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Abstract 17 

Volatile organic compounds (VOCs) play a crucial role in the formation of 18 

tropospheric ozone (O3) and secondary organic aerosols. VOC emissions are generally 19 

considered to have larger uncertainties compared to other pollutants, such as sulphur 20 

dioxide and fine particulate matter (PM2.5). Although predictions of O3 and PM2.5 have 21 

been extensively evaluated in air quality modelling studies, there has been limited 22 

reporting on the evaluation of VOCs, mainly due to a lack of routine VOCs 23 

measurements at multiple sites. In this study, we utilized VOCs measurements from the 24 

ATMSYC project at 28 sites across China and assessed the predicted VOCs 25 

concentrations using the Community Multiscale Air Quality (CMAQ) model with the 26 

widely used Multi-resolution Emission Inventory for China (MEIC). The ratio of 27 

predicted to observed total VOCs was found to be 0.74 ± 0.40, with underpredictions 28 

ranging from 2.05 to 50.61 ppbv (5.77% to 85.40%) at 24 sites. A greater bias in VOCs 29 

predictions was observed in industrial cities in the north and southwest, such as Jinan, 30 

Shijiazhuang, Lanzhou, Chengdu, and Guiyang. In terms of different VOC components, 31 

alkanes, alkenes, non-naphthalene aromatics (ARO2MN), alkynes and HCHO had 32 

prediction-to-observation ratios of 0.53 ± 0.38, 0.51 ± 0.48, 0.31 ± 0.38, 0.41 ± 0.47 33 

and 1.21 ± 1.61, respectively. Sensitivity experiments were conducted to assess the 34 

impact of the VOCs prediction bias on O3 predictions. While emission adjustments 35 

improved the model performance for VOCs, resulting in a ratio of total VOCs to 0.86 36 

± 0.47, they also exacerbated O3 overprediction relative to the base case by 0.62% to 37 

6.27% across the sites. This study demonstrates that current modelling setups and 38 

emission inventories are likely to underpredict VOCs concentrations, and this 39 

underprediction of VOCs contributes to lower O3 predictions in China. 40 

Keywords: volatile organic compounds, O3 prediction, model evaluation, emissions 41 
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1. Introduction 42 

Volatile organic compounds (VOCs) in the ambient atmosphere consist of 43 

thousands of gaseous organic trace substances emitted from various anthropogenic and 44 

biogenic sources (Guenther et al., 2012; Li et al., 2017a; Kelly et al., 2018). These 45 

compounds undergo complex chemical reactions that form ozone (O3) and secondary 46 

organic aerosols (SOA) (Sillman, 1999; Kroll and Seinfeld, 2008). While biogenic 47 

VOCs (BVOCs) are the primary source of VOCs worldwide (Guenther et al., 2006), 48 

urban areas are predominantly influenced by anthropogenic sources (Guan et al., 2020; 49 

Guo et al., 2022; Li et al., 2022a). Anthropogenic VOCs (AVOCs) emission inventories 50 

are typically developed by estimating the total VOCs emissions using emission factors 51 

(EFs) and activity rates from different sources. The VOCs speciation profiles are then 52 

utilized to determine the emission rates of various VOCs species (Li et al., 2017a). Due 53 

to the complexity of VOCs emission processes and presence of numerous small but 54 

dispersed nonpoint sources, notable uncertainties exist while determining EFs, activity 55 

rates, and speciation profiles. It is estimated that the uncertainties associated with VOCs 56 

emissions range from approximately 68% to 76%, which are higher than those of 57 

sulphur dioxide (SO2) (12% to 40%), nitrogen dioxide (NOx) (31% to 35%), and 58 

particulate matter (PM) (30% to 94%) (Zhang et al., 2009; Li et al., 2019; Kurokawa 59 

and Ohara, 2020; An et al., 2021). 60 

Chemical transport models (CTMs), such as the Community Multiscale Air 61 

Quality (CMAQ) model, Weather Research and Forecasting model coupled with 62 

Chemistry (WRF-Chem), and Goddard Earth Observing System Chemical transport 63 

model (GEOS-Chem) have been developed and widely used to investigate the 64 

formation processes, source apportionment, and emission control strategies for various 65 

air pollution issues (Zhang et al., 2021; Dang et al., 2021; Wang et al., 2021). The 66 
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emissions of VOCs, along with other species such as SO2, NOx, ammonia, and PM, 67 

serve as essential inputs driving air quality model simulations. Uncertainties in VOCs 68 

emissions notably impact air quality modelling for O3, SOA, and total fine particulate 69 

matter (PM2.5). A study conducted in the United States reported a substantial 70 

underprediction of VOCs emission inventories in urban regions (Mcdonald et al., 2018), 71 

particularly for volatile chemical products (VCPs). A simulation study that developed 72 

four cases based on the baseline inventory demonstrated that augmented VOCs 73 

emission inventories have notable effects on O3 and PM2.5, highlighting the need for 74 

more detailed VCPs emissions in the inventory to improve model performance (Zhu et 75 

al., 2019). In China, notable discrepancies in aromatics have been observed between 76 

CMAQ predictions and measurements (Wang et al., 2020). Wu et al. (2022) reconciled 77 

the bottom-up methodology and measurement constraints to improve the city-scale 78 

non-methane VOCs (NMVOCs) emission inventory in Nanjing, resulting in improved 79 

O3 simulation performance with the CMAQ model. 80 

Model evaluation serves as the initial step in establishing confidence in air quality 81 

model predictions for further analysis. Numerous studies have conducted evaluations 82 

of the predicted O3 and PM2.5 concentrations in China (Hu et al., 2016; Li et al., 2021b; 83 

Li et al., 2020). Overall, the predictions of O3 and PM2.5 concentrations generally align 84 

with the observations (Shi et al., 2017; Wang et al., 2021), although substantial biases 85 

have been reported in certain circumstances and for specific species, such as O3 and 86 

SOA (Gong et al., 2021; Liu et al., 2020; Hu et al., 2017; Qin et al., 2018). Given that 87 

VOCs are key precursors of O3 and SOA, evaluating VOCs predictions can help 88 

elucidate the causes of these substantial biases in predictions. However, VOCs 89 

evaluations in regional modelling studies have been infrequent due to limited 90 

measurement data. Ambient VOCs have been measured at different locations in China 91 



5 
 

in various studies (Yang et al., 2022; Wang et al., 2022a). Unlike O3 and PM2.5, which 92 

are routinely monitored across major cities and regions in China, VOCs are often 93 

measured over short periods at one or specific sites. Different studies may employ 94 

different instruments and the study periods may vary, making it challenging to compile 95 

VOCs measurement data from multiple studies for a comprehensive model evaluation.  96 

In this study, we conducted VOCs evaluations in China by utilizing summertime 97 

observations from 28 sites located in different regions of the country, as part of the 98 

"Towards an Air Toxic Management System in China (ATMSYC)" project (Lyu et al., 99 

2020). This study aimed to assess the disparities between measured VOC 100 

concentrations and predictions in various regions of China using the widely used 101 

CMAQ model. We quantified the impacts of VOC biases on O3 predictions through 102 

emission adjustments based on observation-prediction differences. The results of this 103 

study indicated that the model performance of VOCs in China still has much room to 104 

improve, likely with a focus on updating emission inventories in fast-growing industrial 105 

cities. Most sites underpredicted TVOCs, and the biases of alkenes significantly 106 

impacted O3 production. These findings enhanced our understanding of the current 107 

VOC modelling in air quality models, which could help to improve VOC emission 108 

inventory and O3 prediction in the future. 109 

2. Materials and Methods 110 

2.1. Observation data 111 

The ATMSYC project involved a collaborative sampling campaign at 28 sites in 18 112 

cities across China, conducted from 6 June to 24 August, 2018, with speciated VOC 113 

measurements as part of the observation task (Lyu et al., 2020). Detailed site 114 

information and sampling times can be found in Table S1. Measurements were taken at 115 

intervals of two or four hours between 8:00 and 16:00. The offline measurement 116 
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techniques, and data quality assurance and quality controls (QA/QC), which were 117 

consistent across all sites, have been previously described (Lyu et al., 2019; Lyu et al., 118 

2020; Liu et al., 2021; Zhou et al., 2023). Briefly, stainless steel canisters and 2,4-119 

dinitrophenylhydrazine (DNPH) cartridges were utilized to collect non-methane 120 

hydrocarbons (NMHCs) and oxygenated VOCs (OVOCs), respectively. NMHCs were 121 

quantified using a gas chromatograph (GC) coupled with a mass spectrometry detector 122 

(MSD), electron capture detector (ECD), and flame ionization detector (FID) (the GC-123 

FID system for C2-C3 species, and GC-MSD/ECD for other NMHCs). OVOC samples 124 

were analyzed by high-performance liquid chromatography. The accuracies for the 125 

NMHC measurements ranged from -22.58%–8.71%, with precisions of 0.86%–25.89% 126 

(Zhou et al., 2023). More details regarding the measurements can be found in 127 

Supplement S.1. From the ATMSYC dataset, we selected 61 representative VOCs 128 

species and classified them into 20 categories, according to the SAPRC07 mechanism 129 

(Carter, 2010) to facilitate comparison with model predictions. These species can be 130 

categorized into five groups: alkanes, alkenes, aromatics, alkynes, and formaldehyde 131 

(HCHO). Further details regarding these specific classifications are mentioned in Table 132 

S2. 133 

Observations of O3 and nitrogen dioxide (NO2) were collected from 28 ground 134 

sites, sourced from the Chinese Ministry of Ecology and Environment 135 

(https://www.mee.gov.cn/, last accessed on 20 April 2022), to assess the simulation 136 

performance of the modelled O3 and NO2. To evaluate the impact of meteorological 137 

conditions, we also collected observation data of meteorological variables (temperature 138 

(T2), relative humidity (RH), wind speed (WS) and wind direction (WD)) from the 139 

nearest meteorological stations to the 28 sites from the Chinese Meteorological Agency 140 

(http://data.cma.cn/en, last accessed on 27 April 2022). 141 
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2.2. Model Configurations 142 

The CMAQ version 5.2 model (Appel et al., 2018), coupled with the 143 

SAPRC07TIC mechanism and aerosol module AERO6i, was utilized to simulate air 144 

quality across China from June to August 2018 (Mao et al., 2022). Meteorological fields 145 

were generated using WRF version 4.2.1, employing a 1.0° × 1.0° resolution FNL 146 

reanalysis dataset from the National Centre for Atmospheric Research (NCAR). The 147 

specific settings of WRF were consistent with those described by Mao et al. (2022), and 148 

the simulation performance of the meteorological fields was verified (Mao et al., 2022). 149 

The modelling domain with a horizontal resolution of 36 km is shown in Figure 1, 150 

which divides China into seven regions: the North China Plain (NCP), Northwest, 151 

Northeast, Yangtze River Delta (YRD), Central China, Southwest, and South China 152 

(with a higher concentration of sites in the Pearl River Delta (PRD) region). 153 

We utilized the Multi-resolution Emission Inventory for China (MEIC) v1.3 with 154 

a resolution of 0.25° × 0.25° in 2017 (http://www.meicmodel.org, last accessed on 25 155 

January 2022) for anthropogenic emissions within China. For anthropogenic emissions 156 

outside of China, we employed the Regional Emission Inventory in Asia (REAS) v3.2 157 

in 2015 (https://www.nies.go.jp/REAS/, last accessed on 25 January 2022). Biogenic 158 

emissions were generated using the Model for Emissions of Gases and Aerosols from 159 

Nature (MEGAN) v2.1 (Guenther et al., 2012), which were then mapped to 27 160 

SAPRC07TIC species, including isoprene (ISOP), α-pinene (APIN), and other BVOCs. 161 

Further details on the biogenic emissions can be found in (Li et al., 2022b). Open 162 

biomass burning emissions were processed using the Fire Inventory (NCAR FINN, 163 

https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar, last accessed on 28 164 

January 2022). 165 

Most emission inventories commonly employ a lumped mechanism to represent 166 
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VOCs. Li et al. (2014) introduced a method to allocate individual non-methane VOC 167 

(NMVOC) emissions in the MEIC inventory to species groups using multiple chemical 168 

mechanisms, utilizing mechanism-specific mapping tables from Carter (2013). This 169 

method has been widely adopted in CTMs. In this study, we followed this approach and 170 

utilized a speciation profile processor called Spec DB, which is available from 171 

https://intra.engr.ucr.edu/~carter/emitdb/, provided by Carter, to generate the speciation 172 

profiles. The mapping scheme for the SAPRC07TIC mechanism in the MEIC and open 173 

biomass burning was updated based on the step-by-step assignment framework of the 174 

SAPRC07 mechanism provided by the MEIC team. 175 

In this study, we examined the performance of CMAQ simulations during the 176 

observation period of the ATMSYC project. The days prior to 6 June were considered 177 

as a spin-up period. The simulated VOCs values at each site were matched with the 178 

observation time to obtain the average concentration during the same period. This 179 

duration was defined as the study period. 180 

2.3. Adjustment of VOCs emissions 181 

Emissions were adjusted for several species that exhibited significant deviations 182 

in simulations. The adjustment factors for emissions were determined by calculating 183 

the median of the ratio between observed and predicted values at 18 urban sites, which 184 

provided an average measure of the deviation for each species. Sensitivity experiments 185 

were conducted to examine the impact of the updated VOCs emissions on both 186 

predicted VOCs and O3 levels. To quantify the effect of unit increments in VOCs on O3 187 

concentrations, the Relative Incremental Reactivity (RIR) was calculated. The RIR is a 188 

commonly used metric in observation-based model studies (Cardelino and Chameides, 189 

1995) to assess the sensitivity of O3 to individual precursors such as NOx and various 190 

types of VOCs. The calculation of RIR is based on Equation (1): 191 
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𝑅𝐼𝑅ሺ𝑋ሻ ൌ
ሺேೀయሺ௑ሻି஻ೀయሺ௑ሻሻ ஻ೀయሺ௑ሻൗ

ሺே೉ሺ௑ሻି஻೉ሺ௑ሻሻ ஻೉ሺ௑ሻ⁄
                 (1) 192 

In the equation, X represents a specific VOCs species, while BO3 and NO3 represent the 193 

O3 concentrations in the base and adjusted emission case for X, respectively. The 194 

denominator on the right-hand side of the equation represents the relative change in 195 

emissions after the adjustment for X. 196 

3. Results 197 

3.1. Model performance evaluation 198 

3.1.1. Evaluation of O3 and NO2 199 

Figure 2 displays the performance of the CMAQ model for the maximum daily 8-200 

hour average (MDA8) O3 and NO2 concentrations at 28 sites. Model performance was 201 

assessed using statistical parameters, including the normalized mean bias (NMB), 202 

normalized mean error (NME), and correlation coefficient (R). The specific values of 203 

these statistical metrics can be found in Table S3. The results indicated that the model 204 

predictions complied with the observations at most sites in the NCP, Central China, and 205 

Southwest, with only slight underpredictions observed at Lanzhou’s urban station (LZ-206 

U; NMB = -0.18) and Shanghai’s background station (SH-B; NMB = -0.16), and a 207 

slight overprediction at Shanghai’s urban station (SH-U; NMB = 0.20). However, in the 208 

PRD, overpredictions of MDA8 O3 were observed in locations such as Shenzhen’s 209 

station (SZ; NMB = 0.39) and Foshan’s station (FS; NMB = 0.32), despite the 210 

correlation coefficients being higher than the performance criteria at most sites. The 211 

CMAQ's NO2 predictions exhibited underpredictions for most cities in the Northwest, 212 

PRD, and some background sites, but substantial overpredictions were evident in 213 

certain urban sites, such as Chengdu’s urban station (CD-U; NMB = 0.92) and SZ 214 

(NMB = 0.52). 215 

3.1.2. Evaluation of VOCs 216 
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Figure 3 presents the observed VOCs concentrations and corresponding CMAQ 217 

simulations across all the sites during the observation period. The proportions of the 218 

three categorized VOCs groups, namely alkanes, alkenes, and aromatics, are depicted 219 

in detail in Figure S1. The results revealed low predicted VOCs concentrations at most 220 

sites, with particularly markable underestimation in certain areas. Table S4 displays the 221 

mean values of O3, NO2, and total VOCs (TVOCs, encompassing the VOCs considered 222 

in this study) concentrations at the 28 sites throughout the study period. As indicated in 223 

Table 1, the predicted/observed ratio (referred to as ratio here after) of TVOCs is 0.74 224 

± 0.40. The underprediction ranged from 2.05 to 50.61 ppbv (5.77% to 85.40%) at 24 225 

sites, while overpredictions occurred at four sites, namely SH-U, CU-U, Wuhan’s 226 

background station (WH-B), and FS, with values ranging from 0.47 to 29.53 ppbv (1.92% 227 

to 89.96%). These findings suggested that the CMAQ model, employing the MEIC 228 

emission inventory, underpredicted TVOCs concentrations. Notably, the 229 

underprediction of TVOCs was more pronounced at sites located in the cities of 230 

Lanzhou, Jinan, Shijiazhuang, Guiyang, and Zhengzhou, where TVOCs were 231 

underpredicted by factors of two to six. 232 

The regional averages of the predicted and observed TVOCs were calculated by 233 

averaging the predictions and observations from all the sites in each region (Table S4). 234 

The ratios of observed to predicted TVOCs varied across regions as follows: YRD 235 

(1.04) > Southwest (0.92) > PRD (0.83) > Central China (0.71) > NCP (0.42) > 236 

Northwest (0.16). In Figure S2, despite having the highest observed TVOCs value 237 

(44.08 ppbv), the model results showed a lower concentration (7.04 ppbv) in the 238 

northwest region (specifically in Lanzhou), making it the region with the lowest 239 

predicted value. The predicted TVOCs concentration in the YRD region (Shanghai) was 240 

the closest to the observed value. However, Figure 3 shows that the VOCs 241 
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concentrations were notably overpredicted at SH-U and underpredicted at SH-B. The 242 

southwest region appeared to have the best performance among all the regions, which 243 

could be due to the overpredicted TVOCs at CD-U, which offsets the underprediction 244 

at other sites. Overall, the predicted and observed TVOCs concentrations exhibited 245 

notable discrepancies in most regions and the performance varied across the regions. 246 

Regarding the VOC components shown in Figure S2, alkanes consistently 247 

constituted as the most abundant group of VOCs in both observations (38.3% to 50.6%) 248 

and predictions (31.6% to 44.9%). This suggested that the predicted proportion of 249 

alkanes in TVOCs closely complied with the actual data. Alkenes typically ranked as 250 

the second highest VOC component in observations (14.9% to 31.2%), but they were 251 

underrepresented in the model (16.5% to 20.0%). The predicted proportions of 252 

aromatics (13.1% to 22.8%) and HCHO (15.3% to 28.9%) were higher than in the 253 

observations. In addition, alkynes were predicted to have a minor contribution to 254 

TVOCs. In terms of absolute concentrations, the underestimation of alkanes and 255 

alkenes was relatively pronounced, particularly in the NCP and Northwest regions. The 256 

model performed better in predicting the proportions of various VOCs species in the 257 

PRD and Southwest regions. 258 

Figure 4 illustrates the ratios of O3, NO2, and various VOCs species at the 28 sites. 259 

The discrepancies in ratios between urban and background sites are presented in Figure 260 

S3. The ratio of alkanes is 0.53 ± 0.38 (median ± standard deviation), indicating an 261 

underprediction of 5.65 ± 6.81 ppbv from a concentration standpoint (Table 1). Notably, 262 

the alkanes whose reaction rate constant with hydroxyl radical (OH) between 5 × 102 263 

and 2.5 × 103 ppm-1 min-1 (ALK2) exhibited the most notable underprediction. The 264 

predictions for aromatics showed minor deviations across different sites, but the median 265 

ratio was close to one, except for ARO2MN, which was substantially underpredicted 266 
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with a ratio of 0.31 ± 0.38 (0.32 ± 0.46 at urban sites), and benzene (BENZ), which was 267 

2.75 ± 1.97 at urban sites (Table S5). The ratios for the seven alkenes were generally 268 

high (0.51 ± 0.48 for alkenes), indicating underprediction in most sites. Particularly, 269 

1,3-butadiene (BDE13) exhibited a notable low ratio, possibly due to its reallocation 270 

from the underpredicted alkenes whose reaction rate constant is greater than 7 × 104 271 

ppm-1 min-1 with OH (OLE2) and the allocation factor may not be universally 272 

applicable across regions. Furthermore, the predicted concentration of acetylene 273 

(ACYE) was lower than observation at all sites (0.41 ± 0.47 for alkynes), while the 274 

HCHO was slightly overpredicted (1.21 ± 1.61 for HCHO). Considering that the 275 

observed VOCs species primarily originated from anthropogenic emissions and the 276 

majority of emitted VOCs were contributed by the MEIC, the ratios between urban and 277 

background sites could verify whether the MEIC emission inventory adequately 278 

reflected the differences between urban and background areas. 279 

3.2. Adjusting VOCs emissions and their impacts on O3 predictions 280 

These findings indicated a bias between the model-predicted VOCs and observed 281 

ambient VOCs concentrations. To evaluate the impact of these biases on O3 predictions, 282 

we modified the VOCs emissions of the MEIC based on the differences between 283 

observations and predictions. Previous studies have adjusted emission inventories to 284 

match observed constraints for predicting VOCs and O3 in specific cities (Wu et al., 285 

2022; Wang et al., 2020). Considering the temporal and spatial variability of the 28 sites, 286 

we calculated the median ratio of VOCs for the 18 urban sites. We selected coefficients 287 

for six representative AVOCs species with deviations exceeding 2.0 times the median, 288 

including ALK2, ARO2MN, BENZ, the alkenes (excluding ethene) whose reaction rate 289 

constant is less than 7 × 104 ppm-1 min-1 with OH (OLE1), propene (PRPE), and ACYE, 290 

and adjusted their emission rates in the MEIC, resulting in six new cases. Additionally, 291 
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we conducted a case (case_all) that incorporated the aforementioned adjustments and a 292 

case in which NOx was adjusted by 1.5 based on observational constraints. The 293 

adjustment factors for the eight new cases are provided in Table 2. 294 

The impact of adjusting VOCs emissions on the concentrations of O3 and VOCs is 295 

presented in Table S6. The underprediction of simulated VOCs and NO2 values was 296 

largely reduced for the new case, as indicated in the six cases with single-species 297 

changes and the case_all. In Table S7, the ratio of TVOCs in case_all was modified to 298 

0.86 ± 0.47, demonstrating improved performance in VOCs compared to the base case. 299 

However, it was worth noting that even after the emission adjustment, the predicted 300 

VOCs concentrations remained lower than the observations (particularly for 301 

case_BENZ). This discrepancy resulted from the varying reactivities of different VOC 302 

species and NOx in atmospheric chemical reactions, leading to different levels of 303 

depletion. Additionally, both measured and modelled concentrations were subject to 304 

photochemical losses (Ma et al., 2022b; Shao et al., 2011). The increased VOCs 305 

concentrations resulted in higher O3 concentrations. Based on the data presented in 306 

Tables S6 and S8, the constrained species ALK2, ARO2MN, OLE1, and PRPE, guided 307 

by observational data, contributed to an increase in O3 concentration, especially in 308 

case_all, which led to a more pronounced overpredictions ranging from 0.62% to 6.27% 309 

across all the sites. In contrast, increasing NOx had a positive effect and reduced the O3 310 

concentration. 311 

To illustrate regional pollution levels on a broader scale, Figure 5 displays the 312 

average concentrations of O3, NO2, and the six previously mentioned VOCs species 313 

studied in China during the specified period. 314 

High O3 levels were particularly prominent in most areas of the NCP, the eastern 315 

part of the Northwest, and the Sichuan Basin in the Southwest. NO2 concentrations 316 
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were elevated in the NCP, YRD, and PRD regions, as well as in certain megacities. The 317 

spatial distribution of various VOCs, derived from TVOCs emissions in the MEIC, 318 

exhibited broad consistency, with higher concentrations observed in south-eastern 319 

China. Megacities, akin to NO2, displayed elevated VOCs levels. Different cities 320 

exhibited VOCs originating from various sources. ALK2 demonstrated high 321 

concentrations in individual cities but less than 1 ppbv in other regions; thus, displaying 322 

stronger geographical characteristics compared to the other five VOCs. ARO2MN 323 

exhibited the lowest average concentration but exerted a substantial influence on O3 324 

due to its higher reactivity. Figure S4 illustrates the effects of altering the emission rates 325 

of NOx and VOCs in seven scenarios across China. The left panel displays the 326 

concentrations in the new cases, while the middle and right panels show the differences 327 

for corresponding species and O3 between the new cases and the base case, respectively. 328 

Spatial variations in NO2 and VOCs exhibited similarities. The increase in NO2 was 329 

more pronounced in the NCP and YRD regions, where NO2 concentration was 330 

consistently high. Previous studies indicate that the NCP and YRD regions are 331 

predominantly limited by VOCs during the summer (Li et al., 2017b; Lyu et al., 2019; 332 

Liu et al., 2021), resulting in either no change or a reduction in O3 when NO2 increases. 333 

Conversely, in other areas with low NO2 concentrations, O3 concentrations increased 334 

by 0 to 10 ppbv. BENZ was the only compound whose concentration decreased, and its 335 

impact on O3 in different regions mirrored that of NO2, albeit at a much lower 336 

concentration. The increased emissions of ALK2, ARO2MN, ACYE, OLE1, and PRPE 337 

favoured O3 production, with the most notable effects observed in the NCP, YRD, and 338 

other metropolitan areas. Among these compounds, OLE1 exhibited the strongest effect, 339 

while ACYE had a minimal influence. 340 

The section 2.3 describes the calculation of the RIR values, which were used to 341 
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demonstrate the sensitivity of the model-simulated O3 to VOCs constrained by 342 

observations in different locations. Figure S5 presents the variations in RIR values for 343 

the six VOCs across the 28 sites. OLE1, PRPE, and ARO2MN exhibited a higher RIR 344 

values. Urban areas within the same city displayed a higher RIR values compared to 345 

the background areas. With the exception of Chengdu, Guiyang, Lanzhou’s background 346 

station (LZ-B), Guangzhou’s background station (GZ-B), and Zhaoqing’s station (ZQ), 347 

where O3 generation was more sensitive to PRPE, other areas showed a greater impact 348 

of OLE1 concentration on O3, indicating that adjusting the emission rate of alkenes in 349 

the emission inventory was crucial for simulating changes in O3 concentrations. For 350 

instance, improvements could be made in LZ-U, Huizhou’s station (HZ), and 351 

Jiangmen’s station (JM), where O3 concentrations were underpredicted in the base case. 352 

Special attention should be given to the sites with high RIR values such as SH-U, CD-353 

U, SZ, Zhuhai’s station (ZH), and others, as O3 generation in these locations will be 354 

highly sensitive to changes in the local VOCs emission inventory. Moreover, ALK2, 355 

ACYE, and BENZ had minimal effects on O3, and BENZ even exhibited a negative 356 

RIR values at certain sites. 357 

These findings indicated a notable improvement in the underprediction of VOCs 358 

when adjustments were made based on VOCs observations. However, the elevated 359 

VOCs concentrations in the model could lead to increased O3 formation, thereby 360 

enhancing the model's accuracy in areas where both VOCs and O3 were underpredicted. 361 

Nonetheless, this adjustment will unavoidably worsen any existing overprediction of 362 

O3 in the model. 363 

4.  Discussions 364 

4.1. Large bias in TVOCs predictions at specific sites 365 

Significant discrepancies between predicted and observed TVOCs were observed 366 
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in Lanzhou, Jinan, Shijiazhuang, and Zhengzhou. Lanzhou and Shijiazhuang have 367 

developed petrochemical industries, where high concentrations of VOCs are frequently 368 

detected downwind of industrial areas (Guan et al., 2020; Guo et al., 2022). Figure 3 369 

illustrates that alkanes, alkenes, and aromatics were substantially underpredicted due to 370 

inadequate prediction of industrial areas with high VOCs emissions in the MEIC. Jinan 371 

and Zhengzhou experienced severe air pollution due to heavy industry and traffic 372 

(Zhang et al., 2017; Wang et al., 2022c). The simulated levels of TVOCs were 373 

substantially lower than the observed levels, with alkenes exhibiting an even greater 374 

inaccuracy, being more than 10 times lower in Jinan. At certain sites, the simulated 375 

TVOCs exceeded the measurements, including the CD-U, SH-U, WH-B, and FS sites. 376 

In CD-U, the predicted TVOCs were almost double the measured values, whereas they 377 

were underpredicted in CD-B. In Chengdu, VOCs emissions were dominated by 378 

LPG/NG usage and vehicle emissions in summer, with a higher proportion of low-379 

carbon alkanes compared to other cities in China (Xiong et al., 2021). It is most likely 380 

that VOC emissions in CD-U were overpredicted. This could also cause high biases of 381 

HCHO, which is mostly generated from secondary production in VOC photochemical 382 

reactions (Atkinson and Arey, 2003; Wu et al., 2023). In SH-U, characterized by a dense 383 

population, the simulation of alkenes, aromatics, and HCHO was approximately twice 384 

that of the measurements. This aligns complied with the report by Wang et al. (2020) 385 

stating that observation-constrained aromatic emissions were roughly half of the 386 

estimates provided by the MEIC in Shanghai, 2015. Peng et al. (2023) also observed 387 

inconsistencies between the trend of non-methane hydrocarbon emissions in Shanghai 388 

from 2009 to 2015 and the growth trend indicated by the MEIC (Li et al., 2019), 389 

suggesting the effectiveness of local pollution control measures. However, SH-B was 390 

situated in the easternmost part of Chongming Island, which had the minimal local 391 
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emissions at the 36 km grid resolution. This likely explains the differences observed 392 

between the urban background areas in Shanghai. In the cases of WH-B and FS, which 393 

demonstrated excellent model performance for VOCs, only the overprediction of 394 

aromatics was more pronounced. 395 

Heavy O3 pollution events, primarily limited by VOCs, have been frequently 396 

observed in the PRD region since its rapid development in the last century (Chan et al., 397 

2006; Shao et al., 2009; Li et al., 2014). In the PRD region, slightly lower TVOCs 398 

simulations were observed at most sites, primarily due to the underestimation of alkanes 399 

and alkenes, while aromatics and HCHO were overestimated. Furthermore, the 400 

differences in VOCs components among the cities in the PRD region could be attributed 401 

to local industry characteristics, and variations in prevention and control policies. For 402 

instance, although the TVOC concentration was well modelled in FS, the simulated 403 

ethene (ETHE) accounted for 35% of the alkenes, lower than the observed fraction of 404 

over 50%. In addition, the predicted HCHO (3.66 ppbv) was much higher than the 405 

observed value (0.42 ppbv). The predicted ETHE in ZH was higher (50% of alkenes) 406 

than the observation (20% of alkenes), while other cities exhibited similar ETHE 407 

percentages. Moreover, the proportion of ISOP in Guangzhou's alkenes was higher than 408 

that in other PRD cities, suggesting effective control of local anthropogenic alkene 409 

emissions, consistent with the findings of Zhao et al. (2022). 410 

4.2. Urban-background evaluation 411 

Differences in atmospheric VOCs among urban and background areas have been 412 

extensively demonstrated (Sillman, 1999; Shao et al., 2020). As depicted in Figure 6, 413 

we compared the average performance of the model for 18 urban sites and 10 414 

background sites. In urban areas, the predicted TVOCs concentration (23.76 ppbv) was 415 

lower than the observed concentration (32.46 ppbv), primarily due to the 416 
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underprediction of alkanes, alkenes, and alkynes. Predicted aromatics and HCHO 417 

exhibited higher proportions and concentrations compared to the observations. In the 418 

background areas, TVOCs were also underpredicted, with concentrations lower than 419 

those in urban areas, as indicated by both the observed and predicted values. Each of 420 

the five VOCs showed lower predictions, with alkanes exhibiting the most notable 421 

disparity, with a negative bias of 6.91 ppbv compared to the observation values. This 422 

suggested that the model underpredicted alkanes in urban areas, which were 423 

predominantly derived from the petrochemical industry or fuel evaporation (Wang et 424 

al., 2022a). The predicted proportions of alkanes, aromatics, and HCHO exhibited 425 

urban-background differences consistent with the observations, reflecting the 426 

characteristics of urban and background areas in the model. These differences were well 427 

represented in our horizontal grid resolution of only 36 km. Overall, the CMAQ model 428 

captured the characteristics of urban and background areas in different regions but 429 

underestimated the concentrations of certain individual VOC species. 430 

The ratios distinguished between urban and background areas are presented in 431 

Figure S3. The comparison revealed that the alkanes were more prominently 432 

underpredicted in the background area than in the urban area. Xylene (XYL), 1,2,4-433 

trimethylbenzene (B124), OLE1, OLE2, and PRPE were also underpredicted to a 434 

greater extent in the background area. This could be attributed to the scarcity of 435 

background sites or the model's underprediction of VOCs emissions in the background 436 

area. The model's performance in simulating ISOP, a BVOC, in urban areas was not as 437 

satisfactory as in the background areas, which was consistent with the findings of Ma 438 

et al. (2021) suggesting that MEGAN could underestimate the emissions from urban 439 

green spaces. APIN, an important monoterpene, originating from anthropogenic 440 

emissions from biomass burning and VCPs, could be either underpredicted or 441 
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disregarded (Wang et al., 2022b; Mcdonald et al., 2018), resulting in common 442 

underprediction with a median ratio of five in urban-background areas. Additionally, 443 

the simulated HCHO concentrations were higher in the urban areas. Overall, these 444 

results indicated that the model generally performed better for anthropogenic VOCs in 445 

the urban areas. However, there were still a few notable outliers and significant 446 

deviations for a majority of VOCs, particularly those with high chemical reactivity. 447 

These deviations will inevitably impact the model's calculation of photochemical 448 

reactions involved in O3 generation. 449 

4.3. Implications and suggestions 450 

Accurately predicting VOCs is crucial for O3 modelling. However, due to limited 451 

measurement data and uncertainties in emission inventories, accurately simulating the 452 

VOCs across China using CTMs remains challenging. 453 

Considerable efforts have been dedicated to the development of VOCs emission 454 

inventories in recent years (Li et al., 2019; An et al., 2021; Chang et al., 2022). However, 455 

our findings indicate a substantial variation in the model performance of VOCs across 456 

different regions and species. Therefore, the inclusion of accurate local emission factors, 457 

activity data, and source profiles is essential. Sha et al. (2021) compiled an integrated 458 

dataset of AVOCs source profiles in China, emphasizing the need for supplementary 459 

and timely updates to these profiles in the future. Apart from anthropogenic emissions, 460 

model resolution, chemical mechanisms, meteorological conditions, and BVOCs 461 

emissions also contribute to the uncertainty of VOCs modelling, thereby affecting the 462 

performance of O3 modelling (Zhang et al., 2021; Wang et al., 2021; Liu et al., 2022).  463 

High-resolution models require higher emission inventory resolution (Li et al., 464 

2022; An et al., 2021), which can improve simulation performance to a certain extent. 465 

Given the large scope of the model used in this study and the 0.25° × 0.25° horizontal 466 
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resolution of the MEIC inventory, a resolution of 36 km was chosen to balance 467 

computational efficiency and the preservation of information from the emission 468 

inventory, but inevitably results in deviation of the modelled VOCs and other elements. 469 

On the one hand, urban and background sites in close proximity may be assigned to the 470 

same grid in the model, as shown in Table S3, making it difficult to distinguish the 471 

differences in modelled VOCs between urban and background sites in cities such as 472 

Shijiazhuang, Jinan, Wuhan, and Guiyang; on the other hand, in real atmospheres, even 473 

with close proximity, the observed VOCs may differ greatly in concentration, which is 474 

challenging to capture in a coarse-resolution model. When applying coarse-resolution 475 

emission inventories, increasing the model resolution can enhance the spatial 476 

correlation between observed and predicted concentrations, but does not always 477 

improve simulation performance (Zheng et al., 2021). High-resolution models may 478 

introduce more emission mapping errors, which can be reduced by using coarse-479 

resolution model grids (Zheng et al., 2021). Therefore, addressing this issue requires 480 

not only finer model resolution but also improved emission inventories.  481 

The SAPRC07TIC chemical mechanism used in this study has been proven 482 

reliable in previous model applications (Qin et al., 2022), reducing the computational 483 

effort compared to the explicit MCM mechanism (Li et al., 2015) while retaining the 484 

chemical reactivity of various VOCs. However, the lumped VOCs species contain more 485 

VOCs species than those in corresponding observations. Therefore, if both the emission 486 

inventory and model are sufficiently accurate, the predicted values should theoretically 487 

be higher.  488 

Notably, this study revealed that the model overpredicted HCHO, while some 489 

previous studies tend to show underprediction (Luecken et al., 2018; Li et al., 2022b). 490 

The biases could result from uncertainties in VOC emissions, chemical mechanisms, 491 
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model resolution, etc. In general, HCHO is mainly contributed by oxidations of reactive 492 

VOCs such as ISOP, ETHE, PRPE, and toluene (TOLU) (Simpson et al., 2010; Wei et 493 

al., 2023; Wu et al., 2023). The overprediction of HCHO suggests that there may be 494 

excessive emissions of these VOCs or that the reaction rates of some VOCs with OH 495 

radicals were overpredicted in the model. Secondly, HCHO predictions could vary by 496 

25−40% with different chemical mechanisms, likely due to differences in hydrogen 497 

oxide radicals (HOx) and VOCs grouping (Knote et al., 2015; Luecken et al., 2018). 498 

Lastly, finer model resolution could improve the representation of HCHO, especially at 499 

grids where HCHO was substantially affected by point sources (e.g., petrochemical 500 

facilities), as has been reported in (Parrish et al., 2012). Considering HCHO is an 501 

important source of HOx radicals and drives ozone production (Wittrock et al., 2006; 502 

Li et al., 2021a), more investigations are warranted to improve the model performance 503 

of HCHO in the future.  504 

Meteorology bias also contributed to some bias of the VOCs predictions. We added 505 

evaluation of the meteorology predictions in this study, and the results are shown in 506 

Table S9 and S10. The results are consistent with other studies in China (Mao et al., 507 

2022; Wang et al., 2021). It is observed that temperature is overpredicted at most sites, 508 

while RH is mostly underpredicted. The combination of high temperature and low RH 509 

facilitates the consumption of VOCs through photochemical reactions, which may 510 

explain the tendency of our modelled VOCs to be underestimated. But we believe it is 511 

insufficient to account for the underestimation of low-reactivity VOC species (mainly 512 

alkanes). Furthermore, the modelled wind speeds slightly exceed the observations, 513 

which may also contribute to VOCs underprediction (Table S10). While the bias in 514 

meteorological conditions contributes to the underestimation of modelled VOCs, the 515 

underestimated VOCs emissions is the key factor for the VOCs underprediction across 516 
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most of the cities. 517 

In this study, the adjustment of VOCs emissions resulted in increased predicted 518 

emission levels, subsequently leading to higher O3 predictions. However, these 519 

adjustments are simplistic and fail to account for regional variations in VOCs biases. 520 

The accuracy of VOCs measurement data is also crucial. Therefore, there is a need to 521 

promote the establishment of a national O3 precursor monitoring network and develop 522 

a standardized framework with quality control systems. This would facilitate the 523 

comparability of VOCs measurements between regions, thereby supporting related 524 

research and the implementation of collaborative regional prevention and control 525 

measures. 526 

5. Conclusion 527 

In this study, we conducted a comprehensive evaluation of the simulation 528 

performance of VOCs using the CMAQ model and investigated the influence of 529 

predicted VOCs on O3 formation. The inclusion of summertime-observed VOCs data 530 

from the ATMSYC project for 28 sites in China enhanced the spatiotemporal 531 

comparability of our model evaluation. 532 

During the study period, TVOCs were found to be underpredicted by 14.1 ± 13.2 533 

ppbv at 24 sites, except for SH-U, CD-U, WH-B, and FS. Despite some sites exhibiting 534 

similar TVOCs concentrations, differences still persisted in their specific components. 535 

After considering the uncertainties of the MEIC inventory and relevant factors, we 536 

found several sites with substantial inaccuracies, such as Jinan, Shijiazhuang, Lanzhou, 537 

Chengdu, and Guiyang. The model's performance in predicting TVOCs and their 538 

components varied across regions, with better predictions observed in urban areas 539 

compared to background areas. 540 

Alkanes, alkenes, ARO2MN, and alkynes are generally underpredicted, with ratios 541 
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of 0.53 ± 0.38, 0.51 ± 0.48, 0.31 ± 0.38, and 0.41 ± 0.47, respectively, except for HCHO 542 

which is overpredicted, with the ratio of 1.21 ± 1.61. In urban areas, the CMAQ model 543 

exhibited underpredictions for OLE1, ALK2, ARO2MN, PRPE, ACYE, and NOx, 544 

ranging from 2.0 to 4.6 times, while overpredicting BENZ by 2.75 times. For sensitivity 545 

experiments, their emissions were adjusted and their impact on O3 and VOCs was 546 

evaluated. These adjustments improved the model's VOCs performance, resulting in a 547 

change in the ratio of total VOCs to 0.86 ± 0.47. However, the increased VOCs 548 

contributed to higher reactivity, exacerbating O3 overpredictions by 0.62% to 6.27% 549 

across the sites. Consequently, RIR values were calculated to depict the varying 550 

reactivities of VOCs in different regions, with OLE1, PRPE, and ARO2MN 551 

contributing the highest RIR values during the study period. 552 

Due to the uncertainties present in current VOCs emission inventories, notable 553 

efforts are needed to enhance the development and updating of emission inventories, 554 

particularly in regions characterized by developed industries, evolving energy 555 

structures, and relatively underdeveloped conditions. It is only through improving the 556 

accuracy of VOCs emission inventories that we can ensure reliable model performance 557 

in predicting O3 levels, thereby establishing a solid foundation for addressing the 558 

escalating issue of O3 pollution. 559 
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Table 1. Mean, median, maximum (max), minimum (min), and standard deviation (std) 816 

of the Ratios and differences (Diff) for five VOCs groups and TVOCs at 28 sites 817 

  Alkanes Alkenes Aromatics 
ARO2MN 

(Aromatics) 
Alkynes HCHO TVOCs 

Ratio(pre/obs) 

mean 0.59  0.60  1.33  0.40  0.55  1.66  0.70  

median 0.53  0.51  1.30  0.31  0.41  1.21  0.74  

max 1.87  2.46  3.29  1.96  2.36  8.70  1.90  

min 0.13  0.09  0.10  0.05  0.09  0.25  0.15  

std 0.38  0.48  0.89  0.38  0.47  1.61  0.40  

Diff(pre-obs) 

mean -6.18  -4.02  0.42  -0.28  -1.16  0.16  -10.78  

median -5.65  -2.56  0.83  -0.25  -1.04  0.49  -7.57  

max 14.12  3.50  6.09  0.24  0.87  5.57  29.53  

min -19.40  -15.50  -8.18  -0.74  -2.64  -8.90  -50.61  

std 6.81  4.69  3.47  0.20  0.97  2.99  16.11  

 818 

819 
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Table 2. New cases of adjusting emission coefficient under observation constraints 820 

Cases in CMAQ 
Changing species 

in MEIC 

Adjusted 

coefficient 

base case -- -- 

case_NOx NO, NO2 1.5 

case _ALK2 ALK2 4.6 

case_ARO2MN ARO2MN 3.2 

case_BENZ BENZ 0.4 

case_OLE1 OLE1 2.0 

case_PRPE PRPE 2.1 

case_ACYE ACYE 2.8 

case_all all of the above VOCs 

 821 

 822 

Figure 1. The CMAQ modelling domain cover China and the surrounding countries and 823 

regions in this study, including 28 blue dots that represent the positions of VOCs 824 
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sampling sites. We divided China into seven regions according to the geographical 825 

location of different provinces, which comprise the following sites: NCP: BJ-B, BJ-U, 826 

SJZ-B, SJZ-U, JN-B, JN-U; Northwest: LZ-B, LZ-U; Northeast (no observation site); 827 

YRD: SH-B, SH-U; Central China: ZZ-B, ZZ-U, WH-B, WH-U; Southwest: CD-B, 828 

CD-U, GY-B, GY-U; South China: Most of the sites are concentrated in PRD region 829 

(shown in the enlarged subgraph in the lower left): GZ-B, GZ-U, SZ, HZ, DG, FS, JM, 830 

ZQ, ZS, ZH. 831 

 832 

Figure 2. Model performance on MDA8 O3 and NO2 at 28 sites in different regions 833 

from June 6th to August 24th in 2018. The blue and red lines denote performance 834 

criteria (NMB: normalized mean bias, NME: normalized mean error) for MDA8 O3 835 

suggested by Emery et al. (2017) and the symbols in different colors distinguish 836 

different regions of China.837 
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 838 

Figure 3. Comparison of predicted and observed VOCs at 28 sites during the study 839 

period. (a) The predicted (bars outlined in blue) and observed (bars outlined in red) 840 

concentrations at each site; (b) same as (a) but with contributions of VOC groups. 841 
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 842 

Figure 4. The ratios of prediction-to-observation (pre/obs) for O3, NO2 and individual 843 

VOCs at 28 sites (including urban and background). The horizontal midlines in boxes 844 

represent the median values and the hollow squares depict the mean values. The boxes 845 

represent the ratios ranging from the lower and upper quartile for individual VOCs at 846 

all sites, and the whiskers represent the 1.5 Interquartile Range (1.5 IQR). 847 

 848 
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 849 

Figure 5. Predicted concentration of (a) O3, (b) NO2 and (c-h) six VOCs in the base case 850 

from June 6th to August 24th in 2018. 851 

 852 
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 853 

Figure 6. Observed and predicted contributions of different VOCs to the total VOC 854 

concentrations at (a and c) urban sites and (b and d) background sites.  855 


