Supplemental Materials

Regions	Cities	Station	Start time	End time	Nos	Latitude	Longitude
		code					
	Beijing	BJ-B	2 August	24 August	57	40°24′28″N	116°40′26″E
	Derjing	BJ-U	2 August	24 August	57	39°58′28″N	116°22′13″E
NCP	C1 ···· 1	SJZ-B	29 June	4 July	18	37°59′52″N	114°30′56″E
	Shijiazhuang	SJZ-U	29 June	4 July	17	38°02′35″N	114°30′15″E
	Li'non	JN-B	29 June	5 July	17	36°35'56″N	117°02'46″E
	Ji nan	JN-U	29 June	5 July	18	36°40′23″N	117°03′01″E
Northwest	Lanzhou	LZ-B	1 August	18 August	53	35°56′35″N	104°09′11″E
Northwest	Lanzhou	LZ-U	1 August	18 August	52	36°06′11″N	103°37'48″E
YRD	Chanabai	SH-B	1 August	24 August	60	31°31′26″N	121°57′32″E
	Snanghai	SH-U	1 August	24 August	55	31°11'27″N	121°26'04″E
Central China	Wuhan	WH-B	1 August	11 August	42	30°21'40"N	114°20'10"E
	w unan	WH-U	1 August	11 August	39	30°31'50″N	114°18'28″E
	71	ZZ-B	29 June	4 July	17	34°51′35″N	113°24′24″E
	Zhengzhou	ZZ-U	29 June	4 July	17	34°45′12″N	113°36′48″E
	Chanada	CD-B	6 August	20 August	55	30°33′47″N	104°16′18″E
C	Chengdu	CD-U	6 August	20 August	58	30°37′45″N	104°03′50″E
Southwest	G .	GY-B	29 June	4 July	18	26°38'28″N	106°36'60″E
	Guiyang	GY-U	29 June	4 July	17	26°34'02″N	106°41'60″E
	Currenter	GZ-B	29 June	4 July	17	23°39′01″N	113°37′28″E
	Guangznou	GZ-U	29 June	4 July	17	23°08′58″N	113°21′28″E
	Shenzhen	SZ	6 June	14 June	18	22°35′47″N	113°58′22″E
	Huizhou	HZ	6 June	14 June	13	23°03'10″N	114°25'06″E
מחמ	Jiangmen	JM	7 June	13 June	17	22°35'01″N	113°04'23″E
PKD	Dongguan	DG	6 June	13 June	15	23°03′13″N	113°46′55″E
	Foshan	FS	6 June	13 June	17	23°00′09″N	113°06′13″E
	Zhaoqing	ZQ	6 June	13 June	18	23°02'46″N	112°27'52″E
	Zhongshan	ZS	6 June	13 June	18	22°30′40″N	113°24′27″E
	Zhuhai	ZH	6 June	13 June	17	22°14′19″N	113°29′44″E

2 Table S1. List of sampling sites and periods in the field campaign of ATMSYC project.

1

3 Nos: Number of observations. For the sites, B representing the background, and U

4 representing the urban, Sites in the PRD belong to Urban.

Species	Species types in	Species included both in observation and	Remarks
groups	saprc07tic	simulation	
Alkanes	ALK1	ethane	kOH between 2 and 5 × 10^2 ppm ⁻¹ min ⁻¹
	ALK2	n-propane	kOH between 5×10^2 and 2.5×10^3 ppm ⁻¹ min ⁻¹
	ALK3	1-/i-butene, n-butane, isobutane, 2,2- dimethylbutane, 2.2.4-trimehylpentane	kOH between 2.5×10^3 and 5×10^3 ppm ⁻¹ min ⁻¹
	ALK4	i-pentane, n-pentane, 2-methylpentane, 3- methylpentane, cyclopentane, n-hexane, n-heptane, methylcyclopentane, 2,4- dimethylpentane, 2,3-dimethylpentane, 2,3,4-trimethylpentane, 2.3-dimethylbutane	kOH between 5×10^3 and 1×10^4 ppm ⁻¹ min ⁻¹
	ALK5	cyclohexane, methylcyclohexane, 2- methylhexane, 3-methylhexane, 2-methylheptane, 3-methylheptane, n-octane, n-nonane, n-decane	$kOH > 1 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$
Aromatics	ARO1	ethylbenzene, isopropylbenzene, n-	$kOH < 2 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$
	ARO2MN	1,2,3-trimethylbenzene, 1,3,5-trimetylbenzene, o-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene, 1,2,4- trimethylbenzene (0.5)	$kOH > 2 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$, minus naphthalene
	TOLU	toluene	
	BENZ	benzene	
	XYL	o-xylene, m/p-xylene	
	B124	1,2,4-trimethylbenzene (0.5)	
Alkenes	OLE1	1-butene, 1-pentene, 3-methyl-1-butene, 4- methyl-1-pentene	$kOH < 7 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$, other than ethene
	OLE2	trans-2-butene, cis-2-butene, 2-methyl-1- butene, 2-methyl-2-butene, trans-2-pentene, cis-2-pentene, 2-methyl-1- pentene, cyclopentene, styrene	$kOH > 7 \times 10^4 \text{ ppm}^{-1} \text{ min}^{-1}$
	ISOP	isoprene	
	ETHE	ethylene	
	PRPE	propene	
	APIN	a-pinene	
	BDE13	1,3-butadiene	
Alkyne	ACYE	acetylene	
НСНО	НСНО	formaldehyde	

5 Table S2. The specific classification of VOCs in this study

6 kOH: The reaction rate constant between VOCs and Hydroxyl radical (OH).

		ME	DA8 O3 (µg	g/m^3)			NO ₂ ($\mu g/m^3$)					
sites	OBS	PRE	NMB	NME	R	OBS	PRE	NMB	NME	R		
BJ-B	162.84	165.43	0.02	0.20	0.72	24.45	15.49	-0.37	0.40	0.40		
BJ-U	164.44	193.04	0.17	0.23	0.75	34.19	29.61	-0.13	0.31	0.11		
SJZ-B	170.29	168.29	-0.01	0.21	0.66	25.20	39.46	0.57	0.63	0.19		
SJZ-U	163.98	168.29	0.03	0.22	0.64	29.70	39.46	0.33	0.41	0.30		
JN-B	175.43	161.04	-0.08	0.19	0.68	21.05	26.08	0.24	0.41	0.46		
JN-U	167.26	161.04	-0.04	0.18	0.72	36.91	26.08	-0.29	0.34	0.46		
LZ-B	118.63	116.73	-0.02	0.11	0.66	15.78	6.23	-0.61	0.61	0.22		
LZ-U	165.22	135.31	-0.18	0.25	0.65	38.06	20.75	-0.46	0.46	0.18		
SH-B	106.43	88.93	-0.16	0.33	0.57	21.04	1.43	-0.93	0.93	0.45		
SH-U	113.56	136.59	0.20	0.29	0.80	23.01	32.99	0.43	0.47	0.70		
WH-B	140.23	141.09	0.01	0.23	0.70	36.42	37.62	0.03	0.27	0.47		
WH-U	126.62	141.09	0.11	0.25	0.72	35.46	37.62	0.06	0.22	0.51		
ZZ-B	150.74	172.08	0.14	0.23	0.61	34.96	36.51	0.05	0.22	0.52		
ZZ-U	147.25	158.44	0.08	0.24	0.66	39.16	34.23	-0.13	0.22	0.49		
CD-B	114.06	119.92	0.05	0.25	0.62	43.09	30.80	-0.29	0.36	0.14		
CD-U	140.56	133.25	-0.05	0.28	0.56	30.99	59.51	0.92	0.94	0.14		
GY-B	89.98	95.00	0.06	0.15	0.82	16.76	18.54	0.11	0.34	0.44		
GY-U	85.49	95.00	0.11	0.19	0.79	30.06	18.54	-0.38	0.39	0.67		
GZ-B	106.09	121.60	0.15	0.35	0.37	21.72	12.24	-0.44	0.44	0.71		
GZ-U	115.63	144.78	0.25	0.34	0.55	35.30	23.71	-0.33	0.36	0.56		
SZ	80.73	112.05	0.39	0.50	0.71	20.97	31.38	0.50	0.52	0.67		
HZ	97.19	111.21	0.15	0.27	0.75	21.99	19.57	-0.11	0.24	0.65		
JM	104.73	118.35	0.13	0.28	0.82	28.08	19.39	-0.31	0.34	0.54		
DG	118.77	139.30	0.21	0.35	0.64	32.25	24.93	-0.23	0.27	0.62		
FS	113.21	148.99	0.32	0.44	0.64	33.31	27.79	-0.17	0.28	0.51		
ZQ	109.02	117.98	0.08	0.23	0.76	30.94	12.00	-0.61	0.62	0.40		
ZS	102.66	134.08	0.31	0.42	0.79	12.87	17.42	0.35	0.49	0.65		
ZH	92.39	114.00	0.23	0.38	0.72	13.71	9.30	-0.32	0.52	0.49		
Benchmarks			<=±0.15	< 0.25	>0.5							

7 Table S3. Model performance of MDA8 O₃ and NO₂ in the 28 sites from June 6th to August

8 24th, 2018

9 OBS: mean observation; PRE: mean prediction; NMB: normalized mean bias; NME:

10 normalized mean error; R: the correlation coefficient. The performance criteria for MDA8 O₃

11 were suggested by (Emery et al., 2017). The values that exceed the criteria were highlighted

12 in bold.

	O3 (µ	g/m^3)	NO ₂ (µ	ug/m^3)	TVOCs (ppbv)		
sites	OBS	PRE	OBS	PRE	OBS	PRE	
BJ-B	139.32	150.78	14.85	8.35	23.19	18.36	
BJ-U	140.94	188.26	23.65	20.62	33.24	30.45	
SJZ-B	164.56	164.68	29.65	14.88	35.59	14.47	
SJZ-U	150.50	161.58	29.19	15.09	35.47	14.67	
JN-B	135.33	158.06	42.94	11.15	53.37	12.03	
JN-U	144.75	161.99	41.82	11.13	61.93	12.07	
LZ-B	97.59	107.96	13.49	3.19	33.16	5.16	
LZ-U	129.04	117.69	30.92	11.16	52.21	8.92	
SH-B	100.19	81.46	22.17	0.80	12.97	3.66	
SH-U	111.04	120.69	21.59	28.62	18.79	29.72	
WH-B	141.45	168.78	37.37	22.60	22.65	24.69	
WH-U	118.03	166.14	34.38	22.70	30.48	25.10	
ZZ-B	127.76	169.24	40.71	17.21	29.79	15.89	
ZZ-U	131.35	161.50	46.06	14.93	28.13	13.71	
CD-B	100.85	119.01	37.98	14.55	39.43	27.64	
CD-U	130.86	131.87	25.09	43.52	34.72	62.36	
GY-B	58.18	68.08	11.44	8.92	26.06	9.50	
GY-U	53.82	66.69	25.59	8.77	22.83	9.41	
GZ-B	78.29	140.98	19.38	7.20	15.92	12.84	
GZ-U	88.29	137.19	24.12	12.75	24.19	17.05	
SZ	89.23	106.51	36.27	38.40	34.09	33.41	
HZ	66.31	62.82	22.62	21.40	26.86	24.84	
JM	104.29	100.04	29.44	18.48	28.68	22.02	
DG	66.71	102.58	40.43	29.02	32.08	25.06	
FS	68.93	98.16	33.29	38.47	32.76	33.08	
ZQ	80.24	89.25	30.06	12.92	31.98	22.44	
ZS	95.78	118.94	18.83	23.21	27.29	23.18	
ZH	103.82	147.99	24.00	17.99	28.53	20.26	

13 Table S4. Comparison of mean values of O₃, NO₂ and TVOCs concentrations at 28 sites

14 during the study period

17 Table S5. The mean, median, maximum (max), minimum (min), and standard deviation (std)

values of the ratios and differences (Diff) for 5 VOCs groups, ARO2MN and BENZ at 18 urban

		Alkanes	Alkenes	Aromatics	ARO2MN (Aromatics)	BENZ (Aromatics)	Alkyne	НСНО
	mean	0.66	0.72	1.46	0.44	3.29	0.53	1.83
	median	0.59	0.69	1.41	0.32	2.75	0.42	1.19
Ratio(pre/obs)	max	1.87	2.46	3.29	1.96	9.01	1.50	8.70
	min	0.13	0.09	0.10	0.05	0.14	0.09	0.25
	std	0.42	0.54	0.84	0.46	1.97	0.34	1.91
	mean	-5.78	-3.29	1.07	-0.26	0.42	-1.23	0.58
Diff(pre-obs)	median	-5.42	-2.17	1.61	-0.18	0.54	-1.35	0.54
	max	14.12	3.50	6.09	0.24	1.28	0.87	5.57
	min	-19.40	-15.50	-8.18	-0.74	-2.58	-2.64	-8.90
	std	7.82	4.86	3.68	0.24	0.81	0.97	2.95

19 sites, accurate to two places of decimals

20

-

21 Table S6. Impact of improvement of emission inventory. Median of ratio of predicted to

22 observed values for each urban site after adjusting emission coefficients for individual

23 species or both of them in MEIC

Cases in CMAQ	O ₃	NO_2	ALK2	ARO2MN	BENZ	OLE1	PRPE	ACYE
base case	1.240	0.623	0.270	0.325	2.541	0.340	0.445	0.468
case_NO _x	1.164	0.833						
case _ALK2	1.243		0.789					
case_ARO2MN	1.250			0.863				
case_BENZ	1.240				1.556			
case_OLE1	1.249					0.522		
case_PRPE	1.248						0.688	
case_ACYE	1.241							0.978
case_all	1.269	0.622	0.791	0.863	1.556	0.687	0.652	0.981

24

26

27 Table S7. The mean, median, max, min, and std values of the ratios for predicted/observed

					29
	mean	median	max	min	std
base case	0.70	0.74	1.90	0.15	0.4080
case_NOx	0.70	0.73	1.91	0.14	0.40
case_ALK2	0.75	0.79	2.04	0.16	0.42^{31}
case_ARO2MN	0.71	0.75	1.93	0.15	0.40
case_BENZ	0.69	0.73	1.87	0.14	0.3932
case_OLE1	0.72	0.75	1.94	0.15	0.4134
case_PRPE	0.71	0.75	1.94	0.15	0.4035
case_ACYE	0.74	0.78	2.00	0.15	0.42_{37}^{36}
case_all	0.81	0.86	2.25	0.17	0.4738

28 TVOCs for 28 sites in base case and eight new cases, accurate to two places of decimals

40 Table S8. The mean, median, max, min, and std values of O₃ changes were calculated for

+1 orgin new cuses relative to the cuse cuse rol 20 sites, deculate to two places of dech

	mean	median	max	min	std 42
case_NOx	0.02%	1.01%	8.66%	-12.29%	5.69%
case _ALK2	0.30%	0.31%	0.54%	0.13%	0.10%
case_ARO2MN	0.82%	0.68%	2.41%	0.06%	0.54%44
case_BENZ	0.01%	0.00%	0.09%	-0.07%	0.04%
case_OLE1	0.79%	0.76%	1.78%	0.19%	0.40%
case_PRPE	0.63%	0.55%	1.81%	0.14%	0.35% 46
case_ACYE	0.01%	0.02%	0.05%	-0.03%	0.02% ₂₇
case_all	2.51%	2.32%	6.27%	0.62%	1.28%
					48

sites			T2 (°C)				RH (%	6)	
sites	OBS	PRE	MB	ME	RMSE	OBS	PRE	MB	ME	RMSE
BJ-B	26.51	26.63	0.12	1.27	1.61	74.99	61.60	-13.39	14.11	16.50
BJ-U	27.46	29.51	2.05	2.09	2.58	67.23	49.64	-17.59	17.66	19.27
SJZ-B	28.56	29.38	0.83	1.34	1.63	65.24	51.28	-13.96	14.09	16.03
SJZ-U	28.07	29.38	1.32	1.60	2.05	66.23	51.28	-14.95	14.97	17.32
JN-B	28.11	28.45	0.34	1.08	1.49	66.56	61.32	-5.23	7.32	9.75
JN-U	28.11	28.45	0.34	1.08	1.49	66.56	61.32	-5.23	7.32	9.75
LZ-B	19.41	19.00	-0.41	0.85	1.09	71.23	65.58	-5.66	7.64	9.14
LZ-U	23.36	22.24	-1.13	1.29	1.53	58.30	52.92	-5.37	6.45	8.15
SH-B	27.21	23.55	-3.66	3.93	4.62	85.48	92.74	7.26	8.92	10.62
SH-U	28.40	28.94	0.54	0.99	1.22	75.48	66.03	-9.46	9.75	10.83
WH-B	29.19	29.25	0.07	0.91	1.20	75.27	70.62	-4.65	6.25	8.04
WH-U	29.19	29.25	0.07	0.91	1.20	75.27	70.62	-4.65	6.25	8.04
ZZ-B	29.05	30.05	1.00	1.17	1.50	65.88	54.92	-10.96	11.24	13.04
ZZ-U	29.25	29.42	0.17	1.01	1.28	65.69	59.09	-6.60	9.56	11.06
CD-B	25.90	26.21	0.31	1.00	1.27	87.03	77.37	-9.66	9.95	12.23
CD-U	26.10	27.13	1.03	1.36	1.65	82.16	72.21	-9.94	10.53	12.48
GY-B	22.93	21.84	-1.10	1.12	1.32	76.95	86.56	9.61	9.61	10.56
GY-U	24.12	21.84	-2.28	2.28	2.42	75.85	86.56	10.71	10.71	11.69
GZ-B	27.74	27.20	-0.54	0.89	1.11	87.30	81.71	-5.59	6.25	7.98
GZ-U	28.12	31.27	3.15	3.15	3.38	84.48	62.21	-22.27	22.27	23.17
SZ	28.38	30.53	2.15	2.20	2.35	83.16	65.96	-17.20	17.20	17.84
HZ	27.95	28.00	0.05	0.89	1.12	83.42	79.16	-4.26	5.79	7.04
JM	28.74	28.52	-0.22	0.79	0.98	83.56	78.71	-4.85	6.23	7.55
DG	28.38	31.36	2.98	2.98	3.15	81.59	62.09	-19.50	19.50	20.42
FS	29.03	31.80	2.77	2.77	2.93	79.31	60.25	-19.06	19.06	19.74
ZQ	27.92	28.04	0.12	0.91	1.06	84.76	80.73	-4.04	5.65	6.86
ZS	28.63	30.86	2.23	2.24	2.41	86.39	65.91	-20.48	20.48	21.21
ZH	28.42	28.54	0.13	0.98	1.20	82.75	87.53	4.78	7.02	8.55
Benchmarks			$\leq \pm 0.5$	\leq 2.0						

Table S9. Model performance of temperature (T2) and relative humidity (RH) in the 28 sites

from June 6th to August 24th, 2018

56 RMSE: root mean square error. The performance criteria for T2 were suggested by (Emery et

al., 2001). The values that exceed the criteria were highlighted in bold.

58

54

59

sites			WS (m	/s)				WD (°	")	
sites	OBS	PRE	MB	ME	RMSE	OBS	PRE	MB	ME	RMSE
BJ-B	1.75	2.67	0.92	0.97	1.19	192.45	129.46	-62.99	67.84	80.15
BJ-U	1.82	2.43	0.61	0.74	0.95	130.57	144.46	13.88	38.27	51.37
SJZ-B	1.73	2.83	1.10	1.15	1.34	165.69	155.74	-9.95	37.99	52.44
SJZ-U	2.31	2.83	0.53	0.70	0.88	180.14	155.74	-24.40	45.03	60.91
JN-B	3.22	3.76	0.54	0.82	0.99	142.89	146.54	3.65	19.84	25.48
JN-U	3.22	3.76	0.54	0.82	0.99	142.89	146.54	3.65	19.84	25.48
LZ-B	2.59	3.24	0.65	0.79	0.92	183.44	147.74	-35.71	45.89	66.64
LZ-U	1.47	2.70	1.23	1.23	1.39	124.15	130.88	6.74	42.11	53.33
SH-B	3.99	6.14	2.15	2.16	2.59	124.58	122.10	-2.48	18.50	27.98
SH-U	0.39	3.69	3.30	3.30	3.52	66.66	129.84	63.18	65.19	77.48
WH-B	3.01	2.54	-0.47	0.65	0.81	157.99	142.73	-15.26	46.70	67.92
WH-U	3.01	2.54	-0.47	0.65	0.81	157.99	142.73	-15.26	46.70	67.92
ZZ-B	1.99	3.04	1.05	1.11	1.46	144.26	135.84	-8.42	30.04	38.62
ZZ-U	2.58	3.22	0.65	0.81	1.14	141.91	136.46	-5.45	29.11	42.43
CD-B	2.03	2.21	0.18	0.53	0.71	142.02	117.14	-24.87	49.27	60.78
CD-U	1.40	2.02	0.62	0.73	0.83	163.73	149.16	-14.57	41.82	52.33
GY-B	2.66	3.34	0.68	0.87	1.15	141.62	154.37	12.75	30.86	42.07
GY-U	2.00	3.34	1.34	1.45	1.85	151.02	154.37	3.36	32.10	45.16
GZ-B	1.61	2.63	1.03	1.10	1.39	126.01	139.07	13.07	47.50	61.43
GZ-U	1.93	2.74	0.81	0.91	1.13	147.31	139.80	-6.96	44.63	58.13
SZ	2.35	3.37	1.02	1.13	1.35	155.20	159.66	4.46	24.36	32.15
HZ	2.48	3.00	0.52	0.70	0.93	146.88	137.97	-8.91	26.70	34.97
JM	3.04	3.04	0.00	0.68	0.81	155.96	163.82	7.87	27.65	39.23
DG	3.00	3.18	0.18	0.56	0.67	136.78	149.56	12.79	23.61	31.29
FS	2.75	3.02	0.27	0.62	0.74	149.55	153.86	4.32	32.81	42.51
ZQ	1.60	2.64	1.04	1.06	1.23	122.24	156.20	33.97	56.66	65.52
ZS	2.53	3.29	0.76	0.80	0.96	144.01	158.70	14.69	20.44	29.20
ZH	3.74	4.96	1.22	1.27	1.53	159.18	156.30	-2.88	22.25	31.82
Benchmarks			$\leq \pm 0.5$	\leq 2.0	\leq 2.0			$\leq \pm 10$	$\leq \pm 30$	

61 Table S10. Model performance of wind speed (WS) and wind direction (WD) in the 28 sites

62 from June 6th to August 24th, 2018

63 The performance criteria for WS and WD were suggested by (Emery et al., 2001). The values

64 that exceed the criteria were highlighted in bold.

67 the study period. For each site, on the left are prediction values with blue edge, and on the

right are observation values with red edge (a) Alkanes, (b) Alkenes, (c) Aromatics.

Figure S2. Observed and predicted values of different VOCs species groups by regional

72

73 74 Figure S3. Ratio (pre/obs) of O_3 , NO_2 and different VOCs species at (a) urban sites (18 sites)

⁷⁵ and (b) backgound sites (10 sites).

Figure S4. The difference between the predicted concentration of seven new cases and base case, and the impact on O₃ concentration from June 6th to August 24th in 2018. Concentration of NO₂ is shown in case_NO_x.

81

Figure S5. Relative Incremental Reactivity (RIR) of 6 VOCs at 28 sites during the study

83 period. Each dot represents the RIR of the specific VOCs corresponding to the case at that

site.

85

86 **References**

87 Emery, C., Edward, T., and Yarwood, G.: Enhanced meteorological modeling and performance evaluation
88 for two Texas episodes, Report to the Texas Natural Resources Conservation Commission, ENVIRON,
89 International Corp, Novato, CA, available at: http://www.tceq.state.tx.us/assets/public/implementation/air/
90 am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf, 2001.

91 Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar, N.: Recommendations on statistics

92 and benchmarks to assess photochemical model performance, J Air Waste Manag Assoc, 67, 582-598,

93 10.1080/10962247.2016.1265027, 2017.