Dynamical reconstruction of the upper-ocean state in the Central Arctic during the winter period of the MOSAiC Expedition

Ivan Kuznetsova, Benjamin Rabea, Alexey Androsova, Ying-Chih Fangb, Mario Hoppmanna, Alejandra Quintanilla-Zuritaa, Sven Hariga, Sandra Tippenhauera, Kirstin Schulzc, Volker Mohrholzd, Ilker Fere, Vera Fofonovaa, and Markus Janouta

aAlfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
bNational Sun Yat-sen University University, 80424 Kaohsiung, Taiwan
cOden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
dLeibniz-Institute for Baltic Sea Research Warnemünde, Germany
eGeophysical Institute, University of Bergen and Bjerknes Center for Climate Research, Bergen, Norway

Correspondence: Ivan Kuznetsov (ivan.kuznetsov@awi.de)

Abstract. The Arctic Ocean is a region important for global and regional climate. Although generally quiescent compared to mid-latitudes, the upper Arctic ocean hosts mesoscale and smaller scale processes. These processes can have a profound impact on vertical ocean fluxes, stratification, and feedback with the sea ice and atmosphere. Sparse and non-synoptic in-situ observations of the polar oceans are limited by the distribution of manual observing platforms and autonomous instrumentation. Analyzing observational data to assess tracer field gradients and upper ocean dynamics becomes highly challenging when measurement platforms drift with the ice pack due to continuous changes in drift speed direction. This work presents a dynamical reconstruction of the ocean state, based on observations of the Multidisciplinary Observatory for the Study of Arctic Climate (MOSAiC) experiment. Overall, the model can reproduce the lateral and vertical structure of the temperature, salinity, and density fields, which allows for projecting dynamically consistent features of these fields onto a regular grid. We identify two separate depth ranges of enhanced eddy kinetic energy, which are located around two maxima in buoyancy frequency: the depth of the upper halocline and the depth of the warm (modified) Atlantic Water. Simulations reveals a notable decrease in surface layer salinity and density towards the north, accompanied by high variability in the mixed layer depth in the south-north direction. And no significant horizontal gradients in salinity and density fields but an increase in mixed layer depth from west to east 0.084 m/km gradient with 0.6 m/km standard deviation, indicating opposite characteristics compared to the south-north direction. The model resolves several stationary eddies in the warm Atlantic Water and provides insights into the associated dynamics. The obtained three-dimensional fields of temperature and salinity can be used for further analysis of the thermohaline structure and related dynamics associated with submesoscale processes in the Central Arctic. Dynamic characteristics and eddy fields can be used for further analysis and comparison with state-of-the-art climate and Earth System Models. The developed nudging method can be used to utilize future observational data obtained from a diverse set of instruments.
1 Introduction

Mesoscale eddies and submesoscale eddies whose scales respectively larger or smaller than the local baroclinic deformation radius have been observed in many parts of the world’s oceans, including the Arctic. Eddy-driven fluxes play a significant role in Arctic Ocean dynamics, such as the ventilation of the halocline, and the transport of organic and inorganic matter, e.g. nutrients and carbon, heat and salt (Dmitrenko et al., 2008; Meneghello et al., 2021; Marcinko et al., 2015; Pnyushkov et al., 2018; Mahadevan, 2016; Mahadevan et al., 2010; Gula et al., 2022; Nishino et al., 2018; Watanabe, 2011). The majority of studies on under-ice eddy dynamics in the Arctic are focused on the ice edge and shelf break zone, where the eddy activity is maximal, but little is known about eddies in the ice-covered central Arctic Ocean.

Analyzing Ice-Tethered Profiler and mooring data in the Canada Basin Zhao et al. (2016) have shown that eddy activity is subject to high interannual variability. Pnyushkov et al. (2018) found, based on mooring observations, that eddies in the area of the boundary current in the eastern Eurasian Basin appear about once per month and have a significant role in the vertical transfer of heat within the Arctic Ocean interior. Detailed three-dimensional analyses of an Arctic eddy and what the associated ramifications, prevailing on the order of months in the Chukchi Sea, were conducted by Scott et al. (2019), based on the data from a rapid shipboard survey. By studying submesoscale flows in the ice-covered Arctic, Mensa and Timmermans (2017) have shown that local eddies are responsible for significant vertical heat fluxes, and stimulate mixed layer (ML) restratification.

Based on observations and eddy-resolving model results, von Appen et al. (2022) argued that eddy kinetic energy (EKE), i.e. the intensity of the mesoscale dynamics, is 100 to 1000 times smaller in the basin compared to the shelf break region. Moreover, it was found that EKE is stronger in areas with low sea ice concentrations. Applying an idealized model in the marginal ice zone, Manucharyan and Thompson (2017) found that submesoscale flows could significantly increase the horizontal eddy diffusivity of sea ice mass, heat, and vertical velocities. Using the results of high-resolution modeling and observational data, Meneghello et al. (2021) show that surface mesoscale activity is extremely low during the winter period, due to fast energy dissipation by friction between eddies and sea ice. The authors show that mesoscale eddies found in the subsurface can be explained by the baroclinic stratification and potential vorticity gradients commonly present in the Arctic interior.

Despite the intensification of mesoscale dynamics at the basin boundaries, von Appen et al. (2022) note that in the central Eurasian Basin, EKE is significant in both the halocline and the Atlantic Water layer, according to the high-resolution simulation. Meneghello et al. (2021) also note the presence of EKE maxima in two layers of maximum density gradients in the Canada basin. Androsov et al. (2005) and Rubino et al. (2007) investigated the non-stationarity of dynamics and evolution of mesoscale chimneys in the Greenland Sea. The use of in situ observations together with 3D non-hydrostatic modeling and the analytical solution allowed the authors to investigate inertial pulsations, shape, and velocity structure of eddy, and their significant effect on open-ocean deep-penetrating convection. An analysis of the dynamics of baroclinic vortices in stratified fluids, and the associated mass and heat transports, based on theoretical developments and numerical methods is given in Sokolovskiy and Verron (2013).

Furthermore, eddy dynamics impact biochemical processes in the Arctic Ocean. Llinás et al. (2009) illustrate the possible mechanism of zooplankton transport from the Chukchi Shelf into the interior Canada Basin by eddies. O’Brien et al. (2013)
found a significant role of eddies on the particle flux, and Oziel et al. (2022) demonstrate in a modelling study that lateral
submesoscale eddy transport is one of the dominating process controlling the nitrate supply in the central Arctic Ocean.
Omand et al. (2015) show that small-scale vorticity could be responsible for high concentrations of particulate organic carbon
in deeper layers. According to their calculations, submesoscale, eddy-driven fluxes can contribute as much as half of the total
springtime export of particulate organic carbon from the upper ocean to deeper layers in the subpolar region. Using coupled
physical and ecosystem models, Lovecchio et al. (2022) demonstrate the difference in trapping efficiencies of cyclonic and
anticyclonic long-living mesoscale eddies, impacting the biogeochemical processes within the ocean.

Despite ongoing efforts to develop and improve climate models, the accurate representation of submesoscale dynamics
remains a challenge. Androsov et al. (2020) compared ocean models with various horizontal resolutions to observed ocean
currents, and found only a modest correlation between the models and observations. They conclude that high resolution
is necessary in areas with high mesoscale eddy activity. According to Zhao et al. (2014), the radii of observed halocline
mesoscale eddies in the Arctic Ocean are on the order of a few kilometers. The first baroclinic Rossby deformation radius
here varies between 1 to 15 km (Nurser and Bacon, 2014). The necessity to resolve such small scales makes it challenging to
explicitly model submesoscale features in global climate models due to the lack of horizontal resolution. Recent developments
in ocean climate models, software, and hardware give a possibility for simulations with a very high horizontal resolution, for
example Wang et al. (2020); Maslowski et al. (2008); Regan et al. (2020); Lyu et al. (2022); Hordoir et al. (2022).

Most studies on eddy dynamics in the Arctic have focused on the marginal ice zone or coastal currents, the main limitation
of submesoscale research in the central Arctic being observational data. Unfortunately, standard methods for observing eddies,
such as satellite remote sensing or glider and transect campaigns, have so far been challenging in near-perennially ice-covered
seas. To fill the gap in research of mesoscale and submesoscale dynamics in the central Arctic Ocean, during the Multidiscipli-

dary Observatory for the Study of Arctic Climate (MOSAiC, e.g. Rabe et al., 2022) expedition, autonomous ice-tethered
systems (“buoys”) were distributed radially around the Central Observatory (CO). The CO included a series of autonomous
buoys, the R/V Polarstern and the so-called Ocean City (OC), about 300 m away from the ship. This setup enabled us to obtain
regular, non-autonomous measurements. The large number of extremely diverse observations during the MOSAiC expedition,
from point measurements to profiles, differ significantly both in temporal frequency, from irregular weekly measurements to
measurements every 2 minutes, and in spatial resolution, from tens of kilometers to tens of meters. Moreover, the looping of the
DN drift trajectory and the intersection of the trajectories of different buoys add complexity to the observed data. Nevertheless,
using relatively simple data analysis methods, several mesoscale eddies were identified in the Amundsen Basin (Hoppmann
et al., 2022; Fang et al., 2023, submitted; Quintanilla-Zurita and et al., (in prep.). However, these methods have limitations in
showing the overall 3D picture, as the buoy measurements can be complex to analyze spatially, due to the above mentioned
complex drift trajectories. As a result, estimating lateral gradients of tracers or velocity shear are challenging, and the question
remains how to best analyze such scattered data and dynamics, and their role in vertical transport. One possible method are in-
terpolation techniques. However, the lateral scales of phenomena on interpolated maps can be limited by distances between the
observing buoy systems or parameters of the interpolation algorithm, rather than physical processes. Reconstructing temperature,
salinity, and density fields with a model by data assimilation allows for the estimation of dynamically consistent lateral

https://doi.org/10.5194/egusphere-2023-1353
Preprint. Discussion started: 28 June 2023
© Author(s) 2023. CC BY 4.0 License.
features of these fields on a regular grid. Assimilating high-frequency variability data, however, presents its own significant challenges: First, the assimilation time (usually once every 10 days or even daily averaging in extreme cases) significantly increases computation time. Second, the assimilation process involves averaging over a significant data radius, resulting in a smoothing effect on the assimilated data (Androsov et al., 2018). The nature of the data has to be considered when employing advanced methods such as the four-dimensional variational method (Courtier et al., 1994; Mogensen et al., 2009) or the Parallel Data Assimilation Framework (Nerger et al., 2020). Unfortunately, the high-frequency variability and the scales of the observations inherent in the MOSAiC data make it impractical to apply these methods to eddy analysis. Alternatively, nudging has several advantages for ocean data assimilation, including its ease of implementation in complex numerical models, its low computational demands, and the smoothness of the solution over time (Ruggiero et al., 2015).

The aim of our study is to extend current knowledge of submesoscale dynamics in the central Arctic by using the 3D regional model FESOM-C with very high vertical and horizontal resolution. We utilize observed temperature and salinity data from the MOSAiC DN buoys as part of the forcing for the numerical model. Our objective was to design a tool that could reconstruct water properties based on MOSAiC DN observational data and to reconstruct temperature and salinity fields with submesoscale variability using the high-resolution modeled dynamics. Additionally, we aim to estimate the properties of submesoscale dynamics during the MOSAiC expedition.

This paper is organized as follows. Section 2 presents the numerical model, observations, new nudging methodology, and experimental design. In section 3, we present the results of simulations and model validation. The analysis of (sub)mesoscale dynamics and distribution of eddy kinetic energy from the reconstructed dynamical fields are discussed in Section 4. In section 4.4 we summarize the results.

2 Methods

2.1 FESOM-C model

The FESOM-C model used in this work (Danilov and Androsov, 2015; Androsov et al., 2019) is a coastal branch of the global Finite volume sea ice–Ocean Model (FESOM2) (Danilov et al., 2017). In addition to the partially common interface of the models, FESOM-C has specific features that are important for our work. The model was originally developed for applications with a high horizontal resolution as fine as several meters (Neder et al., 2022; Kuznetsov et al., 2020; Fofonova et al., 2019). This model uses the discretization of cells and vertices of a finite volume, which allows the use of unstructured computational grids. We use this function to move the boundary of the computational domain away from the region of interest, the "core" of the model grid, without creating a system of nested grids. At the same time, the horizontal resolution outside the core is quite coarse, which allows us to reduce the influence of the boundary on our solution inside the core. The most important distinguishing feature from the global FESOM2 model is the possibility of using hybrid grids consisting of triangles and squares. The effectiveness of this approach to enhance stability and using larger time steps is shown by Danilov and Androsov (2015) and Androsov et al. (2019).
The parallel Algebraic Recursive Multilevel Solver (pARMS, (Li et al.)) used in FESOM2 was used to calculate the sea level using a semi-implicit method. Since we study the processes in the deep-water region, where the effect of bottom friction is minimal and the barotropic mode does not play a key role, we modified the scheme to a semi-implicit calculation of the sea level, omitting the solution of the block of average equations.

The thermodynamics of the sea ice model component has not been used in the current work. Alteration of the ocean surface temperature and salinity due to ice formation and melting has been forced by data nudging. The effect of sea ice presence on the dynamics of the ocean surface layer has been parameterized by the friction between ice and ocean. The effect of ice drift has been accounted for in the turbulence closure and is described in the following section.

In contrast to previous publications, we have implemented parallel calculations based on the Message Passing Interface (MPI). For the dynamic part of the model, the MPI scheme is similar to that of FESOM2 but applied to hybrid grids. The organization of parallel output and input for boundary conditions at open surface boundaries, in contrast to the global model, were written using the PnetCDF library (Li et al., 2003). This made it possible to take advantage of the flexibility of the previous openMP FESOM-C I/O version.

2.2 Turbulence closure

The turbulence closure equation based on the Prandtl-Kolmogorov hypothesis described in Androsov et al. (2019) is used to calculate turbulent vertical flows. Compared to the original version of the FESOM-C model, the modification of this equation concerned only the parametrization of the turbulence scale \(l \). The need for this change is associated primarily with the parametrization of the ice-water layer and a more dynamic description of the moving ML. At the preliminary stage, an average upper bound ice-drift velocity is estimated at 0.7 m/s, which is used as an upper boundary condition for the dynamic wind speed in the turbulent energy budget equation. In the second stage, the thickness of the ML \(h_{ml} \) is estimated as the depth with a practical salinity increase of 0.5 from the surface value, but minimum 20 meters. Then, the scale of turbulence in the upper ML is determined by

\[
l = \frac{\kappa}{h_{ml}} \cdot Z_H \cdot Z_\zeta,
\]

where \(Z_H = z + h_{ml} \), \(Z_\zeta = z + z_\zeta \), \(\kappa \sim 0.4 \) is the von Kármán constant and \(z_\zeta \) is the roughness parameter for the ice-water layer. Underneath the surface ML \(h_{ml} \), the scale of turbulence is given by:

\[
l = \frac{\kappa}{H - h_{ml}} \cdot Z_H \cdot Z_{ml} \cdot C,
\]

where \(H = h + \zeta \) is the full water depth, \(Z_{ml} = -z + (H - h_{ml}) + z_b \), \(z_b \) is the roughness parameter for the bottom and the constant \(C \sim 0.01 \) is set to reduce the scale of turbulence underneath the ML. This approach to determine the scale of turbulence ensures the smoothness and minimization of turbulent exchange at the boundary of the ML and the water column underneath the ML.
2.3 Model domain

The model domain is a parallelepiped in Cartesian coordinates with a solid boundary. Since the FESOM-C model allows computing on mixed unstructured meshes, we can adjust the spatial resolution without using nested grids. For the final computations, two spatial configurations of the model are used. The general conditions for these configurations were that, near the horizontal boundaries of the domain, the spatial resolution was relatively coarse, about 5 km. Such a coarse resolution at the boundaries serves two purposes: First, absorption due to the more strong dissipation of the uncertainty of the boundary information and its leveling to calculations in the core of the model is the most important in our application. Second, there are significant savings in computational resources. The first configuration of the model has a resolution of up to 1 km in the area of interest and contains 96000 nodes. This setup is mainly used at the initial modeling stage to form the initial conditions for a spatially detailed configuration of the study domain. The second configuration has a resolution of up to 250 m at the model’s core and contains about 1.3 million nodes (see Figure 1). This setup is used for the final computations and data analysis. The vertical structure is the same for both configurations and contains 240 vertical σ-layers. At the same time, the upper layer up to 150 m has an effective resolution of up to one meter, which makes it possible to significantly improve the representation of the vertical aspects of the submesoscale dynamics of surface ML compared to global models. The model domain is about 660 by 525 kilometers and limited geographically to between 90° East and 140° East longitude as well as 83° North and 87.7° North latitude.

2.4 Observational data

Here we use an observational data set obtained as part of the physical oceanography work program during the field phase of the Multidisciplinary Observatory for the Study of Arctic Climate (MOSAiC) in 2019/20 (Shupe et al., 2020). A description of the physical oceanography part of the experiment with a general description of the instruments and methodology is presented in Rabe et al. (2022). Temperature and salinity observations used in this work were obtained by various instruments: Most of the data was measured by autonomous ice-tethered systems ("buoys") within the DN originally deployed by the icebreaker Akademik Fedorov (Krumpen and Sokolov, 2020) radially around the icebreaker Polarstern tethered to the sea ice at the Central Observatory. Eight buoys termed "Salinity-Ice-Tether" (SIT) measured temperature, conductivity, and pressure, with derived salinity and depth, at five depths of 10, 20, 50, 75, and 100 meters with a sampling interval of 2 to 10 minutes, with a distance between subsequent data points as small as 80 meters. The sensors used on these buoys have an initial accuracy of ±0.003 mS cm$^{-1}$ for conductivity, ±0.002 °C for temperature, and ±0.1% of the full range for pressure. The sensor stability rating is 0.003 mS cm$^{-1}$ and 0.0002 per month for conductivity and temperature, respectively, with a yearly rating of 0.05% of the full scale for pressure. The detailed description of the instruments and the data obtained are given by Hoppmann et al. (2022). We further, used data from three Ice-tethered profilers (ITP; Toole and Krishfield, 2016). The time between subsequent profiles varied from several hours to days, depending on the specific system. The maximum depth reached by these profilers was about 700 m. Thus, the measurements with profilers cover depths in the warm waters of Atlantic origin (referred to as "warm Atlantic Water") and beyond. A total of 1114 profiles was used for nudging. The nudging process included additional profiles.
The positions of the observational data used for nudging are separated by instrument type: blue - 5 SIT buoys, with CTDs at 10, 20, 50, 75, 100 meters depth (Hoppmann et al., 2022). red – PS- and OC-CTD casts (Tippenhauer et al., 2023a, b), and ITP profiles (Toole and Krishfield, 2016). Black crosses - position of MSS profiles used for validation Schulz et al. (2022). The green polygon indicates an area with mainly straight drift trajectories, whereas the orange polygon indicates an area with often overlapping buoy trajectories. The cyan rectangle shows the area of Figure 9.

Figure 1. a) - Model domain resolution with the position of the observational data used in this study, covering a time period of ≈2.5 months. The positions of the observational data used for nudging covered the region between 87.6° East, 139.5° East, 84.5° North and 87.5° North, corresponding to the MOSAiC drift from October 2019 to January 2020. During the initial phase of the drift, the DN buoys trajectories, shown in Figure 1 by colored dots, exhibited predominantly straight paths. The later part is characterized by the presence of overlapping and loops in the trajectories when the regional sea ice cover changed drift direction. These interlacement of the trajectories of different measurement platforms increase the area of the data coverage compared to the straight drift, while, at the same time, introducing ambivalence in the spatio-temporal interpretation of the data. Measured parameters could be different between data measured at the same position at different times, leading to the aliasing of the observed signal.

To validate the model results, we used independent temperature and salinity data from a turbulence microstructure profiler (MSS; Schulz et al., 2022). These data were not used by the model for nudging. MSS profiles were obtained at Ocean City, on a near-daily resolution, in sets of at least 3 profiles. The profiles are averaged to 1 m vertical resolution and corrected against
CTD profiles, calibrated with water samples. For comparison to the model fields, we used 305 profiles (see black crosses in Figure 1).

2.5 Nudging

Nudging of the data was carried out assuming a quasi-steady-state, so that all observational data nudged the model field at the same model time. The model does not consider the time the observations were taken, which is a reasonable approximation at high drift speed relative to the water velocity. At the same time, we assume no significant relation of the submesoscale baroclinic structure at different ends of the model domain. Thus, nudging the model to non-time-separated observations, we get a quasi-stationary solution that can be interpreted as the result of a dynamically justified interpolation.

We applied a simple nudging algorithm: This method adds a nudging term to the evolution equation proportional to the difference between the model temperature and salinity, and the observational data at a given location. The full formulation of the model is given in Androsov et al. (2019). Here we present only the tracer equations in which changes have been made and where the last term represents nudging.

\[
\frac{\partial \Theta_j}{\partial t} + \frac{\partial}{\partial x_i} (u_i \Theta_j) + \frac{\partial}{\partial z} (w \Theta_j) = \frac{\partial}{\partial z} \vartheta \frac{\partial \Theta_j}{\partial z} + \nabla^2 (K \nabla^2 \Theta_j) + C_k (\Theta_{o_j} - \Theta_j) \tag{3}
\]

Here \(i = 1, 2\), \(x_1 = x\), \(x_2 = y\), \(u_1 = u\), and \(u_2 = v\), and summation is implied over the repeating indices \(i\); \(j = 1, 2\) with \(\Theta_1 = T\) and \(\Theta_2 = S\) represents the potential temperature and salinity, respectively. \(\nabla^2\) is two-dimensional gradient operator. \(\vartheta\) and \(K\) are the corresponding vertical and horizontal diffusion coefficients. \(\Theta_{o_j}\) is the observational data interpolated on mesh (see below). \(C_k\) is the spatiotemporal relaxation coefficient different for different sources of observed data, \(k = 1, 2\) represents the point sources (SIT) and profiles (ITP, PS-CTD and OC-CTD). The term responsible for nudging was included only for grid nodes in the immediate vicinity of observations. To do this, a mask of nodes has been precalculated for each type of observation and is explained below.

The observed data were separated into two groups divided by the nature of these data: The first group of data was obtained using the SIT buoys. Data from these buoys have a high temporal resolution of up to 2 minutes, and a horizontal spatial resolution up to 80 meters, both high compared to the temporal and spatial resolution of ITP profiles. At the same time, each buoy provided data from a maximum of 5 different depths. The second group of data comprises profiles obtained from ITP and PS/OS STD instruments. \(\Theta_{o1}\) was precalculated, and the data from the SIT buoys were interpolated onto the computational grid. Interpolation was made for two-dimensional fields for the corresponding depths of SIT buoy sensors 10,20,50,75, and 100 meters. We used a modified inverse distance weighting method (Shepard, 1968) combined with fast spatial search structure kd-tree (Maneewongvatana and Mount, 1999). Interpolation was done within a maximum distance of 1 km from each observation position and a maximum number of 30 grid nodes affected by particular measurements (Figure 2 a). The rest of the mesh nodes were masked as nodes that do not participate in nudging. These up to 4 model nodes are affected by one particular observation for the model mesh with 1 km resolution. At the same time, one particular measurement affects the surrounding model mesh nodes up to
750 meters away for the mesh with 250 meters resolution, due to a limit of maximum of 30 nodes. When multiple data values were present, such as when the buoy trajectories intersected, a weighted average was calculated for a particular grid point (see Figure 2 b)). The interpolated 2-D fields were then used by the model for nudging. The model nudges the simulated fields to the observation fields for each of the five depths with a spread of 3 meters from the observation depths (see Figure 2 c)). Thus, the spatiotemporal relaxation coefficient for SIT buoys takes the form:

\[
C_1 = \begin{cases}
 T_{relax}/(1 + 0.25 \cdot |Z_{obs} - Z|^2) : |Z - Z_{obs}| \leq 3 \\
 0 : |Z - Z_{obs}| > 3
\end{cases}
\]

(4)

where \(T_{relax} \) is the temporal relaxation coefficient equal to \(1.1574 \cdot 10^{-5} \) 1/s (one day), \(Z \) is a depth of the sigma layer, \(Z_{obs} \) is one of five depths of the CTDs at the SIT buoys.

As a sensitivity study, a larger number of possible maximum values of neighboring nodes was also used. However, this does not significantly affect the final result. The total number of measurements was about 630000 for each parameter of salinity and temperature. The observational data obtained from the ITP profilers and ship-based and ocean-city CTDs were used in a similar manner.

In contrast to the SIT buoys, the model was nudged to the profiles by the PS- and OC-CTD only at the three nodes closest to the observation position (see Figure 2 d)). If more than one profile belonged to one node, then, as in the case of SIT buoys, the inverse distance weighting method was used to average the profiles. The remaining nodes of the computational grid did not participate in nudging. Vertically the model was nudged only at the horizons where the data from the profiles were present. Linear interpolation coefficients \(a(z) \) and \(b(z) \) were precalculated for each cell between the standard depths where observed profiles have data. The model only reads the interpolation coefficients and reconstructs the measured values at each model depth. This approach adds flexibility in setting the vertical arrangement of model sigma layers and avoids data interpolation in the process of model calculations. In this way, the spatiotemporal relaxation coefficient for profiles was \(C_2 = T_{relax} \) and \(\Theta_{o2} = a(z)z + b(z) \).

The significant difference in the radius of influence of the data arises from the horizontal resolution of the measurement data from the first and second groups (see prior definition). The increased radius for the SIT buoys is necessary for smoothing the fields in case of crossing the trajectories of the buoys. In the case of a small radius, this leads to artificial fronts. In the case of profiles, the probability of finding measurements at different times in one place is extremely small due to the small time resolution of these instruments.

2.6 Experiment description

The deep PS-CTD profile (PS122/1_10-44) conducted from *Polarstern* during November, from the surface down to the seafloor, was used as an initial condition for the whole model domain (see Figure 1 bold lines). To avoid instability in the initial conditions, the measured temperature and salinity of the surface layer were changed to constant values corresponding to a depth of 30 meters. To reduce computing time, the first run was performed on the coarse mesh described in Section 2.2.3 (see Figure 3). The resulting three-dimensional temperature and salinity fields were used as initial conditions for the simulation
with higher resolution. The simulation with high resolution and nudging lasted for 4 months of model time until a convergence of the numerical solution was reached. In such a way temperature and salinity differences between two successive time steps do not change significantly.

Our nudging method led to a violation of the continuity principle and resulted in a disturbance of the velocity fields. To resolve this issue and satisfy continuity, an additional experiment was performed: A simulation with the high-resolution mesh and without nudging was run using as initial conditions the dynamical and tracer fields derived from the simulation with
nudging, hereafter termed the “free run”. Results of the free run are used to analyze the dynamical field that is based on the nudged run and shows a similar structure as that run constrained by the observational data while reducing the disturbance and violation of continuity, as described above.

3 Results

3.1 Model validation

The MSS data set described earlier was not used for the nudging and serves here to validate the model with independent observations. Overall, the model is able to reproduce the lateral and vertical structure of the salinity field, as represented by the independent MSS observations (Figure 4 and 5a). Snapshots of the simulation with nudging and the free run after 2.5 days (Figure 4 b, c) show similar lateral salinity gradients in the ML. After 19 days in the free run (Figure 4 d) the lateral salinity gradient is smaller due to vertical and horizontal mixing. Salinity and temperature variability is slightly lower in the model compared to the observations (Figure 5c). The maximum deviation of the model from the observations is at the depths of...
the maximum vertical gradients in salinity (at about 37 meters) and in temperature (at about 150 meters depth). Variability of salinity decreases with time in the free run, as long as nudging takes on the role of external forcing. In the absence of nudging the model tends to dissolve eddies and slump fronts resulting in the smoothing of lateral gradients.

The statistics of the comparison between model and SIT buoy data (Table 1) show that the model deviates from the observations despite nudging with observational data. The largest deviation is at the positions where buoy trajectories intercept each other. These model points represent at least two different observations of the same variable at the same location. The model tends to reproduce the mean value of these overlapping observations. Moreover, the horizontal resolution of the SIT buoy observations is often higher than the spacing of the model grid, which results in larger differences between individual observed values and model output, as one model grid point covers several observations in space. The root mean square errors (RMSe) are in the range of the standard deviation (SD) of the model and the observations in the surface ML (Table 1). RMSe significantly decreases for salinity underneath the halocline and about half of the SD in observation. At the same time, RMSe and SD increase for temperature underneath the halocline where temperature gradients increase (not shown).

3.2 T/S reconstruction

Cross sections along 115 °N and 86.2 °E in the modeled fields (Figure 6) indicate a decrease in ML salinity and density towards the north of similar order as the smaller-scale spatial variability. The ML depth varies from about 36 in the south to 40 in the
Figure 5. a) - salinity at the three depths 20, 50 and 100 meters. Y-axis is inverted. Coloured dots - observed salinity data (MSS) from 10 (green), 50 (red), and 100 (orange) meters depth. Coloured lines – modeled salinity extracted at ship positions. Solid lines - model with nudging, dashed lines - free run after 2.5 days. b) - Standard deviation, blue line - observations, orange - model with nudging. c) - root mean square error of model data in comparison to observational data (MSS).

north with a minimum of 32 meters, resulting in a gradient of 0.014 m/km with 0.6 m/km standard deviation. The density in the ML, likewise, changed for about 1.1 kg/m3 with same order variability at the model grid scale. Underneath the halocline, isopycnal lines slope by more than 10 m along the section with less smaller-scale variability than at the bottom of the ML. In the west-east direction the ML depth increases amid less small-scale variability than seen in the north-south section. Both sections show the upward slope of ML depth from the northwest to the southeast, although the west-east isopycnal slope is less uniform deeper than about 40 m than the north-south section. The same standard deviation in ML depth characterizes both directions. ML depth changes from 27 to 40 meters from east to west with a mean gradient of -0.084 m/km and 0.6 m/km gradient standard
Table 1. Root mean square error (RMSe) between measured by SIT buoys and modeled salinity/temperature and standard deviation (SD) of both at different depths.

<table>
<thead>
<tr>
<th>depth</th>
<th>RMSe nudging</th>
<th>SD nudging</th>
<th>RMSe free run</th>
<th>SD free run</th>
<th>SD SIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.29 / 0.01</td>
<td>0.34 / 0.02</td>
<td>0.37 / 0.02</td>
<td>0.35 / 0.02</td>
<td>0.4 / 0.02</td>
</tr>
<tr>
<td>20</td>
<td>0.37 / 0.02</td>
<td>0.34 / 0.02</td>
<td>0.44 / 0.02</td>
<td>0.35 / 0.02</td>
<td>0.38 / 0.02</td>
</tr>
<tr>
<td>50</td>
<td>0.08 / 0.02</td>
<td>0.2 / 0.02</td>
<td>0.1 / 0.02</td>
<td>0.19 / 0.02</td>
<td>0.23 / 0.03</td>
</tr>
<tr>
<td>75</td>
<td>0.03 / 0.07</td>
<td>0.06 / 0.09</td>
<td>0.04 / 0.09</td>
<td>0.06 / 0.08</td>
<td>0.08 / 0.12</td>
</tr>
<tr>
<td>100</td>
<td>0.02 / 0.1</td>
<td>0.03 / 0.15</td>
<td>0.02 / 0.13</td>
<td>0.02 / 0.14</td>
<td>0.03 / 0.19</td>
</tr>
</tbody>
</table>

Figure 6. Cross sections along 115 °North Longitude (upper) and 86.2 °East Latitude (lower). Filled colour contours are salinity psu, and black contours are density kg/m³. Red dashed lines show ML depth.

deviation. Whereas the ML low-salinity (high-density) intrusions from the surface could be associated with both changes in surface heat and salt fluxes, the halocline upward bulge in the west-east section is likely associated with mesoscale features. The submesoscale variability of the ML depth is most likely governed by the eddy dynamics that characterize the simulated systems as isotropic.
Discussion

4.1 Eddy kinetic energy

Commonly, modeled eddy kinetic energy (EKE) is defined as the difference between total kinetic energy and mean kinetic energy (Wang et al., 2020). The current setup has no external forcing other than data nudging. In the absence of any external forcing, the model does not produce significant mean velocity, resulting in negligible mean kinetic energy. Therefore, the total kinetic energy is mainly defined by the anomaly in the velocity and linked to eddies. The EKE is calculated here as

\[EKE = \left(u^2 + v^2 \right)/2. \]

(5)

The EKE is decreasing in the free run with time due to dissipating eddies, as an effect of surface friction, numerical diffusion, etc. The absence of a mechanism to generate new EKE leads to a decrease in the free run. Meanwhile, eddies formed in the run with nudging remain in the free run for more than 20 days. Figure 7 indicates enhanced modeled EKE activity within two separate depth ranges, both of which are around maxima in \(N^2 \): one in the halocline and the other in the warm Atlantic Water. Similar vertical distributions of EKE in the ice-covered central Arctic basins have been observed previously by Meneghello et al. (2021) and modeled by Wang et al. (2020). Such a bimodal distribution of eddies was discussed in detail by Zhao et al. (2014). However, we only have data from part of the winter, so we cannot analyze the effects of seasonal variability and the associated ice conditions on the distribution of eddies. Throughout the entire time of the measurements used here, the ice cover was already formed and consolidated with only a limited number of small openings (Nicolaus et al. (2022)). We can see a difference in the distribution of EKE: in the southern part of the domain, the maximum energy was around the warm Atlantic Water, whereas in the northern part, it was intensified in the halocline, just underneath the surface ML. The latter is associated with stronger stratification due to high salinity gradients. At the same time, in the northern part of the considered domain, there were sharp changes in the direction of the ice drift. This, in turn, also affected the salinity distribution of the near-surface waters. Here it should be noted that the northern part is covered by data with many overlaps in the drift trajectories (orange polygon in Figure 1 and 7). This, on the one hand, leads to the smoothing of the fields in the model compared to observations where trajectories intersect. On the other hand, it can lead to the appearance of local fronts at submesoscales during nudging. Using a free run partially removes the latter problem.

4.2 Eddy examples

The current velocity structure remains similar during 19 days of the free run (see Figure 8). Most of the eddies changing shape and intensity remain close to where they formed. The number of eddies formed in the model during the fairly fast and straight drift is similar to that in the area with overlapping drift trajectories. Most eddies travel much slower than the drift of the ship in the area where the peak in EKE can be seen in the warm Atlantic Water.

The eddy dynamics differ between the northern and southern parts of our region of interest: A few of the small-scale eddies and filaments formed at the depth of the halocline dissipate within a few days in the free run. Among the remaining, there are...
Figure 7. Modeled eddy kinetic energy and N^2 after 5 days of free run. a) - EKE at 47 meters depth. Highlighted area indicating averaging area in the stereographic projection. Area of averaging is chosen in such a way that the length of the line along the X direction is the same for any Y position. Averaging was done along X direction and covered 80 km with the center indicated by the red line. The red line was chosen in such a way that it is the longest straight line within the area covered by data. Green and orange polygons indicate the same areas as in Figure 1. b) - vertical distribution of the averaged along X direction EKE. Red dashed lines are isotherms for 1.2 and 1.3 °C. Yellow solid lines are isohalines for 33.6 and 32.9 PSU. c) panel shows mean stratification computed over the area shown in panel a).

Figure 8. Salinity at 47 meters depth in the free run after 5 (left) and 19 (right) days model time, with velocity vectors (arrow top right indicate 5 cm/s) zoomed to the area with mainly straight drift (indicated by a green contour in Figure 1). The black line indicates the drift track of Polarstern. The black dots are the daily positions of the ship.

Those that actively travel and interact with each other. Here we show an example of such eddy dynamics. Figure 9 shows that the simulated anticyclonic eddy with negative relative vorticity travels during the free run and interacts with a bigger size cyclonic eddy (positive relative vorticity). The anticyclonic eddy is situated between 30 and 90 meters deep and about 5 kilometers in diameter. The cyclonic eddy is slightly larger and changes its horizontal dimensions from 7 to 10 km. The anticyclonic eddy has clearly defined contours, in contrast to the cyclonic one with more diffuse boundaries. The maximum velocities within the eddies reach 12 cm/s. The anticyclonic eddy first travels in the direction of the cyclonic eddy, then circumvents it. The cyclonic eddy remains in position before the anticyclonic eddy approaches it, but once they meet the cyclonic eddy begins to stretch...
Figure 9. Snapshots of relative vorticity at the 47-meter depth in the free run. The depth of the ML depth is about 27 m. a),b),d), and c) - snapshots after 5, 10, 15, and 18.8 days of model time, respectively. The black line indicates the drift track of *Polarstern*. The black dots are the daily positions of the ship starting 2019-11-12. The red dashed line shows the trajectory of the center of the anticyclonic eddy described in the text, where the center was identified by eye. The position of the region shown in this figure is denoted by the cyan box in Figure 1.

Towards the anticyclonic one. Changing shape the cyclonic eddy starts to move north as a result of the two eddies interacting. The center of the cyclonic eddy moved a total of about 7 km over 19 days. The anticyclonic eddy starts to spin around the cyclonic one and increased in translation speed. On its way, it changes shape from almost a circle to an elongated ellipse and back several times depending on its relative position to the anticyclone eddy.

This realistic example demonstrates the particular complication in the interpretation of observational data and shows that the cyclonic eddy could be measured by the drifting buoys even when the drift trajectories looped and crossed each other, as the eddy position and characteristics remain the same compared to the drift. The development of the fast-travelling anticyclonic eddy could not be measured entirely by the DN as the speed of the eddy was not aligned with the buoys drift. At the same time, the distances between the buoys are larger than the eddy core diameters, which would lead to a misinterpretation during
analyzing such data by common interpolation methods. This generally applies to the DN measurements, as we only obtained a snapshot in space and time with the DN observations that were obtained over the scales set by the different DN sites.

The features of the dynamical field structure of the northern and southern parts are different. This can be explained by the nature of the ice drift. Mahadevan et al. (2010) have shown that submesoscale near-surface eddies are dissipating faster under constant unidirectional drift, something that could have happened in the southern part. At the same time, the ice drift has practically no effect on eddies without a dynamic connection to the surface, e.g. within the halocline or the warm Atlantic Water. The ice drift constantly changed direction in the northern part, and at the same time, horizontal density gradients were observed in the surface layer. Near-surface vortices are more likely to form in such conditions.

4.3 Method limitation

Several storm events were observed during the measurements, including one strong storm (Fang et al. (2023 (submitted)). Strong storms change (alter) the surface layer’s dynamic nature and lead to ventilation of the upper mixed layer. In the presented quasi-stationary approach, the influence of storms is considered only indirectly through changes in temperature and salinity. Therefore, the simulation results cannot reflect the dynamics during a storm. Additionally, this approach does not account for the opening of leads, which significantly affects local heat and salt fluxes. However, through data nudging, the model indirectly considers these changes but in a smoother manner.

Furthermore, changes in the flows due to atmospheric influences are exclusively accounted for through nudging, which is determined by the density of the data and shows a smoothed pattern. In the quasi-stationary case, considering that the used observational data have a temporal spread of several months, this can result in the appearance of horizontal gradients in temperature and salinity fields. For example, we can expect a decrease in temperature and an increase in salinity in the mixed layer due to ice formation in the temporal range from November to January. Considering that the buoy drift was northwest during this time, with such a quasi-stationary approach, we can expect an increase in salinity and density in the displaced layer in the north and west directions. However, according to the simulation results, we observe the opposite pattern. There is no gradient in the west-east direction and a reverse gradient in the north (see TS reconstruction). Thus, it can be assumed that the instantaneous gradient (a gradient that could be measured at a single point in time) in the northern direction is more significant than in the reconstruction.

Despite significantly reducing the influence of regional boundaries on the final solution through increased model resolution, there remains an "internal boundary" in the model between regions with available data and regions without observations. This creates an artificial front between these two areas, determined by the initial conditions. Instabilities can occur along the boundary of this front due to the dynamics in the data-rich area and the absence of dynamics in the data-sparse area. This issue is partially mitigated by conducting a long spin-up calculation on a coarse grid, which significantly smooths the front between the areas. For future similar work, a possible solution could involve a substantial increase in the data’s influence radius during the initial stage of the simulations.

In our simulations, there are also no barotropic currents or currents caused by baroclinic gradients on the scales of the Arctic basins. Typical average velocities for such currents can be 2-5 cm/s (Rabe et al., 2022, Figure 11) Rudels (2009).
However, measurements directly from the MOSAiC experiment show average velocity values of about 1 cm/s at depths of 60-200 meters (Baumann et al. (2021)). The average velocity values across the entire area in our simulations range from 1-2 cm/s depending on the depth, with peaks up to 15 cm/s in eddies. Thus, we can assume that the influence of basin-scale dynamics not considered in our work has a relatively minor affect on the final solution. In future work, it would be worthwhile to use ocean and atmosphere reanalysis data (which utilize MOSAiC data) to provide initial and boundary conditions, if and when they become available. Despite the coarse vertical and horizontal resolutions of these reanalyses, their usage will allow transitioning from a quasi-stationary case to a time-dependent solution.

4.4 Summary

The MOSAiC project has collected a rich data set of physical oceanography observations in the central Arctic. Various measurement techniques and tools make combining and analyzing the obtained data challenging. This paper presents ocean model reanalyses of the first part of the MOSAiC field campaign during winter. Three-dimensional temperature and salinity fields were reconstructed by nudging the observed data. The model setup covers the Arctic region bounded by 84.5° to 87.5° North and 87.6° to 139.5° East or October 2019 to January 2020 MOSAiC drift. Using the regional FESOM-C model allowed us to analyze the dynamic fields.

The model was further developed to suit our needs. The turbulence closure was adapted specifically for this work by modification of the turbulence scale. Further, we extended the model with a semi-implicit method to calculate the sea level. The model code was parallelized with MPI libraries, which made it possible to perform calculations with the required resolution and 1.3 million horizontal nodes. Considering 240 vertical layers for the current setup, the number of calculated model points exceeds 3.3 times the eddy-permitting global mesh with a quasi-uniform resolution of 15 km in the FESOM2 setup (Danilov et al., 2017). Our developed setup of the FESOM-C model with unstructured mesh makes it possible to mitigate the influence of boundary conditions on the area of interest. Near-surface and deep submesoscale processes are resolved by the high horizontal resolution of up to 250 m and the vertical resolution of up to 1 m. A simple algorithm was developed to nudge the model to the observed data, that makes it possible to use a large amount of data from different measuring systems. More than 630,000 single-point temperatures and salinity and over a thousand vertical profiles were nudged by the model.

We validated the model output against independent data that were not used for nudging. The vertical and horizontal distributions of temperature and salinity are well reproduced by the model. We found the main discrepancies between independent and modeled data at the intersections of the drift trajectories of the buoys. Buoys have overlapping tracks due to the ice drift loops, for example, during rapid changes in the wind direction. These not-quite-synoptic measurements lead to a gridded (nudging) field that is not necessarily equal to individual observed values as a result of the weighted mean interpolation.

By utilizing the data nudging method we have been able to reconstruct dynamically consistent three-dimensional temperature, salinity, and density fields. The results of our simulation allow analyzing the horizontal and vertical distribution of temperature, salinity, and velocity on a regular grid. Our analysis of the dynamic characteristics revealed the existence of two separate depth ranges of enhanced eddy kinetic energy located around two maxima in buoyancy frequency: the halocline depth...
and the depth of the warm Atlantic Water. The model resolves several stationary warm-Atlantic-Water eddies and provides insights into the associated dynamics that would not be possible by analyzing the observations alone.

Code and data availability. The FESOM-C code and model setup used in this study can be found under DOI:https://doi.org/10.5281/zenodo.8004904. Modelling results for 6 vertical layers and 5 temporal layers of the free run created during this study is openly available in the Zenodo open data repository and can also be found at the provided link. Rest of the modelling data are available upon request by contacting the corresponding authors.

Author contributions. IK, BR, YCF and AA were responsible for the initial conceptualization of the study. IK developed the data nudging method, model setup, simulations, processing the results and wrote the paper with a strong contribution from BR and AA. Providing, post processing and the curation the observational data, deploying the instruments in the field: BR, YCF, MH, IK, AQZ, ST, KS, VM, IF, MJ. AA, IK, SH, VF developing the FESOM-C code. All co-authors reviewed the manuscript and contributed to the writing and final editing.

Competing interests. Ilker Fer is a member of the editorial board of Ocean Science.

Acknowledgements. Data presented in this paper were produced as part of the international Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) with the tag MOSAiC20192020 (grant numbers AWI_PS122_00 and AFMOSAiC-1_00). The instruments were funded as part of the MIDO (Multidisciplinary Ice-based Drifting Observatory) infrastructure. The study contributes to the Changing Arctic Ocean (CAO) program, jointly funded by the UKRI Natural Environment Research Council (NERC) and the BMBF, project Advective Pathways of nutrients and key Ecological substances in the ARctic (APEAR) grants NE/R012865/1, NE/R012865/2 and #03V01461; the project EPICA in the research theme MARE:N - Polarforschung/MOSAiC funded by the German Federal Ministry for Education and Research with funding number 03F0889A; the European Commission for EU H2020 grant no. 101003472 (project Arctic PASSION), and the AROMA (Arctic Ocean mixing processes and vertical fluxes of energy and matter) project by the Research Council of Norway, grant number 294396. We thank the administrators of the AWI cluster Ollie and Albedo, where the simulations took place, for their continual support and patience. Full acknowledgments are available in Nixdorf et al. (2021).
References

Fang, Y.-C., Rabe, B., Kuznetsov, I., Hoppmann, M., Tippenhauer, S., Regnery, J., He, H., and Li, T.: Early winter upper-ocean variability in the Amundsen Basin of the Arctic Ocean from the MOSAiC expedition, Earth System Science Data, 2023 (submitted).

Maneewongvatana, S. and Mount, D.: It’s okay to be skinny, if your friends are fat, Center for Geometric Computing 4th Annual Workshop on Computational Geometry, 1999.

Quintanilla-Zurita, A. and et al.: Intrahalocline eddy in the central Arctic from distributed observations during the MOSAiC winter, Ocean Science, (in prep.).

