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Abstract. We implement a plastic damage parametrization, distinct from the elastic damage in the elasto-brittle framework,

in the standard viscous-plastic sea ice model to disentangle its effect from resolved model physics (visco-plastic with and

without damage) on its ability to reproduce observed scaling laws of deformation. To this end, we compare scaling properties

and multifractality of simulated divergence and shear strain rate, as proposed in the Sea Ice Rheology Experiment (SIREx)

studies, with those derived from the RADARSAT Geophysical Processor System (RGPS). Results show that including a plastic5

damage parametrization in the standard viscous-plastic model increases the spatial, but decreases temporal localization of

simulated Linear Kinematic Features, and brings all spatial deformation rate statistics in line with observations from RGPS

without the need to increase the mechanical shear strength of sea ice as recently proposed for lower resolution viscous-plastic

sea ice models. In fact, including damage with a healing timescale of th = 30 days and an increased mechanical strength

unveils multifractal behavior that does not fit the theory. Therefore, a plastic damage parametrization is a powerful tuning knob10

affecting the deformation statistics of viscous-plastic sea ice.

1 Introduction

It is reasonable to assume that ice could be a material simple enough to describe. After all, it is just frozen water. However,

this apparent simplicity hides tremendous atomic, chemical, and mechanical complexities. Northern communities succeeded in

capturing the spirit of this complexity in their language. The fact that they have rich and precise words for countless variations15

of ice and snow types reveals a profound implicit understanding of the importance of the symbiotic relation between daily

activities and ice identification via both its visual features and its formation (Krupnik, 2010). Ice color, for example, marks the

melting zones of sea ice in spring and allows for the identification of hazardous sea ice for walking. Regardless of the beauty

and intelligence of this process, other more quantitative metrics are used for problems covering a larger range of scales (from

the kilometer scale to thousands of kilometers), including short-term forecast and decadal projections for navigation and global20

climate applications.

Sea ice moves under the action of winds and ocean currents, leading to collisions between floes. Internal stresses rapidly

redistribute these forces from ice–ice interactions over long distances. Sea ice deformations occur along well-defined lines of

deformation called Linear Kinematic Features (LKFs; Kwok, 2001) that are scale-independent and multifractal, ranging from

the smallest floes (meters) to the size of the Arctic Basin, with width ranging from 0 m to 10 km (Hoffman et al., 2019). Along25

these lines, sea ice floes can slide along one another (shear), ridge (convergence), or move apart creating leads (divergence).
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These mechanical processes affect both lead patterns, and the local and pan-Arctic state of the atmosphere-ice-ocean system,

notably the sea ice mass balance, salt fluxes in the upper ocean via brine rejection, and vertical heat and moisture fluxes

between the ocean and the atmosphere (Aagaard et al., 1981; McPhee et al., 2005). These physical processes must be adequately

represented in both global climate models and ice–ocean prediction systems either through added physics or parameterizations.30

The ability of a sea ice model to reproduce Linear Kinematic Features can be determined by looking at length, angle between

conjugate pairs of LKFs, lifetime, and statistical spatiotemporal properties such as scaling, multifractality, coupling, etc. As

such, their multifractality and scaling properties are important to capture in a sea ice model for all applications.

Statistical properties derived from Synthetic Aperture Radar (SAR) imagery of Arctic sea ice show that LKFs exhibit com-

plex laws, including spatiotemporal scaling (e.g. Marsan et al., 2004; Rampal et al., 2008; Marsan and Weiss, 2010). As35

discussed in Weiss (2013), the scaling properties of sea ice, contrary to those of turbulence in fluid, have been shown to be

coupled in space and time such that the value of one is influenced by the sampling resolution of the other, and also by its

spacetime localization. These statistical characteristics are theorized to result from brittle compressive shear faults (Schulson,

2004), and a cascade of fracture that redistributes stresses within the pack ice (e.g. Marsan and Weiss, 2010; Dansereau et al.,

2016). The complexity of these interactions is undeniable, and a desirable sea ice model for the Arctic system should represent40

LKFs adequately.

Dynamical sea ice models use a diverse range of rheologies to simulate sea ice motion and deformation. A rheology de-

scribes the relationship between internal stress and deformation (rate) for a given material. In the standard viscous-plastic (VP)

rheology — with an elliptical yield curve and normal flow rule (e.g. Hibler, 1979, and its variants) —, sea ice is considered as

a highly-viscous fluid for small deformations. In this case, sea ice slowly deforms by creeping. It is a time-dependent process45

in which strain accumulates due to long-term stresses. When a critical threshold in shear, compression and tension, defined by

the yield curve, is reached, the ice fractures and enters a plastic regime (larger, permanent, rate-independent deformation). The

main advantage of using a viscous-plastic model over a more physical elastic-plastic (EP) model (e.g. Coon et al., 1974) is that

the material has no "memory" of past deformations and it is not necessary to keep track of previous strain states, rendering

the VP formulation mathematically and numerically simpler. Since the first formulation of the VP model, much work has been50

done to improve the efficiency of the numerical solver used to solve the highly non-linear momentum equations (Hunke and

Dukowicz, 1997; Hunke, 2001; Lemieux et al., 2008; Lemieux and Tremblay, 2009; Lemieux et al., 2010; Bouillon et al.,

2013).

Following a reassessment of basic (incorrect) assumptions behind models developed from the Arctic Ice Dynamics Joint

EXperiment (AIDJEX) (sea ice is isotropic and has no tensile strength, Coon et al., 1974, 2007) new rheologies were proposed55

to mend some of these problems. For instance, ice would be better described with discontinuities that are accounted for in

the representation of deformation, and an anisotropic yield curve that allows for tensile stresses (Coon et al., 2007). Models

that incorporate some of these recommendations include the Elasto-Brittle (EB: Girard et al., 2011) and modification thereof

(MEB, and BBM: Dansereau et al., 2016; Olason et al., 2022) originally cast using a Finite Element numerical scheme (FEM),

in which elastic deformations are followed by brittle failure, while larger deformations along fault lines are viscous. These60

models include an elastic damage parametrization that accounts for the fact that damage associated with (prior) fractures,
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in addition to ice thickness and concentration, also affects the elastic modulus of the ice (see, for example, Girard et al.,

2011; Rampal et al., 2016; Dansereau et al., 2016; Olason et al., 2022). These authors argued that the inclusion of a damage

parametrization was a key factor for the proper simulation of sea ice deformations that follow observed spatial and temporal

scaling properties (see also Dansereau et al., 2016). In other models (e.g. Elastic-Anisotropic-Plastic (EAP), Tsamados et al.,65

2013; Wilchinsky and Feltham, 2006), the fracture angle between conjugate pairs of LKFs is specified, leading to anisotropy

between interacting diamond-shaped floes. Another approach includes the elastic-decohesive rheology using a material-point

method (Schreyer et al., 2006; Sulsky and Peterson, 2011), in which the lead mechanics are simulated through decohesion.

Damage parametrizations — first developed in rock mechanics — are ad-hoc in that they are derived from observations

and not from first physics principles. For instance, a damage parameter can be quantitatively expressed as a scalar relationship70

between the elastic modulus of a material before and after fracture (Amitrano et al., 1999). In this model, the ice strength

does not decrease when damage is present; instead, it is the Young’s modulus that decreases, resulting in larger deformations

for the same stress state. This was put to advantage in the EB model family where the damage is expressed as a function

of the (time-step dependant) stress overshoot in principal stress space referenced to a yield criterion (Rampal et al., 2016;

Plante et al., 2020). Another approach used in rock mechanics first considers mode I (tensile) failure on the plane where75

the maximum tensile stress occurs, followed by crack propagation along the plane where the mode II (shear) stress intensity

factor is maximized (Isaksson and Ståhle, 2002a, b). Other more complex descriptions of damage parametrizations (both in

its definition and evolution) — such as fracture initiation around elliptical flaws (e.g. Hoek, 1968) — have been used in rock

mechanics and could in principle be implemented in sea ice models.

In the context of sea ice and plasticity theory, plastic damage (hereafter referred to as damage for simplicity) can be accom-80

plished by including strain weakening in the model that is independent of subsequent divergence and reduction of ice thickness

and/or concentration (see for example Lubliner et al., 1989, for a simple model of plastic degradation). In recent years, more

complex models have been developed that include (elastic-)plastic damage, notably in concrete, in which plasticity is taken

into account in the damage variables, resulting in changes in the yield curve (see for instance Luccioni et al., 1996; Jason et al.,

2006; Voyiadjis et al., 2008; Hafezolghorani et al., 2017; Parisio and Laloui, 2017; Friedlein et al., 2023, etc.).85

Earlier model–observation comparison studies, aimed at defining the most appropriate rheology for sea ice, found that any

rheological model that includes compressive and shear strength reproduces observed sea ice drift, thickness, and concentration

equally well (e.g. Flato and Hibler, 1992; Kreyscher et al., 2000; Ungermann et al., 2017). The modeling community subse-

quently used deformation statistics (probability density function, spatiotemporal scaling, and multifractality) to discriminate

between different sea ice rheological models (Rampal et al., 2019; Bouchat et al., 2022). Results from the community-driven90

Sea Ice Rheology Experiment (SIREx), under the auspice of the Forum for Arctic Modeling and Observational Synthesis

(FAMOS), showed that any model with a sharp transition from low (elastic or viscous creep) deformations to large (plastic or

viscous) deformations can reproduce the new deformation-based metrics — provided the models are run at sufficiently high

resolution: 2 km for Finite Difference Models (FDM), and 10 km for FEM (Bouchat et al., 2022). A last unsuccessful attempt at

discriminating between rheological models includes the analysis of the LKF density and angles of fracture between conjugate95
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pairs of LKFs; to this point, all rheologies overestimate the angles of fracture and all reproduce densities of LKF comparable

to observations provided a small enough resolution is used (2 km for FDM, and 10 km for FEM) (Hutter et al., 2021).

Ultimately the best way to compare models is to switch one single aspect on and off in the same modeling framework. An

important step toward this goal was the implementation of the MEB rheology in finite difference, allowing for a direct com-

parison between VP and MEB rheologies in the same numerical framework (Plante et al., 2020). Other significant differences100

between the VP and MEB models include the sub-grid-scale damage parametrization and the consideration of elastic deforma-

tions prior to and subsequent to fracture allowing the material to retain a memory of past deformations. In an attempt to further

disentangle the effect of elasticity, damage, and discretization, we include a plastic damage parametrization in the standard VP

model, and analyze the deformation statistics of this modified VP model following recommendations from SIREx (Bouchat

et al., 2022), and Olason et al. (2022). To this end, we compare both simulated (with and without damage in the VP model) and105

the RADARSAT-derived Eulerian deformation products using probability density functions (PDFs), spatiotemporal scaling

laws, and multifractality.

The paper is organized as follows. First, we describe the model in section 2. Then we introduce a damage parametrization

that can be used in the context of a viscous plastic model. The sea ice deformation data and deformation metrics used to evaluate

the model’s performance are described in sections 3 and 4. Results and discussion of the results are presented in sections 5 and110

6. Finally, concluding remarks and directions for future work are summarized in section 7.

2 Models

2.1 Governing Equations

The two-dimensional equation governing the temporal evolution of sea ice motion is given by:

m

[
∂u

∂t
+(u ·∇)u

]
=−mf k̂×u+ τ a + τw115

− mg∇Hd +∇ ·σ, (1)

where m (= ρih) is the sea ice mass per unit area, ρi is the ice density, h is the mean ice thickness, u (= (u,v)) is the horizontal

ice velocity vector, k̂ is a unit vector perpendicular to the sea ice plane, f is the Coriolis parameter, τ a is the surface wind

stress, τw is the water drag, g is the gravitational acceleration, Hd is the sea surface dynamic height, and σ is the vertically

integrated internal ice stress tensor. In the following, the advection term is neglected because it is orders of magnitude smaller120

than the other terms for a 10-kilometer spatial resolution (Zhang and Hibler, 1997). The surface air stress and water drag are

parametrized as quadratic functions of the ice velocities with constant turning angle (θa,θw) for the atmosphere and the ocean
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(e.g. McPhee, 1975, 1986; Brown, 1979):

τ a = ρaCa|ug
a |
(
ug

a cosθa + k̂×ug
a sinθa

)
, (2)

τw = ρwCw|ug
w −u| [(ug

w −u)cosθw125

+ k̂× (ug
w −u)sinθw

]
, (3)

where ρa and ρw are the air and water densities, ug
a and ug

w are the geostrophic winds and ocean currents, and Ca and Cw are

the air and water drag coefficients. The reader is referred to Tremblay and Mysak (1997) and Lemieux et al. (2008, 2010) for

more details on the model and the numerical solver.

The constitutive law for the standard viscous-plastic rheology with an elliptical yield curve and associated (normal) flow130

rule can be written as, (Hibler, 1977, 1979),

σij = 2ηε̇ij +(ζ − η)ε̇kkδij −
Pr

2
δij , (4)

where Pr/2 is a replacement pressure term and ζ and η are the nonlinear bulk and shear viscosities defined as:

ζ =
P

2∆
, (5)

η =
ζ

e2
, (6)135

∆=
[
(ε̇11 + ε̇22)

2
+ e−2 (ε̇11 − ε̇22)

2
+4e−2ε̇212

]1/2
. (7)

The sea ice pressure P is parametrized as:

P = P ∗hexp{−C(1−A)} , (8)

where P ∗ (= 27.5×103N/m) is the ice strength parameter, A is the sea ice concentration, and C (= 20) is the ice concentration

parameter, an empirical constant characterizing the dependence of the compressive strength on sea ice concentration (Hibler,140

1979). For small strain rates (∆−→ 0), the viscosities tend to infinity, and the bulk and shear viscosities ζ and η are capped

to a maximum value using a continuous version of the classical replacement scheme (Hibler, 1979; Lemieux and Tremblay,

2009):

ζ = ζmax tanh

(
P

2∆ζmax

)
, (9)

where ζmax = 2.5×108P (Hibler, 1979), equivalent to a minimum value of ∆min = 2×10−9 s−1 (Kreyscher et al., 1997). In the145

limit where ∆−→∞ (x−→ 0), tanhx≈ x, and Equation 9 reduces to ζ = P/2∆ (Equation 5). In the limit where ∆−→ 0

(x−→∞), tanhx−→ 1, and ζ = ζmax. The replacement pressure Pr is given by

Pr = 2ζ∆, (10)

which ensures a smooth transition between the viscous and plastic regimes, and stress states that lie on ellipses that all pass

through the origin.150
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2.2 Damage Parametrization

2.2.1 Background

Progressive damage models were initially developed to model the nonlinear brittle behavior of rocks (Cowie et al., 1993;

Tang, 1997; Amitrano and Helmstetter, 2006). Since then, many studies integrated some damage mechanism in which the

mechanical ice properties (e.g., elastic stiffness E, viscosity η, and relaxation time λ) are written in terms of a scalar, non-155

dimensional parameter d that represents the sub-grid scale damage of the ice (Girard et al., 2011; Dansereau et al., 2016;

Rampal et al., 2016; Plante et al., 2020). For example, Dansereau et al. (2016) proposed the following parametrization of the

elastic stiffness (E) and the viscosity (η) akin to the ice pressure in Hibler (1979):

E = E0hexp{−C(1−A)}(1− d(t)), (11)

η = η0hexp{−C(1−A)}(1− d(t))α, (12)160
η

E
= λ=

η0
E0

(1− d(t))α−1, (13)

where E0 and η0 are the (constant) Young’s modulus and viscosity of undeformed ice, and α (> 1) is a parameter that controls

the rate at which the viscosity decreases and the ice loses its elastic properties. In this formulation, E and η depend on their

undamaged value (E0 and η0), sea ice thickness and concentration (A and h), and a time-dependent damage (d(t)).

In progressive damage parametrization, damage builds as a function of the stress overshoot beyond the yield curve. Following165

Plante and Tremblay (2021), the scaling factor Ψ (0<Ψ< 1) required to bring a super-critical stress (σ′) state back on the

yield curve (σf ) is written as:

σf =Ψσ′, (14)

where σf is the corrected stress. The corrected state of stress (σf
1 ,σ

f
2 ) is defined as the intersection point of the line joining

(σ′
1,σ

′
2) and the failure envelope of the Mohr-Coulomb criterion along any stress correction path. Note that the stress correction170

path is not a flow rule; it does not change the visco-elastic constitutive equation of the MEB model. Its purpose is to convert the

excess stress into damage (d). This definition of damage assumes that only stresses change post-fracture, and the strain (rate)

does not. The evolution equation for the damage parameter can be written as (Dansereau et al., 2016; Plante et al., 2020):

d

dt
d=

(1−Ψ)(1− d)

td
− 1

th
, (15)

where td (=O(1) s) and th (=O(105) s) are the damage and healing timescales, and the condition ∆t≪ λ must be met175

for stability reason (Dansereau et al., 2016). Consequently, the damage at any given time is a function of the previously

accumulated damage. This constitutes the memory of the previous stress state in the MEB model.

2.2.2 New VP Model Damage Parametrization

Since the VP model does not include the elastic regime of sea ice deformations, we propose a parametrization of damage that

modifies the size of the yield curve and therefore the shear and bulk viscosities.180
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In the standard VP model, the ice strength P depends only on the ice concentration A and the ice mean thickness h. Sea ice,

therefore, weakens along an LKF only when sea ice divergence is present — affecting the ice strength through the exponential

dependence on the sea ice concentration (Equation 8) — contrary to real sea ice that weakens when a fracture is present

irrespective of whether post fracture divergence or convergence is present.

Building on Plante (2021), we include damage in the VP model using a simple advection equation with source/sink terms185

(akin to what is used in the MEB formulation) of the form:

∂d

∂t
+∇ · (ud) = 1− (ζ/ζmax)

1/n − d

td
− d

th
, (16)

which asymptotes to the steady state solution d= 1− (ζ/ζmax)
1/n in the absence of advection and healing, and exponentially

decays to zero when only healing is considered. In the plastic regime, when ζ ≈ 0, ∂td= (1− d)/td, and damage increases

asymptotically to a maximum value of one. In the viscous regime, when ζ ≈ ζmax, ∂td=−d/th, and damage asymptotes to190

zero with a time scale th. Note also that the healing term in Equation 16 depends on the level of damage. We choose control

values of td (= 1 day) and th (= 30 days) as typical times scales for fracture propagation and healing (see Dansereau et al.,

2016; Murdza et al., 2022, for small healing timescale explanations). The damage timescale used in the model simulations is in

line with passive microwave satellite imagery that shows lead propagation over hundreds to a thousand kilometers over a one-

day time scale, while a large healing timescale comes from the thermodynamic growth of a characteristic ice thickness of one195

meter of ice. Note that a VP model is a nearly ideal plastic material, and can be considered as an elastic-plastic material with

an infinite elastic wave speed; therefore, the fracture propagation is instantaneous (i.e., it is resolved with the outer loop solver

of an implicit solver or the sub-cycling of an EVP model). In the above equation, n is a free parameter setting the steady-state

damage for a given deformation state. Using Equation 9, and the fact that ζmax = P/2∆min, Equation 16 can be written as:

∂d

∂t
+∇ · (ud) = 1− tanh1/n (∆min/∆)− d

td
− d

th
. (17)200

Following Dansereau et al. (2016); Rampal et al. (2016), the coupling between the ice strength and the damage is written as,

P = P ∗hexp{−C(1−A)}(1− d), (18)

where P varies linearly with d, and where d incorporates the full non-linearity of the viscous coefficients (ζ). We refer to this

model as VPd in the following.205

2.3 Forcing, Domain, and Numerical Scheme

The model is forced with 6-hourly geostrophic winds calculated using sea level pressure (SLP) from the National Centers for

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996). First,

SLPs are interpolated at the tracer point on the model C-grid using bicubic interpolation (Akima, 1996). The field is then

smoothed using a gaussian filter with σ = 3, and the geostrophic winds are computed from the smoothed field, yielding winds210
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on the model’s B-grid. The winds are interpolated linearly in time to get the wind forcing at each time step. The model is

coupled thermodynamically to a slab ocean. The climatological ocean currents were obtained from the steady-state solution

of the Navier–Stokes equation with a quadratic drag law, without momentum advection, assuming a two-dimensional, non-

divergent velocity field and forced with a 30-year climatological wind stress field. Monthly climatological ocean temperatures

are specified at the model’s open boundaries from the Polar Science Center Hydrographic Climatology (PHC 3.0) (Steele et al.,215

2001). The reader is referred to Tremblay and Mysak (1997) for more details.

The equations are solved on a cartesian plane (polar stereographic projection) with a regular 10 km grid. The equations are

discretized on an Arakawa C-grid and solved at each time step (∆t= 1 hour) using the Jacobian Free Newton-Krylov (JFNK)

method (Lemieux et al., 2010). At each Newton Loop (NL) of the solver, the linearized set of equations is solved using a

line successive over-relaxation (LSOR) preconditioner, and the Generalized Minimum RESidual (GMRES) method (Lemieux220

et al., 2008) with a relaxation parameter ωlsor = 1.3. The non-linear shear and bulk viscosity coefficients and the water drag are

then updated, and the process is repeated using an inexact Newton’s method until either the total residual norm of the solution

reaches a user-defined value (γ = 10−2) or the maximum number of Newton Loop is reached (NLmax = 200) (Lemieux et al.,

2010).

Following Bouchat and Tremblay (2017), the model is first spun-up (with damage turned off), with a set of ten random years225

between 1970 and 1990, a constant one-meter ice thickness, and 100% concentration as initial conditions. The shuffling of

the spin-up years is used to prevent biases associated with low-frequency variability, such as the Arctic Oscillations or Arctic

Ocean Oscillations, which would lead to a larger difference in the initial ice thickness field (Thompson and Wallace, 1998;

Rigor et al., 2002; Proshutinsky and Johnson, 2011). From the spun-up state, each simulation is run from January 1, 2002, to

January 31, 2002. The deformation statistics presented below are robust to the exact choice of winter discontinuities at the end230

of each year (Bouchat and Tremblay, 2017).

Both the control and simulation with damage use the same initial conditions. In order to test the sensitivity of the results to

the choice of initial conditions, the model was spun up for one additional year including the damage parametrization (recall

that the healing timescale is 30 days) and the simulations were repeated. The results presented below are also robust to the

exact choice of initial conditions.235

3 Observations

We use the three-day gridded sea ice deformations from the Sea Ice Measures dataset, formerly called RADARSAT Geophys-

ical Processor System (and referred to as RGPS in the following for simplicity) (Kwok et al., 1998; Kwok, 1997). The RGPS

data set is obtained from Lagrangian ice velocity fields by tracking the corners of initially uniform grid cells on consecutive

synthetic aperture radar (SAR) images. The deformation of the grid cells is used to approximate the velocity derivatives and240

the strain rate invariants εI and εII using line integrals (Kwok et al., 1998). The initial Lagrangian grid spatial resolution is

10 km × 10 km, except in a 100 km band along the coasts, where a coarser resolution of 25 km is used. Finally, the data is

regridded onto a 12.5 km × 12.5 km fixed polar stereographic projection using a three-day temporal resolution. The three-
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day gridded data set is available from 1997 to 2008 for summer and winter (November to July) on the ASF DAAC website

(https://asf.alaska.edu/). Following Bouchat and Tremblay (2017), we only use strain rates larger than |0.005| day−1 — equal245

to the tracking error of about 100 m on the vertices of the Lagrangian grid cells (Lindsay and Stern, 2003).

4 Methods

Following Bouchat and Tremblay (2017), Hutter et al. (2018), Girard et al. (2009), and Marsan et al. (2004), we compare the

probability density functions, spatiotemporal scaling laws of the mean deformation rates, and multifractal properties simulated

by the model with the RGPS data (see section 4.1 to 4.4 below for details). We calculate the total deformation using simulated250

3-day average sea ice velocities inside the SAR sea ice RGPS data in the region where an 80% temporal data coverage is

present for the winters 1997–2008 — referred to as RGPS80 in the following (see Figure 1 or Bouchat and Tremblay, 2017).

The simulated sea ice deformations are compared with observed sea ice deformations derived from three-day average RGPS

ice velocities for January 2002.

4.1 Simulated Deformation Fields255

Following Marsan et al. (2004) and Bouchat and Tremblay (2017), the total sea ice deformation rates are calculated from the

(hourly) divergence (ε̇I) and the maximum shear strain rate (ε̇II) as:

ε̇total =
√
ε̇2I + ε̇2II, (19)

where

ε̇I =
∂u

∂x
+

∂v

∂y
, (20)260

ε̇II =

√(
∂u

∂x
− ∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2

. (21)

The sea ice velocities are first averaged over a period of three days in order to match the temporal resolution of the RADARSAT

observations. The averaged velocity fields are then used to calculate the strain rate invariants at the center of each grid cell.

These values represent averaged Eulerian deformation rates over the grid cells area.

4.2 Probability Density Functions (PDFs)265

Probability density functions are used to assess the ability of the models to reproduce large deformation rates and to determine

their statistical distribution. We separate the domain into logarithmically increasing bins and perform a least-square power-

law fit on the tail of the log–log distributions where the interval for a given model consists of all bins up to an order of

magnitude from the largest deformation bin available. Therefore, intervals between runs differ, but each interval is the most

representative of the deformation decay for a given model (Bouchat et al., 2022). To quantify the difference between the shape270

9

https://asf.alaska.edu/


0 50 100 150 200
0

50

100

150

200

0

20

40

60

80

100
Tem

poral presence [%
]

Figure 1. Hotness map of temporal presence in the RGPS observations for January 2002. The black line represents the RGPS80 mask and is

drawn at the 80% temporal frequency contour. This mask is used for all results.

of the simulated and observed PDFs, we use the Kolmogorov-Smirnov (KS) distance D, defined as the absolute difference

between the cumulative density functions (CDFs) of the models Cm(ε̇n) and the data Cd(ε̇n):

D = max
ε̇n≥ε̇n,min

|Cm(ε̇n)−Cd(ε̇n)|. (22)

In this approach, the shape of the PDF is taken into account directly and there is no need to a priori assume the underlying sta-

tistical distribution of the PDF. The interpretation of the KS-distance is straightforward: a smaller D implies a closer agreement275

between observed and simulated statistical distributions.
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As noted in Bouchat and Tremblay (2020) and Bouchat et al. (2022), a linear decay in deformations does not imply a

power law, as other distributions (e.g., log-normal distributions) can also approximately decay linearly (Clauset et al., 2009).

Therefore, we do not assume that the power-law exponents derived from the CDFs are representative of the true distributions;

we instead use them as a means to differentiate between simulated and observed PDFs of deformation rates. We therefore use280

the average of the absolute difference of the logarithms of the simulated and observed PDFs (see also Bouchat et al., 2022).

This metric has the advantage of giving more weight to the tail of the PDFs (small probabilities, large deformation rates).

Finally, we present results for negative and positive divergence separately to avoid error cancellation (Bouchat et al., 2022).

4.3 Spatiotemporal Scaling Analysis

Following Marsan et al. (2004), we use the following coarsening algorithm to compute the spatiotemporal scaling exponent of285

the mean deformation rates derived from models and RGPS observations to estimate the scaling exponents:

⟨ε̇tot(L,T )⟩ ∼ L−β(T ), (23)

⟨ε̇tot(L,T )⟩ ∼ T−α(L), (24)

where L and T are the spatial and temporal scales at which sea ice total deformation rates are averaged, and β and α are

the spatial and temporal scaling exponents. As pointed out by Weiss (2017), β can take values between 0 (homogeneous290

deformations) and 2 (deformations concentrated in a single point), while α can take values between 0 (random deformation

events) and 1 (one single extreme event).

We find β, by first averaging the simulated velocity fields to match the 3-day temporal aggregate of RGPS. We then compute

the mean ice velocities in boxes of varying sizes L from that of the models’ spatial resolution (10 km) to the full domain size

with doubling steps: L= 10, 20, 40, 80, 160, 320, 640 km. The same procedure is repeated with the RGPS data set starting295

from a 12.5 km resolution. At each step, the boxes of length L overlap with their neighbors at their midpoint. The RGPS80

mask does not necessarily contain a whole number of boxes, n ̸≡ 0 mod L
L0

in general, where n is the maximal size of the

mask along a given axis and L0 is the resolution of one grid cell. The mean inside the fractions of squares that are left at the

boundaries of the domain is included only for boxes that are filled with at least 50% data. We calculate the deformation rates

using the average in time and space velocities, and we also compute the effective size of the box by taking the square root of300

the total number of occupied cells in the box. From these points, we take the mean of the deformation rates for each box size

and fit a least-square power law in the log–log space to find β, the spatial scaling exponent.

For the temporal scaling α, we instead fix L to the spatial resolution value of the data set (10 km), and we compute the

mean deformations with the different time-averaged velocities ranging from 3 days to 24 days (i.e. T = 3, 6, 12, 24) and fit a

least-square power law to calculate the temporal scaling exponent α.305
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4.4 Multifractal Analysis

The scaling exponents (β and α) are functions of the moment q of the deformation rate distribution:

⟨ε̇qtot(L,T )⟩ ∼ L−β(q), (25)

⟨ε̇qtot(L,T )⟩ ∼ T−α(q). (26)

While it is usually assumed that the structure functions β(q) and α(q) are quadratic in q for the sea ice total deformation rates310

(Marsan et al., 2004; Bouillon and Rampal, 2015; Rampal et al., 2019), the structure functions are not necessarily quadratic in

q for the generalized multifractal formalism (see Schmitt et al., 1995; Lovejoy and Schertzer, 2007; Weiss, 2008; Bouchat and

Tremblay, 2017), and are expressed instead as (for the spatial structure function),

β(q) = q(1−H)+K(q)

=
C1

ν− 1
qν +

(
1−H − C1

ν− 1

)
q, (27)315

where

K(q) =
C1

ν− 1
(qν − q). (28)

In the above Equation, C1 (0≤ C1 ≤ 2) characterizes the sparseness of the field, ν (0≤ ν ≤ 2, ν ̸= 1) is the Lévy index, or

the degree of multifractality (0 for a mono-fractal process, 2 for a log-normal model with a maximal degree of multifractality),

and H (0≤H ≤ 1) is the Hurst exponent. We use a general non-linear least squares fit for the structure functions’ parameters.320

A similar equation holds for the temporal structure function α(q). K(q) is called the "moment scaling function exponent" for

a random variable. It defines the singularity spectrum, a function that describes the distribution of singularities (or points of

non-smoothness) across different scales in the system.

Note that the scaling exponents for q = 1 (β(1) and α(1)) are equal to 1−H , and therefore, a higher H means a less localized

or smoother field. Moreover, the degree of multifractality ν defines how fast the fractality increases with larger singularities. As325

ν increases, larger deformations will dominate, and there will be fewer low-value smooth regions for example. C1 represents

how "far" the multifractal process is from the mean singularity value given by β(1) = 1−H; we can understand this by taking

the derivative β′(1) = (1−H)+C1: the higher C1 is compared to 1−H , the fewer field values will correspond to any given

singularity, i.e., the singular field values are more sparsely grouped (Lovejoy and Schertzer, 2007).

As noted in Bouchat et al. (2022), the computed parameter values are sensitive to the number of points used to define the330

structure functions. Therefore, we use the same moment increments of 0.1 in order to derive the three multifractal parameters

(ν, C1, H).
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5 Results

5.1 Simulated Total Deformation Field

In the control run (d= 0 or n=∞), the simulated LKFs are more diffuse, less intense and the LKF density is lower when335

compared with RGPS observations (see Figure 2b). When including damage, LKFs are better defined, more intense, and the

LKF density is higher, in better qualitative agreement with observations (this is true for all configurations of VPd models

except n= 1); the ice strength along LKFs is much weaker, providing a strong positive feedback for the simulation of higher

intensity and density of fracture lines, akin to RGPS-derived LKFs (see Figure 2). As n decreases from n= 50 (∼infinity) to

n= 1, the intensity, definition, and density of LKF increase until maximum damage is present in all grid cells and LKFs are340

no longer distinguishable from the undeformed ice, effectively rendering the ice fluid-like (Figure 2d). These results are robust

to the exact choice of a healing timescale (th = 2–30 days), except when th ≈ td when fewer extreme deformation events are

present. In this case, the damage increment over partly damaged cells is compensated by the healing term. In all cases, however,

the simulated LKFs are not as well-defined as the LKFs in RGPS observations presumably due to spatial resolution (see for

instance Bouchat et al., 2022). Note that increasing shear strength (e= 0.7) with damage does improve the localization of345

LKFs as in the simulation without damage with e= 0.7 in accord with results from Bouchat and Tremblay (2017) (see Figure

2i). Another key visual difference is that the spatial mean of the deformation rates is higher for the VPd model than for the VP

model and RGPS data, see also section 5.2 below for a discussion and more quantitative assessment.

The mean ice thickness over the Arctic Ocean is also sensitive to the amount of damage in the model (results not shown).

For instance, the VPd model with n= 5 and th = 2 (low damage), and n= 3 and th = 30 (high damage) gives a 1 cm and350

5 cm mean ice thickness anomaly respectively. This thickness increase occurs mostly along LKFs in the form of ridges and

clearly shows the impact of damage on the deformation fields. Moreover, we see a reduction in sea ice thickness anomalies for

the VPd model with maximal damage (n= 1 and th = 30). In this case, convergence (thickening) occurs over broader areas

and when integrated, leads to a reduction in the positive ice thickness anomaly.

5.2 Probability Density Functions (PDFs)355

When considering damage, a larger number of LKFs is present for any mean total strain rate with a transfer from lower

to larger total deformation rates in the PDF. This shift results in a log-linear decay in the tail of the PDFs for shear rate

and divergence/convergence that is in better agreement with RGPS. The VPd model is particularly good at reproducing the

large divergence and convergence rate (and to a lesser extent large shear strain rate) present in RGPS observations contrary

to the standard VP model that has a limited ability to simulate both observed divergence and convergence rate larger than360

10−1 day−1 (see Figure 3). The PDFs of shear strain rates are more sensitive to the healing timescale th than the damage

exponent parameter n; with larger healing timescales leading to more shear. The best fit with observations occurs for n= 3,5

and th = 2, or at n= 1 and th = 30. A smaller n leads to more extensive but less intense damage that can be compensated

by keeping a larger th. Similarly, the PDFs of convergence are more sensitive to th than n, with larger values of th resulting

in more convergence. The best correspondences between models and observations are with no damage and a reduced ellipse365
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ratio (e= 0.7) or with low damage n= 5 with low healing timescale th = 2. Interestingly, higher values of P ∗ with some

damage have little to no impact on the convergence PDF contrary to lowering the ellipse ratio and to results from Bouchat

and Tremblay (2017). Nevertheless, any damage configuration is better than the control run at reproducing high convergence

events. In contrast, the PDFs of divergence are equally sensitive to n and th with more damage (lower n or higher th) resulting

in a higher count of large deformations in divergence. In this case, both configurations (VP(0.7) and VPd(0.7,5,30,27.5))370

with a lower ellipse ratio (e= 0.7) overestimate divergence (Figure 3, yellow curves). Moreover, a higher P ∗ leads to higher

divergence, in better agreement with observations (Figure 3, deep rose curves), with PDFs comparable to the fully damaged

(n= 1) and lower ellipse ratio (e= 0.7) configurations.

We note that damage increases convergence and to a lesser extent divergence. This asymmetry between changes in positive

and negative divergence, when damage is increased, precludes a perfect fit with observations with the default ellipse aspect375

ratio. The fact that reducing e from e= 2 to e= 0.7 or increasing P ∗ both increase divergence while keeping convergence the

same suggests that a combination of some damage (n= 3,5, and th = 2) together with a higher P ∗ or reduced ellipse aspect

ratio will lead to the best fit in the three types of PDFs. See the section below on the sensitivity of the parameters for a nuanced

discussion of their optimal values.

5.3 Complementary Cumulative Density Functions (CCDFs)380

The complementary cumulative density functions (CCDFs) of the two models differ substantially because of the higher count

of large deformations of the VPd model bringing its CCDFs further from that of the control run (Figure 4). For shear strain

rate, the KS-distances computed from the CCDFs of the different configurations of the VPd model are all slightly higher

(0.21≤Dε̇II ≤ 0.36) than that of the control run (0.19). The fact that the latter crosses the CCDF of the data while keeping

a similar maximal vertical range as the CCDFs of the VPd model results in this slightly lower KS-distance, something that385

is not apparent from the PDFs alone. In contrast, the KS-distances of the VPd CCDFs for convergence are similar or smaller

(0.07≤Dε̇I<0
≤ 0.40) than that of the control run (0.37). Not surprisingly, the configurations with th = 2 have a very low

KS-distance (0.07 and 0.10), in line with the PDF of convergence that showed that large values of th result in overshooting.

Yet again, the key improvement resides in the divergence rate with KS-distances for the VPd model configurations that are

smaller (0.05≤Dε̇I>0
≤ 0.43) than that of the control run (0.53), highlighting the success of the VPd model at simulating a390

higher count of large deformations in divergence. Again, VPd configurations with th = 2 days have the largest KS-distance in

divergence with values closer to the control run (0.36 and 0.43). Interestingly, the best fit with observations comes from the

standard VP model with a reduced ellipse aspect ratio (e= 0.7) with very small KS-distances (0.03, 0.03, 0.15 respectively).

These small values may be due to the interannual variability in the RGPS data; the KS-distances of a particular RGPS year

can vary by as much as 0.17 when compared to the RGPS mean (Bouchat et al., 2022). Nonetheless, combining damage395

(n= 5, th = 30) with an increased P ∗ does lead to very small KS-distances (respectively, 0.21, 0.20, and 0.20) and supports

the conclusions drawn from the PDFs alone. Unsurprisingly, the KS-distance decreases with increasing n and decreasing th

for shear strain rate and convergence, while for divergence, the KS-distance decreases with decreasing n and increasing th —
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as for the PDFs. Overall, improvements in the divergence CCDF (from an increase in th or P ∗, or a reduction in n) come at

the cost of a deterioration in the convergence CCDFs.400

5.4 Spatiotemporal Scaling

Both the VPd and VP models are able to reproduce some level of spatial and temporal scaling, as in RGPS (Figure 5-6). The

spatial scaling exponent β at T = 3 days of the VPd model is highly sensitive to the exponent n and the healing timescale

th; it increases with decreasing n and increasing th, i.e. with more damage. The spatial scaling exponents are ranging from

β = 0.06 to β = 0.14 for the different configurations of the VPd model, with the slope of the spatial scaling curve for the fully405

damaged VPd(2,1,30,27.5) model being the highest (0.14) and closest to that of RGPS (0.15), while the standard VP model

has a 3 times smaller exponent (β = 0.05); all configurations of the VPd model have better spatial scaling than the VP model.

Note how reducing the ellipse ratio (e= 0.7, as proposed by Bouchat and Tremblay, 2017) also increases the spatial scaling

exponent for the VPd model (yellow curve). The increase in the scaling factor for the VPd model indicates that LKFs are more

localized in space than those of the VP model.410

On the other hand, the temporal scaling α at L= 10 km of the VPd model for all configurations is lower (α= 0.13 to

α= 0.19) than that of the observations (0.28) or the VP model (0.23). Note that the combination of damage and a reduced

ellipse aspect ratio (e= 0.7) decreases the temporal scaling exponent (yellow curve), contrary to its effect on the spatial scaling

exponent.

All VPd simulation curves have a higher mean deformation rate (for both the spatial and temporal scaling), since damage415

increases the mean velocity of the ice (result not shown). Increasing P ∗ reduces the mean ice velocity and the mean deformation

rates across all scales to the same level as the control run (deep rose curves compared to light green curves). This shift towards

higher mean deformations is visible from the pan-Arctic simulations but has no impact on the spatial and temporal scaling.

In summary, the VPd model improves spatial localization at the expense of a weaker temporal localization of deformations.

Temporal localization (or scaling) is not to be confused with intermittency. Temporal localization originates from the autocor-420

relations of the deformation time series at a given location and the rate at which these correlations decrease when increasing

the time lag between deformation rate values. In other words, a lower temporal scaling means that a high deformation event is

more likely to be followed by another high deformation event in the "near future", resulting in a smeared time localization in

the mean at a given scale. On the other hand, intermittency (or heterogeneity) is reflected in the change of localization within

the same data set; the intermittency can be quantified from the shape of the structure function (as discussed below in section425

5.5). With this in mind, it is expected that the VPd model would have a lower temporal scaling, as the damage increases the

probability of future (for t < th) deformation at a given grid cell. For the same reason, decreasing th increases temporal scaling.

The proposed damage parametrization simulates plastic weakening along LKFs and increases the memory of the system

– something that the sea ice concentration and thickness can only accomplish in high resolution sea ice models when sea

ice divergence is present and over longer (advective) time scales. It differs from the (elastic) damage definition introduced in430

earlier work (e.g., Girard et al., 2011; Rampal et al., 2016; Dansereau et al., 2016; Plante et al., 2020), where damage reduces
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the elasticity of the material, and therefore increases deformation for a fixed stress state. In the case of plastic damage, it is the

effective viscosities in shear and divergence that are reduced, leading to larger strain rates for the same stress states.

5.5 Multifractal Analysis

When fractal structures have local variations in fractal dimension, they are said to be multifractals. In the case of sea ice435

deformation or strain rates, multifractality arises from the higher space and time localization of larger deformation rates,

compared to smaller deformations (Weiss and Dansereau, 2017; Rampal et al., 2019).

The spatial structure functions of all the VPd configurations are in better agreement with observations when compared with

that of the control run (Figure 7). The spatial multifractality parameter (1.50≤ ν ≤ 1.96) of the VPd configurations increases

when increasing th, but the dependence on n only appears for high values of th. Larger values of ν characterize a field440

dominated by singularities of larger values; for sea ice, this means that configurations of the VPd model with a small healing

timescale reflect this poorer multifractal behavior because the sea ice heals faster. For short healing timescales (th ≈ 2) the

dependency of the multifractal parameter ν on n disappears, but for th = 30, the dependency of ν on n becomes apparent;

the spatial multifractality parameter ν reaches a local minimum (ν = 1.61) for n= 3, followed by a local maximum at n= 5

(ν = 1.96), then plateaus at some intermediate value (ν = 1.76) as damage decreases towards that of the control run (see insert445

of Figure 7).

The VPd(2,3,30,27.5) configuration highlights a complex transient state in the multifractal behavior of the model when

changing the parameter n from fully damaged ice (the VPd(2,1,30,27.5) configuration) with high multifractality (ν = 1.94)

but low heterogeneity (C1 = 0.04), to high multifractality (ν = 1.96) and high heterogeneity (C1 = 0.14) corresponding to the

VPd(2,5,30,27.5) configuration. Further decreasing damage (e.g. VPd(2,50, th,27.5)) leads to lower values of both multi-450

fractality and heterogeneity. The heterogeneity of the field (C1) of all VPd model configurations (0.04≤ C1 ≤ 0.21) are also

in better agreement with observations (C1 = 0.17) than that of the control run (C1 = 0.03) although still lower than RGPS

for the lower values of th and n, again suggesting that the VPd model is better at focusing LKFs spatially. This is also in

agreement with the higher Hurst exponent for the control run (H = 0.95) suggesting a spatially smoother field than the dif-

ferent configurations of the VPd model (0.85≤H ≤ 94) and RGPS observations (H = 0.87). This is, again, consistent with455

the results from the spatial scaling analysis. However, values of the Hurst exponent at q = 1 do not necessarily translate into

having observation-fitting values in the other two multifractal parameters, which leads to graphs that are far from that of RGPS

observations. Notably, the VPd(2,1,30,27.5) has a similar value for the Hurst exponent (H = 0.86) compared to RGPS obser-

vations (H = 0.87), but has the lowest heterogeneity (C1 = 0.04) of all the VPd model configurations, resulting in one of the

poorest representation of the observations, together with the th = 2 configurations.460

The most striking differences between the control run and the VPd model are their heterogeneity and spatial autocorrelations.

Combining the damage parametrization with a different value for the ellipse ratio (e= 0.7) further increases the heterogeneity

(C1 = 0.21) of the deformation field at the cost of lowering the spatial multifractality (ν = 1.57). Increasing P ∗ also leads to

higher heterogeneity (C1 = 0.16), while still maintaining the high values of the multifractality (ν = 1.95). Interestingly, a third

root appears in the range q < 1 when we change the ellipse aspect ratio or P ∗ (see Figure 7). The multifractal theory does not465
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allow for more than two roots, and the fact that this is observed is indicative that the model (the VPd at least) might not follow

the multifractal theory. This might also be the case for the other configurations, the observations, and the control run. Whether

this is a new behavior associated with the damage parametrization in tandem with the change in ellipse aspect ratio and P ∗ or

an enhancement of an already existing property remains to be investigated.

The differences in the temporal structure functions of the VPd model and the control run are more subtle (see Figure 8).470

Temporal multifractality is also reproduced by the different configurations of the VPd model (1.20≤ ν ≤ 1.86), and they are all

somewhat worse than the standard VP model (ν = 1.67) compared to RGPS data (ν = 1.87). Similarly to the spatial structure

functions, almost all configurations of the VPd model are as temporally heterogeneous (0.04≤ C1 ≤ 0.22) as the observations

(C1 = 0.14), while the control run is the least heterogeneous (C1 = 0.09), except for the fully damaged VPd(2,1,30,27.5)

configuration. RGPS observations have a somewhat low Hurst exponent value (H = 0.73), while all configurations of the VPd475

model have a high value (0.82≤H ≤ 84), even compared to the control run (H = 0.77). This high Hurst exponent brings down

the graph of the VPd temporal structure functions, even if their curvature (governed by ν and C1) is always higher than that of

the control run structure function, and in agreement with the curvature of the graph of the structure function computed from

RGPS observations, especially for high values of n and th. This curvature change accounts for the majority of the difference

between the simulated temporal structure functions and the high Hurst exponent is indicative of a temporally smoother field480

— in agreement with the results from the temporal scaling analysis. The only configuration that has a lower curvature than the

control run is the fully damaged VPd(2,1,30,27.5). This configuration has both low heterogeneity and high Hurst exponent,

leading to a temporal structure function that does not have enough curvature. Overall, reducing n (more damage) reduces

the temporal multifractality, and reducing th reduces the heterogeneity. Moreover, increasing P ∗ or reducing the ellipse ratio

increases heterogeneity but reduces multifractality. Interestingly, the Hurst exponent is almost constant for all configurations485

of the VPd and the standard VP with a reduced ellipse aspect ratio. As in the spatial structure function, changing the shape or

size of the ellipse does unveil a third root in the temporal structure function in the range q < 1, which is indicative that the VPd

model does not follow the multifractal theory.

5.6 Sensitivity to th, n, and the e

In the VPd model, a shorter healing timescale results in an overall smoother deformation field with fewer intense LKFs (see490

Figure 2e–h). Therefore a shorter healing timescale in this model is not necessarily wanted, as it reduces the effects of the

damage source term (see Equation 16). As a result, the spatial scaling improves marginally, but the temporal scaling becomes

significantly worse (see blue curves and their insert in Figures 5 and 6). This is also apparent in the multifractality as there

are only small discrepancies between the VPd model with a short healing timescale and the control run (see Figures 7–8).

The optimal healing timescale value t∗h, therefore, should be on the order of one month rather than days in a VPd model, in495

contrast with the value commonly used in the MEB model of 1 day and that derived from observations (Dansereau et al., 2016;

Murdza et al., 2022). This is of course expected since damage in the VPd model does not represent necessarily the same thing

as damage in the MEB model. Moreover, in Murdza et al. (2022), the authors raised the question of whether the rapid strength

recovery of the ice that they measured can be applied to larger scales.
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In the VPd model, deformation rates are sensitive to the exponent parameter n. When n is low, the damage reaches one in500

a few time steps and remains high, such that all the ice is nearly fully damaged (see Figure 2d), except for grid cells in the

viscous regime. When n is large (> 50), the VPd model gives morally the same results as the VP model. Considering all the

deformation metrics above, we suggest the value of n∗ = 5 for the damage parameter n.

When combining these values with the reduced value for the ellipse ratio (e= 0.7 Bouchat and Tremblay, 2017), we find

that the spatial scaling is stronger, while temporal scaling is even lower. This is in disagreement with Bouchat and Tremblay505

(2017) who found that changing e increases both spatial and temporal scaling. This is presumably due to the fact that reducing

e strengthens the ice in shear, and thus enhances the impact of the damage parametrization. Moreover, increasing P ∗ does

result in better multifractality and magnitude of deformation rates, without any consequences on the scaling. We suggest to

increase P ∗ when implementing the VPd model.

6 Discussion510

Deformation rate statistics simulated by the VPd model are in better agreement with RGPS observations than those of the

standard VP model. Unsurprisingly, the plastic rheology with damage is particularly good at reproducing the spatial scaling

and structure function. Moreover, while a lower temporal scaling was achieved with the damage parametrization, the temporal

intermittency of the VPd model was slightly higher and closer to the observations. This shows that the inclusion of a damage

parametrization inside a model has a non-negligible impact on the scaling, multifractality, and heterogeneity of the deformation515

fields both spatially and temporally.

Considering that the VP model can still produce some low level of multifractality, we hypothesize that the governing factor

in reproducing deformation rate statistics is not necessarily the physics behind the parametrizations nor the pre-fracture elastic

regime but rather the "amount of memory" of past deformations present in a model. Memory in the VP model is present through

the concentration and thickness of the ice; in the VPd model (or EB family), memory is also associated with damage which is520

present for both convergent and divergent flows and has a much faster timescale (td = 1 day) than h and A. Another possibility

could simply be the addition of some form of spatiotemporal heterogeneity in the ice strength, which the damage parametriza-

tion presented in this study does — highlighting that even ad-hoc parametrizations are going to improve deformation rate

statistics.

Since damage is expressed in terms of the bulk viscosity term, the "memory" of the system resides in the ice strength through525

the damage coupling factor (see Equation 18). The plastic deformations therefore instantaneously reduces the ice strength

locally. This new memory in the system complements the memory associated with sea ice divergence via the concentration

and thickness of the ice. That is, the ice is more susceptible to break where — or near where — it has been previously broken.

LKFs are, therefore, a memory network of the viscous-plastic model that includes a damage parametrization with a "learning"

curve that depends on the specific choice of damage timescale and exponent with a slow regenerative healing mechanism that530

acts as a memory eraser. This behavior is reflected in higher temporal intermittency as well as a higher spatial multifractality,

heterogeneity, and scaling in the VPd model. The downside is that the temporal multifractality and scaling exponent in the VPd
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model are lower, which indicates that long-time autocorrelations are especially strong in the VPd model. This is explained by

the memory of previously damaged ice, which prompts the ice to break where it already broke in the past.

Usually, when critical stress is reached in an MEB model, the Young’s modulus is instantaneously reduced locally, and the535

excess stress results in brittle fracture and increased damage. On the other hand, in a standard viscous-plastic model, when

plasticity is reached, the ice strength is reduced only for large — grid-scale — diverging ice events. In this scenario, the ice

thickness and concentration are reduced, leading to a lower ice strength at the next time step. This process is slow and much

smoother than the one in the VPd model, which mimics the behavior of the MEB model. In that regard, the VPd model permits

new types of weakening that reduce the ice strength (i.e., shear and convergence), something that is not possible in a standard540

VP model, hence creating more well-defined LKFs that lead to a better statistical fit of the observations. This is reflected in the

higher counts of high deformation events in both convergence and divergence.

In the VPd model with a modified smaller ellipse aspect ratio, a third root appeared in both the spatial and temporal mul-

tifractality plots. This means that the theory, which is only valid for a Lévy index between 0 and 2, does not hold anymore.

Is this particular configuration of the VPd model uncovering a new property, or is it simply amplifying something that was545

already there, and was overlooked? What does it mean for the multifractality of LKFs?

In light of the results presented above, we recommend the implementation of this damage parametrization in a standard

viscous-plastic model. This parametrization comes at no additional cost, contrary to increasing the spatial resolution of the

model, which increases the computational time of simulations by a factor of ∼25 for a 5-fold increased spatial grid resolution

of 2 km × 2 km, or even the tuning of the ellipse ratio, which decreases the numerical convergence substantially. The damage550

parametrization, together with a careful choice of yield curve parameters (see for example Bouchat and Tremblay, 2017;

Bouchat et al., 2022) would prove to be a low-cost, efficient way of improving deformation statistics, even if sea ice models are

not run a very high resolution. The VP sea ice rheology is one rheology among many others that simulates many of climate-

relevant sea ice properties satisfactorily (drift, deformation statistics) despite all of its flaws (yield curve, flow rule, elasticity

simulated as viscous creep).555

As the MEB model includes a damage parametrization, we ask the question of whether the agreement between the MEB

model and the RGPS observations is in part due to this sub-grid fracturing parametrization in conjunction with the Lagrangian

mesh used in MEB models, rather than the explicit choice of rheology — elastic deformations followed by brittle fracture.

Recent studies (together with results presented here) suggest that the inclusion of a damage parameter (Plante et al., 2020) and

the Lagrangian mesh (Bouchat et al., 2022) are key factors in a better description of deformation rate statistics. RGPS obser-560

vations are obtained from the displacement of tracers at a 10 km spatial scale, but ice motion is much more complex, and these

observations of emergent properties include the effects of processes that take place at much finer scales (sub-kilometer) such as

bending, twisting, micro-fractures, and fusion. We hypothesize that efforts put into developing sub-grid parametrizations will

be the go-to for fast and light deformation rate statistics improvement in the short term. Notably, using discrete element models

(DEM) as toy models for developing and calibrating new sub-grid-scale parametrizations may provide exciting results.565

Note that we used the same methodology as in Bouchat and Tremblay (2017). This is important to keep in mind as their

results show that maximum likelihood estimators (MLE) of the scaling parameters for the tail of PDFs of RGPS gridded
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deformation products are 29% (convergence), 25% (divergence), and 14% (shear) higher than those obtained using RGPS

Lagrangian product (Marsan et al., 2004; Girard et al., 2009). They attributed about 10% of the higher scaling parameters to the

choice of mask and the rest to the smoothing inherent to the gridding procedure. Therefore, our results do not necessarily reflect570

reality but are nevertheless still useful as they help discriminate our model’s configurations with RGPS gridded observations

for a particular year. The results presented are robust to the exact choice of year. However, the mask we are using is located

above the Canada Basin and extends to the East Siberian Sea, and we are only using the data from January 2002. Exact numbers

are therefore probably influenced by local — in space and time — effects. As a matter of fact, when doing the same analysis

for other years, the values for the parameters of the multifractal analysis and the PDFs decay exponents vary, but conclusions575

drawn from this study are robust, as the general behavior of the models stays the same for different years (results not shown).

It is believed that specific numbers given here are not necessarily representative of reality, but are rather just a rough estimate

of the behavior of the models and RGPS.

7 Concluding Remarks

We implement a sub-grid damage parametrization in the standard viscous-plastic model to investigate the effects of damage on580

the deformation rate statistics, namely, the probability density functions (PDFs) exponential decay and shape, the Kolmogorov-

Smirnov distance between cumulative density functions (CDFs) of simulations and observations, the spatiotemporal scaling

exponents, and the multifractal parameters expressing the spatiotemporal structure functions. Results show that the deforma-

tion rate statistics are very sensitive to the inclusion of a damage parametrization, including advection of damage and a healing

mechanism. Therefore, we argue that sub-grid-scale parametrizations should be considered when comparing different rheo-585

logical models. Specifically, we find that this new damage parametrization improves power-law scaling and multifractality of

deformations in space in the viscous-plastic model, the trade-off being a lower exponent than the standard VP model for the

temporal power-law scaling. We show that the new VPd model increases the number of large divergence and convergence rates

in better agreement with RGPS observations as per the new quantitative metric introduced by Bouchat et al. (2022). Moreover,

we show that the VPd model is especially good at producing spatial multifractality, which was expected since the damage590

parameter was constructed to improve the spatial localization of LKFs. The fact that the standard VP model can still produce

some spatial multifractality, without including any "cascade-like" mechanisms that would permit multifractality as in the VPd

model, indicates that other physical mechanisms are at play in both models. These other mechanisms are not identified, and the

origin of multifractality in the VP model remains an open question. We hypothesize that one likely candidate is the "amount

of memory" that a model possesses. The proposed damage parametrization is a compelling low-cost add-on to viscous-plastic595

models

The implementation of the proposed damage parametrization inside viscous-plastic models provides an efficient, low-cost

option for improving deformation rate statistics in low-resolution sea ice models, in tandem with a relatively long healing

timescale and an increased P ∗. Other possibilities would be to couple the damage parameter to the ellipse ratio directly rather

than the ice strength, which would change the physics of the ice locally rather than changing its strength. Future work will600
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include other sub-grid scale parametrizations, such as the inclusion of memory through an evolution equation for dilation

along Linear Kinematic Features — memory seems to be a determining factor for deformation statistics — and non-normal

flow rules, i.e. rheologies that allow for plastic deformations and for time-varying internal angle of friction. These would allow

models to have a better memory of past deformations.

Code and data availability. All analysis codes are available on GitHub: https://github.com/antoinesavard/SIM-plots.git. All published code605
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Figure 2. Simulated (VPd(e,n,th,P ∗)) and observed total deformation rates at a 10 km resolution (12.5 km for observations) for a 3-

day average between January 29–31, 2002 compared with observations as a function of the ellipse aspect ratio (e), damage exponent (n),

healing timescale (th, days), and compressive strength (P ∗, kN/m2). The VP with e= 2 (control) and e= 0.7 (VP(0.7)) are equivalent to

VPd(2,50, th,27.5) and VPd(0.7,50, th,27.5) respectively.
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Figure 3. Top row: simulated (color) and observed (black) probability density functions for shear strain rate, convergence, and divergence at

10 km resolution and 3-day average (L= 10 km and T = 3 days) for January 2002. The power-law exponent calculated over one order of

magnitude from the end of the distributions for each model and RGPS are shown in the inserts. Bottom row: binwise difference between the

logarithms of models and RGPS PDFs. The average absolute difference per bin is shown in the inserts.
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Figure 4. Simulated (color) and observed (black) cumulative density functions for shear strain rate, convergence, and divergence for models

at 10 km resolution (L= 10 km and T = 3 days) for January 2002. The Kolmogorov-Smirnov distance between each model and the CCDFs

of RGPS observations is shown in the inserts.
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Figure 5. Simulated (color) and observed (black) spatial scaling of mean total deformation rates for T = 3 days in January 2002. Lines are

least-square power-law fits, and their slope gives the scaling exponent β (shown in the insert).
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Figure 6. Simulated (color) and observed (black) temporal scaling of mean total deformation rates for L= 10 km in January 2002. Lines

are least-square power-law fits, and their slope gives the scaling exponent α (shown in the insert).
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Figure 7. Simulated (color) and observed (black) spatial structure functions β(q) of the total deformation rates for T = 3 days for January

2002. Dotted lines are the least-square fit for Equation 27, and the inserts are the value of the parameters of the fit (ν, C1, H).
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Figure 8. Simulated (color) and observed (black) temporal structure functions α(q) of the total deformation rates for L= 10 km for January

2002. Dotted lines are the least-square fit for Equation 27, and the inserts are the value of the parameters of the fit (ν, C1, H).
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