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Abstract. Part I of this study discusses the motivation and empirical evaluation of a revision to the aerosol-related numerical

process coupling in the atmosphere component of the Energy Exascale Earth System Model version 1 (EAMv1) to address

the previously reported issue of strong sensitivity of the simulated dust aerosol lifetime and dry removal rate to the model’s

vertical resolution. This paper complements that empirical justification of the revised scheme with a mathematical justification

leveraging a semi-discrete analysis framework for assessing the splitting error of process coupling methods. The framework5

distinguishes the error due to numerical splitting from the error due to the time integration method(s) used for each individ-

ual process. Such a distinction results in a framework that provides an intuitive understanding of the causes of the splitting

error. The application of this framework to dust life cycle in EAMv1 confirms (i) that the original EAMv1 scheme artificially

strengthens the effect of dry removal processes, and (ii) that the revised splitting reduces that artificial strengthening.

While the error analysis framework is presented in the context of the dust life cycle in EAMv1, the framework can be broadly10

leveraged to evaluate process coupling schemes, both in other physical problems and for any number of processes. This frame-

work will be particularly powerful when the various process implementations support a variety of time integration approaches.

Whereas traditional local truncation error approaches require separate consideration of each combination of time integration

methods, this framework enables evaluation of coupling schemes independent of particular time integration approaches for

each process while still allowing for the incorporation of these specific time integration errors if so desired. The framework15

also explains how the splitting error terms result from (i) the integration of individual processes in isolation from other pro-

cesses and (ii) the choices of input state and timestep size for the isolated integration of processes. Such a perspective has the

potential for rapid development of alternative coupling approaches that utilize knowledge both about the desired accuracy and

about the computational costs of individual processes.
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1 Introduction20

Accurate representation of process interactions is an important and ubiquitous challenge in multiphysics modeling (Keyes

et al., 2013). For the sake of tractability, splitting methods are widely used that allow for the separate development of both the

continuum and discrete representation of individual processes, which are then assembled to form a multi-process numerical

model. In weather, climate, and Earth system modeling, it has been recognized that how to combine the different process

representations to form a coherent and accurate numerical model is a challenge deserving more attention, see the review paper25

by Gross et al. (2018) and the references therein, as well as more recent studies by, e.g., Barrett et al. (2019), Donahue and

Caldwell (2020), Wan et al. (2021), Santos et al. (2021), Ubbiali et al. (2021), and Zhou and Harris (2022). The dust aerosol life

cycle problem discussed in the companion paper (Part I, Wan et al., 2023) is a recent example from the atmosphere component

of the Energy Exascale Earth System Model version 1 (EAMv1, Rasch et al., 2019) that shows that different numerical methods

used for process coupling in the overall time integration can lead to substantially different results at a fixed spatial resolution,30

as well as significantly different sensitivities to spatial resolution change.

That companion paper clarified the main source and sink processes in the dust life cycle in EAMv1, quantified their relative

magnitudes, reflected on the process coupling scheme used in the default model, proposed a revised coupling scheme, and

evaluated the impact of the revised coupling on the simulated aerosol climatology. The discussions therein are based primarily

on the intuition of atmospheric modelers, and the reasoning was verified by confirming agreement between the expected35

and obtained numerical results from EAMv1. To gain more confidence that the EAMv1 solution obtained with the revised

coupling scheme is indeed a better numerical solution, i.e., closer to the true or trusted solution than that of the original

EAMv1 scheme, a mathematical explanation for the changes with the revised coupling is needed. Typically, computational

analyses are done to develop such explanations, including timestep self-convergence studies, such as those in Wan et al.

(2013), or timestep sensitivity studies, such as those in Wan et al. (2021) and Santos et al. (2021). Both of these approaches are40

unfortunately impractical in this case, because in the current EAM code, the coupling timestep for dust emissions, dry removal,

and turbulent mixing is tied to the coupling timesteps of various other atmospheric processes, such as aerosol microphysics

and gas-phase chemistry, deep convection and aerosol wet removal, and the coupling between the resolved dynamics and

the parameterizations. Thus, without significant code structure changes, it is not feasible to isolate the impact of coupling

approaches for the three aerosol processes we would like to focus on.45

This paper provides a theoretical explanation of the numerical results presented in Part I and introduces a framework based

on truncation error analysis that can more broadly help address the research gap in numerical process modeling in weather,

climate, and Earth system modeling. In a fully discretized model with process splitting, the overall local truncation error

from time integration includes contributions from (i) the time integration of each individual process and (ii) the splitting of

each process from the remaining processes. In the atmosphere modeling literature, there are a number of theoretical studies50

that leverage truncation error analysis to compare the accuracy of different splitting methods (e.g., Caya et al., 1998; Staniforth

et al., 2002; Dubal et al., 2004, 2005, 2006; Ubbiali et al., 2021). Considering the added complexity of the weather, climate, and

Earth system models, especially the long-term and large-team efforts that are typically needed for the continuous development
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of such models, it is useful to understand and reduce the different types of error separately. Because the numerical results in

Part I showed substantial sensitivity to the process coupling approach, this work develops a framework that leverages exact55

time integration of the processes to focus on understanding and reducing the splitting error. Because the time discretization

is also an error source worth assessing and addressing, the framework is designed to be flexible enough to incorporate the

individual process time integration errors (see discussion at the end of Sect. 2.4).

In the work of Williamson (2013) that discusses issues related to atmospheric convection and process splitting, exact time

integration is also used for individual processes in a two-process equation and a three-process equation. However, the purpose60

there was to point out a problem in the formulation of a specific parameterization; hence and understandably, that work did not

use exact time integration as a general tool for analyzing splitting errors in physics systems beyond the two highly idealized

and customized equations discussed therein. In this paper, we demonstrate the usage of exact time integration within an error

analysis framework that distinguishes splitting error and the error resulting from temporal discretization of individual processes,

providing an approach that allows for focus on the splitting error in general problems involving two or more processes. While65

such a focus is commonplace in the field of mathematics (e.g., Hairer et al., 2006; LeVeque, 1982), the approach has not caught

much attention in the weather and climate modeling communities despite the important benefits that its adoption can provide

to the development of sophisticated atmospheric numerical models.

For example, in EAM and its predecessors, changes in time integration methods have been implemented both in the dy-

namical core representing the resolved fluid dynamics and in various parameterizations representing sub-grid-scale processes.70

The results from a local truncation error analysis that did not distinguish between splitting and time integration sources would

become invalid as soon as any time integration method was changed, hence separate considerations would be needed for every

combination of time integration methods used by the dynamical core and the many physics parameterizations. In contrast, the

results from an error analysis approach that can consider splitting error independent of time integration sources are expected

to have a better chance of remaining valid across multiple versions of the same atmosphere model and might even generalize75

to other atmosphere models.

Another benefit of the splitting error analysis framework demonstrated in this work is that the terms in error expressions

produced are easily attributed to the coupling choices made for the individual right-hand-side (RHS) terms of the continuum

equations. In atmosphere modeling terminology, the framework goes beyond deriving the splitting errors that contribute to the

overall error in prognostic variables: it also demonstrates how the coupling choices lead to errors in the process rates (i.e., rates80

of change of prognostic variables, also referred to as tendencies) associated with the various physical processes. For this work,

coupling choices for the dust source and sink processes are directly mapped to the splitting error terms that contribute to overall

error in the EAM-simulated mixing ratios. Reducing splitting errors in the process rates can help avoid compensating errors

from different physical processes and, thus, help ensure the model provides good predictions of the prognostic variables for

the right reasons. Additionally, understanding the impact of numerical coupling scheme choices at the process level allows for85

the development of new coupling strategies that focus on improving the accuracy of numerical process rates, and the associate

prognostic variables, while considering the computational cost of the various processes.
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Whereas the companion paper (Wan et al., 2023) focuses on motivating the dust life cycle problem and empirical comparison

of two coupling methods in consideration, this paper focuses on how a semi-discrete error analysis supports the empirical

finding that one coupling method leads to a better numerical solution than the other. This two-part approach facilitates a detailed90

description of the framework with significant pedagogical values to weather and climate model developers. As an example,

our own collaboration between applied mathematicians and atmospheric scientists on the investigation of dust life cycle in

EAMv1 has shown that a step-by-step explanation of the derivation of splitting errors resulting from two coupling methods,

which are widely used in weather and climate models, was helpful for the EAM developers in this collaboration to recognize

the relevance, as well as the generality, of the semi-discrete methodology. In addition, one of the points we make in Sect. 395

is that after splitting errors are derived for coupling schemes used in two-process problems, it is possible to use those error

expressions as building blocks to perform back-of-the-envelope derivations for problems involving more processes, making

the derivations much less tedious and the framework much easier to use by researchers of specific applications. The discussion

in Sect. 3.2 can be viewed as an example of such a back-of-the-envelope derivation, demonstrating that the mathematically

rigorous framework can be made accessible to physical scientists working on practical problems. Given the reinvigorated100

interests in numerical process coupling reflected in the review by Gross et al. (2018) and the community efforts described

in, e.g., Heinzeller et al. (2023), the pedagogical description of the error analysis framework presented here can be a useful

contribution to those model development efforts.

To focus on the error analysis framework, the remainder of this paper forgoes the background on the motivating dust life

cycle problem and coupling methods in consideration, for which the reader is referred to the Part I work (Wan et al., 2023), and105

instead opens by introducing the analysis framework in Sect. 2 using a generic two-process problem and deriving the splitting

errors associated with the widely used parallel and sequential splitting methods. Section 3 then applies the error analysis

framework to a three-process problem inspired by the dust aerosol life cycle in EAMv1. Leading-order splitting errors are

derived both for the original process coupling in EAMv1 and for the revision proposed in Part I, and the characteristics of the

splitting errors are discussed. This paper concludes by summarizing results in Sect. 4. An appendix gives mathematical details110

of the analysis framework.

2 A semi-discrete analysis framework for assessing splitting error of process coupling methods

The error analysis framework demonstrated in this work is described as semi-discrete in that it takes the perspective that

while the overall time integration of the model is discrete, the integration of individual processes is done exactly (i.e., there

is no temporal discretization for each process). This perspective is the critical component that allows the framework to isolate115

the splitting truncation error from that of the process temporal discretization errors. The semi-discrete approach allows for

the derivation of splitting truncation errors from how the coupling scheme incorporates individual process. By casting the

numerical splitting of processes as estimating process rates in split fashion, the framework identifies two general coupling

method choices that cause splitting truncation errors. In Sect. 2.2, those coupling choices are identified in two widely-used

coupling methods for two-process problems. In Sect. 2.3, the splitting truncation error terms that result from those choices are120
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derived and combined to form the leading-order splitting truncation error for each coupling method. In Sect. 2.4, the terms in

the leading-order splitting truncation error are attributed back to the coupling method choices in a manner that (i) identifies

when the splitting truncation errors from coupling methods compound or cancel each other and (ii) provides a workflow to

easily generalize the results to problems with more than two processes.

2.1 Notation and definitions125

Consider a prognostic equation, with multiple operators, that can either be an ordinary differential equation (ODE) or a partial

differential equation (PDE). Noting that the method-of-lines will reduce a PDE to an ODE, the prognostic equation to be

studied herein is introduced in ODE form:

dq(t)

dt
=

I∑
i=1

Xi

(
q(t)

)
, I > 1, t > 0, q(0) = qIC , (1)

where the different processes, Xi, are discretized and implemented by different components of the model software (i.e., the130

processes are split). At time tn, denote q(tn) and qn as the exact and numerical (approximate) solutions, respectively. The error

at time tn is defined as

En ≡ qn − q(tn).

Let F∆t(q
input) represent the numerical algorithm that advances the solution from state qinput to state qoutput, where ∆t is the

timestep size used. In other words, denote F∆t as the mapping such that the numerical solution at tn+1 = tn +∆t is135

qn+1 = F∆t(q
n).

The solution error at time tn+1 can be expressed as

En+1 =F∆t(q
n)− q(tn+1)

=F∆t(q
n)−F∆t

(
q(tn)

)
+F∆t

(
q(tn)

)
− q(tn+1)

=
dF∆t

dq
(γn)En︸ ︷︷ ︸

propagated error

+F∆t

(
q(tn)

)
− q(tn+1)︸ ︷︷ ︸

local truncation error (lte)

, (2)140

where γn is a value of q between q(tn) and qn by the mean value theorem. The error En+1 consists of the evolution of the

existing error at time tn (the propagated error) and the generation of new error from time tn to tn+1 (the local truncation error).

If each aforementioned component of the model software implements a single process in Eq. (1) without using information

about other processes, then the role of such a component of the software can be interpreted as integrating the following one-

process ODE145

dq
Xi
(t)

dt
=Xi

(
q
Xi
(t)

)
, t > tn, qXi

(tn) = qinput
Xi

. (3)
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Depending on which coupling scheme is used, qinput
Xi

can be the numerical solution of the multi-process problem at tn (i.e., qn)

or some value of the physical quantity, q, passed to the component of the software, Xi, by another component of the software,

Xj . In the following, the notation q
Xi
[t− tn;q

input
Xi

] is used to denote the exact solution of the one-process ODE (3), namely,

q
Xi
[t− tn;q

input
Xi

]≡ q
Xi
(t)150

= qinput
Xi

+

t∫
tn

Xi

(
q
Xi
(η)

)
dη . (4)

The explicit mentioning of qinput
Xi

in the square brackets on the left side of Eq. (4) emphasizes the dependence of q
Xi

and Xi on

qinput
Xi

, the significance of which will become clear below. Using a similar notation for the exact solution of the multi-process

problem Eq. (1), one can write

q[t− tn;q(tn)]≡ q(t)155

= q(tn)+

t∫
tn

I∑
i=1

Xi

(
q(η)

)
dη . (5)

To facilitate comprehension of the derivations below, it is again emphasized that the time integrals in Eq. (4) and Eq. (5) are

assumed to be exactly evaluated. It is also useful to note that, by definition,

q
Xi
[0;qinput

Xi
] = qinput

Xi
, q[0;q(tn)] = q(tn) . (6)

2.2 Sources of splitting error160

From Eq. (5), one can see the average process rate for Xi that contributes to the change in q from tn to tn +∆t in the original

multi-process ODE is

1

∆t

tn+∆t∫
tn

Xi

(
q(η)

)
dη

=
1

∆t

tn+∆t∫
tn

Xi

(
q[η− tn;q(tn)]

)
dη

=
1

∆t

∆t∫
0

Xi

(
q[η̃;q(tn)

)
dη̃,165
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while the Xi process considered in isolation using Eq. (4) results in a approximation to the average process rate of

1

∆t

tn+∆t∫
tn

Xi

(
q
Xi
(η)

)
dη

=
1

∆t

tn+∆t∫
tn

Xi

(
q
Xi
[η− tn;q

input
Xi

]
)
dη

=
1

∆t

∆t∫
0

Xi

(
q
Xi
[η̃;qinput

Xi
]
)
dη̃ .

The discrepancy between these two average process rates has two sources:170

1. The function q
Xi

differs from the function q, as the time evolution of q
Xi

is controlled by a single process (see Eq. (3))

while the evolution of q is controlled by multiple processes (see Eq. (1)).

2. The input state qinput
Xi

used for integrating the equation of process Xi can differ from q(tn).

In other words, the error in the estimated process rate Xi (or increment Xi∆t) can arise from (1) treating the process in

isolation without considering the influence of other processes on the physical quantity, q, and (2) starting the single-process175

integration with an input that deviates from the solution of the multi-process ODE. These two types of error are referred to as

isolation-induced error and input-induced error, respectively, in the remainder of the paper. To further elaborate on these two

sources of splitting error, consider the following generic two-process ODE

dq(t)

dt
=A

(
q(t)

)
+B

(
q(t)

)
, t > 0, q(0) = qIC , (7)

which has the following exact solution at tn+1, written in terms of the exact solution at tn:180

q(tn+1) = q(tn)+

∆t∫
0

A
(
q[η;q(tn)]

)
+

∆t∫
0

B
(
q[η;q(tn)]

]
dη

Below, the errors of two widely used coupling schemes are analyzed: parallel and sequential splitting, both of which are

depicted in Fig. 1 using a flowchart description, a pseudo-code description, and an ODE description.

Sources of error in parallel splitting

A parallel splitting scheme first lets each model component estimate the process rate of a single process and then sums up the185

corresponding increments to advance an input value of q to an output value of q. The scheme can be represented by a mapping

qoutput = FPS
∆t (q

input) where

FPS
∆t (q

input)≡ qinput +∆t(A∗ +B∗) ,

A∗ ≡
(
qA[∆t;qinput]− qinput

)
/∆t ,

B∗ ≡
(
qB [∆t;qinput]− qinput

)
/∆t ,190
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(a1) Parallel splitting, flowchart description
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(a2) Sequential splitting, flowchart description
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(b1) Parallel splitting, pseudo code description

qn
apply A process for duration ∆t−−−−−−−−−−−−−−−→ qn+1

A ; let A∗ =
qn+1
A − qn

∆t
.

qn
apply B process for duration ∆t−−−−−−−−−−−−−−−−→ qn+1

B ; let B∗ =
qn+1
B − yn

∆t
.

Let qn+1 = qn +∆t(A∗ +B∗).

(b2) Sequential splitting, pseudo code description

qn
apply A process for duration ∆t−−−−−−−−−−−−−−−→ qn+1

A .

qA
apply B process for duration ∆t−−−−−−−−−−−−−−−−→ qn+1

B .

Let qn+1 = qn+1
B .

(c1) Parallel splitting, ODE description

1. Solve for qA(tn+1) given
dqA
dt

=A(qA) with qA(tn) = qn.

2. Solve for qB(tn+1) given
dqB
dt

=B(qB) with qB(tn) = qn.

3. Let A∗ =
qn+1
A − qn

∆t
and B∗ =

qn+1
B − qn

∆t
.

4. Let qn+1 = qn +∆t(A∗ +B∗).

(c2) Sequential splitting, ODE description

1. Solve for qA(tn+1) given
dqA
dt

=A(qA) with qA(tn) = qn.

2. Solve for qB(tn+1) given
dqB
dt

=B(qB) with qB(tn) = qn+1
A .

3. Let qn+1 = qn+1
B .

Figure 1. The parallel splitting (left column) and sequential splitting method (right column) for solving the two-process ODE defined in

Eq. (7). The top, middle, and bottom rows depict the methods in three different ways.
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which gives

FPS
∆t (q

input) = qinput +

∆t∫
0

A
(
qA[η;q

input]
)
dη

+

∆t∫
0

B
(
qB [η;q

input]
)
dη. (8)

Recall that the local truncation error for a numerical method is, per the definition given in Eq. (2), the difference between the

exact solution at tn+1 and the solution at tn+1 obtained from the numerical method applied to the exact solution at tn. Thus,195

the local truncation error for parallel splitting is the difference between the exact two-process solution given by Eq. (5) and the

result of Eq. (8) with qinput = q(tn):

FPS
∆t

(
q(tn)

)
− q(tn+1)

=

∆t∫
0

A
(
qA[η;q(tn)]

)
dη−

∆t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
ltePS

A

+

∆t∫
0

B
(
qB [η;q(tn)]

)
dη−

∆t∫
0

B
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
ltePS

B

. (9)200

Note that because the time integration for A and B both start from q(tn), there are only local truncation errors caused by

treating A and B in isolation (i.e., no input-induced error). Also note that because parallel splitting treats A and B the same

way, the local truncation error expression shows symmetry between the two processes.

Sources of error in sequential splitting

The sequential splitting scheme discussed here handles different processes in a successive manner, letting each model com-205

partment operate on an input value of q and return an updated value of q. Here, operator A is evaluated first, and the result is
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then used as input to operator B. The method can be represented by a mapping qoutput = FSS
∆t(q

input) where

FSS
∆t(q

input)≡ qB

[
∆t;qA[∆t;qinput]

]
(10)

= qA[∆t;qinput] +

∆t∫
0

B

(
qB

[
η;qA[∆t;qinput]

])
dη

= qinput +

∆t∫
0

A
(
qA[η;q

input]
)
dη210

+

∆t∫
0

B

(
qB

[
η;qA[∆t;qinput]

])
dη. (11)

The local truncation error for sequential splitting is the difference between the exact two-process solution given by Eq. (5) and

the result of Eq. (11) with qinput = q(tn):

FSS
∆t

(
q(tn)

)
− q(tn+1)

=

∆t∫
0

A
(
qA[η;q(tn)]

)
dη−

∆t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteSS

A

215

+

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη−

∆t∫
0

B
(
q[η,q(tn)]

)
dη

︸ ︷︷ ︸
lteSS

B

. (12)

Here, the lteSSA term is the same as ltePS
A in parallel splitting (see Eq. (9)) that includes only an isolation-induced error (qA ̸= q),

while the lteSSB term includes not only an isolation-induced error (qB ̸= q) but also an error resulting from the B process being

integrated from an input that has already been updated by the A process, namely, qA[∆t;q(tn)].

2.3 The leading-order error terms220

The analysis in the previous subsections provides a qualitative understanding of the sources of errors associated with different

coupling methods. In order to obtain a more quantitative assessment of the error magnitudes and identify possible cancelation

of different error terms, Taylor series expansion is used to derive the leading-order error terms of the local truncation error. The

gist of the method is to expand the integrals in Sect. 2.2 about ∆t= 0, noting that

– q
Xi
(t) and q(t) are different functions whose time derivatives are given by Eq. (1) and Eq. (3), respectively;225

– The input state qinput
Xi

used for integrating the ODE of process Xi might deviate from the exact solution at tn in a

way that depends on ∆t, and hence also need an expansion. For example, in the case of sequential splitting, qinputB =

qA[∆t;q(tn)].
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Appendix A explains in detail how the various integrals in Sect. 2.2 can be expanded to derive the leading-order error terms

for the parallel and sequential splitting methods. Below, the key pieces of information obtained through these derivations are230

highlighted.

Leading-order errors in parallel splitting

The derivation detailed in Appendix A2 indicates that, when parallel splitting is used, the local truncation error attributable to

the integration of process A (i.e., the part marked with ltePS
A in Eq. (9)) is

ltePS
A =

(∆t)2

2

(
−dA

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (13)235

From the derivation in Appendix A2, it can be seen that the leading-order error (the (∆t)2 term) results from how the equation

of dqA/dt lacks the B term that appears in the equation of dq/dt. In other words, the leading-order error is caused by integrating

the A process in isolation without considering the influence of B. Similarly, the local truncation error attributable to the

integration of process B (i.e., the part marked with ltePS
B in Eq. (9)) is

ltePS
B =

(∆t)2

2

(
−dB

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (14)240

The leading-order error term is caused by applying the B process in isolation without considering the influence of A. The

overall local truncation error for parallel splitting reads

FPS
∆t

(
q(tn)

)
− q(tn+1) = ltePS

A + ltePS
B

=
(∆t)2

2

(
−dA

dq
B− dB

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (15)

As mentioned earlier, the expression has symmetry between the processes A and B, as the parallel splitting method treats the245

two processes in the same way.

Leading-order errors in sequential splitting

The derivation detailed in Appendix A3 shows that, when sequential splitting is used, the local truncation errors attributable to

the integration of processes A and B are

lteSSA =
(∆t)2

2

(
−dA

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (16)250

lteSSB =
(∆t)2

2

(
+

dB

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (17)

respectively. Here, lteSSA has the same expression as in parallel splitting (see Eq. (16) versus Eq. (13)); lteSSB has the same form

as in parallel splitting but a different sign, which results from the fact that the B process is integrated with an input state already
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updated by the A process, and the input-induced error overcompensates the error caused by ignoring the influence of A when

integrating the B process (see Appendix A3). The overall local truncation error for sequential splitting is255

FSS
∆t

(
q(tn)

)
− q(tn+1) = lteSSA + lteSSB

=
(∆t)2

2

(
−dA

dq
B+

dB

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (18)

2.4 Framework Summary and Generalization

Leveraging the framework to derive and compare the splitting truncation errors of parallel and sequential splitting provides the

following understanding that generalizes beyond the two-process problem. Note that a term containing (dB/dq)A indicates260

an error caused by inaccurate accounts of the influence of process A on process B. This can be seen from the following Taylor

expansion:

∆t

(
dB

dq
A

)∣∣∣∣
q=q(tn)

=B
(
q(tn)+∆tA

(
q(tn)

))
−B

(
q(tn)

)
+O

(
(∆t)2

)
.

A negative sign in front of (dB/dq)A suggests a lack or underestimation of the influence of A on B, while a positive sign265

suggests an overestimation of that influence. Isolation-induced error in the form of integrating B in isolation will lead to

an underestimation of the influence of A on B. If there are additional processes, integrating B in isolation will lead to an

underestimation of the influence of all other processes on B. Input-induced error in the form of using an input state updated

by a full timestep worth of A will lead to an overestimation of the influence of A on B. If there are additional processes,

using an input state updated by a full timestep worth of A and other processes will lead to an overestimation of A and those270

other processes on B. With this understanding, the framework is easily generalized to coupling methods that utilize different

combinations of input states across numerous processes. The following section will demonstrate such a generalization to a

three-process problem.

It is also worthwhile to note that the framework presented here can be revised to evaluate the overall truncation error in a

temporally discretized system. Namely, one would replace q
Xi
[t−tn;q

Input
Xi

] in Appendix A1 with the time integration scheme275

used for process Xi. For example, if forward Euler is used for integration of process Xi, one would use

q
Xi
[t− tn;q

input
Xi

]≡ qinput
Xi

+(t− tn)Xi

(
qinput
Xi

)
.

Such a revised framework would lead to results equivalent to those presented in, e.g., Ubbiali et al. (2021). That said, it is also

worthwhile to note that such overall truncation error results can be more difficult to interpret than the results of the framework

as presented here. Take, for example, how the overall truncation error for parallel splitting with forward Euler time integration280

of all processes is identical to the overall truncation for an unsplit forward Euler approach, which may seem to suggest that there

is no splitting truncation error for the parallel splitting method in general. However, the overall truncation error expressions for

parallel splitting and the unsplit approach will not be identical if backward Euler time integration is instead used, revealing that

there is indeed splitting truncation error for the parallel splitting method.
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3 The semi-discrete analysis framework applied to a three-process problem inspired by EAMv1285

The semi-discrete error analysis framework presented in Sect. 2 is now used to analyze the dust life cycle problem in EAMv1.

The dust mass budget analyses carried out using EAMv1’s simulation output and presented in Sect. 3.1 of Part I (Wan et al.,

2023) have revealed that at the global scale, the strongest sources and sinks of dust aerosols are (i) surface emissions, (ii) dry

removal, and (iii) turbulent mixing and aerosol activation–resuspension. As such, we focus on these sources and sinks, ignore

the many other aerosol-related processes in EAM, and consider a canonical three-process problem290

dq(t)

dt
=A

(
q(t)

)
+B

(
q(t)

)
+C

(
q(t)

)
, t > 0, q(0) = qIC (19)

where q is a dust mass mixing ratio, A represents the emissions, B represents dry removal, and C corresponds to turbulent

mixing. As in Sect. 2, denote a discrete time step ∆t and discrete time points tn+1 = tn +∆t. Denote the numerical solution

at time tn+1 as qn+1 and the exact solution it approximates as q(tn+1). Fig. 2 describes two schemes for obtaining qn+1 from

qn, corresponding to the original and revised process coupling schemes in EAMv1 discussed in the Part I paper.295

Consider three single-process ODEs in the form of Eq. (3) where Xi =A,B, or C, namely,

dqA(t)

dt
=A

(
q(t)

)
, t > tn, qA(tn) = qinputA ,

dqB(t)

dt
=B

(
q(t)

)
, t > tn, qB(tn) = qinputB ,

dqC(t)

dt
= C

(
q(t)

)
, t > tn, qC(tn) = qinputC ,

The exact solutions are denoted using the notation defined in Eq. (4), namely,300

qA[t− tn;q
input
A ]≡ qinputA +

t∫
tn

A
(
qA(η)

)
dη

= qinputA +

t−tn∫
0

A
(
qA[η̃;q

input
A ]

)
dη̃,

qB [t− tn;q
input
B ]≡ qinputB +

t∫
tn

B
(
qB(η)

)
dη

= qinputB +

t−tn∫
0

B
(
qB [η̃;q

input
B ]

)
dη̃,305

qC [t− tn;q
input
C ]≡ qinputC +

t∫
tn

C
(
qC(η)

)
dη

= qinputC +

t−tn∫
0

C
(
qC [η̃;q

input
C ]

)
dη̃.
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(a1) Original scheme in EAMv1, flowchart description

State at 

State at  

Intermediate state

Update state
using 

Estimate 
(turbulent
transport)

Estimate  (emissions)

Update state using 

Estimate  (dry removal)

Update state using 

(a2) Revised scheme, flowchart description

Intermediate state

State at 

Process rates   
 

Estimate 
(emissions)

Estimate 
(dry removal)

State at 

Update state 
using 

State at  

State at 

State at  

Intermediate state

Update state
using 

Estimate 
(turbulent
transport)

Estimate  (emissions)

Update state using 

Estimate  (dry removal)

Update state using 

Update state
using 

Estimate 
(turbulent
transport)

Intermediate state

(b1) Original scheme in EAMv1, pseudo code description

qn
apply A process for duration ∆t−−−−−−−−−−−−−−−→ qn+1

A

qn+1
A

apply B process for duration ∆t−−−−−−−−−−−−−−−−→ qn+1
B

qn+1
B

apply C process for duration ∆t−−−−−−−−−−−−−−−−→ qn+1
C

Let qn+1 = qn+1
C

(b2) Revised scheme, pseudo code description

qn
apply A process for duration ∆t−−−−−−−−−−−−−−−→ qn+1

A ; let A∗ =
qn+1
A − qn

∆t

qn
apply B process for duration ∆t−−−−−−−−−−−−−−−−→ qn+1

B ; let B∗ =
qn+1
B − qn

∆t

qn +∆t
(
A∗ +B∗) apply C process for duration ∆t−−−−−−−−−−−−−−−−→ qn+1

C

Let qn+1 = qn+1
C

(c1) Original scheme in EAMv1, ODE description

1. Solve for qA(tn+1) given
dqA
dt

=A(qA) with qA(tn) = qn.

2. Solve for qB(tn+1) given
dqB
dt

=B(qB) with qB(tn) = qn+1
A .

3. Solve for qC(tn+1) given
dqC
dt

= C(qC) with qnC = qn+1
B .

4. Let qn+1 = qn+1
C .

(c2) Revised scheme, ODE description

1. Solve for qA(tn+1) given
dqA
dt

=A(qA) with qA(tn) = qn.

2. Solve for qB(tn+1) given
dqB
dt

=B(qB) with qB(tn) =

qn.

3. Let A∗ =
qA(tn+1)− qn

∆t
and B∗ =

qB(tn+1)− qn

∆t
.

4. Solve for qC(tn+1) given
dqC
dt

= C(qC) with qC(tn) =

qn +∆t(A∗ +B∗).

5. Let qn+1 = qn+1
C .

Figure 2. Three different descriptions of two process coupling schemes for the three-process problem defined in Sect. 3. The scheme

depicted in the left column corresponds to the original scheme used in EAMv1 for the coupling of aerosol emissions, dry removal, and

the parameterization of turbulent transport and aerosol activation-resuspension. The scheme depicted in the right column corresponds to

the revised scheme proposed and evaluated in the companion paper (Part I). We note that these descriptions are simplified versions of the

coupling implemented in EAMv1. Here, we focus only on the three strongest sources and sinks of the global mean dust budget presented in

Sect. 3 of the companion paper, while the many other processes in EAMv1 (see Fig. 1 in the companion paper) are omitted.
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3.1 Process coupling schemes

The original EAMv1 uses sequential splitting for all three processes (see the left column in Fig. 2), which can be represented310

by the mapping

qn+1 = FOri
∆t (q

n)≡ qC

[
∆t;qB

[
∆t;qA[∆t;qn]

]]
, (20)

or equivalently,

qn+1 = qC

[
∆t; qn +

(
qA[∆t;qn]− qn

)
+
(
qB

[
∆t;qA[∆t;qn]

]
− qA[∆t;qn]

)]
, (21)315

Defining

A∗ ≡
(
qA[∆t;qn]−qn

)
/∆t , (22)

B∗ ≡
(
qB [∆t;qn]−qn

)
/∆t , (23)

the revised coupling scheme depicted in the right column in Fig. 2 can be represented by the mapping

qn+1 = FRev
∆t (qn)≡ qC

[
∆t;qn +∆t

(
A∗ +B∗)]320

or equivalently,

qn+1 = qC

[
∆t;qn+

(
qA[∆t;qn]−qn

)
+
(
qB [∆t;qn]− qn

)]
. (24)

3.2 Leading-order error terms

The original and revised coupling schemes described in Eq. (20) and Eq. (24) can be viewed as different combinations of the325

two-process sequential and parallel splitting schemes discussed in Sect. 2. Based on the discussions in that section, and keeping

in mind the focus here is the local truncation error, one can make the following reasoning about the original coupling scheme

in EAMv1:

– For process A, since the solution procedure starts from the exact solution at tn and integrates the A term in isolation, one

expects to get order (∆t)2 errors caused by performing time integration without considering the impacts of B and C on330

the A process. The coefficients in front of (dA/dq)B and (dA/dq)C are expected to be −(∆t)2/2. In other words, the

splitting truncation error associated with the A process is expected to be

lteOri
A =

(∆t)2

2

[
dA

dq
(−B−C)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (25)
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– For process B, since the solution procedure starts from a mixing ratio updated by A and ignores the A and C terms on

the RHS of the original ODE, one expects there to be two error terms caused by integrating B in isolation and an error335

associated with the input state. The input-induced error is expected to overcompensate the error caused by ignoring the

impact of A on the B process. Hence the splitting truncation error associated with the B process is expected to have the

form

lteOri
B =

(∆t)2

2

[
dB

dq
(+A−C)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
(26)

– For process C, the solution procedure starts from a mixing ratio updated by both A and B, and the C term is integrated340

in isolation. Therefore, one expects to have two input-induced errors overcompensating two isolation-induced errors,

giving a splitting truncation error in the form of

lteOri
C =

(∆t)2

2

[
dC

dq
(+A+B)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (27)

The overall local truncation error in the original coupling is expected to be

FOri
∆t

(
q(tn)

)
− q(tn+1) = lteOri

A + lteOri
B + lteOri

C345

=
(∆t)2

2

[
dA

dq
(−B−C)+

dB

dq
(A−C)+

dC

dq
(A+B)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (28)

The revised coupling scheme differs from the original scheme only in the input state for the integration of the B process,

see Eq. (24) versus Eq. (21). Therefore, one expects the splitting truncation errors associated with the other two processes, A

and C, to be the same as in the original scheme, and that the splitting truncation error associated with the B process to have a350

minus sign instead of + for the (dB/dq)A term (i.e., no input-induced error, only the isolation-induced error). In other words,

lteRev
A =

(∆t)2

2

[
dA

dq
(−B−C)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (29)

lteRev
B =

(∆t)2

2

[
dB

dq
(−A−C)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (30)

355

lteRev
C =

(∆t)2

2

[
dC

dq
(+A+B)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (31)

and the overall local truncation error is expected to be

FRev
∆t

(
q(tn)

)
− q(tn+1) = lteRev

A + lteRev
B + lteRev

C

=
(∆t)2

2

[
dA

dq
(−B−C)+

dB

dq
(−A−C)+

dC

dq
(A+B)

]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (32)360
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All of the error expressions in Eq. (25)–Eq. (32) are confirmed by the step-by-step derivations presented in Appendix B. This

agreement demonstrates how the two-process splitting truncation error results can be leveraged as building blocks to derive

splitting truncation errors for multi-process problems using logical reasoning instead of Taylor series expansions. In other

words, the derivation of splitting truncation error for multi-process problems does not always have to be done in the step-by-

step manner in Appendix B. The logical reasoning approach not only can facilitate rapid development of alternative coupling365

schemes but also makes the framework more accessible to model developers on the physics side who might find the lengthy

calculus derivations too tedious or daunting.

3.3 Characteristics of the leading-order error terms inferred from EAMv1 results

Recall that the three RHS terms in the three-process ODE discussed above are meant to represent surface emissions (A),

dry removal (B), and turbulent mixing (C), respectively, of dust aerosols in EAMv1. The parameterization descriptions and370

EAMv1 simulations presented in Sects. 2 and 3 of the Part I paper can be used to infer several features of the leading-order

error terms listed above in Eq. (3.2). The dust budget analyses shown in Sect. 3 of Part I indicate that the dominant sources

and sinks are found in the lowest model layer in the dust source regions, where A (emission) is a source, B (dry removal) is

typically a sink, and C (turbulent mixing) is typically a sink (i.e., A> 0, B < 0, and C < 0). Given the same air density and

deposition velocity, the downward dry removal flux at the Earth’s surface is proportional to the mean dust mixing ratio of the375

layer (see Eq. 1 in Part I). This means one can expect

dB

dq
< 0 (33)

to be true in typical cases. Equation (33) is confirmed by the scatter plot in Fig. 3 where the dry removal rate B is plotted

against dust mixing ratio q using 90 days of 6-hourly output in dust source regions simulated with the original EAMv1. It then

follows that the local truncation error associated with the B process in EAMv1’s original process coupling (see Eq. (26)) can380

be written as

lteOri
B =− (∆t)2

2

[∣∣∣∣dBdq
∣∣∣∣(|A|+ |C|

)]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (34)

and the local truncation error of the B process in the revised coupling scheme (see Eq. (30)) can be written as

lteRev
B =

(∆t)2

2

[∣∣∣∣dBdq
∣∣∣∣(|A| − |C|

)]∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (35)

Because
∣∣|A|− |C|

∣∣≤ |A|+ |C|, with equality only when A or C is zero, it is expected that the magnitude of the leading-order385

local truncation error associated with process B to be smaller in the revised coupling than in the original scheme, i.e.,∣∣lteRev
B

∣∣≲ ∣∣lteOri
B

∣∣ . (36)

This result, combined with the fact that the local truncation errors associated with the other two processes (A and C) have

the same expressions in the original and revised coupling schemes, provides a justification for adopting the revised scheme in

EAMv1.390
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Figure 3. Dust aerosol dry removal rate (y-axis) plotted against dust aerosol mixing ratio (x-axis) in the lowest model layer in dust sources

regions simulated by the original EAMv1 using a vertical grid with 72 layers. The data used in the figure included 90 days of 6-hourly

instantaneous output.

To see that Eq. (36) holds in practice, it is useful to first note that the main leading-order difference between lteOri
B in Eq. (26)

and lteRev
B in Eq. (30) is the term A−C versus (−A−C), respectively, evaluated at q = q(tn). While the values of A

(
q(tn)

)
and C

(
q(tn)

)
are not feasible to obtain in practice, as q(tn) is the exact solution, the approximate A and C values calculated

and used in EAMv1 simulations are relatively straightforward to obtain using the online diagnostic tool of Wan et al. (2022), as

was done in Part I. Figure 4 shows annual mean values of the computed (A−C) and (−A−C) in dust source regions in North395

Africa, using both the original and revised coupling methods. When the original coupling method is used, the magnitude of

(A−C) ranges from being slightly to substantially larger than the magnitude of (−A−C). When the revised coupling is used,

the magnitude of (A−C) is substantially larger everywhere than that of (−A−C). Both results support that the leading-order

term in lteRev
B is smaller in magnitude than that of the leading-order term in lteOri

B , i.e., Eq. (36).

It is also worth noting the leading-order term in lteOri
B is negative, by Eq. (34), and because B itself is negative, the negative400

leading-order term in the truncation error indicates an overestimation of the B process at each timestep of the original coupling

method. The study by Feng et al. (2022) has pointed out that dust dry removal in EAMv1 is generally overestimated in dust

source regions, and thus the reduction of |lteB | shown in Eq. (36) is consistent with the significantly weaker dry removal seen

in the Part I work (Wan et al., 2023) when the revised method is used instead of the original method in EAMv1. While the local

truncation error caused by process splitting is not the only source of error in global simulations (other error sources include,405

e.g., propagated splitting error in Eq. (2), temporal and spatial discretization errors in dry removal and other aerosol processes,

model formulation error, parameter uncertainty, etc.), the theoretical analysis here and the global simulations in Feng et al.

(2022) and Wan et al. (2023) suggest lteOri
B is likely an important contributor to the overly strong dust dry removal in the

original EAMv1.
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Figure 4. Comparison of key terms in the splitting truncation error associated with dry removal (process B) using 10-year mean interstitial

dust mass mixing ratio process rates (unit: kg kg−1 s−1) caused by emissions (process A) and dry removal (process B) in the lowest model

layer in EAMv1 simulations using the original coupling scheme (upper row) and the revised scheme (lower row).

4 Summary and conclusions410

A semi-discrete error analysis framework was introduced for assessing splitting error of process coupling methods. By assum-

ing the time integration of each individual process is exact, the framework identified two general sources of splitting error. The

first is denoted isolation-induced error and is from the integration, exact or otherwise, of a process without the influence of other

processes (i.e., in isolation). The second is denoted input-induced error and is from starting the single-process integration from

an input that deviates from the full solution of the multi-process equation. The corresponding splitting truncation error terms415

from those two sources were derived for a generic two-process problem for two common coupling methods: parallel splitting

and sequential splitting. The parallel splitting method results in isolation-induced error from both processes. The combination

of isolation-induced errors leads to an underestimation of the influence of the one process on the other. The sequential splitting

method results in isolation-induced error from the first process that is integrated in a timestep and in both types of error for

the second process. The combination of the two types of errors leads to an underestimation of the influence of the second420

process on the first, as in parallel splitting, but the input-induced error from the second process is shown to overcompensate the

isolation-induced error from the first process. Thus, sequential splitting results in an overestimate of the influence of the first

process on the second process.
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A three-process problem and two coupling schemes were analyzed that corresponded to the coupling of dust emissions, dry

removal, and turbulence mixing in the original EAMv1 and the revised coupling scheme proposed in the Part I paper. The425

semi-discrete analysis revealed that the original and revised coupling schemes have the same forms of leading-order error for

the emissions and turbulent mixing, while the magnitude of the local truncation error in dry removal is smaller in the revised

scheme. Assuming it is useful, especially in the long run, to address different error sources in EAM separately, this result

provides a justification to adopt the revised coupling in EAMv1. The analysis also revealed that the local truncation error of the

dry removal process in the original EAMv1 corresponds to an overestimation of the dry removal rate. This result, combined430

with the EAMv1 results presented in Feng et al. (2022) and the Part I paper, suggests that the sequential splitting of emissions,

dry removal, and turbulent mixing is likely an important contributor to the overestimated dry removal in dust source regions in

the original EAMv1.

While the error analysis framework is presented in the context of discussions on the dust life cycle in EAMv1, using the

framework as done in this work is much more general. For one, such a framework can be used to analyze coupling methods435

beyond the two schemes discussed here and in Part I as well as numerical coupling problems involving more than three

processes. Additionally, because many applications rely on low order coupling methods such as those discussed here, this

paper shows how such a framework can be used to inform choices of coupling approaches in areas beyond atmospheric climate,

including hydrology, fusion, reactive flow modeling, and many others. As such, the authors plan to use the framework to help

further reduce splitting errors in EAM and other applications.440

Code and data availability. The EAMv1 source code used in this study can be found on Zenodo as record 7995850 (Wan, 2023). The decadal

mean and instantaneous model output used for figures in this paper can be found on NERSC (Wan and Zhang, 2023).

Appendix A: Derivation of the leading-order error terms in a generic two-process ODE

This section details the step-by-step derivation of the leading-order local truncation error terms caused by applying the parallel

splitting and sequential splitting methods to solving the two-process problem defined in Eq. (7). The starting point is the local445

truncation error terms lteSS
A and lteSS

B in Eq. (12) and ltePS
A and ltePS

B in Eq. (9).

A1 Taylor expansion of an integral

The Taylor expansion of an integral is a key element in deriving the leading-order terms. As such, it is formalized herein. Recall

from Eq. (5) that q[η;ϕ] is the exact solution of the multi-process problem Eq. (1) evolved from input state ϕ for time η. For a

function f(δ) defined as450

f(δ) =

δ∫
0

F
(
q[η;ϕ]

)
dη,

20
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the first and second derivatives are

f ′(δ) = F
(
q[δ;ϕ]

)
,

f ′′(δ) =
dF

dq

(
q[δ;ϕ]

)dq
dt

[δ;ϕ],

respectively, and thus455

f(0) = 0,

f ′(0) = F
(
q[0;ϕ]

)
= F (ϕ),

f ′′(0) =
dF

dq

(
q[0,ϕ]

)dq
dt

[0;ϕ] =
dF

dq
(ϕ)

dq

dt
[0;ϕ].

Note that Eq. (6) was used to simplify the expression. The Taylor expansion of f(∆t) about ∆t= 0 is now given as

f(∆t) =f(0)+∆tf ′(0)+
(∆t)2

2
f ′′(0)+O

(
(∆t)3

)
460

=0+∆tF (ϕ)+
(∆t)2

2

dF

dq
(ϕ)

dq

dt
[0;ϕ]

+O
(
(∆t)3

)
. (A1)

Note that Eq. (A1) can be used to show both that

∆t∫
0

A
(
q[η;q(tn)]

)
dη =∆tA

(
q(tn)

)
+

(∆t)2

2

(
dA

dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
(A2)

and465

∆t∫
0

B
(
q[η;q(tn)]

)
dη =∆tB

(
q(tn)

)
+

(∆t)2

2

(
dB

dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
(A3)

A2 Parallel splitting

Recall the local truncation error term for parallel splitting in Eq. (9):

ltePS
A =

∆t∫
0

A
(
qA[η;q(tn)]

)
dη−

∆t∫
0

A
(
q[η;q(tn)]

)
dη. (A4)

The second integral is expanded using Eq. (A2). For the first integral, use Eq. (A1), with F =A, q = qA, and ϕ= q(tn) so that470

F
(
q[η;ϕ]

)
=A

(
qA[η;q(tn)]

)
, to find

∆t∫
0

A
(
qA[η;q(tn)]

)
dη =∆tA

(
q(tn)

)
+

(∆t)2

2

dA

dq

(
q(tn)

)dqA
dt

[0;q(tn)] +O
(
(∆t)3

)
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which can be simplified using Eq. (3) to get

∆t∫
0

A
(
qA[η;q(tn)]

)
dη =∆tA

(
q(tn)

)
+

(∆t)2

2

(
dA

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.

The expansions of the integrals in Eq. (A4) are now combined to find475

ltePS
A =− (∆t)2

2

(
dA

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
,

as shown in Eq. (13). Recall the other local truncation error term from Eq. (9):

ltePS
B =

∆t∫
0

B
(
qB [η;q(tn)]

)
dη−

∆t∫
0

B
(
q[η;q(tn)]

)
dη. (A5)

The second integral is expanded using Eq. (A3). For the first integral, use Eq. (A1), with F =B, q = qB , and ϕ= q(tn) so that

F
(
q[η;ϕ]

)
=B

(
qB [η;q(tn)]

)
, to find480

∆t∫
0

B
(
qB [η;q(tn)]

)
dη =∆tB

(
q(tn)

)
+

(∆t)2

2

dB

dq

(
q(tn)

)dqB
dt

[0;q(tn)]

+O
(
(∆t)3

)
,

(A6)

which can be simplified using Eq. (3) to get

∆t∫
0

B
(
qB [η;q

n]
)
dη =∆tB

(
q(tn)

)
+

(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.

The expansions of the integrals in Eq. (A5) are now combined to find485

ltePS
B =− (∆t)2

2

(
dB

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
as shown in Eq. (14).

A3 Sequential splitting

Recall the local truncation error term for sequential splitting in Eq. (12):

lteSS
A =

∆t∫
0

A
(
qA[η;q(tn)]

)
dη−

∆t∫
0

A
(
q[η;q(tn)]

)
dη.490
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Note that lteSS
A is equivalent to ltePS

A , which has already been derived in Sect. A2 and is equivalent to Eq. (16). Recall the other

local truncation error term from Eq. (12):

lteSS
B =

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη−

∆t∫
0

B
(
q[η;q(tn)]

)
dη (A7)

The second integral is expanded using Eq. (A3). For the first integral, use Eq. (A1), with F =B, q = qB , and ϕ= qA[∆t;q(tn)]

so that F
(
q[η;ϕ]

)
=B

(
qB [η;qA[∆t;q(tn)]

)
, to find495

∆t∫
0

B

(
qB

[
η;qA[∆t;q(tn)]

])
dη =∆tB

(
qA[∆t;q(tn)]

])

+
(∆t)2

2

dB

dq

(
qA[∆t;q(tn)]

)dqB
dt

[
0, qA[∆t;q(tn)]

]
+O

(
(∆t)3

)
which can be simplified using Eq. (3) to get

∆t∫
0

B

(
qB

[
η;qA[∆t;q(tn)]

])
dη =∆tB

(
qA[∆t;q(tn)]

)

+
(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=qA[∆t;q(tn)]

+O
(
(∆t)3

)
.

(A8)500

To continue the expansion, use

qA[∆t;q(tn)] = qA[0;q(tn)] +∆t
dqA
dt

[0;q(tn)] +O
(
(∆t)2

)
= q(tn)+∆tA

(
q(tn)

)
+O

(
(∆t)2

) (A9)

to get

∆tB
(
qA[∆t;q(tn)]

)
=∆tB

(
q(tn)

)
+(∆t)2

(
dB

dq
A

)∣∣∣
q=q(tn)

+O
(
(∆t)3

)
505

and

(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=qA[∆t;qn]

=
(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
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This allows for the simplification of Eq. (A8) to

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη

=∆tB
(
q(tn)

)
+(∆t)2

(
dB

dq
A

)∣∣∣
q=q(tn)

+
(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
(A10)510

The expansions of the integrals in Eq. (A7) are now combined to find

lteSS
B =

(∆t)2

2

(
dB

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
,

as shown in Eq. (17). It is worth noting that compared to the expansion of Eq. (A6), the expansion of Eq. (A8) has an extra

term (∆t)2
(
dB
dq A

)∣∣
q=q(tn)

that results from the sequential splitting method using qA[∆t;q(tn)] (the value of q already updated

by process A) as the input when integrating the dqB/dt equation. This leads to the sign difference between lteSS
B and ltePS

B that515

can be traced to the fact that the input used when integrating process B, i.e., qA[∆t;q(tn)], results in a leading-order error in

the solution that overcompensates the leading-order term caused by integrating the equation of dqB/dt without an A term on

the right-hand side.

Appendix B: Derivation of the leading-order error terms in a three-process ODE

This section details the derivation of the leading-order local truncation error terms caused by the original splitting and revised520

splitting methods to solving the three-process problem defined in Eq. (19). As it will be useful herein, start by using Eq. (A1)

to show that

∆t∫
0

A
(
q[η;q(tn)]

)
dη =∆tA

(
q(tn)

)
+

(∆t)2

2

(
dA

dq
(A+B+C)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (B1)

∆t∫
0

B
(
q[η;q(tn)]

)
dη =∆tB

(
q(tn)

)
+

(∆t)2

2

(
dB

dq
(A+B+C)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
, (B2)525

and

∆t∫
0

C
(
q[η;q(tn)]

)
dη =∆tC

(
q(tn)

)
+

(∆t)2

2

(
dC

dq
(A+B+C)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (B3)
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B1 Revised splitting

The mapping in the revised splitting described in Eq. (24) can be written as

FRev
∆t

(
q(tn)

)
=qC

[
∆t;q(tn)+∆t(A∗ +B∗)

]
= q(tn)+∆t(A∗ +B∗)+

∆t∫
0

C
(
qC [η;q(tn)+∆t(A∗ +B∗)]

)
dη530

=q(tn)+

∆t∫
0

A
(
qA[η;q(tn)]

)
dη+

∆t∫
0

B
(
qB [η;q(tn)]

)
dη+

∆t∫
0

C
(
qC

[
η;q(tn)+∆t(A∗ +B∗)

])
dη.

Thus, the local truncation error is expressed as

FRev
∆t

(
q(tn)

)
− q(tn+1) =

∆t∫
0

A
(
qA[η;q(tn)]

)
dη−

∆t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteRev

A

+

∆t∫
0

B
(
qB [η;q(tn)]

)
dη−

∆t∫
0

B
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteRev

B

+

∆t∫
0

C
(
qC

[
η;q(tn)+∆t(A∗ +B∗)

])
dη−

∆t∫
0

C
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteRev

C

The leading order terms in each of lteRev
A , lteRev

B , and lteRev
C will now be derived in a manner similar to their two-process535

counterparts in Sect. A. For lteRev
A , the second integral is expanded using Eq. (B1). For the first integral in lteRev

A , use Eq. (A1),

with F =A, q = qA, and ϕ= q(tn) so that F
(
q[η;ϕ]

)
=A

(
qA[η;ϕ]

)
, to find

∆t∫
0

A
(
qA[η;q(tn)]

)
dη =∆tA

(
q(tn)

)
+

(∆t)2

2

dA

dq

(
q(tn)

)dqA
dt

[0;q(tn)] +O
(
(∆t)3

)
,

which can be simplified using Eq. (6) to get

∆t∫
0

A
(
qA[η;q(tn)]

)
dη =∆tA

(
q(tn)

)
+

(∆t)2

2

(
dA

dq
A

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (B4)540

The expansions of the integrals in lteRev
A are now combined to find

lteRev
A =

(∆t)2

2

(
−dA

dq

(
B+C

))
+O

(
(∆t)3

)
,

which is equivalent to the expression in Eq. (29). For lteRef
B , the second integral is expanded using Eq. (B2). For the first integral

in lteRev
B , use Eq. (A1), with F =B, q = qB , and ϕ= q(tn) so that F

(
q[η;ϕ]

)
=B

(
qB [η;ϕ]

)
, to find

∆t∫
0

B
(
qB [η;q(tn)]

)
dη =∆tB

(
q(tn)

)
+

(∆t)2

2

dB

dq

(
q(tn)

)dqB
dt

[0;q(tn)] +O
(
(∆t)3

)
545
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which can be simplified using Eq. (6) to get

∆t∫
0

B
(
qB [η;q(tn)]

)
dη =∆tB

(
q(tn)

)
+

(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
. (B5)

The expansion of the integrals in lteRev
B are now combined to find

lteRev
B =

(∆t)2

2

(
−dB

dq

(
A+C

))
+O

(
(∆t)3

)
,550

which is equivalent to the expression in Eq. (30). For lteRev
C , the second integral is expanded using Eq. (B3). For the first integral

in lteRev
C , we use Eq. (A1) with F = C, q = qC , and ϕ= q(tn)+∆t(A∗+B∗) so that F

(
q[η;ϕ]

)
= C

(
qC

[
η;q(tn)+∆t(A∗+

B∗)
])

, to find

∆t∫
0

C
(
qC

[
η;q(tn)+∆t(A∗ +B∗)

])
dη =∆tC

(
q(tn)+∆t(A∗ +B∗)

)
+

(∆t)2

2

dC

dq

(
q(tn)+∆t(A∗ +B∗)

)dqC
dt

[0;q(tn)+∆t(A∗ +B∗)] +O
(
(∆t)3

)
,555

which can be simplified using Eq. (6) to get

∆t∫
0

C
(
qC

[
η;q(tn)+∆t(A∗ +B∗)

])
dη =∆tC

(
q(tn)+∆t(A∗ +B∗)

)
+

(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=q(tn)+∆t(A∗+B∗)

+O
(
(∆t)3

)
(B6)

To continue the expansion, use Eq. (B4) and Eq. (B5) to see that

q(tn)+∆t(A∗ +B∗) = q(tn)+

∆t∫
0

A
(
qA[η;q(tn)]

)
dη+

∆t∫
0

B
(
qB [η;q(tn)]

)
dη

= q(tn)+∆t

(
A
(
q(tn)

)
+B

(
q(tn)

))
+O

(
(∆t)2

)
,560

which gives

∆tC
(
q(tn)+∆t(A∗ +B∗)

)
=∆tC

(
q(tn)

)
+(∆t)2

(
dC

dq

(
A+B

))∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
and

(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=q(tn)+∆t(A∗+B∗)

=
(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.

This allows the simplification of Eq. (B6) to565

∆t∫
0

C
(
qC

[
η;q(tn)+∆t(A∗ +B∗)

])
dη =∆tC

(
q(tn)

)
+(∆t)2

(
dC

dq
(A+B)

)∣∣∣∣
q=q(tn)

+
(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.
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The expansion of the integrals in lteRev
C are now combined to find

lteRev
C =

(∆t)2

2

(
dC

dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
,

which is equivalent to the expression in Eq. (31).

B2 Original splitting570

The mapping in the original splitting described in Eq. (20) can be written as

FOri
∆t

(
q(tn)

)
= qC

[
∆t;qB

[
∆t;qA[∆t;q(tn)]

]]
= qB

[
∆t;qA[∆t;q(tn)]

]
+

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη

= qA[∆t;q(tn)] +

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη+

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη

= q(tn)+

∆t∫
0

A
(
qA[η;q(tn)]

)
dη+

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη+

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη.

Thus, the local truncation error is expressed as575

FOri
∆t

(
q(tn)

)
− q(tn+1) dη =

∆t∫
0

A
(
qA[η;q(tn)]

)
−

∆t∫
0

A
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteOri

A

+

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη−

∆t∫
0

B
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteOri

B

+

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη−

∆t∫
0

C
(
q[η;q(tn)]

)
dη

︸ ︷︷ ︸
lteOri

C

(B7)

Note that lteOri
A is equivalent to lteRev

A , which has already been derived in Sect. B1 and is equivalent to the expression in Eq. (25).

For lteOri
B , the second integral is expanded using Eq. (B2). For the first integral in lteOri

B , use Eq. (A1), with F =B, q = qB ,

and ϕ= qA[∆t;q(tn)] so that F
(
q[η;ϕ]

)
=B

(
qB

[
η;qA[∆t;q(tn)], to find

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη =∆tB

(
qA[∆t;q(tn)]

)
+

(∆t)2

2

dB

dq

(
qA[∆t;q(tn)]

)dqB
dt

[
0;qA[∆t;q(tn)

]
+O

(
(∆t)3

)
580

which can be simplified using Eq. (6) to get
∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη =∆tB

(
qA[∆t;q(tn)]

)
+

(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=qA[∆t;q(tn)]

+O
(
(∆t)3

)
.
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We can now use the expansion of qA[∆t;q(tn)] in Eq. (A9) to simplify further:

∆t∫
0

B
(
qB

[
η;qA[∆t;q(tn)]

])
dη =∆tB

(
q(tn)

)
+(∆t)2

(
dB

dq
A

)
+

(∆t)2

2

(
dB

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.

The expansions of the integral in lteOri
B are now combined to find585

lteOri
B =

(∆t)2

2

(
dB

dq
(A−C)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
,

which is equivalent to the expression in Eq. (26). For lteOri
C , the second integral is expanded using Eq. (B3). For the first integral

in lteOri
C , use Eq. (A1), with F = C, q = qC , and ϕ= qB

[
∆t;qA[∆t;q(tn)]

]
so that F

(
q[η;ϕ]

)
= C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
,

to find

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη =∆tC

(
qB

[
∆t;qA[∆t;q(tn)]

])
590

+
(∆t)2

2

dC

dq

(
qB

[
∆t;qA[∆t;q(tn)]

])dqC
dt

[
0;qB

[
∆t;qA[∆t;q(tn)]

]]
+O

(
(∆t)3

)

which can be simplified using Eq. (6) to get

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη =∆tC

(
qB

[
∆t;qA[∆t;q(tn)]

])
+

(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=qB

[
∆t;qA[∆t;q(tn)]

]+O
(
(∆t)3

) (B8)595

To continue the expansion, use

qB
[
∆t;qA[∆t;q(tn)]

]
= qB

[
0;qA[∆t;q(tn)]

]
+∆t

dqB
dt

[
0;qA[∆t;q(tn)]

]
+O

(
(∆t)2

)
= qA[∆t;q(tn)] +∆tB

(
qA[∆t;q(tn)]

)
+O

(
(∆t)2

)
to get

∆tC
(
qB

[
∆t;qA[∆t;q(tn)]

])
=∆tC

(
qA[∆t;q(tn)]

)
+(∆t2)

(
dC

dq
B

)∣∣∣∣
q=qA[∆t;q(tn)]

+O
(
(∆t)3

)
600

and

(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=qB

[
∆t;qA[∆t;q(tn)]

] = (∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=qA[∆t;q(tn)]

+O
(
(∆t)3

)
.
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We can use the expansion of qA[∆t;q(tn)] in Eq. (A9) to further simplify the above terms to:

∆tC
(
qB

[
∆t;qA[∆t;q(tn)]

])
=∆tC

(
q(tn)

)
+(∆t)2

(
dC

dq
A

)∣∣∣∣
q=q(tn)

+(∆t2)

(
dC

dq
B

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
=∆tC

(
q(tn)

)
+(∆t)2

(
dC

dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
605

and

(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=qB

[
∆t;qA[∆t;q(tn)]

] = (∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.

This allows the simplification of Eq. (B8) to

∆t∫
0

C

(
qC

[
η;qB

[
∆t;qA[∆t;q(tn)]

]])
dη =∆tC

(
q(tn)

)
+

(∆t)2

2

(
dC

dq
C

)∣∣∣∣
q=q(tn)

+(∆t)2
(
dC

dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
.610

The expansion of the integrals in lteOri
C are now combined to find

lteOri
C = (∆t)2

(
dC

dq
(A+B)

)∣∣∣∣
q=q(tn)

+O
(
(∆t)3

)
,

which is equivalent to the expression in Eq. (27).
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