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Abstract 17 

Volatile organic compounds (VOCs) play a crucial role in the formation of 18 

tropospheric ozone (O3) and secondary organic aerosols. VOC emissions are generally 19 

considered to have larger uncertainties compared to other pollutants, such as sulphur 20 

dioxide and fine particulate matter (PM2.5). Although predictions of O3 and PM2.5 have 21 

been extensively evaluated in air quality modelling studies, there has been limited 22 

reporting on the evaluation of VOCs, mainly due to a lack of routine VOCs 23 

measurements at multiple sites. In this study, we utilized VOCs measurements from the 24 

ATMSYC project at 28 sites across China and assessed the predicted VOCs 25 

concentrations using the Community Multiscale Air Quality (CMAQ) model with the 26 

widely used Multi-resolution Emission Inventory for China (MEIC). The ratio of 27 

predicted to observed total VOCs was found to be 0.74 ± 0.40, with underpredictions 28 

ranging from 2.05 to 50.61 ppbv (5.77% to 85.40%) at 24 sites. A greater bias in VOCs 29 

predictions was observed in industrial cities in the north and southwest, such as Jinan, 30 

Shijiazhuang, Lanzhou, Chengdu, and Guiyang. In terms of different VOC components, 31 

alkanes, alkenes, non-naphthalene aromatics (ARO2MN), and alkynes were 32 

consistently underpredicted, with ratios of predicted to observed of 0.53 ± 0.38, 0.51 ± 33 

0.48, 0.31 ± 0.38, and 0.41 ± 0.47, respectively. Sensitivity experiments were conducted 34 

to assess the impact of the VOCs prediction bias on O3 predictions. While emission 35 

adjustments improved the model performance for VOCs, resulting in a ratio of total 36 

VOCs to 0.86 ± 0.47, they also exacerbated O3 overprediction relative to the base case 37 

by 0.62% to 6.27% across the sites. This study demonstrates that current modelling 38 

setups and emission inventories are likely to underpredict VOCs concentrations, and 39 

this underprediction of VOCs contributes to lower O3 predictions in China. 40 
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1. Introduction 42 

Volatile organic compounds (VOCs) in the ambient atmosphere consist of 43 

thousands of gaseous organic trace substances emitted from various anthropogenic and 44 

biogenic sources (Guenther et al., 2012; Li et al., 2017a; Kelly et al., 2018). These 45 

compounds undergo complex chemical reactions that form ozone (O3) and secondary 46 

organic aerosols (SOA) (Sillman, 1999; Kroll and Seinfeld, 2008). While biogenic 47 

VOCs (BVOCs) are the primary source of VOCs worldwide (Guenther et al., 2006), 48 

urban areas are predominantly influenced by anthropogenic sources (Guan et al., 2020; 49 

Guo et al., 2022; Li et al., 2022a). Anthropogenic VOCs (AVOCs) emission inventories 50 

are typically developed by estimating the total VOCs emissions using emission factors 51 

(EFs) and activity rates from different sources. The VOCs speciation profiles are then 52 

utilized to determine the emission rates of various VOCs species (Li et al., 2017a). Due 53 

to the complexity of VOCs emission processes and presence of numerous small but 54 

dispersed nonpoint sources, notable uncertainties exist while determining EFs, activity 55 

rates, and speciation profiles. It is estimated that the uncertainties associated with VOCs 56 

emissions range from approximately 68% to 76%, which are higher than those of 57 

sulphur dioxide (SO2) (12% to 40%), nitrogen dioxide (NOx) (31% to 35%), and 58 

particulate matter (PM) (30% to 94%) (Zhang et al., 2009; Li et al., 2019; Kurokawa 59 

and Ohara, 2020; An et al., 2021). 60 

Chemical transport models (CTMs), such as the Community Multiscale Air 61 

Quality (CMAQ) model, Weather Research and Forecasting model coupled with 62 

Chemistry (WRF-Chem), and Goddard Earth Observing System Chemical transport 63 

model (GEOS-Chem) have been developed and widely used to investigate the 64 

formation processes, source apportionment, and emission control strategies for various 65 

air pollution issues (Zhang et al., 2021; Dang et al., 2021; Wang et al., 2021). The 66 
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emissions of VOCs, along with other species such as SO2, NOx, ammonia, and PM, 67 

serve as essential inputs driving air quality model simulations. Uncertainties in VOCs 68 

emissions notably impact air quality modelling for O3, SOA, and total PM2.5. A study 69 

conducted in the United States reported substantial underprediction of VOCs emission 70 

inventories in urban regions (Mcdonald et al., 2018), particularly for volatile chemical 71 

products (VCPs). A simulation study that developed four cases based on the baseline 72 

inventory demonstrated that augmented VOCs emission inventories have notable 73 

effects on air pollutants, highlighting the need for more detailed VCPs emissions in the 74 

inventory to enhance model performance (Zhu et al., 2019). In China, notable 75 

discrepancies in aromatics have been observed between CMAQ predictions and 76 

measurements (Wang et al., 2020). Wu et al. (2022) reconciled the bottom-up 77 

methodology and measurement constraints to improve the city-scale non-methane 78 

VOCs (NMVOCs) emission inventory in Nanjing, resulting in improved O3 simulation 79 

performance with the CMAQ model. 80 

Model evaluation serves as the initial step in establishing confidence in air quality 81 

model predictions for further analysis. Numerous studies have conducted evaluations 82 

of the predicted O3 and PM2.5 concentrations in China (Hu et al., 2016; Li et al., 2021; 83 

Li et al., 2020). Overall, the predictions of O3 and PM2.5 concentrations generally align 84 

with the observations (Shi et al., 2017; Wang et al., 2021), although substantial biases 85 

have been reported in certain circumstances and for specific species, such as O3 and 86 

SOA (Gong et al., 2021; Liu et al., 2020; Hu et al., 2017; Qin et al., 2018). Given that 87 

VOCs are key precursors of O3 and SOA, evaluating VOCs predictions can help 88 

elucidate the causes of these substantial biases in predictions. However, VOCs 89 

evaluations in regional modelling studies have been infrequent due to limited 90 

measurement data. Ambient VOCs have been measured at different locations in China 91 
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in various studies (Yang et al., 2022; Wang et al., 2022a). Unlike O3 and PM2.5, which 92 

are routinely monitored across major cities and regions in China, VOCs are often 93 

measured over short periods at one or specific sites. Different studies may employ 94 

different instruments and the study periods may vary, making it challenging to compile 95 

VOCs measurement data from multiple studies for a comprehensive model evaluation. 96 

In this study, we conducted VOCs evaluations for the first time in China by utilizing 97 

summertime observations from 28 sites located in different regions of the country, as 98 

part of the "Towards an Air Toxic Management System in China (ATMSYC)" project 99 

(Lyu et al., 2020). This study aimed to: (1) assess the disparities in VOC levels between 100 

measured ambient concentrations and predicted concentrations in various regions of 101 

China using the widely used CMAQ model, (2) quantify the impacts of VOCs species 102 

with substantial biases on O3 predictions through emission adjustments based on 103 

observation-prediction differences, and (3) evaluate the sensitivity of O3 formation to 104 

VOCs in key cities, providing recommendations on the necessity of emission 105 

inventories and pollution control measures. 106 

2. Materials and Methods 107 

2.1. Observation description 108 

The ATMSYC project involved a collaborative sampling campaign at 28 sites in 109 

18 cities across China, conducted from 6 June to 24 August, 2018, with speciated VOC 110 

measurement as part of the observation task (Lyu et al., 2020). Detailed site information 111 

and sampling times can be found in Table S1. Measurements were taken at intervals of 112 

two or four hours between 8:00 and 16:00. The collection devices, analytical 113 

instruments, quality controls, and other measurement methods have been previously 114 

described (Lyu et al., 2019; Lyu et al., 2020; Liu et al., 2021; Zhou et al., 2023). From 115 

the ATMSYC dataset, we selected 61 representative VOCs species and classified them 116 
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into 20 categories, according to the SAPRC07 mechanism (Carter, 2010) to facilitate 117 

comparison with model predictions. These species can be categorized into five groups: 118 

alkanes, alkenes, aromatics, alkynes, and formaldehydes (HCHO). Further details 119 

regarding these specific classifications are mentioned in Table S2. 120 

Observations of O3 and nitrogen dioxide (NO2) were collected from 28 ground 121 

sites, sourced from the Chinese Ministry of Ecology and Environment 122 

(https://www.mee.gov.cn/, last accessed on 20 April 2022), to assess the simulation 123 

performance of the modelled O3 and NO2. To evaluate the impact of meteorological 124 

conditions, we also collected observation data of meteorological variables (temperature 125 

(T2), relative humidity (RH), wind speed (WS) and wind direction (WD)) from the 126 

nearest meteorological stations to the 28 sites from the Chinese Meteorological Agency 127 

(http://data.cma.cn/en, last accessed on 27 April 2022). 128 

2.2. Model Configurations 129 

The CMAQ version 5.2 model (Appel et al., 2018), coupled with the 130 

SAPRC07TIC mechanism and aerosol module AERO6i, was utilized to simulate air 131 

quality across China from June to August 2018 (Mao et al., 2022). Meteorological fields 132 

were generated using WRF version 4.2.1, employing a 1.0° × 1.0° resolution FNL 133 

reanalysis dataset from the National Centre for Atmospheric Research (NCAR). The 134 

specific settings of WRF were consistent with those described by Mao et al. (2022), and 135 

the simulation performance of the meteorological fields was verified (Mao et al., 2022). 136 

The modelling domain with a horizontal resolution of 36 km is shown in Figure 1, 137 

which divides China into seven regions: the North China Plain (NCP), Northwest, 138 

Northeast, Yangtze River Delta (YRD), Central China, Southwest, and South China 139 

(with a higher concentration of sites in the Pearl River Delta (PRD) region). 140 

We utilized the Multi-resolution Emission Inventory for China (MEIC) v1.3 with 141 
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a resolution of 0.25° × 0.25° in 2017 (http://www.meicmodel.org, last accessed on 25 142 

January 2022) for anthropogenic emissions within China. For anthropogenic emissions 143 

outside of China, we employed the Regional Emission Inventory in Asia (REAS) v3.2 144 

in 2015 (https://www.nies.go.jp/REAS/, last accessed on 25 January 2022). Biogenic 145 

emissions were generated using the Model for Emissions of Gases and Aerosols from 146 

Nature (MEGAN) v2.1 (Guenther et al., 2012), which were then mapped to 27 147 

SAPRC07TIC species, including isoprene (ISOP), α-pinene (APIN), and other BVOCs. 148 

Further details on the biogenic emissions can be found in (Li et al., 2022b). Open 149 

biomass burning emissions were processed using the Fire Inventory (NCAR FINN, 150 

https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar, last accessed on 28 151 

January 2022). 152 

Most emission inventories commonly employ a lumped mechanism to represent 153 

VOCs. Li et al. (2014) introduced a method to allocate individual non-methane VOC 154 

(NMVOC) emissions in the MEIC inventory to species groups using multiple chemical 155 

mechanisms, utilizing mechanism-specific mapping tables from Carter (2013). This 156 

method has been widely adopted in CTMs. In this study, we followed this approach and 157 

utilized a speciation profile processor called Spec DB, which is available from 158 

https://intra.engr.ucr.edu/~carter/emitdb/, provided by Carter, to generate the speciation 159 

profiles. The mapping scheme for the SAPRC07TIC mechanism in the MEIC and open 160 

biomass burning was updated based on the step-by-step assignment framework of the 161 

SAPRC07 mechanism provided by the MEIC team. 162 

In this study, we examined the performance of CMAQ simulations during the 163 

observation period of the ATMSYC project. The days prior to 6 June were considered 164 

as a spin-up period. The simulated VOCs values at each site were matched with the 165 

observation time to obtain the average concentration during the same period. This 166 
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duration was defined as the study period. 167 

2.3. Adjustment of VOCs emissions 168 

Emissions were adjusted for several species that exhibited significant deviations 169 

in simulations. The adjustment factors for emissions were determined by calculating 170 

the median of the ratio between observed and predicted values at 18 urban sites, which 171 

provided an average measure of the deviation for each species. Sensitivity experiments 172 

were conducted to examine the impact of the updated VOCs emissions on both 173 

predicted VOCs and O3 levels. To quantify the effect of unit increments in VOCs on O3 174 

concentrations, the Relative Incremental Reactivity (RIR) was calculated. The RIR is a 175 

commonly used metric in observation-based model studies (Cardelino and Chameides, 176 

1995) to assess the sensitivity of O3 to individual precursors such as NOx and various 177 

types of VOCs. The calculation of RIR is based on Equation (1): 178 

𝑅𝐼𝑅 𝑋
⁄

                 (1) 179 

In the equation, X represents a specific VOCs species, while BO3 and NO3 represent the 180 

O3 concentrations in the base and adjusted emission case for X, respectively. The 181 

denominator on the right-hand side of the equation represents the relative change in 182 

emissions after the adjustment for X. 183 

3. Results 184 

3.1. Model performance evaluation 185 

3.1.1. Evaluation of O3 and NO2 186 

Figure 2 displays the performance of the CMAQ model for the maximum daily 8-187 

hour average (MDA8) O3 and NO2 concentrations at 28 sites. Model performance was 188 

assessed using statistical parameters, including the normalized mean bias (NMB), 189 

normalized mean error (NME), and correlation coefficient (R). The specific values of 190 

these statistical metrics can be found in Table S3. The results indicated that the model 191 
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predictions complied with the observations at most sites in the NCP, Central China, and 192 

Southwest, with only slight underpredictions observed at Lanzhou’s urban station (LZ-193 

U; NMB = -0.18) and Shanghai’s background station (SH-B; NMB = -0.16), and a 194 

slight overprediction at Shanghai’s urban station (SH-U; NMB = 0.20). However, in the 195 

PRD, overpredictions of MDA8 O3 were observed in locations such as Shenzhen’s 196 

station (SZ; NMB = 0.39) and Foshan’s station (FS; NMB = 0.32), despite the 197 

correlation coefficients being higher than the performance criteria at most sites. The 198 

CMAQ's NO2 predictions exhibited underpredictions for most cities in the Northwest, 199 

PRD, and some background sites, but substantial overpredictions were evident in 200 

certain urban sites, such as Chengdu’s urban station (CD-U; NMB = 0.92) and SZ 201 

(NMB = 0.52). 202 

3.1.2. Evaluation of VOCs 203 

Figure 3 presents the observed VOCs concentrations and corresponding CMAQ 204 

simulations across all the sites during the observation period. The proportions of the 205 

three categorized VOCs groups, namely alkanes, alkenes, and aromatics, are depicted 206 

in detail in Figure S1. The results revealed low predicted VOCs concentrations at most 207 

sites, with particularly markable underestimation in certain areas. Table S4 displays the 208 

mean values of O3, NO2, and total VOCs (TVOCs, encompassing the VOCs considered 209 

in this study) concentrations at the 28 sites throughout the study period. As indicated in 210 

Table 1, the predicted/observed ratio (referred to as ratio hereafter) of TVOCs is 0.74 ± 211 

0.40. The underprediction ranged from 2.05 to 50.61 ppbv (5.77% to 85.40%) at 24 212 

sites, while overpredictions occurred at four sites, namely SH-U, CU-U, Wuhan’s 213 

background station (WH-B), and FS, with values ranging from 0.47 to 29.53 ppbv (1.92% 214 

to 89.96%). These findings suggested that the CMAQ model, employing the MEIC 215 

emission inventory, underpredicted TVOCs concentrations. Notably, the 216 
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underprediction of TVOCs was more pronounced at sites located in the cities of 217 

Lanzhou, Jinan, Shijiazhuang, Guiyang, and Zhengzhou, where TVOCs were 218 

underpredicted by factors of two to six. 219 

The regional averages of the predicted and observed TVOCs were calculated by 220 

averaging the predictions and observations from all the sites in each region (Table S4). 221 

The observed ratios of TVOCs predictions varied across regions as follows: YRD 222 

(1.04) > Southwest (0.92) > PRD (0.83) > Central China (0.71) > NCP (0.42) > 223 

Northwest (0.16). In Figure S2, despite having the highest observed TVOCs value 224 

(44.08 ppbv), the model results showed a lower concentration (7.04 ppbv) in the 225 

northwest region (specifically in Lanzhou), making it the region with the lowest 226 

predicted value. The predicted TVOCs concentration in the YRD region (Shanghai) was 227 

the closest to the observed value. However, Figure 3 shows that the VOCs 228 

concentrations were notably overpredicted at SH-U and underpredicted at SH-B. The 229 

southwest region appeared to have the best performance among all the regions, which 230 

could be due to the overpredicted TVOCs at CD-U, which offsets the underprediction 231 

at other sites. Overall, the predicted and observed TVOCs concentrations exhibited 232 

notable discrepancies in most regions and the performance varied across the regions. 233 

Regarding the VOC components shown in Figure S2, alkanes consistently 234 

constituted as the most abundant group of VOCs in both observations (38.3% to 50.6%) 235 

and predictions (31.6% to 44.9%). This suggested that the predicted proportion of 236 

alkanes in TVOCs closely complied with the actual data. Alkenes typically ranked as 237 

the second highest VOC component in observations (14.9% to 31.2%), but they were 238 

underrepresented in the model (16.5% to 20.0%). In the case of predicted aromatics and 239 

HCHO, their proportion in TVOCs often exceeded the observed results, which differed 240 

from the alkynes. In terms of absolute concentrations, the underestimation of alkanes 241 
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and alkenes was relatively pronounced, particularly in the NCP and Northwest regions. 242 

The model performed better in predicting the proportions of various VOCs species in 243 

the PRD and Southwest regions. 244 

Figure 4 illustrates the ratios of O3, NO2, and various VOCs species at the 28 sites. 245 

The discrepancies in ratios between urban and background sites are presented in Figure 246 

S3. The ratio of alkanes is 0.53 ± 0.38 (median ± standard deviation), indicating an 247 

underprediction of 5.65 ± 6.81 ppbv from a concentration standpoint (Table 1). Notably, 248 

the alkanes whose reaction rate constant with hydroxyl radical (OH) between 5 × 102 249 

and 2.5 × 103 ppm-1 min-1 (ALK2) exhibited the most notable underprediction. The 250 

predictions for aromatics showed minor deviations across different sites, but the median 251 

ratio was close to one, except for ARO2MN, which was substantially underpredicted 252 

with a ratio of 0.31 ± 0.38 (0.32 ± 0.46 at urban sites), and benzene (BENZ), which was 253 

2.75 ± 1.97 at urban sites (Table S5). Regarding alkenes, the ratios for the seven alkenes 254 

were generally high (0.51 ± 0.48 for alkenes), indicating underprediction in most sites. 255 

Particularly, 1,3-butadiene (BDE13) exhibited a notable low ratio, possibly due to its 256 

reallocation from the underpredicted alkenes whose reaction rate constant is greater 257 

than 7 × 104 ppm-1 min-1 with OH (OLE2) and the allocation factor may not be 258 

universally applicable across regions. Furthermore, the predicted content of acetylene 259 

(ACYE) was lower at all sites, while the predicted HCHO was slightly overpredicted. 260 

Considering that the observed VOCs species primarily originated from anthropogenic 261 

emissions and that the majority of emitted VOCs were contributed by the MEIC, the 262 

ratios between urban and background sites could verify whether the MEIC emission 263 

inventory adequately reflected the differences between urban and background areas. 264 

3.2. Adjusting VOCs emissions and their impacts on O3 predictions 265 

These findings indicated a bias between the model-predicted VOCs and observed 266 
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ambient VOCs concentrations. To evaluate the impact of these biases on O3 predictions, 267 

we modified the VOCs emissions of the MEIC based on the differences between 268 

observations and predictions. Previous studies have adjusted emission inventories to 269 

match observed constraints for predicting VOCs and O3 in specific cities (Wu et al., 270 

2022; Wang et al., 2020). Considering the temporal and spatial variability of the 28 sites, 271 

we calculated the median ratio of VOCs for the 18 urban sites. We selected coefficients 272 

for six representative AVOCs species with deviations exceeding 2.0 times the median, 273 

including ALK2, ARO2MN, BENZ, the alkenes (excluding ethene) whose reaction rate 274 

constant is less than 7 × 104 ppm-1 min-1 with OH (OLE1), propene (PRPE), and ACYE, 275 

and adjusted their emission rates in the MEIC, resulting in six new cases. Additionally, 276 

we conducted a case (case_all) that incorporated the aforementioned adjustments and a 277 

case in which NOx was adjusted by 1.5 based on observational constraints. The 278 

adjustment factors for the eight new cases are provided in Table 2. 279 

The impact of adjusting VOCs emissions on the concentrations of O3 and VOCs is 280 

presented in Table S6. The underprediction of simulated VOCs and NO2 values was 281 

largely reduced for the new case, as indicated in the six cases with single-species 282 

changes and the case_all. In Table S7, the ratio of TVOCs in case_all was modified to 283 

0.86 ± 0.47, demonstrating improved performance in VOCs compared to the base case. 284 

However, it was worth noting that even after the emission adjustment, the predicted 285 

VOCs concentrations remained lower than the observations (particularly for 286 

case_BENZ). This discrepancy resulted from the varying reactivities of different VOC 287 

species and NOx in atmospheric chemical reactions, leading to different levels of 288 

depletion. Additionally, both measured and modelled concentrations were subject to 289 

photochemical losses (Ma et al., 2022b; Shao et al., 2011). The increased VOCs 290 

concentrations resulted in higher O3 concentrations. Based on the data presented in 291 
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Tables S6 and S8, the constrained species ALK2, ARO2MN, OLE1, and PRPE, guided 292 

by observational data, contributed to an increase in O3 concentration, especially in 293 

case_all, which led to a more pronounced overpredictions ranging from 0.62% to 6.27% 294 

across all the sites. In contrast, increasing NOx had a positive effect and reduced the O3 295 

concentration. 296 

To illustrate regional pollution levels on a broader scale, Figure 5 displays the 297 

average concentrations of O3, NO2, and the six previously mentioned VOCs species 298 

studied in China during the specified period. 299 

High O3 levels were particularly prominent in most areas of the NCP, the eastern 300 

part of the Northwest, and the Sichuan Basin in the Southwest. NO2 concentrations 301 

were elevated in the NCP, YRD, and PRD regions, as well as in certain megacities. The 302 

spatial distribution of various VOCs, derived from TVOCs emissions in the MEIC, 303 

exhibited broad consistency, with higher concentrations observed in south-eastern 304 

China. Megacities, akin to NO2, displayed elevated VOCs levels. Different cities 305 

exhibited VOCs originating from various sources. ALK2 demonstrated high 306 

concentrations in individual cities but less than 1 ppbv in other regions; thus, displaying 307 

stronger geographical characteristics compared to the other five VOCs. ARO2MN 308 

exhibited the lowest average concentration but exerted a substantial influence on O3 309 

due to its higher reactivity. Figure S4 illustrates the effects of altering the emission rates 310 

of NOx and VOCs in seven scenarios across China. The left panel displays the 311 

concentrations in the new cases, while the middle and right panels show the 312 

concentration differences for corresponding species and O3 between the new cases and 313 

the base case, respectively. Spatial variations in NO2 and VOCs exhibited similarities. 314 

The increase in NO2 was more pronounced in the NCP and YRD regions, where NO2 315 

concentrations was consistently high. Previous studies indicate that the NCP and YRD 316 
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regions are predominantly limited by VOCs during the summer (Li et al., 2017b; Lyu 317 

et al., 2019; Liu et al., 2021), resulting in either no change or a reduction in O3 when 318 

NO2 increases. Conversely, in other areas with low NO2 concentrations, O3 319 

concentrations increased by 0 to 10 ppbv. BENZ was the only compound whose 320 

concentration decreased, and its impact on O3 in different regions mirrored that of NO2, 321 

albeit at a much lower concentration. The increased emissions of ALK2, ARO2MN, 322 

ACYE, OLE1, and PRPE favoured O3 production, with the most notable effects 323 

observed in the NCP, YRD, and other metropolitan areas. Among these compounds, 324 

OLE1 exhibited the strongest effect, while ACYE had a minimal influence. 325 

The section 2.3 describes the calculation of the RIR values, which were used to 326 

demonstrate the sensitivity of the model-simulated O3 to VOCs constrained by 327 

observations in different locations. Figure S5 presents the variations in RIR values for 328 

the six VOCs across the 28 sites. OLE1, PRPE, and ARO2MN exhibited a higher RIR 329 

values. Urban areas within the same city displayed a higher RIR values compared to 330 

the background areas. With the exception of Chengdu, Guiyang, Lanzhou’s background 331 

station (LZ-B), Guangzhou’s background station (GZ-B), and Zhaoqing’s station (ZQ), 332 

where O3 generation was more sensitive to PRPE, other areas showed a greater impact 333 

of OLE1 concentration on O3, indicating that adjusting the emission rate of alkenes in 334 

the emission inventory was crucial for simulating changes in O3 concentrations. For 335 

instance, improvements could be made in LZ-U, Huizhou’s station (HZ), and 336 

Jiangmen’s station (JM), where O3 concentrations were underpredicted in the base case. 337 

Special attention should be given to the sites with high RIR values such as SH-U, CD-338 

U, SZ, Zhuhai’s station (ZH), and others, as O3 generation in these locations will be 339 

highly sensitive to changes in the local VOCs emission inventory. Moreover, ALK2, 340 

ACYE, and BENZ had minimal effects on O3, and BENZ even exhibited a negative 341 
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RIR values at certain sites. 342 

These findings indicated a notable improvement in the underprediction of VOCs 343 

when adjustments were made based on VOCs observations. However, the elevated 344 

VOCs concentrations in the model could lead to increased O3 formation, thereby 345 

enhancing the model's accuracy in areas where both VOCs and O3 were underpredicted. 346 

Nonetheless, this adjustment will unavoidably worsen any existing overprediction of 347 

O3 in the model. 348 

4.  Discussions 349 

4.1. Large bias in TVOCs predictions at specific sites 350 

Significant discrepancies between predicted and observed TVOCs were observed 351 

in Lanzhou, Jinan, Shijiazhuang, and Zhengzhou. Lanzhou and Shijiazhuang have 352 

developed petrochemical industries, where high concentrations of VOCs are frequently 353 

detected downwind of industrial areas (Guan et al., 2020; Guo et al., 2022). Figure 3 354 

illustrates that alkanes, alkenes, and aromatic were substantially underpredicted due to 355 

inadequate prediction of industrial areas with high VOCs emissions in the MEIC. Jinan 356 

and Zhengzhou experienced severe air pollution due to heavy industry and traffic 357 

(Zhang et al., 2017; Wang et al., 2022c). The simulated levels of TVOCs were 358 

substantially lower than the observed levels, with alkenes exhibiting an even greater 359 

inaccuracy, being more than 10 times lower in Jinan. At certain sites, the simulated 360 

TVOCs exceeded the measurements, including the CD-U, SH-U, WH-B, and FS sites. 361 

In CD-U, the predicted TVOCs were almost double the measured values, whereas they 362 

were underpredicted in CD-B. In Chengdu, VOCs emissions were dominated by 363 

LPG/NG usage and vehicle emissions in summer, with a higher proportion of low-364 

carbon alkanes compared to other cities in China (Xiong et al., 2021). Clearly, the MEIC 365 

overpredicted VOCs emissions in CD-U, particularly for HCHO. In SH-U, 366 
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characterized by a dense population, the simulation of alkenes, aromatics, and HCHO 367 

was approximately twice that of the measurements. This aligns complied with the report 368 

by Wang et al. (2020) stating that observation-constrained aromatic emissions were 369 

roughly half of the estimates provided by the MEIC in Shanghai, 2015. Peng et al. (2023) 370 

also observed inconsistencies between the trend of non-methane hydrocarbon 371 

emissions in Shanghai from 2009 to 2015 and the growth trend indicated by the MEIC 372 

(Li et al., 2019), suggesting the effectiveness of local pollution control measures. 373 

However, SH-B was situated in the easternmost part of Chongming Island, which had 374 

the minimal local emissions at the 36 km grid resolution. This likely explains the 375 

differences observed between the urban background areas in Shanghai. In the cases of 376 

WH-B and FS, which demonstrated excellent model performance for VOCs, only the 377 

overprediction of aromatics was more pronounced. 378 

Heavy O3 pollution events, primarily limited by VOCs, have been frequently 379 

observed in the PRD region since its rapid development in the last century (Chan et al., 380 

2006; Shao et al., 2009; Li et al., 2014). In the PRD region, slightly lower TVOCs 381 

simulations were observed at most sites, primarily due to the underestimation of alkanes 382 

and alkenes, while aromatics and HCHO were overestimated. Furthermore, the 383 

differences in VOCs components among the cities in the PRD region could be attributed 384 

to local industry characteristics, and variations in prevention and control policies. For 385 

instance, observed ethene (ETHE) in FS accounted for over 50% of the alkenes, 386 

whereas simulations accounted for only 35%. The predicted ETHE ratio in ZH was 387 

higher (50%) than the observed ratio (20%), while other cities exhibited similar ETHE 388 

percentages. Moreover, the proportion of ISOP in Guangzhou's alkenes was higher than 389 

that in other PRD cities, suggesting effective control of local anthropogenic alkene 390 

emissions, consistent with the findings of Zhao et al. (2022). 391 
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4.2. Urban-background evaluation 392 

Differences in atmospheric VOCs among urban background areas have been 393 

extensively demonstrated (Sillman, 1999; Shao et al., 2020). As depicted in Figure 6, 394 

we compared the average performance of the model for 18 urban sites and 10 395 

background sites. In urban areas, the predicted TVOCs concentration (23.76 ppbv) was 396 

lower than the observed concentration (32.46 ppbv), primarily due to the 397 

underprediction of alkanes, alkenes, and alkynes. Predicted aromatics and HCHO 398 

exhibited higher proportions and concentrations compared to the observations. In the 399 

background areas, TVOCs were also underpredicted, with concentrations lower than 400 

those in urban areas, as indicated by both the observed and predicted values. Each of 401 

the five VOCs showed lower predictions, with alkanes exhibiting the most notable 402 

disparity, with a decrease of 6.91 ppbv compared to the observed values. This suggested 403 

that the model underpredicted alkanes in urban areas, which were predominantly 404 

derived from the petrochemical industry or fuel evaporation (Wang et al., 2022a). The 405 

predicted proportions of alkanes, aromatics, and HCHO exhibited urban-background 406 

differences consistent with the observations, reflecting the characteristics of urban and 407 

background areas in the model. These differences were well represented in our 408 

horizontal grid resolution of only 36 km. Overall, the CMAQ model captured the 409 

characteristics of different regions and urban background areas but underestimated the 410 

concentrations of certain individual VOC species. 411 

The ratios distinguished between urban and background areas are presented in 412 

Figure S3. The comparison revealed that the alkanes were more prominently 413 

underpredicted in the background area than in the urban area. Xylene (XYL), 1,2,4-414 

trimethylbenzene (B124), OLE1, OLE2, and PRPE were also underpredicted to a 415 

greater extent in the background area. This could be attributed to the scarcity of 416 
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background sites or the model's underprediction of VOCs emissions in the background 417 

area. The model's performance in simulating ISOP, a BVOC, in urban areas was not as 418 

satisfactory as in the background areas, which was consistent with the findings of Ma 419 

et al. (2021) suggesting that MEGAN could underestimate the emissions from urban 420 

green spaces. APIN, a notable monoterpene, including anthropogenic emissions from 421 

biomass burning and VCPs, could be either underpredicted or disregarded (Wang et al., 422 

2022b; Mcdonald et al., 2018), resulting in common underprediction with a median 423 

ratio of five in urban-background areas. Additionally, the simulated HCHO 424 

concentrations were higher in the urban areas. Overall, these results indicated that the 425 

model generally performed better for anthropogenic VOCs in the urban areas. However, 426 

there were still a few notable outliers and significant deviations for a majority of VOCs, 427 

particularly those with high chemical reactivity. These deviations will inevitably impact 428 

the model's calculation of photochemical reactions involved in O3 generation. 429 

4.3. Implications and suggestions 430 

Accurately predicting VOCs is crucial for O3 modelling. However, due to limited 431 

measurement data and uncertainties in emission inventories, accurately simulating the 432 

VOCs across China using CTMs remains challenging. 433 

Considerable efforts have been dedicated to the development of VOCs emission 434 

inventories in recent years (Li et al., 2019; An et al., 2021; Chang et al., 2022). However, 435 

our findings indicate substantial variation in the model performance of VOCs across 436 

different regions and species. Therefore, the inclusion of accurate local emission factors, 437 

activity data, and source profiles is essential. Sha et al. (2021) compiled an integrated 438 

dataset of AVOCs source profiles in China, emphasizing the need for supplementary 439 

and timely updates to these profiles in the future. Apart from anthropogenic emissions, 440 

model resolution, and chemical mechanisms meteorological conditions, and BVOCs 441 
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emissions also contribute to the uncertainty of VOCs modelling, thereby affecting the 442 

performance of O3 modelling (Zhang et al., 2021; Wang et al., 2021; Liu et al., 2022).  443 

High-resolution models require higher emission inventory resolution (Li et al., 444 

2022; An et al., 2021), which can improve simulation performance to a certain extent. 445 

Given the large scope of the model used in this study and the 0.25° × 0.25° horizontal 446 

resolution of the MEIC inventory, a resolution of 36 km was chosen to balance 447 

computational efficiency and the preservation of information from the emission 448 

inventory, but inevitably results in deviation of the modelled VOCs and other elements. 449 

On the one hand, urban and background sites in close proximity may be assigned to the 450 

same grid in the model, as shown in Table S3, making it difficult to distinguish the 451 

differences in modelled VOCs between urban and background sites in cities such as 452 

Shijiazhuang, Jinan, Wuhan, and Guiyang; on the other hand, in real atmospheres, even 453 

with close proximity, the observed VOCs may differ greatly in concentration, which is 454 

challenging to capture in a coarse-resolution model. When applying coarse-resolution 455 

emission inventories, increasing the model resolution can enhance the spatial 456 

correlation between observed and predicted concentrations, but does not always 457 

improve simulation performance (Zheng et al., 2021). High-resolution models may 458 

introduce more emission mapping errors, which can be reduced by using coarse-459 

resolution model grids (Zheng et al., 2021). Therefore, addressing this issue requires 460 

not only finer model resolution but also improved emission inventories.  461 

The SAPRC07tic chemical mechanism used in this study has been proven reliable 462 

in previous model applications (Qin et al., 2022), reducing the computational effort 463 

compared to the explicit MCM mechanism (Li et al., 2015) while retaining the chemical 464 

reactivity of various VOCs. However, the lumped VOCs species contain more VOCs 465 

species than those in corresponding observations. Therefore, if both the emission 466 
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inventory and model are sufficiently accurate, the predicted values should theoretically 467 

be higher. 468 

Meteorology bias also contributed to some bias of the VOCs predictions. We added 469 

evaluation of the meteorology predictions in this study, and the results are shown in 470 

Table S9 and S10. The results are consistent with other studies in China (Mao et al., 471 

2022; Wang et al., 2021). It is observed that temperature is overpredicted at most sites, 472 

while RH is mostly underpredicted. The combination of high temperature and low RH 473 

facilitates the consumption of VOCs through photochemical reactions, which may 474 

explain the tendency of our modelled VOCs to be underestimated. But we believe it is 475 

insufficient to account for the underestimation of low-reactivity VOC species (mainly 476 

alkanes). Furthermore, the modelled wind speeds slightly exceed the observations, 477 

which may also contribute to VOCs underprediction (Table S10). While the bias in 478 

meteorological conditions contributes to the underestimation of modelled VOCs, the 479 

underestimated VOCs emissions is the key factor for the VOCs underprediction across 480 

most of the cities. 481 

In this study, the adjustment of VOCs emissions resulted in increased predicted 482 

emission levels, subsequently leading to higher O3 predictions. However, these 483 

adjustments are simplistic and fail to account for regional variations in VOCs biases. 484 

The accuracy of VOCs measurement data is also crucial. Therefore, there is a need to 485 

promote the establishment of a national O3 precursor monitoring network and develop 486 

a standardized framework with quality control systems. This would facilitate the 487 

comparability of VOCs measurements between regions, thereby supporting related 488 

research and the implementation of collaborative regional prevention and control 489 

measures. 490 

5. Conclusion 491 
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In this study, we conducted a comprehensive evaluation of the simulation 492 

performance of VOCs using the CMAQ model and investigated the influence of 493 

predicted VOCs on O3 formation. The inclusion of summertime-observed VOCs data 494 

from the ATMSYC project for 28 sites in China enhanced the spatiotemporal 495 

comparability of our model evaluation. 496 

During the study period, TVOCs were found to be underpredicted by 14.1 ± 13.2 497 

ppbv at 24 sites, except for SH-U, CD-U, WH-B, and FS. Despite some sites exhibiting 498 

similar TVOCs concentrations, differences still persisted in their specific components. 499 

Through considering the uncertainties of the MEIC model and relevant factors, we 500 

found several sites with substantial inaccuracies, such as Jinan, Shijiazhuang, Lanzhou, 501 

Chengdu, and Guiyang. The model's performance in predicting TVOCs and their 502 

components varied across regions, with better predictions observed in urban areas 503 

compared to background areas. 504 

Alkanes, alkenes, ARO2MN, and alkynes are generally underpredicted, with ratios 505 

of 0.53 ± 0.38, 0.51 ± 0.48, 0.31 ± 0.38, and 0.41 ± 0.47, respectively. In urban areas, 506 

the CMAQ model exhibited underpredictions for OLE1, ALK2, ARO2MN, PRPE, 507 

ACYE, and NOx, ranging from 2.0 to 4.6 times, while overpredicting BENZ by 2.75 508 

times. For sensitivity experiments, their emissions were adjusted and their impact on 509 

O3 and VOCs was evaluated. These adjustments improved the model's VOCs 510 

performance, resulting in a change in the ratio of total VOCs to 0.86 ± 0.47. However, 511 

the increased VOCs contributed to higher reactivity, exacerbating O3 overpredictions 512 

by 0.62% to 6.27% across the sites. Consequently, RIR values were calculated to depict 513 

the varying reactivities of VOCs in different regions, with OLE1, PRPE, and ARO2MN 514 

contributing the highest RIR values during the study period. 515 

Due to the inaccuracies present in current VOCs emission inventories, notable 516 

https://doi.org/10.5194/egusphere-2023-1358
Preprint. Discussion started: 2 August 2023
c© Author(s) 2023. CC BY 4.0 License.



22 
 

efforts are needed to enhance the development and updating of emission inventories, 517 

particularly in regions characterized by developed industries, evolving energy 518 

structures, and relatively underdeveloped conditions. It is only through improving the 519 

accuracy of VOCs emission inventories that we can ensure reliable model performance 520 

in predicting O3 levels, thereby establishing a solid foundation for addressing the 521 

escalating issue of O3 pollution. 522 
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Table 1. Mean, median, maximum (max), minimum (min), and standard deviation (std) 752 

of the Ratios and differences (Diff) for five VOCs groups and TVOCs at 28 sites 753 

  Alkanes Alkenes Aromatics 
ARO2MN 

(Aromatics) 
Alkyne HCHO TVOCs 

Ratio(pre/obs) 

mean 0.59  0.60  1.33  0.40  0.55  1.66  0.70  

median 0.53  0.51  1.30  0.31  0.41  1.21  0.74  

max 1.87  2.46  3.29  1.96  2.36  8.70  1.90  

min 0.13  0.09  0.10  0.05  0.09  0.25  0.15  

std 0.38  0.48  0.89  0.38  0.47  1.61  0.40  

Diff(pre-obs) 

mean -6.18  -4.02  0.42  -0.28  -1.16  0.16  -10.78  

median -5.65  -2.56  0.83  -0.25  -1.04  0.49  -7.57  

max 14.12  3.50  6.09  0.24  0.87  5.57  29.53  

min -19.40  -15.50  -8.18  -0.74  -2.64  -8.90  -50.61  

std 6.81  4.69  3.47  0.20  0.97  2.99  16.11  

 754 
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Table 2. New cases of adjusting emission coefficient under observation constraints 756 

Cases in CMAQ 
Changing species 

in MEIC 

Adjusted 

coefficient 

base case -- -- 

case_NOx NO, NO2 1.5 

case _ALK2 ALK2 4.6 

case_ARO2MN ARO2MN 3.2 

case_BENZ BENZ 0.4 

case_OLE1 OLE1 2.0 

case_PRPE PRPE 2.1 

case_ACYE ACYE 2.8 

case_all all of the above VOCs 

 757 

 758 

Figure 1. The CMAQ modelling domain cover China and the surrounding countries and 759 

regions in this study, including 28 blue dots that represent the positions of VOCs 760 
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sampling sites. We divided China into seven regions according to the geographical 761 

location of different provinces, which comprise the following sites: NCP: BJ-B, BJ-U, 762 

SJZ-B, SJZ-U, JN-B, JN-U; Northwest: LZ-B, LZ-U; Northeast (No observation site); 763 

YRD: SH-B, SH-U; Central China: ZZ-B, ZZ-U, WH-B, WH-U; Southwest: CD-B, 764 

CD-U, GY-B, GY-U; South China: Most of the sites are concentrated in PRD region 765 

(shown in the enlarged subgraph in the lower left): GZ-B, GZ-U, SZ, HZ, DG, FS, JM, 766 

ZQ, ZS, ZH. 767 

 768 

Figure 2. Model performance on MDA8 O3 and NO2 of 28 sites in different regions 769 

from June 6th to August 24th in 2018. The blue and red lines denote performance 770 

criteria for MDA8 O3 suggested by Emery et al. (2017) and the symbols in different 771 

colors distinguish different regions of China.772 
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 773 

Figure 3. Comparison of predicted and observed VOCs at 28 sites during the study 774 

period. (a) The concentration of VOCs, for each site, on the left are prediction values 775 

with a blue edge, and on the right are observation values with a red edge; (b) Percentage 776 

of VOCs. 777 
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 778 

Figure 4. The predicted/observed ratio (pre/obs) of O3, NO2 and different VOCs species 779 

at 28 sites (both urban and background). The rectangles with different colors represent 780 

the ratio range of 25% to 75% for all sites. The vertical lines with a horizontal bar are 781 

called 1.5 Interquartile Range (1.5 IQR). The horizontal lines in rectangles represent 782 

the median value and the hollow dots are the mean value. The dots outside the 1.5 IQR 783 

are Outliers. 784 

 785 
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 786 

Figure 5. Prediction concentration of O3, NO2 and six VOCs species in the base case 787 

from June 6th to August 24th in 2018. 788 

 789 
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 790 

Figure 6. Observed and predicted values of different VOCs species by sites average.  791 
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