-c 
17.7–13.9 44.2 10.0 

15.2–13.9 m - Massive, 

bioturbated sediments. 

Clayey silt and fine sand. 

Increasing lake level and high productivity. 

Dreissena shell layer 14.58–14.56 m. 

17.8–15.2 m – Massive 

sediment structure. Clayey 

silt with fine sand (a). 

Deep lake with moderate/low productivity High 

green algae concentrations. High TOC, low TIC. 

L
a
k
e
 O

h
ri

d
 

H
o

lo
c
e

n
e
 

MIS 1 4.6 – 1.1 47.2 26.2 

3–0 m – Massive sediment 

structure. Bright colouring 

indicates high calcite; dark 

colouring indicates lower 

calcite. 

High productivity. Four microscopic tephra layers. 

Low K concentrations. High sedimentation rate. 

4.6–3 m – Slightly calcareous 

silty clay and massive 

sediment structure. Frequent 

siderite-rich layers. 

Low TIC and calcite. High iron availability. Low 

productivity and stronger calcite dissolution. High 

K concentrations. High sedimentation rate. 

L
a

te
 P

le
is

to
c
e

n
e
 

MIS 2 11.3 – 4.6 69.2 45.5 Silty clay. Mottled, often 

massive sediment structure. 

Frequent siderite-rich layers. 

Abundant fine fraction (< 4 

μm) sediments. 

Very low TIC, TOC, and calcite suggesting low 

productivity, with large inputs of fine-grained, and 

chemically weathered siliciclastics. High iron 

availability. Two visible and two microscopic 

tephra layers. Mass-movement deposit at 7.87 m. 

MIS 3 23–11.3 50.6 33.4 

MIS 4 28.8–23 50.2 29.6 

MIS 

5a-c 
36.3–28.8 36 20.4 

35.6 – 28.8 m – Silty clay 

with a massive sediment 

structure. Bright colouring 

indicates high calcite; dark 

colouring indicates lower 

calcite. 

Low siliciclastic mineral abundance. Decreasing 

δ18O and δ13C. Strong primary productivity. Low 

sedimentation rate. 

36.6 – 35.6 m – Silty clay. 

Mottled, often massive 

sediment structure. Frequent 

siderite-rich layers. 

Higher carbonate δ18O and δ13C corresponds to 

reduced TIC, and high siderite. Low sedimentation 

rate. 

 

 386 
* MIS 5a-c – 96–71 ka; MIS 4 – 71–57 ka; MIS 3 – 57–29 ka; MIS 2 – 29–12 ka; MIS 1 – 12–0 ka.  387 
**Summarised from the following references:  388 
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Lake Prespa - (Aufgebauer et al., 2012; Cvetkoska et al., 2015; Damaschke et al., 2013; Leng et al., 2013; Panagiotopoulos et al., 2014; Wagner 389 
et al., 2014) 390 
Lake Ohrid - (Francke et al., 2016, 2019; Just et al., 2015; Lacey et al., 2016; Leicher et al., 2021; Wagner et al., 2019) 391 

 392 

4.1. Host Phase Controls 393 

The availability and abundance of specific host phases is often assumed to control sedimentary Hg 394 

accumulation and burial (Outridge et al., 2007). Both Lake Prespa and Lake Ohrid show evidence for 395 

complex relationships between HgT, TOC, TS, and K concentrations through time (Fig. 4). However, 396 

the trends displayed in Figure 4 also suggest that: (1) the strength of the relationships between Hg, 397 

TOC, TS, and detrital minerals (K) are distinctly different between the two lakes, and (2) the HgT 398 

signals preserved in Lake Prespa and Lake Ohrid cannot be fully explained by variability in 399 

abundance of these potential host phases individually.  400 

 401 

 

Figure 4: A comparison of host-phase relationships between lakes Prespa and Ohrid. Points are coded relative to 

stratigraphic period: the Holocene (12–0 ka, transparent circles), and the late Pleistocene (90–12 ka, filled symbols). We 

compare HgT records for both lakes relative to total organic carbon (TOC), sulphide (estimated by total sulphur (TS)), and 

detrital minerals (estimated by potassium (K) concentrations) – note that aluminium (Al) data are more commonly used as an 

indicator of detrital mineral abundance but these are currently unavailable for 5045-1. 

 402 

Core Co1215 from Lake Prespa shows a moderate correlation between HgT and TOC during the 403 

Holocene and late Pleistocene (all data in Fig. 4; Table 1). This correlation is most significant during 404 

the Holocene (MIS 1), where distinct enrichments in HgT occur in conjunction with a similarly sharp 405 
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increase in TOC, and low variability in Hg/TOC values (Fig. 5). However, it is more inconsistent during 406 

the late Pleistocene (MIS 2–5). For example, the highest HgT values are measured in the relatively 407 

TOC-lean sediments of MIS 2 (Fig. 4, 5), and a plateau also appears when higher TOC 408 

concentrations are reached during MIS 5 whereby HgT no longer increased in step with TOC (Fig. 4, 409 

S2). The correlations observed are not strong enough to conclude that TOC availability can fully 410 

explain the Hg signals observed in Lake Prespa throughout the 90-kyr succession. 411 

Correlations between HgT, detrital mineral and/or TS availability are also largely absent, suggesting 412 

that the complex Hg/TOC relationship is not a function of time-varying sulphides and detrital mineral 413 

availability. Large peaks in Hg/K are visible during the Holocene (Fig. 5), but these are not reflected in 414 

HgAR and therefore an artefact of considerably lower K concentrations within this section of the core 415 

rather than indicators of changes in lake Hg levels. The highest positive r2 value between HgT and TS 416 

is observed during the Holocene (MIS 1: r2 = 0.25) (Fig. 4), implying that >75 % of variance in the 417 

dataset cannot be explained with sulphide availability during this time period. Correlations for other 418 

periods are even weaker and some periods appear to show distinct patterns of Hg and potential host-419 

phase behaviour (Fig. 4).  420 

One possibility is that Hg signals reflect changes in the dominant sources of organic and detrital 421 

materials deposited in the lake. For example, combined isotopic and sedimentological data record 422 

episodes of stronger algal blooms during MIS 1 and 5 (Leng et al., 2013), supported by coeval 423 

abundance of freshwater diatom genera such as Cyclotella and Aulacoseira (Cvetkoska et al., 2015). 424 

All correspond to elevated HgT, and so could imply more effective Hg burial by autochthonous organic 425 

material compared to allochthonous (Leng et al., 2013; Damaschke et al., 2013). However, in the 426 

presence of abundant binding ligands such as for the Lake Prespa record, maximum Hg burial is 427 

limited principally by supply regardless of productivity, and so changing Hg signals in Lake Prespa 428 

more likely reflect changes in environmental Hg availability; resulting from externally-driven 429 

oscillations in Hg emission and/or exchange between (local) surface reservoirs such as forests, water 430 

courses, and soils (Bishop et al., 2020; Obrist et al., 2018)). This interpretation is supported by the 431 

lack of a close statistical correspondence between Hg, organic matter, sulphur, or detrital mineral 432 

content, source, or composition (Fig. 4), which suggests that Hg burial efficiency is only weakly 433 

associated with host phase availability in this system. 434 

 435 
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Figure 5: Total Hg (HgT) and total Hg accumulation rate (HgAR) for core Co1215 from Lake Prespa, presented as a function of depth and 

time, and relative to lithofacies, visible (grey shading) and cryptotephra (orange shading) layers. We include records of HgT (this study) 

normalized to records of total organic carbon (TOC) (Damaschke et al., 2013), total sulphur (TS) (Aufgebauer et al., 2012), and detrital 

mineral abundance (estimated by potassium (K)) (Panagiotopoulos et al., 2014), with filled shading marking the original datasets. A distinct 

lake low stand based on seismic profiles and sedimentological data is marked at 14.63 - 14.58 m depth (red shading) (Wagner et al., 

2014a). A purple arrow marks sections where artificially high Hg/TOC values are generated by a sharp drop to near-zero TOC (<0.06 wt %) 

coinciding with deposition of the Y-5 (17.1 m) tephra unit – an effect expected as background sedimentation is interrupted by volcanic ash 

deposition. White boxes mark the marine isotope stages defined by (Lisiecki and Raymo, 2005), and stratigraphic periods are labelled in 

black/white. 

 436 

Core 5045-1 from Lake Ohrid shows elevated HgT during the late Pleistocene compared to the 437 

Holocene (Fig. 6; Table 1). Peaks in HgT most consistently correspond to increases in K (detrital 438 

mineral) intensities, reflected in a broadly positive relationship between HgT and K throughout the 439 

succession (Fig. 4, S3). However, this relationship is only described by r2 values <0.5 and the 440 

strength of this correlation varies across the span of the record, weakening during the Holocene (Fig. 441 

4). 442 

Variable Hg values in the Ohrid record appear less influenced by organic matter and/or sulphide 443 

availability. Fluctuations in TOC/TS values suggest that some sulphide formation may have occurred 444 

during the late Pleistocene (MIS 2-5) (Wagner et al., 2009; Francke et al., 2016). However, even in 445 

these phases, TS remains low and correlations between HgT and TS are generally negative or weak 446 

(r2 < 0.2; Fig. 4) so that Hg signals do not change in magnitude or expression even when TS 447 



19 
 

variability is accounted for (Fig. 6), potentially due to the oligotrophic state of Lake Ohrid favouring 448 

burial of sulphide-depleted sediments (Francke et al., 2016; Vogel et al., 2010). More remarkable, the 449 

relationship between HgT and organic matter in Lake Ohrid also shows an inverse correlation (Fig. 4). 450 

These trends may be explained by a scenario where the Hg flux to Ohrid from direct deposition and/or 451 

surrounding catchment is typically the limiting factor, rather than availability of potential host phases.  452 

 

Figure 6: Total Hg (HgT) and total Hg accumulation rate (HgAR) for core 5045-1 from Lake Ohrid, presented as a function of depth and 
time, and relative to lithofacies, visible (grey shading) and cryptotephra (orange shading) layers. We include records of HgT (this study) 
normalized to records of total organic carbon (TOC) (Francke et al., 2016), sulphide (estimated by total sulphur (TS)) (Francke et al., 
2016), and detrital mineral abundance (estimated by potassium (K)) (Francke et al., 2016; Wagner et al., 2019), with filled shading 
marking the original datasets. A mass movement deposit (MMD) is marked at 7.87 m depth (brown shading) (Francke et al., 2016). 
Purple arrows mark sections where artificially high Hg/TOC values are generated by a sharp drop to near-zero TOC (<0.06 wt %) 
coinciding with deposition of the Y-5 (17.1 m) and Mercato (11.5 m) tephra layers – an effect expected as background sedimentation is 
interrupted by volcanic ash deposition. White boxes mark the marine isotope stages as defined by Lisiecki and Raymo (2005), and 
stratigraphic periods are labelled in black/white. 

 453 

Lake Ohrid and Lake Prespa show distinct differences in the strength of their Hg-host phase 454 

relationships. In Lake Prespa, Hg broadly covaries with organic matter (TOC), whereas in Lake Ohrid 455 

correlations are observed between Hg and detrital minerals (K). Nonetheless, only a relatively small 456 

proportion of Hg variability can be explained by host phase availability in each record. This suggests 457 

that while host phase availability may, at times, exert an influence on the Hg signals recorded in these 458 

lakes, the catchment-controlled changes in Hg fluxes are typically the more dominant effect on Hg in 459 

these sediment records. In the absence of a pronounced host-phase influence, retention of a 460 

measurable Hg signal requires that the net influx of Hg into the lake (e.g., surface runoff, wet/dry 461 
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deposition) exceeds the amount leaving the system due to processes such as runoff or evasion. 462 

Therefore, we surmise that the HgT and HgAR signals recorded in Lake Prespa and Lake Ohrid are 463 

records of net Hg input to the two lakes rather than the efficiency of sedimentary drawdown. 464 

 465 

4.2. Tephra layers  466 

As volcanic eruptions are among the most significant natural Hg sources, we assess whether the 467 

previously recognized tephra deposition events in Lake Prespa correspond to changes in Hg 468 

deposition. Overall, we find that individual tephra horizons and surrounding sediments do not 469 

consistently correspond to measurable peaks in HgT or HgAR in Lake Prespa (Fig. 5). Only two of the 470 

eleven preserved ash layers coincide with elevated HgT: Mercato (8.54 ± 0.09 ka; Somma-Vesuvius), 471 

and LN1 (14.75 ± 0.52 ka; Campi Flegrei). These two units are not associated with disproportionately 472 

large tephra volumes and neither coincide with evidence for transient changes in authigenic 473 

carbonate precipitation or sediment diagenesis that may impact sedimentary Hg. This implies that Hg 474 

concentrations in Lake Prespa cannot, in general, be unequivocally linked to short-lived (<1-year) 475 

individual eruption events between ~90 and 0 ka (Fig. S5). 476 

Discrete ash fall events (recorded by tephra/cryptotephra) do not consistently correspond to 477 

measurable peaks in HgT or HgAR in the slightly lower-resolution (~400-yr per sample) Lake Ohrid 478 

record (Fig. S5). Considering this lack of correspondence of Hg with ash layers, in conjunction with 479 

the Lake Prespa data too, suggests that (a) surface Hg loading was not appreciably increased with 480 

most large eruption events over the past 90 kyr in the Balkans and/or (b) sampling resolution may 481 

need to be significantly higher and/or focused on lesser-bioturbated records to identify single, short-482 

lived volcanogenic perturbations of the scale and type occurring during the period recorded in the 483 

Ohrid (and Prespa) sedimentary successions. 484 

  485 
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4.3. Variability through time  486 
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Figure 7: Total mercury (HgT) and mercury accumulation rate (HgAR) records for Lake Prespa and Lake Ohrid generated by 

this study and proxy datasets generated by prior studies. For Lake Prespa, these include arboreal pollen (AP) 

concentrations (Panagiotopoulos et al., 2014), microcharcoal (Panagiotopoulos, 2013), potassium (K) (Aufgebauer et al., 

2012; Wagner et al., 2010), and pollen assemblage zones (PAZ) (Panagiotopoulos et al., 2014). For Lake Ohrid, these 

include AP concentrations (Sadori et al., 2016), potassium (K) (Wagner et al., 2019; Francke et al., 2016), 1000-year 

average surface-air temperature (SAT - oC) and annual mean precipitation (millimetres) both simulated by the LOVECLIM  

Earth system model (Goosse et al., 2010) for the Prespa/Ohrid region (Wagner et al., 2019), and pollen assemblage zones 

(PAZ) (Sadori et al., 2016). Pollen assemblage zones defined by Panagiotopoulos et al. (2014) (Lake Prespa) and Sadori et 

al. (2016) (Lake Ohrid) are presented as green bars, shaded relative to tree population density (darker colour = higher 

density). We include a chronology of glacial processes based on radiometric dating of glacial landforms in the following 

locations: the Voidomaitis river basin (purple) (Lewin et al., 1991; Woodward et al., 2008), the Pindus Mountains (lilac) 

(Allard et al., 2021, 2020; Styllas et al., 2018; Hughes et al., 2006; Pope et al., 2017), and the Dinaric Alps (blue) (Gromig et 

al., 2018; Ribolini et al., 2018; Ruszkiczay-Rüdiger et al., 2020). White boxes mark the marine isotope stages (MIS) as 

defined by Lisiecki and Raymo (2005), and stratigraphic periods are labelled in black/white. Vertical grey shading denotes 

the timing of the largest changes in glacier extent and volume. 

 487 

4.3.1. Late Pleistocene (90 – 35 ka; MIS 5 to MIS3) 488 

The Lake Prespa and Lake Ohrid sediment cores show similarly muted variability in HgT and HgAR 489 

values between ~90 and 35 ka (broadly MIS 5a-c, 4 & 3), alluding to relatively stable Hg inputs (Fig. 490 

7; Table 1). High organic and low clastic material concentrations point to warmer climate conditions 491 

during this interval, in which both catchments experienced an increase in moisture availability, 492 

pronounced forest expansion, and plant diversification – collectively acting to stabilize hillslopes and 493 

reduce deep soil erosion (Francke et al., 2019; Panagiotopoulos et al., 2014; Sadori et al., 2016, 494 

2016). One possibility is that Hg sequestration during this interval was controlled by consistent rates 495 

of algal scavenging (Biester et al., 2018; Outridge et al., 2007, 2019; Stern et al., 2009). Elevated 496 

TOC (Fig. 5), hydrogen index, TOC/TN, and biogenic carbonate concentrations between ~90 and 71 497 

ka in both Lake Prespa and Lake Ohrid signal nutrient upwelling and increased allochthonous inputs, 498 

in conjunction with elevated primary productivity. For example, Lake Prespa records green algae 499 

accumulation (Cvetkoska et al., 2016, 2015; Leng et al., 2013; Panagiotopoulos et al., 2014), and 500 

sediments rich in biogenic silica (bSiO2) are also evident in Lake Ohrid (Francke et al., 2016). Slow 501 

changes in lake geochemistry associated with these biological processes are consistent with a steady 502 

HgAR in both Lake Prespa and Lake Ohrid during this time, and absence of any especially pronounced 503 

changes in HgT. This could suggest that, for a relatively prolonged period (~96–35 ka), Hg flux to the 504 

two lakes did not change with a magnitude sufficient to cause measurable sedimentary changes, and 505 

processes capable of amplifying differences in sedimentary Hg between Ohrid and Prespa were not 506 

particularly influential. 507 

MIS 3 marks the start of slow divergence between the Hg records of Lake Prespa and Lake Ohrid. 508 

During MIS 3, proxy records suggest that conditions in the Prespa/Ohrid region were milder than MIS 509 

4, but cooler and drier than MIS 5 (Fig. 7) (Panagiotopoulos et al., 2014; Sadori et al., 2016; Wagner 510 

et al., 2019). Divergent Hg signals could be linked to two climate-driven processes. First, a reduction 511 

in primary productivity in Lake Prespa signalled by decreasing TOC, hydrogen index, and endogenic 512 

carbonate compared to values observed during MIS 5 (Aufgebauer et al., 2012; Cvetkoska et al., 513 
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2016; Leng et al., 2013). Second is an increase in detrital material flux to both lakes (signalled by 514 

elevated K count; Fig. 7), due to recession of the surrounding forests and subsequently elevated 515 

rates of catchment erosion (Damaschke et al., 2013; Francke et al., 2019; Panagiotopoulos et al., 516 

2014; Sadori et al., 2016). This environmental shift is more likely to favour enhanced Hg mobility in 517 

the catchment and burial in a system whereby detrital minerals could either constitute the primary 518 

host phase or correlate to HgT; and so could explain the progressive elevation in HgT and HgAR 519 

observed in Lake Ohrid (Fig. 4). 520 

 521 

4.3.2. Last Glaciation (35–12 ka; MIS 3 to MIS2) 522 

The timing, amplitude, and expression of Hg signals captured in Lake Prespa and Lake Ohrid change 523 

significantly between ~35 and 12 ka (Fig. 7). The largest HgT and HgAR peaks in Lake Ohrid coincide 524 

with the Last Glacial Maximum (LGM), and begin at ~35 ka (Fig. 7). Synchronous enrichments in K, 525 

quartz, and Ti (Francke et al., 2016; Wagner et al., 2019) provide evidence for elevated clastic 526 

terrigenous matter inputs and erosion, and are consistent with evidence for a significantly less-527 

vegetated catchment (Donders et al., 2021; Sadori et al., 2016). High clastic fluxes into the lake 528 

during the LGM could also relate to meltwater run-off from local mountain glaciers (Ribolini et al., 529 

2011), which would transport large volumes of sediment generated by glacial abrasion, quarrying and 530 

plucking (Carrivick and Tweed, 2021; Overeem et al., 2017) into the lake basin. Given that Hg 531 

sequestration in Lake Ohrid appears partially related to the abundance of detrital minerals for much of 532 

the record (Fig. 4, 5), these Hg peaks could relate to local, climate-driven shifts in landscape structure 533 

associated with glaciation during MIS 2 (Fig. 4, 7). 534 

Alternatively or in addition to these local effects, atmospheric mineral dust concentrations were also 535 

up to twenty-times higher during the LGM (Simonsen et al., 2019). Mineral dust may be the most 536 

important Hg carrier in ice-cores (Jitaru et al., 2009; Vandal et al., 1993), and studies have shown 537 

evidence for notable redistribution of terrestrial Hg during the LGM owing to changes in regional 538 

atmospheric dust deposition (de Lacerda et al., 2017; Fadina et al., 2019; Pérez-Rodríguez et al., 539 

2015). However, we see no clear evidence atmospheric dust played a major (direct) role in the local 540 

Hg cycle in our data. For example, peaks in elemental ratios typically associated with mineral dust 541 

deposits (e.g., Zr/Ti) do not correspond to peaks in HgT and/or HgAR (Fig. S7) (Vogel et al., 2010), nor 542 

loess-based evidence for elevated aeolian dust fluxes over Central Europe and the Balkans during 543 

the last glacial maximum (Újvári et al., 2010; Rousseau et al., 2021). Marine sediment records also do 544 

not capture measurable changes in Saharan dust influx to the Ionian and Aegean seas corresponding 545 

to pronounced Hg signals in Lake Ohrid (Fig. S7) (Ehrmann and Schmiedl, 2021). Therefore, we 546 

cannot mechanistically link elevated Hg values during MIS 2 in Lake Ohrid to broad-scale changes in 547 

atmospheric dust deposition. 548 

The largest HgT and HgAR peaks in Lake Prespa occur between 21.3 ±1.7 (1σ from the Bayesian age 549 

model, see Fig. 3) ka and 17.5 ±0.7 ka. These signals do not correspond to a measurable change in 550 

host phase availability (Fig. 5), so it is unlikely that these peaks reflect changes in TOC, TS, and/or K. 551 



24 
 

However, they do coincide with deglaciation of the Pindus and Dinaric mountains (Fig. 7) (Hughes et 552 

al., 2023). Geomorphological evidence suggests that glaciers were present across the Prespa/Ohrid 553 

region between ~26.5 and 15 ka (Belmecheri et al., 2009; Gromig et al., 2018; Ribolini et al., 2018; 554 

Ruszkiczay-Rüdiger et al., 2020), and indeed that periglacial processes created a landscape 555 

characterized by intense weathering, erosion and sediment transport (Hughes and Woodward, 2017; 556 

Allard et al., 2021). Glacial meltwaters thus likely constituted a major source of water input to Lake 557 

Prespa during the last deglaciation. Glaciers are important sinks for atmospheric Hg deposited by 558 

both dry and wet processes (Durnford and Dastoor, 2011; Zhang et al., 2012), and large quantities of 559 

Hg can accumulate in organic-rich frozen soils (permafrost, Schuster et al., 2018). High proportions of 560 

detrital matter within glacial ice, snow, and organic matter facilitate the effective, long-term (>100s-561 

1000s of years) retention of atmospheric Hg, meaning that rapid snow/ice melt and permafrost 562 

thawing can produce transient ‘pulses’ of Hg into lakes without a comparable peak in sediment influx 563 

(Durnford and Dastoor, 2011; Kohler et al., 2022). This is consistent with the abrupt and short-lived 564 

increase in Hg concentration retained in Lake Prespa between 21.3 and 17.5 (±1.7–0.7 (1σ)) ka, 565 

which occurs in the absence of a pronounced change in terrigenous elements (e.g., Ti, Rb) or TS 566 

(Fig. 5, 7). 567 

Lakes Ohrid and Prespa show two other striking differences in Hg concentration between 35–12 ka 568 

(Fig. 7). First, Lake Prespa does not record a distinct HgT or HgAR signal during the LGM, and second, 569 

Lake Ohrid does not record a distinct HgT or HgAR signal corresponding to deglaciation. Given their 570 

close proximity and environmental similarity, both lakes could be expected to record similar overall 571 

signals if the climate-driven processes influencing HgAR were broadly similar. One plausible 572 

explanation could be a disproportionately large change in Lake Prespa’s total volume compared to 573 

Lake Ohrid. Increased abundance of small Fragilariaceae and benthic Eolimna submuralis diatom 574 

species point to generally low temperatures and lake levels during MIS 2 (Cvetkoska et al., 2015). 575 

These conditions are also indicated by elevated concentrations of ice-rafted coarse sand and gravel 576 

grains, and further suggest persistent ice formation on the lake surface, likely facilitated by the lake’s 577 

shallow depth (Damaschke et al., 2013; Wagner et al., 2010; Vogel et al., 2010). It is possible that the 578 

heightened presence of ice at the peak of glaciation served as a natural barrier between the surface 579 

and the sediments of Lake Prespa, effectively slowing the net flux of Hg into delivery of solutes to the 580 

basin. A simultaneous lack of ice cover on Lake Ohrid, linked to greater water depths, could also 581 

justify why HgAR remained high in this lake during the LGM, as the Hg influx pathway would be 582 

unaffected by ice formation (Fig. 7).  583 

Water volume changes may have also influenced the hydrological connection between lakes Ohrid 584 

and Prespa during deglaciation (Cvetkoska et al., 2016; Jovanovska et al., 2016; Leng et al., 2010). 585 

Tracer experiments and stable isotope (δ18O) analysis suggest that water draining from Lake Prespa 586 

accounts for a significant proportion of Lake Ohrid’s water inflow alongside precipitation (Matzinger et 587 

al., 2006; Wagner et al., 2010; Lacey and Jones, 2018), with high rates of prior calcite precipitation 588 

occurring in the connecting karst system (Eftimi et al., 1999; Leng et al., 2010; Matzinger et al., 2006). 589 

However, a change to lower δ18O of lakewater and TIC in both lakes during the last glaciation point to 590 
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a reduction in the contribution of karst-fed waters to Lake Ohrid (Lacey et al., 2016; Leng et al., 2013). 591 

Although it is unlikely that the two hydrological systems became completely decoupled (Belmecheri et 592 

al., 2009; Lézine et al., 2010), evidence for permafrost formation at high elevations between 35 and 593 

18 ka (Oliva et al., 2018) and lower precipitation could be linked to a reduction in karst aquifer activity 594 

(Fig. 7). For shallower Lake Prespa, lower precipitation may also have led to a larger reduction in lake 595 

volume compared to Lake Ohrid, decrease in the number (and pressure) of active sinkholes, and 596 

subsequently the outflow of water and solutes (e.g., Hg) into Lake Ohrid (Wagner et al., 2014a) – 597 

increasing both HgT and HgAR. Together, the collective impact of disproportionately large, climate-598 

driven reductions in water level could explain why rates of Hg accumulation were significantly higher 599 

in Lake Prespa during deglaciation compared to the LGM. Glacial meltwaters would elevate the net 600 

Hg input compared to the LGM, and reduced ice cover would permit a more direct pathway for Hg to 601 

be delivered into the basin; both processes becoming effective while underground permafrost 602 

continued to limit the intra-basin exchange of water and solutes. 603 

Neither Lake Ohrid nor Lake Prespa show large changes in Hg concentration nor accumulation during 604 

the Oldest (17.5-14.5 ka) and Younger (12.9-11.7 ka) Dryas. Both lakes contain clear evidence for an 605 

abrupt return to glacial conditions during this time. Lake Prespa sediments record shifts in tree pollen 606 

and diatom assemblages alluding to a net reduction in local winter temperatures and moisture 607 

availability (Aufgebauer et al., 2012a; Panagiotopoulos et al., 2013; Cvetkoska et al., 2014), and high 608 

uranium (234U/238U) activity ratios, low tree pollen percentages, and low TIC concentrations in Lake 609 

Ohrid also pertain to intense hillslope erosion owing to a more open catchment structure (Francke et 610 

al., 2019b; Lézine et al., 2010). Geomorphological evidence also pertains to local glacier stabilization 611 

(Gromig et al., 2018; Ribolini et al., 2018; Ruszkiczay-Rüdiger et al., 2020) (Fig. 7). Nonetheless, we 612 

suggest these events may have been too (a) short-lived, and/or (b) climatically mild to produce a 613 

similarly distinct response in the terrestrial Hg cycle as the processes operating during, and 614 

immediately following, the LGM; potentially explaining the lack of an associated sedimentary Hg 615 

signal. 616 

 617 

4.3.3. Holocene (12–0 ka; MIS 1) 618 

The timing and amplitude of HgT and HgAR signals recorded in Lake Prespa and Lake Ohrid 619 

sediments are noticeably different during the Holocene (MIS 1). Between 12±0.5 and 3±0.2 ka, Lake 620 

Prespa captures a series of large peaks in HgT and HgAR, corresponding to high TOC and TIC 621 

indicative of elevated productivity, higher rates of organic material preservation, and limited mixing 622 

(Fig. 5). Conversely, HgT and HgAR show a progressive decline in Lake Ohrid during MIS 1, despite 623 

coeval increases in TOC and TIC (Fig. 6). These observations suggest that for most of the Holocene 624 

Hg fluxes into the two lakes were largely decoupled, likely due to differences in catchment and basin 625 

dynamics which impacted the rate of Hg delivery to (and burial in) the lakes.  626 

Divergent Hg signals in Lake Ohrid and Lake Prespa during this time may be linked to heightened 627 

wildfire frequency and/or intensity. Wildfires have the capacity to (in)directly release Hg from 628 
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vegetation, and/or through associated changes in soil erosion. Proxy evidence alludes to interglacial 629 

conditions characterised by heightened seasonality, characterized by very warm, dry summers 630 

coupled with wet, mild winters, an overall increase in the prevalence of deciduous tree species 631 

(Cvetkoska et al., 2014; Panagiotopoulos, 2013); but also an increase in macro and microcharcoal 632 

concentrations in Lake Prespa (Fig.7; Panagiotopoulos et al. 2013). Large wildfires would have a 633 

broadly regional-scale impact which, given the close proximity of our two lakes, could theoretically 634 

produce a measurable Hg signal in both systems. However, more frequent and/or intense regional 635 

fires could also yield measurably different sedimentary Hg signals by their capacity to: (1) enhance 636 

surface run off without a corresponding increase in erosion and effectively reduce transport of 637 

catchment sourced, mineral-hosted Hg (Mataix-Solera et al., 2011; Shakesby, 2011); (2) enhance 638 

downstream transport of Hg released from burned soils and bound to fine and coarse particulate 639 

matter (Burke et al., 2010; Takenaka et al., 2021); and/or (3) release large quantities of Hg into the 640 

atmosphere following biomass combustion (Howard et al., 2019; Melendez-Perez et al., 2014; 641 

Roshan and Biswas, 2023). All three combine to generate impacts that may vary in significance owing 642 

to lake-specific differences in sedimentation, accumulation, and flux of materials to/from the lake. 643 

An increase in wildfire activity also corresponds to a period of intensifying human influence in the 644 

region; predominantly in the form of land use change, agriculture, and animal husbandry (Cvetkoska 645 

et al., 2014; Masi et al., 2018; Panagiotopoulos et al., 2013; Rothacker et al., 2018; Thienemann et 646 

al., 2017; Wagner et al., 2009). Widespread mineral resource exploitation and metalworking on the 647 

Balkan peninsula is recorded as early as ~8 ka (Gajić-Kvaščev et al., 2012; Longman et al., 2018; 648 

Radivojević and Roberts, 2021; Schotsmans et al., 2022), and release of detrital Hg during cinnabar 649 

ore extraction and use of Hg in gold extraction (amalgamation) has been linked to pronounced Hg 650 

contamination in modern sedimentary units in the region (Covelli et al., 2001; Fitzgerald and Lamborg, 651 

2013). Directly quantifying the influence of (hydro)climate- versus human-driven impacts on 652 

sedimentary Hg records presents a major challenge as these factors are interdependent. 653 

Nonetheless, these factors could produce a more measurable effect in lake systems with heightened 654 

sensitivity to changes in water, nutrient and pollutant fluxes. This could explain why large Hg signals 655 

are observed in Lake Prespa between ~12 and 3 ka but not Lake Ohrid: Lake Prespa is shallow 656 

relative to its surface area (Fig. 2), meaning that relatively small oscillations in pollutant influxes can 657 

lead to appreciable changes in lake geochemistry (Cvetkoska et al., 2015; Matzinger et al., 2006). 658 

Decoupling of the two Hg records effectively disappears ~3 ka ago, where both lakes show a sharp 659 

and pronounced rise in HgT and HgAR (Fig. 7). Several lines of evidence point to human activity as the 660 

primary cause. On a local scale, a rapid increase in the biological productivity (eutrophication) of Lake 661 

Prespa since ~1.6 (±0.06) ka alludes to greater disturbance of catchment soils by agricultural 662 

practices, and eventually use of inorganic compounds such as pesticides and fertilizers (Aufgebauer 663 

et al., 2012; Cvetkoska et al., 2014; Krstić et al., 2012; Leng et al., 2013). Signals observed in Figure 664 

7 may thus be a product of human-induced changes in organic or minerogenic material flux: each 665 

facilitating more efficient delivery of catchment-sourced Hg (Fitzgerald et al., 2005), and possibly also 666 

stimulating microbial Hg methylation within the sediment (Soerensen et al., 2016). On a broader scale 667 
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peaks in HgT and HgAR correspond to a sustained rise in European and/or global Hg emissions, owing 668 

to increased deforestation, fossil fuel extraction and combustion, and intentional use of Hg for 669 

resource extraction/production (Outridge et al., 2018; United Nations Environment Programme, 2018). 670 

An increasing number of sedimentary archives record Hg enrichments as early as ~3 ka ago 671 

(Biskaborn et al., 2021; Guédron et al., 2019; Li et al., 2020; Pan et al., 2020). The emergence of 672 

simultaneous HgT and HgAR peaks in Lakes Ohrid and Prespa following ~3 ka underscores the 673 

magnitude and global distribution of this change in Hg sources and emissions (Fig. 7), and point to a 674 

rise in Hg fluxes between 3 and 0 ka that was distinct enough to effectively overwhelm previously 675 

dominant natural drivers of Hg variability. 676 

 677 

4.4. Key differences & implications  678 

The magnitude and expression of Hg signals recorded in Lake Prespa and Lake Ohrid are different in 679 

three aspects. First, the extent to which different host phases can (or cannot) explain time-varying 680 

patterns in Hg concentration differs between the two lakes. Although only a limited fraction of Hg 681 

variability in either record can be explained by availability of any single host phase, the low degree of 682 

covariance that we do observe points to organic material playing the most significant role as a Hg 683 

host in Lake Prespa. In contrast, Hg correlates most strongly with detrital minerals in Lake Ohrid over 684 

the same period (0-90 ka) (Fig. 4). The second difference is visible during the last glaciation (~35–12 685 

ka): in Lake Ohrid Hg concentrations peak during the LGM (35.8–12 ka), whereas Lake Prespa 686 

captures transient, high-amplitude peaks during deglaciation, starting ~15-kyr later (Fig. 7). The third 687 

difference is visible during the Holocene. The largest signals in the entire Lake Prespa record are 688 

observed between ~8 and 0 ka, whereas Hg concentrations do not increase in Lake Ohrid until ~2 ka. 689 

These observations raise the question: for two lakes located in such close geographical proximity and 690 

having experienced similar climate conditions, what may have caused such pronounced differences 691 

from ~35 ka (Fig. 2)? 692 

Differences in bathymetric structure may offer a plausible explanation. For example, the largest 693 

changes in the amplitude and frequency of peaks in HgT and HgAR are exhibited by Lake Prespa (Fig. 694 

7): a shallow basin that contains >90 % less water than Lake Ohrid, despite only a ~30 % difference 695 

in surface area (Wagner et al., 2010). Increased distance from lake margin to core site in Lake Ohrid 696 

would mean distribution of material over a greater total area, and thus more time for net Hg loss to 697 

occur either by evasion from the water surface (Cooke et al., 2020), removal of water (and suspended 698 

material) via riverine outlets (Bishop et al., 2020), or processes taking place within the water column 699 

(Frieling et al., 2023) prior to burial. Therefore, preservation of a measurable Hg signal in a deep lake 700 

(e.g., Lake Ohrid) would require notably larger influx of Hg, and this sedimentary signal would also 701 

likely be significantly smaller than the equivalent ‘dose’ delivered to a smaller and/or shallower lake 702 

(e.g., Lake Prespa). Coupled with evidence for high-amplitude fluctuations in lake water δ18O (±6‰) 703 

(Leng et al., 2010) and lake level (Cvetkoska et al., 2015, 2016) corresponding to pronounced Hg 704 
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variability in Lake Prespa, but not in Lake Ohrid (Fig. 7), our data suggest that smaller, shallower 705 

lakes may be particularly sensitive recorders of transient, changes in Hg fluxes.  706 

Divergent bathymetric structures are also linked to distinct differences in biological composition and 707 

nutrient availability in lakes Ohrid and Prespa. The deep (~240 m) waters of Lake Ohrid host a highly 708 

oligotrophic (nutrient poor) environment characterized by low levels of biological productivity, and a 709 

high abundance of planktonic diatom species (e.g., Cyclotella) (Cvetkoska et al., 2021). Conversely, 710 

Lake Prespa’s shallower (~14 m) waters host a dominantly mesotrophic (nutrient-rich) system in 711 

which benthic and planktonic diatom species are present in equal abundance (Jovanovska et al., 712 

2016; Cvetkoska et al., 2016), and allude to moderate/high biological productivity (Leng et al., 2013). 713 

Productivity is a potentially important factor influencing the Hg composition of lake sediment: high 714 

productivity typically favours higher concentrations of algal biomass, allowing for more effective Hg 715 

scavenging by organic particles and export to the sediment (Biester et al., 2018; Soerensen et al., 716 

2016; Hermanns et al., 2013). While the overall signal will remain dominated by Hg availability, broad-717 

scale differences in productivity between lakes Prespa and Ohrid through time could provide an 718 

additional explanation for the disparate expression of recorded Hg signals (section 4.1); with notably 719 

higher productivity in the shallower Lake Prespa further increasing its sensitivity to changes in nutrient 720 

status, erosion, and hydrology.  721 

Local differences in Hg emission by neotectonic activity may have also contributed to the divergent 722 

Hg signals, owing to differences in the host rock geology, tectonic instability, and mechanical stress 723 

regimes of faults surrounding the two basins (Hoffmann et al., 2010; Lindhorst et al., 2015). However, 724 

the significance of these differences cannot be fully assessed in the absence of direct Hg emission 725 

measurements (see Text SD4). 726 

The two records presented here highlight that Hg cycling in lacustrine environments is distinct from 727 

open marine systems. In marine systems, Hg fluxes can be broadly modulated by large-scale 728 

continental sediment (Fadina et al., 2019; Figueiredo et al., 2022; Kita et al., 2016) and/or 729 

atmospheric inputs (Chede et al., 2022), and Hg burial flux ultimately becomes more closely related to 730 

host-phase availability. Conversely, both Lake Prespa and Lake Ohrid highlight how the local basin 731 

and catchment characteristics both exert a key control on the delivery of Hg to lacustrine sediments, 732 

and suggest that differences in Hg cycling between geographically-proximal basins could occur as a 733 

function of diverse physical, hydrological, and biological properties.  734 

Our observations highlight that multi-millennial lacustrine Hg records allow a different perspective of 735 

the Hg cycle compared to marine records, and, for example, may be used to infer how local, regional 736 

and global climatic conditions could have altered processes important to the terrestrial Hg cycle. 737 

Because lacustrine records are much better suited to recording smaller-scale processes it is also 738 

clear that extrapolating the (non-marine) Hg cycle response from a single lacustrine Hg record is 739 

challenging. For example, a single-core approach could produce a large degree of uncertainty owing 740 

to variable sediment focussing and catchment-sourced influx of organic and inorganic materials (Blais 741 

and Kalff, 1995; Engstrom and Rose, 2013; Engstrom and Wright, 1984). A valuable next step would 742 
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be to apply a source-to-sink approach within a well-known lacustrine catchment: to assess the extent 743 

to which Hg sedimentation is spatially heterogeneous within a lacustrine system, and whether multiple 744 

cores extracted from different locations within the same basin would yield markedly different Hg 745 

trends. Intra-basin heterogenetity in Hg sources, reactions, and transformations could also be 746 

examined through measurement of stable Hg isotopes; particularly in millennia-scale sedimentary 747 

records where the nature of these processes may change through time (Blum et al., 2014; Jiskra et 748 

al., 2022; Kurz et al., 2019). Work of this nature would make great strides toward assessing how 749 

representative of variability in the local Hg cycle a single, in this case, lake core is, and whether intra-750 

basin fluctuations in sedimentation, resuspension, and erosion could translate to measurable changes 751 

in sedimentary Hg burial. 752 

Past changes in environmental Hg availability inferred from sedimentary records have typically been 753 

examined (and presented) by normalizing Hg to a dominant host phase, often taken as organic matter 754 

(Fadina et al., 2019; Figueiredo et al., 2020; Grasby et al., 2019; Kita et al., 2016; Percival et al., 755 

2015). However, availability of organic matter or other host phases that scavenge Hg here appear to 756 

represent just one of several processes governing Hg burial in lacustrine systems, and this process is 757 

very likely systematically less significant compared to marine records in lieu of changes in catchment 758 

and basin processes such as erosion, nutrient status, and hydrology (Outridge et al., 2019). Outside 759 

pre-industrial times (or periods without an overwhelming global Hg cycle perturbation; such as during 760 

LIP formation (Grasby et al., 2019)), a single common process/mechanism is therefore unlikely to 761 

produce a unanimous stratigraphic signal across all lakes or even for two adjacent lakes as shown in 762 

this study.  763 

 764 

6. Conclusions 765 

To better understand local and regional impact of climate, vegetation and catchment characteristics 766 

on lacustrine Hg records, we present two new high-resolution, Hg records for the last ~90 kyr from 767 

Lake Prespa and Lake Ohrid. The two records show some similarities but also distinct differences in 768 

the strength of the relationships between Hg, TOC, TS, and detrital minerals (K), with only a relatively 769 

small proportion of Hg variability attributable to host phase availability in each record. Our findings 770 

provide three valuable insights. First, that local sedimentary environment does influence Hg burial. 771 

Covariance with host phases accounts for a limited proportion of the observed variability, suggesting 772 

that many of the HgT and HgAR signals recorded in Lake Prespa and Lake Ohrid reflect net Hg input to 773 

the two lakes across timescales ranging from decades to multiple millennia. Second, Hg signals can 774 

reflect changes in (and also differences between) catchment hydrology and structure. Despite their 775 

proximity, the magnitude and expression of the recorded signals are considerably different between 776 

Lake Prespa and Lake Ohrid, suggesting these inputs changed relative to sedimentary setting and in 777 

response to changing interactions between the two systems. Finally, regional-scale climate variability 778 

can measurably affect the Hg signals retained in lake sediments: both lakes Prespa and Ohrid 779 

showing changes in Hg concentration and accumulation corresponding to glacial (late Pleistocene) 780 
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and interglacial (Holocene) climate conditions. It follows that local, regional, or global changes in 781 

climate or hydrological cycling capable of affecting mineral soils, (peri-)glacial features or fire regime 782 

in the lake catchment could all impact Hg fluxes. These findings prompt further examination of how 783 

orbital-scale climate variability (>103-year timescales) may influence the terrestrial Hg cycle, not only 784 

to better resolve processes acting on single lacustrine and terrestrial successions, but also to identify 785 

which of these (local) processes could hold relevance for Hg cycling on a global scale.  786 
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