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Abstract. We derived scaling relationships for different seismic energy metrics for earthquakes around

the globe with  MW > 6.0 from 1990 to 2022. The seismic energy estimations were derived with two

methodologies, the first  based on the velocity flux integration and the second based on finite-fault

models. In the first case, we analyzed 3331 reported seismic energies derived by integrating far-field

waveforms. In the latter methodology, we used the total moment rate functions and the approximation

of the overdamped dynamics to quantify seismic energy from 231 finite-fault models (Emrt and EO, EU,

respectively). Both methodologies provide compatible energy estimates. The radiated seismic energies

estimated from the slip models and integration of velocity records are also compared for different types

of focal mechanisms (SS, N-SS, R-SS, SS-N, SS-R, N, R), and then used to derive converting scaling

relations among the different energy types. Additionally, the behavior of radiated seismic energy (ER),

energy-to-moment ratio (ER/M0), and apparent stress (τα) for different rupture types at a global scale is

examined by considering depth variations of mechanical properties, such as seismic velocities and rock

densities, and rigidities. For this purpose, we used a 1-D global velocity model. The  ER/M0 ratio is,

based on statistical t-tests, largest for strike-slip earthquakes, followed by normal-faulting events, with

the lowest values for reverse earthquakes for hypocentral depths < 90 km. Not enough data is available

for statistical tests at deeper intervals except for the 90 to 120 km range, where we can satisfactorily

conclude that ER/M0 for R-SS and SS-R types is larger than for N type of faulting, which also conforms
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to the previous assumption. In agreement with previous studies, our results exhibit a robust variation of

τα  with  the  focal  mechanism.  Regarding the  behavior  of  τα with  depth,  our  results  agree  with  the

existence of a bimodal distribution with two depth intervals where the apparent stress is maximum for

normal-faulting earthquakes. At depths in the range of 180 - 240 km, τα for reverse earthquakes is

higher than for normal-faulting events. We find the trend EU > Emrt > EO for all mechanism types based

on  statistical  t-tests.  Finite-fault  energy  estimations  also  support  focal  mechanism  dependence  of

apparent stress, but only for shallow earthquakes (Z < 30 km). The slip distribution population used

was  too  small  to  conclude  that  finite-fault  energy  estimations  support  the  dependence  of  average

apparent stress on rupture type at different depth intervals.

1 Introduction

The  radiated  seismic  energy  (ER)  is  a  crucial  source  parameter  that  accounts  for  the  size  of  an

earthquake. The seismic energy is also a valuable parameter for understanding the dynamics of the

rupture, especially in the case of large and complex earthquake sources (Venkataraman and Kanamori,

2004a; Convers and Newman, 2011). The radiated seismic energy is considered the main contribution

to the total seismic energy during the failure process (the sum of radiated energy, fracture energy, and

thermal energy) (Boatwright and Choy, 1986). The most common approach to calculating ER requires

the integration of radiated energy flux in velocity-squared seismograms (Haskell, 1964; Thatcher and

Hanks, 1973; Boatwright, 1980; Kanamori et al., 1993; Boatwright and Choy, 1986; Singh and Ordaz,

1994; Choy and Boatwright, 1995; Pérez-Campos and Beroza, 2001). In order to recover the ER of an

event,  the  seismic  records  have  to  be  corrected  for  propagation  path  and  source  effects  such  as

attenuation,  site  effects,  geometric  spreading,  radiation  pattern,  and directivity.  Information  on the

Earth’s structure is required to calculate seismic energy since  ER needs to be measured over a broad

range of distances. Inaccurate information on the Earth’s structure results in uncertainties in energy
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estimations,  particularly  at  higher  frequencies  (Venkataraman and  Kanamori,  2004a).  Furthermore,

previous studies showed that estimates of ER based on regional and teleseismic data might differ by as

much as a factor of 10 for the same earthquake (Singh and Ordaz, 1994).

Choy and Boatwright (1995) reported a focal mechanism dependence of ER. Later, this observation was

confirmed by Pérez-Campos and Beroza (2001) but showed that the mechanism dependence is not as

strong as reported previously. The degree of dependence of seismic energy on the focal mechanism is

affected by several factors that bias the estimate (e.g., uncertainties in the corner frequency, geometrical

spreading,  hypocentral  depth,  and  focal  mechanism)  (Pérez-Campos  and  Beroza,  2001).  This

dependence can be expressed in terms of the apparent stress (τα = μ ER/M0, where μ is the rigidity, Wyss

and Brune, 1968), energy-to-moment ratio (ER/M0), or slowness parameter (Θ = log10(ER/M0), Newman

and Okal, 1998). Previous studies showed that strike-slip events have the highest apparent stress (τ α =

0.70 Mpa), followed by normal-faulting and thrust earthquakes with 0.25 and 0.15 MPa, respectively

(Pérez-Campos and Beroza, 2001). On the other hand, some authors have observed that the ER/M0 ratio

is different for different types of earthquakes, particularly in subduction zones. For example, tsunami

earthquakes have the smallest ER/M0 ratio (7 x 10-7 – 3 X 10-6), interplate and downdip events have a

slightly larger ratio (5 x 10-6 – 2 X 10-5), and intraplate and deep earthquakes have ER/M0 ratios similar

to crustal earthquakes (2 x 10-5 – 3 X 10-4) (Venkataraman and Kanamori, 2004a). The origin of the

focal mechanism dependence is unclear, but it has been proposed that the stress drop is the cause of this

dependence of the radiated seismic energy on the type of faulting (Pérez-Campos and Beroza, 2001).

Other approaches have also been used to calculate seismic energy, such as those based on finite-fault

models (Ide, 2002; Venkataraman and Kanamori, 2004b; Senatorski, 2014). Ide (2002) calculated the

radiated energy using an expression based on slip and stress on the fault plane. Energy estimates from
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this method tend to be smaller by about a factor of 3 compared with the integrating far-field waveforms

method. Venkataraman and Kanamori (2004b) used a formula for the energy radiated seismically from

a finite source as a function of the time-dependent seismic moment  M0(t) and the properties of the

medium. Here, the moment rate function derived from kinematic inversion is used to calculate the ER.

On the other hand, Senatorski (2014) used an overdamped dynamics approximation for estimating the

radiated seismic energy. The accuracy of this method depends on the rupture history. This approach

provides two energy parameters: 1) The finite-fault overdamped dynamics approximation (EO) and 2)

the  energy  obtained  from the  averaged  finite-fault  model  (EU).  In  both  cases,  the  seismic  energy

depends on the slip, rupture time, and seismic moment. According to Senatorski (2014), in most cases,

the radiated seismic energy estimated by integrating digital seismic waveforms (ER) is in the following

range:  EU <  ER <  EO.  Several  seismic  energy observations  have  been calculated  and  compiled  in

catalogs in the last two decades. In this study, we reexamine the possible dependence of seismic energy

on the focal mechanism with an additional classification based on the type of rupture, considering pure

and oblique mechanisms separately. We also investigate the potential influence of focal mechanisms on

the derived estimates of radiated seismic energy from finite-fault models. Additionally, we explored the

relationship between depth and the variables  ER/M0 and τα. Furthermore, we established conversion

relationships  between  various  types  of  energy  estimates.  These  findings  play   a  crucial  role  in

enhancing our understanding of the rupture processes associated with different types of earthquakes.

2 Data and methods

2.1 Data

We retrieved and classified focal mechanism solutions from the global centroid-moment-tensor catalog

(gCMT) (Ekström et al., 2012) using a ternary diagram based on the Kaverina et al. (1996) projection.

This approximation classifies focal mechanism into seven classes of earthquakes: 1) normal (N); 2)
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normal – strike-slip (N-SS); 3) strike-slip – normal (SS-N); 4) strike-slip (SS); 5) strike-slip – reverse

(SS-R);  6)  reverse  – strike-slip  (R-SS);  and 7)  reverse (R) (Fig.  1).  For  implementing  fault-plane

classification, we used the software FMC developed by Álvarez-Gómez (2019). Additionally, we used

radiated seismic energy data and finite-fault models reported by the Incorporated Research Institutions

for  Seismology  (IRIS)  and  the  United  States  Geological  Survey  (USGS),  respectively.  To  have

homogeneity  in  the  analyzed data,  we do not  include  seismic  energy observations  and finite-fault

models from other sources to avoid bias. IRIS reported automated ER solutions for global earthquakes

with an initial magnitude above  MW 6.0. We studied 3331 events worldwide during the period April

1990 – October  2022 (Fig.  2).  Results  include  broadband energy solution  (frequency band in  the

interval of 0.5 – 70 s) from vertical-component seismograms recorded at teleseismic distances (25° ≤ Δ

≤ 80°) (Convers and Newman, 2011; Hutko et al., 2017). Finite-fault models are determined with a

kinematic inversion based on the wavelet domain (Ji et al., 2002). The procedure jointly inverts body

and surface waves on a fault plane aligned with focal mechanism estimates from USGS W-phase or

gCMT solutions. We used 231 finite-fault models from 1990 to 2022 (Fig. 2). After classifying the

events, we determined scaling relationships for the reported seismic energies and analyzed the behavior

of the  ER/M0 ratio and τα. The seismic energy was also determined using finite-fault models with the

techniques described in the following section to know if there is a difference in estimates related to the

faulting  type.  Seismic  velocities  and  rock  densities  were  taken  from the  ak135-F  velocity  model

(Kennett et al., 1995; Montagner and Kennett, 1995); rigidity was calculated as μ = ρβ2.

2.2 Methods

2.2.1 Radiated seismic energy derived from seismic waves

In the following, we describe the procedure to calculate ER implemented by IRIS and used as input to

calculate  apparent  stress,  energy-to-moment,  and  scaling  relationships.  Reported  radiated  seismic
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energies from IRIS were calculated with the method of Boatwright and Choy (1986) implemented by

Convers  and  Newman  (2011).  Using  velocity  seismograms  of  the  P-wave  group  (consisting  of

P+pP+sP phases), the energy is calculated at teleseismic distances. The seismic energy flux from the P-

wave group (εgP) is calculated from the velocity spectrum ( u̇ (ω) ) as:

ε gP=
ρ (z ) α ( z )

π
∫
0

∞

|u̇ ( ω)|
2
exp (ωt α

* )dω ,                                                                                             (1)

where ρ(z) and α(z) are the density and P-wave velocity at the source depth (z), and the exponential

term t α
* corrects for anelastic attenuation. Subsequently, the energy flux is corrected for geometrical

spreading, radiation pattern, and partitioning between P and S waves. The radiated seismic energy at a

given station is calculated as:

ER
P
=4 π ⟨ FP ⟩

2( RP

F gP )
2

εgP ,                                                                                                                   (2)

where ⟨ F P ⟩
2

is the mean radiation pattern coefficient for  P-waves,  RP is the geometrical spreading

factor of P-waves, FgP is the generalized radiation pattern coefficient for the P-wave group.

( FgP )
2
=( F p )

2
+( PP F pP )

2
+

2α ( z )

3β ( z )
q (CSP F sP)

2
,                                                                                 (3)

where β(z) is the S-wave velocity at the source depth, C is the correction for wavefront sphericity, Fp,

FpP,  and  FsP are  radiation  pattern coefficients  for  the  P,  pP,  and  sP waves,  respectively  (Aki  and
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Richards, 1980). The parameter q represents the relative partitioning between S and P waves (using q =

15.6, Boatwright and Fletcher, 1984). PP and SP are the reflection coefficients for the pP and sP wave

phases at the free surface. Finally, the radiated seismic energy obtained from the  P-wave or  S-wave

groups can be estimated with the formulae  ER = (1 +  q)ER
P = (1 + 1/q)ER

S. For each event, the final

assigned seismic energy is the average for all the stations used.

2.2.2 Radiated energy estimations from finite-fault slip models

Senatorski  (2014) introduced a  method to  estimate energy parameters  derived from kinematic  slip

models. In this method, the radiated seismic energy is expressed in terms of slip velocities using an

overdamped  dynamics  approximation  (Senatorski,  1994;  1995).  The  method  provides  two  energy

parameters: 1) the overdamped dynamics energy approximation (EO) and 2) the uniform model energy

estimation (EU). The accuracy of the overdamped dynamics solutions depends on the rupture history.

Senatorski (2014) showed that in most cases, EU < ER < EO. The energy parameter EO is calculated as:

EO=
1

2 β ( z )
∑

i

M 0
i V i

,                                                                                                                        (4)

where β(z) is the shear wave velocity at the source depth and M 0
i is the seismic moment released at

the i-th fault segment. Vi is given by V i
=Di

/ tR
i , and Di, and ti

R are the slips and risetimes at the i-th

segment, respectively. The averaged finite-fault model estimation assumes uniform slip ( D̄ ), and

slip velocity ( V=D̄ /T ), so

EU=
1

2 β ( z )
M 0V ,                                                                                                                               (5)
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where M0 is the total seismic moment, and T is the rupture duration.

2.2.3 Radiated energy estimates based on moment rate functions of slip models

The  radiated  seismic  energy  can  also  be  calculated  through  moment  rate  functions  of  finite-fault

models  (Haskell,  1964;  Aki  and  Richards,  1980;  Rudnicki  and  Freud,  1981;  Venkataraman  and

Kanamori, 2004b). By ignoring the contribution from P-waves, which accounts for less than 5 % of the

total radiated energy, the radiated energy derived from moment rate functions (Emrt) can be written as

(Venkataraman and Kanamori, 2004b):

Emrt=
1

10 πρ ( z ) β5 ( z )
∫
0

∞

|M̈ ( t )0|
2
dt ,

where ρ(z) and β(z) are the density and S-wave velocity, respectively, at the source depth, and M̈ ( t )0

is the derivative of the moment rate function ( Ṁ 0 (t ) ) estimated from a finite-fault model.

3 Results

We used different methods to quantify the radiated seismic energy. Table 1 shows the calculated scaling

relationships for ER for each energy method and type of faulting. Figs. 3, 4, 5, and 6 display the energy

scaling  relations  derived  from  the  velocity  flux  integration  (ER),  overdamped  dynamics  energy

approximation (EO),  the uniform model energy estimation (EU),  and moment rate function methods

(Emrt),  respectively.  Our  results  show  some  disparities  in  the  calculated  radiated  seismic  energies

obtained with different techniques or data types.  After carrying out rigorous statistical  t-tests, when

comparing ER with the other methods to estimate seismic energy, we find that EO estimates are always
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lower than  Emrt and  EU, while  EU’s estimates are the highest (Tables S1 to S3). The lowest average

difference factors are for EO estimates, ranging from 0.28 to 0.77 (Fig. 7). Conversely, mean difference

factors can be as high as 20 for EU estimations (Fig. 8). Average difference factors exhibit intermediate

values for Emrt calculations, fluctuating from 1.53 to 3.27 (Fig. 9). These relations stand regardless of

the rupture type (Tables S1 to S3, and Figs. 7 to 9). Conversion relationships between ER and EO, EU,

and Emrt are presented in Table 2, which may be helpful when considering either estimation method.

In terms of the ER/M0 ratio, our results show that SS, SS-N, and SS-R events have the highest mean

values (3.06 x 10-5 < ER/M0 < 3.75 x 10-5) (Fig. 10). R-SS earthquakes have a slightly lower mean ratio

(ER/M0 = 2.87 x 10-5) (Fig. 10). Average ER/M0 ratio fluctuates from 2.31 x 10-5 to 2.37 x 10-5 for  N-SS

and N events, respectively (Fig. 10). On the other hand, the lowest values of  ER/M0  are related to R

earthquakes (ER/M0 = 1.70 x 10-5) (Fig. 10). Statistical tests confirm this trend since we find that, in

general, and for data where there is a significant difference: SS, N-SS, R-SS, SS-N, SS-R > N > R

(Tables S4 to S10). The same trend is repeated for events in the Z < 30 km, 30 < Z < 60 km, and 60 < Z

< 90 km depth ranges. For the 90 < Z < 120 km depth range, we can only confidently state that RSS >

N and SSR > N due to a lack of data. Most of the rupture types present a differentiated behavior of

ER/M0 in terms of depth with the existence of two clusters, above and below about 300 km depth (Fig.

11).  In  contrast,  strike-slip  earthquakes  demonstrate  a  distinct  pattern,  with  the  majority  of  ER/M0

observations concentrated at depths shallower than 50 km (Fig. 11). Furthermore, at shallow depths, the

radiated energy-to-moment ratio shows large variability compared to observations of deep earthquakes

(Fig. 11).

Previous studies have provided evidence that mean apparent stress estimates can be obtained using

regression models, specifically through the equation log10  ER = log10 M0+b with τα = μ10b, supporting
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the focal mechanism dependence of ER (Choy and Boatwright, 1995; Pérez-Campos and Beroza, 2001).

To test  that  this  dependence  persists  with  depth,  we conducted  regressions  every  30  km of  depth

considering variations of μ and at least ten observations. First, we evaluated reported seismic energy

observations based on the velocity flux integration method (Table 3). Considering the distinct statistical

differences in the ER/M0 ratios across various rupture types, it can be justified that the τα results exhibit

a similar pattern, as they are derived through multiplication with a consistent scaling factor determined

by the value of μ. Thus, our results agree with previous studies where τα follows the following behavior

(R-SS, R) < (N-SS, N) < (SS, SS-N, SS-R) in the range of 0 – 180 km (Table 3). Conversely, τα is

higher for R events than for N earthquakes at depths from 180 to 240 km (Table 3). At depths higher

than  240  km,  only  N  events  were  obtained  under  the  assumptions  considered.  In  Table  3,  we

summarized results  for all  the depth intervals showing the mean values and their  95% log-normal

geometric spread.

Our results also showed that N and N-SS events exhibit a bimodal distribution of τα  with depth (Fig.

12). The most significant values of τα occur in two depth ranges of approximately 40 – 60 km and 580 –

650 km, where maximum apparent stresses approach 8 and 16 MPa, respectively (Fig. 12). N-SS, R, R-

SS, SS-N, and SS-R events also showed two maximum values of τα ranging from 7 to 11 MPa and 9 to

15 MPa for shallow and deep earthquakes, respectively (Fig. 12). For SS events, there is only one depth

range over which τα shows maxima. In this case, the highest values of τα are found in the higher depth

range from 50 to 100 km (τα  ~ 12 MPa) (Fig.  12). On the other hand, the average apparent stress

estimates based on the finite-fault models exhibit a similar dependence on the focal mechanism than

those obtained with the velocity flux integration method at shallow depths (Z < 30 km) (Table 4).

Regressions  showed  that  τα follows  the  following  behavior  R  <  N <  (SS,  SS-R)  for  EU and  Emrt

estimations (Table 4). In contrast,  EO showed no clear dependence of τα with the focal mechanism
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(Table 4). Due to the constraint of at least ten observations (slip distributions) for each 30 km depth

interval, we could not analyze the dependence of τα on the type of faulting at a deeper depth.

4 Discussion

In this study, we analyzed radiated seismic energy and parameters that measure the amount of energy

per unit of the moment, such as the apparent stress and the energy-to-moment ratio (also known as

scaled energy or apparent strain), considering their respective particularities. The advantage of using τα

is that it can be related to other stress processes associated with the seismic rupture, such as the stress

drop. On the other hand, many finite-fault models of the spatiotemporal slip history for moderate and

large  earthquakes  exist.  From these models,  important  information can be extracted,  such as  fault

dimensions (Mai and Beroza, 2000), static stress drop (Ripperger and Mai, 2004), or radiated seismic

energy (Ide, 2002; Senatorski, 2014). When using finite-fault models to determine ER, it is necessary to

consider that they usually explain low-frequency seismic waves. However, the higher-frequency wave

contribution is necessary for calculating the total radiated seismic energy. This issue brings differences

among finite-fault energy estimates and those from integrating far-field waveforms.

Furthermore, finite-fault seismic energy estimations are strongly affected by event location, the number

of available data, faulting parameterization, and velocity structure. The degree of discrepancy between

the finite-fault energy estimates (Emrt, EO, and EU) with respect to the velocity flux integration method

(ER) is variable among the different types of seismic energy. For example, the moment rate functions

are relatively robustly determined by teleseismic data, while rupture dimensions are strongly affected

by model parameters (Ye et al., 2016). This may explain why the average difference factor (ER/EU) is

greater than the  ER/Emrt factor (Figs. 8 and 9). Another source of discrepancies in finite-fault energy

calculations comes from the spatial and temporal smoothing in resolving the kinematic slip distribution
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and the rupture velocity assigned. Errors associated with the assumptions are tough to quantify as they

propagate into the energy estimates in complex ways.

Our results agree with previous estimates of EO and EU, confirming that ER is in the range of EU - EO for

most earthquakes. The overdamping approximation (EO) can be used to characterize the heterogeneity

of the rupture process. Senatorski (2014) states that if  the ratio  EO/ER is < 0.4, the rupture can be

represented as a simple dislocation rupture. EO/ER > 1 is expected in the case of heterogeneous rupture

processes. On the other hand, some of the suggested explanations for the observation that EO > ER are:

1) the finite-fault slip models require refinement; 2) the seismic energy estimations require correction

for  directivity,  modified  attenuation  factors,  or  sites  effects;  and  3)  some  other  factors  are  not

considered in the calculations such as the fact that the energy dissipation is not taken into account by

the planar faults (Senatorski, 2014).

The radiated seismic energy scaled by seismic moment is an essential characterization of earthquake

dynamics. The low ER/M0 of reverse events is associated with tsunami earthquakes being compatible

with the results of previous studies (Newman and Okal, 1998; Venkataraman and Kanamori, 2004a;

Convers and Newman, 2011; Ye et al., 2016). Our results showed that ER/M0 has a large scatter from 6

x 10-7 to 2 x 10-4 for all the rupture types. However, no evident magnitude dependence can be asserted

(Fig.  10).  One of the reasons for the dispersion of  ER/M0 is  that  it  depends on many seismogenic

properties of the source region (Fig.  10). As a consequence,  ER/M0 varies significantly in different

tectonic environments and deep conditions such as pressure and temperature (Fig. 11). Even within the

same tectonic environment, ER/M0 has significant variations, as has been reported by Plata-Martínez et

al.  (2019)  in  the  Middle  American  Trench,  where  variations  in  ER/M0 are  associated  with

heterogeneities along the trench, such as asperities. The different types of earthquakes have differences
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in the frequency content of the seismic energy released.

Venkataraman and Kanamori (2004a) reported that  ER/M0 is in the range of 5 x 10-6 – 2 x 10-5 for

interplate and downdip earthquakes, which are mainly consistent with reverse and normal faulting. Our

results show that the average values of  ER/M0 for R and N events are 1.70 x 10-5 and 2.37 x 10-5,

respectively, and both values are within the interval defined by Venkataraman and Kanamori (2004a).

The ER/M0 ratio for deep earthquakes varies from 2.0 x 10-5 to 3.0 x 10-4 (Venkataraman and Kanamori,

2004a). We found that ER/M0 for deep earthquakes of all types of rupture is in the interval of 2 x 10-6 –

2 x 10-4 but with a predominance of 1.0 x 10-5 > ER/M0 (Fig. 11). Despite the ER/M0 scatter, our results

depict a general trend for the average values of ER/M0, which can be expressed as R < (N, N-SS, R-SS)

< (SS, SS-R, SS-N) (Fig. 10), a similar tendency was reported by Convers and Newman (2011) where

ER/M0 follows R < N < SS. 

Our results support ER's previously reported focal mechanism dependence (Choy and Boatwright, 1995;

Pérez-Campos and Beroza, 2001; Convers and Newman, 2011) but narrow the range. Examination of

mean τα with various focal mechanisms and at different depths has been done for different earthquake

sizes and tectonic settings. We identified the largest values of apparent stress for strike-slip events,

intermediate  values  for  normal-faulting  events,  and lowest  for  reverse-faulting events  in  the  depth

interval of 0 – 180 km (Table 3). On the other hand, our results showed that at depths between 180 and

240 km, τα for reverse earthquakes is higher than for normal-faulting events. This can be explained; for

example, deep reverse earthquakes in subduction zones occur in the slab's lower part, where they are

subjected  to  significantly  large  compressive  stresses.  A  precise  characterization  of  the  depth

dependence of τα remains unclear at depths greater than 240 km. In Table 3, we present and compare

our results for τα, supporting the observation of the dependence of ER on the type of faulting. The origin
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of this  focal  dependence is  unclear,  but  it  has  been raised  that  it  reflects  a  mechanism-dependent

difference in stress drop (Pérez-Campos and Beroza, 2001). It can be highlighted with an alternative

definition  for  the  apparent  stress,  assuming  that  the  dynamic  and  static  stress  drops  are  roughly

equivalent. Then τα can be expressed as τα = (ηR Δσ)/2, where ηR is the seismic efficiency, and Δσ is the

stress drop (Convers and Newman, 2011). Allmann and Shearer (2009) provided additional information

to support the role of stress drop on the dependency of apparent stress with the type of faulting. They

found a dependence of median stress drop on the focal mechanism with a factor of 3–5 times higher

stress drops for strike-slip events and two times higher stress drops for intraplate events compared to

interplate events.

Nevertheless,  other  interpretations  of  the  apparent  stress  variation  are  related  to  the  mechanical

properties  of  the  rock,  such  as  the  reduction  of  rigidity  in  shallow  subduction  environments  or

increment in lithostatic pressure if no change in regional rigidity is assumed (Convers and Newman,

2011). The variation of such estimates concerning expected spatial variations in rigidity is an issue that

still needs attention. Choy and Kirby (2004) also suggested that τα can be related to fault maturity. For

example, lower stress drops are needed to reach rupture in mature faults. On the contrary, earthquakes

generated at immature faults (low cumulative displacement) radiate more energy per unit of seismic

moment. Regarding the behavior of τα with depth, our results agree with the existence of a bimodal

distribution  with  two  depth  intervals  where  the  apparent  stress  is  maximum  for  normal-faulting

earthquakes, as reported by Choy and Kirby (2004). We also found that almost all types of faulting (SS-

N, SS-R, R-SS, R, N-SS, and N) show two depth ranges where the stress is maximum, but in the case

of  normal-faulting  earthquakes,  it  is  very  well  defined.  On  the  other  hand,  almost  all  strike-slip

earthquakes  show  a  single  interval  of  depths  where  the  apparent  stress  is  maximum  (Fig.  12).

Earthquakes with an oblique focal mechanism show a mixed behavior of τα, as is the case of the SS-N
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and SS-R events that present similar characteristics to normal and reverse earthquakes in terms of the

depth distribution of τα.

In terms of the spatial distribution of ER and τα (Figs. S1 to S14), the highest values of τα for N events

are located at the border between the Nazca and South American plates, the Eurasian and Philippine

plates, the Indo-Australian and Pacific plates, the Philippine and Pacific plates, and the Pacific and

North American plates (in the Alaska region) (Fig. S1). Regarding the seismic energy of earthquakes,

the regions where the most energetic earthquakes have occurred concur with the aforementioned areas,

with the addition of the border between the Cocos and North American plates (Fig. S2). The high τα

normal-faulting events are associated with regions of intense deformation, such as a sharp slab bending

or zones where opposing slabs collide (Choy and Kirby, 2004). At shallow depths (Z < 35 km), high-τα

events are related to the beginning of the subduction beneath the overriding plate (Choy and Kirby,

2004). Our results support the observation that the average apparent stress of intraslab normal-faulting

events is considerably higher than the average τα of interplate thrust-faulting earthquakes reported by

Choy and Kirby (2004) (Figs. S1 and S5).

In the case of R earthquakes,  the highest values of  ER and τα are in the limit  of the Eurasian and

Philippine plates, the Nazca and South American plates, the Philippine and Pacific plates, the Indo-

Australian  and  Pacific  plates,  and  the  Eurasian  and  Indo-Australian  plates  (Figs.  S5  and  S6).  In

contrast, strike-slip events with the highest values of ER and τα are on the border between the African

and Eurasian plates (in Türkiye), the Eurasian and Indo-Australian plates, the Philippine and  Eurasian

plates, the Indo-Australian and Pacific plates (in New Zealand), and the Caribbean and South American

plates (Figs.  S13 and S14). We have found that several SS earthquakes are located in the oceanic

lithosphere at depths < 50 km. Many of the SS events with high τα are located near the plate-boundary
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triple junctions where there are high rates of intraplate deformation, as previously reported by Choy

and McGarr (2002).

Finally,  when  using  seismic  energy  estimates  based  on  finite-fault  models  (EO and  Emrt),  a  clear

dependence of the average apparent stress with the focal mechanism is observed at shallow depths (Z <

30 km) (Table 4). For example, using EU and Emrt, the average τα follows R < N < (SS-R, SS). If EO is

used, the mean apparent stress exhibits similar values for SS-R, N, and R events (Table 4). However,

the lack of a significant number of observations for some types of earthquakes makes it challenging to

evaluate  the  use  of  finite-fault  models  to  determine  apparent  stress.  Despite  these  limitations,  the

methods used to estimate the seismic energy based on finite-fault models are a quick alternative to

calculate  a  range of  energy variation  once  a  slip  distribution  is  obtained.  Determining earthquake

occurrence  rates  from  the  accumulated  seismic  moment  is  an  established  tool  of  seismic  hazard

analysis.  The  size  of  an  earthquake  can  also  be  defined  in  terms  of  the  radiated  seismic  energy.

Incorporating the spatial distribution of seismic energy in seismic hazard analyses has the advantage

that seismic energy is a better predictor of the damage potential of seismic waves than the seismic

moment release. In that sense, our results can be used to improve global seismic hazard models.

5 Conclusion

We studied the radiated seismic energy, energy-to-moment ratio, and apparent stress for different types

of faulting.  Our data relies on different methodologies employing the velocity flux integration and

finite-fault models to determine the seismic energy. The approach based on slip distributions involved

the  utilization  of  two  techniques:  1)  total  moment  rate  functions  and  2)  overdamped  dynamics

approximation. We analyzed 3331 energy observations derived from integrating far-field waveforms.

On the other hand, we used 231 finite-fault models. For all mechanism types, EU > Emrt > EO, based on
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statistical t-tests. Finite-fault energy estimations also support focal mechanism dependence of apparent

stress, but only for shallow earthquakes (Z < 30 km). The population of slip distributions used was too

small to conclude that finite-fault energy estimations support the dependence of average apparent stress

on rupture type at different depth intervals. The estimated energy differences  are within the margin

reported in  the literature,  which can  reach a  factor  higher  than  10.  The methods used  to  estimate

seismic energy based on finite fault models are an easily implemented alternative that gives results

compatible  with  the  seismic  record  integration  technique,  given  the  larger  uncertainties  of  these

methods.  We also  derived  scaling  relationships  for  the  different  types  of  energies  and  conversion

relations.

In  terms  of  the  behavior  of  the  ER/M0 ratio,  our  results  showed  a  high  scatter  without  a  clear

dependence on magnitude.  The  ER/M0 ratio is, based on statistical  t-tests,  the largest for strike-slip

earthquakes, followed by normal-faulting events, with the lowest values for reverse earthquakes for

hypocentral depths < 90 km. Not enough data is available for statistical tests at deeper intervals except

for the range 90 to 120 km, where we can satisfactorily conclude that ER/M0 for R-SS and SS-R types is

larger than for N type of faulting,  which also conforms to the previous assumption. Regarding the

behavior of τα with depth, our results agree with the existence of a bimodal distribution with two depth

intervals where the apparent stress is maximum for normal-faulting earthquakes. At depths in the range

of  180 -  240 km, τα for reverse earthquakes  is  higher  than for  normal-faulting events.  Our ER/M0

estimates  for  deep earthquakes  are  also consistent  with reported  values.  By analyzing the average

apparent stress, our results also support the previously reported focal mechanism dependence of ER at

depths ranging from 0 to 180 km. We found that normal-faulting events have intermediate values of τα

between strike-slip and reverse events using the energy flux integration approach in agreement with

previous studies. 
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On the  other  hand,  τα for  reverse  earthquakes  is  higher  than  for  normal-faulting  events  at  depths

between 180 and 240 km. In contrast, a clear focal mechanism dependence is observed when finite-

fault methods are used to estimate the mean apparent stress at shallow depths (Z < 30 km). This study's

population of slip distributions was too small to conclude that finite-fault energy estimations support

the mechanism dependence of average apparent stress at different depths. There are two depth ranges

over  which  apparent  stress  for  SS-N,  SS-R,  R-SS,  R,  N-SS,  and  N  earthquakes  shows  maxima.

Earthquakes with an oblique focal mechanism show a mixed behavior of energy parameters since it has

common characteristics of two types of faults; in some cases, one of them predominates over the other.

Code  availability.  Generic  Mapping Tools  (GMT5)  is  available  at  http://gmt.soest.hawaii.edu/,  last

access: 19 June 2023.  FMC is available at https://github.com/Jose-Alvarez/FMC, last access: 19 June

2023. 
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Figure 1.  The Kaverina fault classification ternary diagram used to classify focal mechanisms (left

panel). Focal mechanisms are denoted by circles filled to indicate event depth in km, and the size of the

circle indicates the moment magnitude of the earthquake (right panels). The upper right panel shows

the rupture type of seismic events with a radiated seismic energy estimation. Rupture type of seismic

events with a finite-fault model used to estimate the radiated energy (lower right panel).
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Figure 2. Hypocenter location and rupture type classification of earthquakes with reported radiated

seismic energy (ER) (upper panel). Hypocenter location and rupture type classification of earthquakes

with a finite-fault model used to calculate the radiated seismic energy (ER) (lower panel).R, reverse; R-

SS, reverse–strike-slip; SS, strike-slip; SS-R, strike-slip–reverse; SS-N, strike-slip–normal; N, normal;

and N-SS, normal–strike-slip.
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Figure 3. The radiated seismic energy (ER) as a function of the seismic moment (M0) for the different

rupture  types.  The solid  black  lines  represent  the  best  fit,  and  the  dashed lines  indicate  the  95%

confidence interval about the regression lines.
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Figure 4. The overdamped dynamics approximation of the radiated energy (EO) as a function of the

seismic moment (M0) for the different rupture types. The solid black lines represent the best fit, and the

dashed lines indicate the 95% confidence interval about the regression lines.
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Figure 5. The energy obtained from the averaged finite-fault model (EU) as a function of the seismic

moment (M0) for the different rupture types. The solid black lines represent the best fit, and the dashed

lines indicate the 95% confidence interval about the regression lines.

28

576

577

578

579



Figure 6. The radiated seismic energy based on moment rate functions (Ermt) versus seismic moment

(M0) for the different rupture types. The solid black lines represent the best fit, and the dashed lines

indicate the 95% confidence interval about the regression lines.
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Figure 7. Comparison between radiated seismic energy based on velocity flux integration (ER) and

overdamped (EO) energy estimations. Lines represent the mean values (continuous) of different rupture

types and their standard deviation (dashed).
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Figure 8. Comparison between the ratio of radiated seismic energy based on velocity flux integration

(ER) and averaged finite-fault model energy (EU) estimations as a function of seismic moment.  Lines

represent the mean values (continuous) of different rupture types and their standard deviation (dashed).
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Figure 9. Comparison between the ratio of radiated seismic energy based on velocity flux integration

(ER) and moment rate (Emrt) energy estimations as a function of seismic moment. Lines represent the

mean values (continuous) of different rupture types and their standard deviation (dashed).
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Figure 10. The estimated energy-to-moment ratios plotted as a function of the seismic moment for all

the  rupture  types.  The  solid  and  dashed  lines  show  the  mean  value  and  standard  deviations,

respectively.
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Figure 11. Energy-to-moment ratios with respect to depth for all  rupture types.  Lower right panel

shows the ak135-F global velocity model.
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Figure  12. Apparent  stress  (τa)  with  respect  to  depth  for  all  rupture  types.  Color  curves  are  the

probability density functions (PDFs). Rigidity vs depth based on the ak135-F global velocity model

employed in the estimation of τa (lower right panel).
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Table 1. Regression results for the radiated seismic energy scaling relationships. The scaling relation is
given by log10  E =  a log10  M0  +  b,  where  E is  the radiated seismic energy based on velocity  flux
integration  (ER),  the  overdamped  dynamics  approximation  of  the  radiated  energy  (EO),  the  energy
obtained from the averaged finite-fault model (EU), or the energy obtained from moment rate functions
(Emrt) in J, M0 is the seismic moment in Nm. D2 is the determination coefficient, a is the slope, Sa is the
standard error of a, b is the intercept, and Sb is the standard error of b.

Parameter    a       Sa        b       Sb       D2          Rupture type                Method

ER [J]         1.04   0.02   -5.47   0.47   0.76              SS                 Velocity flux integration
ER [J]         1.09   0.04   -6.42   0.78   0.83              SS-N             Velocity flux integration
ER [J]         1.05   0.03   -5.57   0.65   0.84              SS-R             Velocity flux integration
ER [J]         1.10   0.03   -6.62   0.48   0.89              R-SS             Velocity flux integration
ER [J]         1.01   0.01   -5.10   0.21   0.85              R                   Velocity flux integration
ER [J]         1.05   0.03   -5.72   0.64   0.84              N-SS             Velocity flux integration
ER [J]         1.16   0.02   -7.67   0.33   0.87              N                   Velocity flux integration

EO [J]         1.14   0.16   -6.93   3.17   0.68              SS                  Finite-fault model
EO [J]         1.25   0.18   -9.35   3.67   0.87              SS-N              Finite-fault model
EO [J]         0.88   0.17   -1.86   3.39   0.68              SS-R              Finite-fault model
EO [J]         1.28   0.30 -10.21   6.18   0.51              R-SS              Finite-fault model
EO [J]         0.86   0.07   -1.57   1.38   0.59              R                    Finite-fault model
EO [J]         1.27   0.13   -9.50   2.55   0.94              N-SS              Finite-fault model
EO [J]         1.10   0.14   -6.26   2.80   0.65              N                    Finite-fault model

EU [J]         1.31   0.13 -11.85   2.56   0.81              SS                  Finite-fault model
EU [J]         1.51   0.19 -15.92   3.76   0.90              SS-N              Finite-fault model
EU [J]         0.95   0.15   -4.86   3.06   0.75              SS-R              Finite-fault model
EU [J]         1.40   0.20 -14.00   4.05   0.74              R-SS              Finite-fault model
EU [J]         1.12   0.05   -8.44   1.03   0.81              R                    Finite-fault model
EU [J]         1.29   0.20 -11.68   4.11   0.87              N-SS              Finite-fault model
EU [J]         1.09   0.09   -7.68   1.76   0.82              N                    Finite-fault model

Emrt [J]         1.23   0.15    -9.61   2.97   0.74              SS                 Moment rate function
Emrt [J]         1.32   0.21  -11.42   4.30   0.84              SS-N             Moment rate function
Emrt [J]         1.08   0.07    -6.75   1.50   0.94              SS-R             Moment rate function
Emrt [J]         1.44   0.18  -14.02   3.71   0.79              R-SS             Moment rate function
Emrt [J]         1.02   0.07    -5.76   1.44   0.65              R                   Moment rate function
Emrt [J]         1.36   0.18  -12.25   3.61   0.91              N-SS             Moment rate function
Emrt [J]         1.08   0.10    -6.68   2.05   0.77              N                   Moment rate function
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Table 2. Conversion relationships among the different types of energies.  ER is the  radiated seismic
energy  based  on  velocity  flux  integration,  EO is  the  overdamped  dynamics  approximation  of  the
radiated energy, EU is the energy obtained from the averaged finite-fault model, and Emrt is the energy
obtained from moment rate functions.

Rupture type  Parameters                  Model                          a       Sa         b       Sb      D2

SS                     ER, EO         log10ER = a log10EO + b            0.61   0.12     5.83   1.90   0.54
SS-N                 ER, EO         log10ER = a log10EO + b            0.75   0.09     3.60   1.42   0.91
SS-R                 ER, EO         log10ER = a log10EO + b            0.37   0.16     9.96   2.60   0.30
N-SS                 ER, EO         log10ER = a log10EO + b            0.61   0.19     5.78   3.19   0.66
N                       ER, EO         log10ER = a log10EO + b            0.59   0.10     6.23   1.67   0.52
R-SS                 ER, EO         log10ER = a log10EO + b            0.44   0.12     8.90   1.95   0.49
R                       ER, EO         log10ER = a log10EO + b            0.70   0.06     4.27   0.91   0.59

SS                     ER, EU         log10ER = a log10EU + b            0.61   0.11     6.67   1.59   0.59
SS-N                 ER, EU         log10ER = a log10EU + b            0.63   0.08     6.40   1.18   0.89
SS-R                 ER, EU         log10ER = a log10EU + b            0.35   0.17   10.73   2.43   0.28
N-SS                 ER, EU         log10ER = a log10EU + b            0.54   0.18     7.96   2.65   0.63
N                       ER, EU         log10ER = a log10EU + b            0.78   0.11     4.50   1.62   0.61
R-SS                 ER, EU         log10ER = a log10EU + b            0.56   0.11     7.82   1.58   0.66
R                       ER, EU         log10ER = a log10EU + b            0.69   0.04     5.67   0.63   0.69

SS                     ER, Emrt         log10ER = a log10Emrt + b         0.66   0.10     5.49   1.56   0.65
SS-N                 ER, Emrt         log10ER = a log10Emrt + b         0.70   0.09     4.93   1.32   0.90
SS-R                 ER, Emrt         log10ER = a log10Emrt + b         0.52   0.14     7.84   2.16   0.54
N-SS                 ER, Emrt         log10ER = a log10Emrt + b         0.55   0.21     7.23   3.30   0.57
N                       ER, Emrt         log10ER = a log10Emrt + b         0.78   0.11     3.81   1.79   0.60
R-SS                 ER, Emrt         log10ER = a log10Emrt + b         0.62   0.10     6.41   1.50   0.75
R                       ER, Emrt         log10ER = a log10Emrt + b         0.73   0.04     4.54   0.55   0.78
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Table 3.  Estimations of average apparent stress (τα) for different faulting types based on the velocity
flux integration method. τα is calculated with the following model: log10ER = log10 M0+b, where τα  = μ
10b. We assume μ=μ̄ as the average rigidity in a specific depth interval of 30 km. τα

1 and τα
2 are the

95% the upper and lower confidence intervals for the mean. 3 and 4 indicate τα results from Choy and
Boatwright (1995) and Pérez-Campos and Beroza (2001), respectively (bottom lines).
    Depth              μ̄      ___________ τα [MPa]__________             ___________ τα

 1[MPa]__________           ___________ τα
2

 [MPa]__________

     [km]                [MPa]      SS   SS-N  SS-R  N-SS  N  R-SS  R            SS  SS-N  SS-R  N-SS  N  R-SS  R             SS  SS-N  SS-R  N-SS  N  R-SS  R

    0 ≤ z ≤ 30      3.48 x 104  0.72  0.75  0.90  0.72   0.50  0.79  0.43     3.51  3.31   3.41  2.20   1.91  2.34  1.40       0.15  0.17  0.24  0.24   0.13  0.26  0.13
  30 < z ≤ 60      5.33 x 104  1.95  1.49  2.47  1.33   1.03  1.29  0.68     6.76  8.65   9.79  6.55   4.57  4.92  2.82       0.56  0.26  0.62  0.27   0.23  0.39  0.16
  60 < z ≤ 90      6.65 x 104           1.75  3.08            1.58  1.37  0.73              6.75  12.21           6.85  9.55  4.33                0.45  0.78            0.37  0.19  0.12
  90 < z ≤ 120    6.67 x 104                    1.88            1.49  1.96  1.45                       13.59           5.95  8.55  7.08                         0.26            0.37  0.45  0.30
120 < z ≤ 150    6.73 x 104                    1.22  1.15   1.13  1.38  0.90                         5.55  6.57  3.76  5.43  7.86                         0.27  0.20   0.34  0.35  0.10
150 < z ≤ 180    6.81 x 104                                       1.55           1.38                                           3.93           7.79                                            0.61           0.24
180 < z ≤ 210    6.90 x 104                                       1.09           1.35                                           4.07           5.52                                            0.29           0.33
210 < z ≤ 240    7.07 x 104                                       1.19           1.34                                           5.17           6.04                                            0.27           0.30
540 < z ≤ 570    1.16 x 105                                       2.39                                                             7.61                                                              0.75
570 < z ≤ 600    1.19 x 105                                       2.88                                                           14.88                                                              0.56
600 < z ≤ 630    1.23 x 105                                       3.33                                                           18.76                                                              0.59

                          3.00 x 105  3.553                             0.483          0.323  20.693                             4.163          2.543      0.613                             0.053           0.044

                          3.00 x 105  0.704                             0.254          0.154    1.014                             0.304          0.194      0.494                             0.214           0.124

Table  4.  Estimations  of  average  apparent  stress  (τα)  for  different  faulting  types  based  on  slip
distributions (Emrt, EU, and EO). τα is calculated with the following model: log10ER = log10 M0+b, where τα

= μ 10b. We assume μ= μ̄ as the average rigidity in a specific depth interval of 30 km. τα
1 and τα

2 are
the 95% the upper and lower confidence intervals for the mean. 3 and 4 indicate τα results from Choy
and Boatwright (1995) and Pérez-Campos and Beroza (2001), respectively (bottom lines).
    Depth              μ̄      ___________ τα [MPa]__________             ___________ τα

 1[MPa]__________           ___________ τα
2

 [MPa]__________

     [km]                [MPa]      SS   SS-N  SS-R  N-SS  N  R-SS  R            SS  SS-N  SS-R  N-SS  N  R-SS  R             SS  SS-N  SS-R  N-SS  N  R-SS  R

Emrt

    0 ≤ z ≤ 30      3.48 x 104  0.52            0.33           0.31           0.16     5.72             1.36           2.10           1.47       0.05            0.08           0.05           0.02
  30 < z ≤ 60      5.33 x 104                                                         0.24                                                             2.28                                                              0.03

EU

    0 ≤ z ≤ 30      3.48 x 104  2.78            1.41           2.59           1.50   32.77           23.19         21.79         19.92       0.24            0.08           0.10           0.11
  30 < z ≤ 60      5.33 x 104                                                         2.31                                                           30.51                                                              0.17

EO

    0 ≤ z ≤ 30      3.48 x 104  0.10            0.04           0.04           0.03     0.91             0.51           0.24           0.17       0.01            0.01           0.09           0.005
  30 < z ≤ 60      5.33 x 104                                                         0.04                                                             0.25                                                              0.007

                          3.00 x 105  3.553                             0.483          0.323  20.693                             4.163          2.543      0.613                             0.053          0.044

                          3.00 x 105  0.704                             0.254          0.154    1.014                             0.304          0.194      0.494                             0.214          0.124
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