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Abstract. The Rietkerk vegetation model is a system of partial differential equations, which has been used to understand the

formation and dynamics of spatial patterns in vegetation ecosystems, including desertification and biodiversity loss. Here, we

provide an in-depth bifurcation analysis of the vegetation patterns produced by Rietkerk’s model, based on a linear stability

analysis of the homogeneous equilibrium of the system. Specifically, using a continuation method based on the Newton-

Raphson algorithm, we obtain all the main heterogeneous equilibria for a given size of the domain. We confirm that inhomoge-5

neous vegetated states can exist and be stable, even for a value of rainfall for which no vegetation exists in the non-spatialized

system. In addition, we evidence the existence of a new type of equilibrium, which we called "mixed state", in which the

equilibria are always unstable and take the form of a mix of two equilibria from the main branches. Although these equilibria

are unstable, they influence the dynamics of the transitions between distinct stable states, by slowing down the evolution of the

system when it passes close to it. Our approach proves to be a helpful way to assess the existence of tipping points in spatially10

extended systems and disentangle the fate of the system in the Busse balloon. Overall, our findings represent a significant step

forward in understanding the behavior of the Rietkerk model and the broader dynamics of vegetation patterns.

1 Introduction

In semi-arid regions, vegetation tends to be spatially organised around patterns (Barbier et al. (2006), Deblauwe et al. (2008),

Deblauwe et al. (2011), Deblauwe et al. (2012)). This phenomenon appears in various parts of the world where water is the15

limiting factor for plants’ growth. Vegetation patterns can be modelled and explained with reaction-diffusion equations. Those

types of equation exhibit the existence of a homogneous stable equilibrium which is unstable to heterogeneous perturbation

(Turing, 1952). In general terms, heterogeneous equlibria result from the joint effects of a short-range activation mechanism

and long-range inhibition. For vegetation on ferruginous soil in semi-arid regions, the short-range activation effect is related

to the positive feedback of vegetation on soil water availability, as vegetation limits water loss by runoff by enhancing water20

infiltration (Meron, 2015).

The rapid diffusion of surface water, however, acts against vegetation growth on bare soil by limiting water availability. The

contrast between slow soil water diffusion and fast surface water diffusion produces the spatial, heterogeneous patterns. The

mechanisms are described and captured in the Rietkerk model (Rietkerk et al., 2002). This model features three (prognostic)

variables: biomass (B) [g.m−2], soil water (W ) [mm] and surface water (O) [mm], all are functions of time and space. The25
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c Conversion of water uptake by plants to plant growth 10gmm−1 m−2

gmax Maximum water uptake 0.05mmg−1 m−2 d−1

k1 Half-saturation constant of specific plant growth and water uptake 5mm

DB Plant dispersal 0.1m2 d−1

α Maximum infiltration rate 0.2d−1

k2 Saturation constant of water infiltration 5gm−2

w0 Water infiltratio nin the absence of plants 0.2

rw Soil water loss due to evaporation and drainage 0.2d−1

DW Diffusion coefficient for soil water 0.1m2 d−1

DO Diffusion coefficient for surface water 100m2 d−1

d Plant mortality rate 0.25d−1

Table 1. Parameters for Rietkerk’s model

evolution of those quantities are governed by three equations:

∂B

∂t
= cgmax

WB

W + k1
− dB+DB∆B,

∂W

∂t
= αO

B+ k2w0

B+ k2
− gmax

WB

W + k1
− rwW +DW∆W,

∂O

∂t
=R−αO

B+ k2w0

B+ k2
+DO∆O, (1)

where ∆ is the Laplacian operator and R is the rainfall [mm.d−1]. The rainfall is the external forcing of the system which we

consider to be a spatially-independent function. The first term in the biomass equation represents water uptake by the plant.

The first term in the soil water equation is linked to the infiltration rate of water in the soil that is enhanced by the presence30

of biomass. The factors in front of the Laplacians (∆B, ∆W and ∆O)are the diffusion constants of the different quantities.

The diffusion constant for surface water is considered to be much bigger than those of biomass and soil water. This contrast is

essential for pattern creation. In the following, the values of the parameters are as in (Rietkerk et al., 2002).

As explained above, the existence of reaction-diffusion processes enables stable equilibria in the form of patterns. Compared35

to a system without spatial dynamics, such pattern equilibria tend to broaden the range of rainfall compatible with the presence

of vegetation.

The classical configuration for analysing such a system of equations uses periodic boundary conditions. A pattern is then

defined as a spatially periodic equilibria of the differential equations. Here, we will consider and analyse in depth a region

of the parameter space called the Busse balloon (Busse, 1978). This is the region with heterogeneous equilibria, that is, the40

parameter space admitting at least one stable, spatially periodic equilibria.
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The motivating scientific question comes from the following observation. In a system without spatial dynamics — thus

without diffusion — a catastrophic transition occurs between sustained vegetation and bare soil when rainfall decreases below

a critical point.

The transition point corresponds to a fold bifurcation, and can be qualified as a tipping point (Lenton et al., 2008). Rietkerk45

et al. (2021) suggested that spatial dynamics and the existence of the Busse ballon smoothens the transition between full-

fledged vegetation and bare-soil. In their terms, the Busse Balloon ’evades’ the tipping point. This result implies that spatial

dynamics effectively lowers the precipitation threshold above which vegetation can be sustained.

Siteur et al. (2014) showed that a Busse balloon appears in the Klausmeier vegetation model (Klausmeier, 1999), where it

occupies a region of the parameter space with lower rainfall than necessary to sustain a homogeneous vegetation. However, the50

nature of this transition through the Busse Balloon may be complex. For the non-spatial Rietkerk model, there is no such thing

as a fold bifurcation. But we will see that adding a spatial component creates fold bifurcation.

The objective of the present study is to fill this gap, in the idealized context of a spatial domain of one dimension, by

characterizing the intermediate states that may emerge during the transition from full vegetation to bare soil, and to examine

the dynamics that underlie potential transitions between these states with a focus on a new type of equilibrium that we called55

"mixed state".

Specifically, we provide an in-depth analysis of the Busse balloon, demonstrate the co-existence of multiple equilibria for

a given rainfall intensity, and foresee the circumstances which may trigger transitions between these different equilibria. In

that sense, we propose an extension of the work by Zelnik et al. (2013) who computes partially the bifurcation diagram for

Rietkerk’s model. We also develop the method for finding equilibrium branches and characterize their stability. Finally, we60

highlight the existence of another type of equilibrium different than the regular patterns. We call them ’Mixed State’ because

of their shape and show how they can have an influence on the dynamics of the system.

2 Bifurcation diagram and stability

In this section, we present a method to construct the bifurcation diagram for Rietkerk’s model and determine the form of the

different equilibrium branches as a function of rainfall.65

Linear analysis and Turing zone

The classical approach is to consider as in Siero (2020), first, the static homogeneous equilibrium. To this end, we define the

equilibrium B̄ =B(x,t) with B̄ a constant in time and space—likewise with the other variables—which satisfy the relation-

ships:
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0 = cgmax
W̄ B̄

W̄ + k1
− dB̄ (2)70

0 = αO
B̄+ k2w0

B̄+ k2
− gmax

W̄ B̄

W̄ + k1
− rwW̄ (3)

0 =R−αŌ
B̄+ k2w0

B̄+ k2
. (4)

Two solutions exist depending on the value of R. One solution with vegetation is:

B̄ = c

(
R

d
− k1rw

cgmax − d

)
, (5)

W̄ =
dk1

cgmax − d
, (6)75

Ō =
R((cgmax − d)(cR+ dk2)− cdk1rw)

α((cgmax − d)(cR+ dk2w0)− cdk1rw)
. (7)

(8)

Physical equilibria for positive parameters must be positive, and hence satisfy the relations cgmax > d and R> k1rwd/(cgmax−
d). The homogeneous equilibria without vegetation are, by definition, B̄ = 0, which imply

W̄0 =
R

rw
(9)80

Ō0 =
R

w0α
, (10)

which are, again, valid for positive parameters. For the parameters chosen here, the homogeneous vegetated equilibrium exists

for R> 1 and the non-vegetated equilibrium always exists 1. Fig. 1 shows these equilibria as a function of rainfall R.

We now consider the stability of these equilibria. Again, following standard practice we consider spatially periodic pertur-85

bations as follows:

B(x,t) = B̄+ ϵδB(x,t), (11)

W (x,t) = W̄ + ϵδW (x,t), (12)

O(x,t) = Ō+ ϵδO(x,t), (13)

with90

δB(x,t) = δBeΩt+iκx, (14)

δW (x,t) = δWeΩt+iκx, (15)

δO(x,t) = δOeΩt+iκx. (16)

1The universal existence of the non-vegetated equilibrium does not imply its stability for all values of R.
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We now introduce the perturbation into the original equations, develop a Taylor expansion for small ϵ and get rid of the 0th

order term by using the homogeneous equilibrium. The linearised equations obtained can be recast as an eigenvalue problem:95

A=


d− cgmaxW̄

k1+W̄
+DBκ

2 − cgmaxk1B̄
(k1+W̄ )2

0

gmaxW̄
k1+W̄

+ k2α(w0−1)Ō
(k2+B̄)2

rw + gmaxk1B̄
(k1+W̄ )2

+DWκ2 −α(k2w0+B̄)
k2+B̄

−k2α(w0−1)Ō
(k2+B̄)2

0 α(k2w0+B̄)
k2+B̄

+DOκ
2




δB

δW

δO

=−Ω


δB

δW

δO

 (17)

Every pair of values (R,κ) defines a new eigenvalue problem. It corresponds to the linear dynamics obtained by perturbing

a homogeneous equilibrium that exists at a particular value of R with wavenumber κ. We are interested in finding out whether

there are values of (R,κ) for which there exists an exponentially growing solution, thus positive Ω. It is then said that the

homogeneous equilibrium for a specific value of R is linearly unstable to perturbations of wavenumber κ. For the eigenvalue100

problem to have a non-trivial solution, the determinant det(A+Ω) must be 0. This leads to a cubic equation for Ω:

a1(R,κ)Ω3 + a2(R,κ)Ω2 + a3(R,κ)Ω+ a4(R,κ) = 0, (18)

which we solve numerically on a physical domain defined by {R,κ} ∈ R with R≥ 0. This leads to three roots at each point

in the domain, which we can refer to as Ω1(R,κ), Ω2(R,κ) and Ω3(R,κ). Two of the roots, say Ω(2,3)(R,κ), always have a

real negative value, and hence correspond to exponentially decaying modes. One of the roots, Ω1(R,κ), which is real in all105

the domain, has a positive real part in a region of the (R,κ) plane. The countour of this area is shown in Fig. 2 by the black

line. This defines the Turing zone. Hence, for those values of (R,κ) with positive real part of Ω1 (inside of the contour) the

corresponding homogeneous equilibrium is linearly unstable to inhomogeneous perturbations of wavenumber κ.

Zero modes correspond to marginally non-growing inhomogeneous solutions of the linearised equations and correspond to

perturbations with Ω= 0. Their existence usually signals the presence of an instability in the full non linear model, that can110

send the system towards an inhomogeneous time-invariant solution in the full nonlinear model. Specifically, Fig. 2 suggests the

existence of two zero modes for any value of rainfall comprised between critical bounds 1.0mmd−1 and 1.25mmd−1. Such

zero modes can satisfy the boundary conditions for a (low) wavenumber that depends on R, and therefore require a domain

large enough to develop. If the domain is so small that its fundamental mode is in the stable region (κ≳ 0.6), it is always

stable. In this section, we found zero modes along the homogeneous branch compatible with a specific domain. Those zero115

modes indicate the start of inhomogeneous branches of equilibria. In the following section we will rely on those zero modes to

compute equilibria to the full non linear model.

2.1 Bifurcation diagram and continuation method

The analysis in the previous section showed that homogeneous vegetation is linearly unstable against spatially periodic per-

turbations on the rain range 1mmd−1 <R< 1.25mmd−1. This linear analysis suggested the existence of periodic inhomoge-120

neous equilibria in the nonlinear system within that rainfall range. Now, our focus shifts towards explicitly computing these

nonlinear equilibria. To achieve this, numerical methods are employed to solve the equations involved.

For the time being we assume a periodic domain with a finite size of L= 100 m. The choice of the size of the domain

influences the number of zero modes exhibited on the homogeneous equilibrium branch. This choice together with periodic
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boundary conditions effectively discretize the set of zero modes (Fig. 3). Indeed, setting κ= n 2π
L , with n the wavenumber, we125

find two pairs (κ,R) corresponding to zero modes, with the range κ= [0 : 0.6], corresponding to perturbing the homogeneous

equilibrium S̄(R) with a perturbation δS(x) = δS cos(κx).

For each pair of (κ,R) in the set of zero modes, we identify the corresponding homogeneous equilibrium (S̄). And perturb

it with the corresponding perturbation δS cos(κx), and periodic boundary conditions are enforced by setting κ= n 2π
L , with n

the wavenumber. The perturbed homogeneous solution130

B0(x,R) = B̄+ δBcos(κx), (19)

W0(x,R) = W̄ + δWcos(κx), (20)

O0(x,R) = Ō+ δOcos(κx), (21)

is then taken as the first guess input in a Newton-Raphson iteration used for finding the corresponding non linear inhomoge-

neous equilibrium.135

At this point we need to discretize of the spatial domain into, say, N points. We used N = 100. Specifically, the discretized

first guess reads u0(R) = [B0(R),W0(R),O0(R)] ∈ ℜ3N and the algorithm

ui+1(R) = ui(R)− ϵJ−1(ui(R))f(ui(R)), (22)

converges towards the equilibrium uS(R) with J(ui(R)), the Jacobian matrix of the system and f(ui(R)), the right-hand side

as in Eq. (1). The Laplacian is discretized with a periodic pseudospectral method. This equilibrium, uS(R), is then used as the140

first guess to solve for the equilibrium with rainfall R+ δR,

u0(R+ δR) = uS(R)+ δu, (23)

with δu≪ ϵ. This iterative procedure leads to the construction of the full branch of equilibria.

A new code has been developed to implement this continuation method. This code is available online on the repository

mentioned in the code availability section.145

Each branch obtained by the above technique is denoted by n between 1 and 9, with n the wavenumber associated with

the perturbation. The periodic boundary conditions, together with a finite domain size fixed the number of zero modes present

within the Turing zone , and therefore, the number of inhomogeneous branches that exist. For the periodic L=100m domain,

only nine zero modes fit within the Turing zone (see Fig. 3). Higher wavenumber modes correspond to linearly stable pertur-

bations that exponentially decline.150

All the branches obtained with this approach are shown in Fig. 4. We now see that the range of rainfall where vegetation is

sustained is much wider than expected from the linear analysis. The linear analysis in the previous section predicted the growth

of vegetation patterns in the Turing zone, between 1.0mm.d−1 and 1.25mm.d−1. The analysis of the full non linear system,

presented in Fig. 4, actually reveals time-invariant pattern equilibria on branches attached to zero modes in the range 0.5 – 1.3

mm.d−1. Although the non-linear equilibrium may differ in shape from the linear perturbation, it is found that wavenumber n155

used to perturb the homogenous equilibrium describes reasonably well the shape of the pattern along the branch obtained from
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that perturbation. One such equilibrium is displayed for illustration on the top panels of Fig. 5. For this particular equilibrium,

with wavenumber n= 2, the biomass accumulates in two places, and soil water peaks there due to enhanced infiltration rate.

Surface water accumulates around those areas.

2.2 Stability analysis160

Characterizing the stability of equilibria will further help us to understand the dynamics of the system inside the Busse balloon.

The Busse balloon is the region in the space parameter (κ,R) where at least one stable pattern equilibrium exists. A linear

stability analysis gives a partial but valuable information about a given solution and it’s possible evolutions. As we will see

in the following, while stable equilibria tend to be the endstate of time evolutions, unstable equilibria can still be relevant for

the dynamics. The stability of equilibria is classically estimated based on the Jacobian matrix evaluated at each equilibrium,165

positive real parts of the eigenvalues signaling instability.

As a first example, the equilibrium for a rainfall equal to 0.9mmd−1 of the branch n= 2, the associated eigenvalues and

the first eigenvector are displayed on Fig.5. The majority of eigenvalues have a negative real part. One eigenvalue has a very

small, positive real part (3 · 10−10), which suggests quasi-neutral stability. Further inspection of the associated eigenvector

shows that this quasi-neutrally stable mode is the spatial derivative of the equilibrium pattern. Therefore, it corresponds to a170

translation mode, which is indeed expected with periodic boundary conditions. Hence, we have a stable pattern which may

however translate consistently with the periodic character of the boundary conditions. We therefore attribute the small real part

to a numerical artifact (it should be zero) and consider equilibria with positive real part of the highest eigenvalue of the order

of 10−10 as stable.

This stability analysis is repeated for all the equilibria shown in Fig. 4. Stable sections of the branches are drawn in solid175

lines, and unstable ones with dashed lines. This gives us a more precise idea about what is happening inside the Busse balloon.

We now know what is the shape of those stable states, and how and at what rainfall value they lose stability. The existence of

multiple stable states for a given value of rainfall is also consistent with previous work based on models and real systems (Bel

et al. (2012), Bastiaansen et al. (2018))

Some branches of equilibria, such as n= 5, 6, 7, 8, 9 are unstable across all their existence domain. Other branches, as180

n= 1, 2, 3, 4, change stability along the branch. These branches of equilibria, start as unstable from the low vegetation zero

modes on the homogeneous equilibrium. Then, they become stable, and eventually become unstable again shortly before

joining the highly vegetated homogeneous equilibrium at the corresponding zero mode. The change in stability may take place

at the extreme rain values for which the equilibrium exists, as in the n= 1 branch, or at a rainfall value in the middle of a branch.

As we know, when a equilibrium loses stability, the real part of one of its eigenvalues changes from negative to positive, which185

indicates that the equilibrium becomes linearly unstable in the direction of the associated eigenvector. In all of the cases here

the change of sign of the eigenvalue happens through zero (as opposed to, through infinity), meaning that, there are zero modes

at the intersection of the stable and unstable branch sections. As we show next, this indicates the branching of another branch

of equilibrium of the full-non linear system. A simple way to identify those zero modes is proposed in Appendix B.
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2.3 "Mixed states"190

In the previous section we studied the stability of the "main" branches of equilibria shown in Fig. 4. These branches of equilibria

starting from the zero modes present on the homogeneous vegetated branch. We also saw that some of these branches of

equilibria had zero modes at the intersection of their stable and unstable parts. These zero modes act as bifurcation points from

which new branches of equilibria emerge. The latter can be found by starting from the equilibrium at the bifurcation point,

perturbed in the direction of the eigenvector associated with the newly positive eigenvalue (zero mode) corresponding to new195

an unstable direction. Again, a Newton-Raphson iteration allows us to find the new equilibrium. From there, the continuation

method explained in the previous section allows us to trace the full new branch.

The result of this routine applied to the bifurcation point of the branch n= 4 is shown on the upper panels of Fig. 6. At the

transition between stability and unstability, there are three zero modes. Hence three branches of equilibria start at this transition

and they are shown in Fig. 6. They begin all at the transition between the stable and unstable part of the n= 4 branch and they200

reconnect with it for higher rainfall. We call those branches n= 4bis1,n= 4bis2 and n= 4bis3. Those three branches are

close (regarding to the mean biomass) to that of the n= 4 branch but if we look closely at their profile (bottom panels of

Fig. 6) we see how they differ. For a given value of rainfall, the mixed state equilibria look like a modulation of the n= 4

equilibrium by an other wavenumber.

Equilibria branching out of zero modes in the homogeneous equilibrium tend to exhibit a single perturbation mode, see Fig.205

5. By contrast, equilibria branching out of zero modes in those inhomogeneous equilibria exhibit a mixture of modes (lower

panels of Fig. 6), hence the name "mixed states". The equilibria along the mixed state branch n= 4bis3 are unstable, with

positive eigenvalues. The branches n= 4bis2 and n= 4bis3 reconnect around 1.14mmd−1. There are numerous mixed state

branches, obtained from the different zero modes at bifurcation points found along the main branches. These can also be found

to emerge from zero modes present on the unstable sections of the main branches. For example, in the low vegetated unstable210

part of the n= 2 branch (see Fig. A2), we find two zero modes at the same value of rainfall, from which two mixed state

branches emerge: one labelled n= 2bis because it connects to the n= 2 branch and one labelled n= 3 loc which connects

to the n= 4 branch. The n= 3 loc refers to the fact that the equilibrium of that branch is localized in space. The n= 1 main

branch is special in two ways. First, as Zelnik et al. (2013) stated, it is the only stable localized state. Second, it starts from a

zero mode on the homogeneous equilibrium, but it ends up connecting to the n= 2 branch as if it was a "mixed state", see Fig.215

A1. The evolution of the shape along this branch goes from 1 localised vegetation peak to 2 localised vegetation peaks in the

unstable part close to the connection with the n= 2 branch.

All mixed state branches share similar characteristics, with states appearing as a modulation of a main branch. Even though

they are unstable, we expect mixed state equilibira to influence the dynamics of nearby trajectories, depending on the value of

the positive eigenvalue.220
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3 Numerical simulations of trajectories

To assess relevance of the bifurcation diagram for understanding transient dynamics, we performed two series of numerical

simulations.

3.1 Trajectories in a changing environment

In order to assess the relevance of the various branches for the dynamics, we propose the following numerical experiment.225

The Rietkerk model is run with a rainfall changing over time with a rate of dR
dt =−5.10−6 mmd−2. The starting point is a

the vegetated homogeneous equilibrium with rainfall R= 1.4mmd−1. The final rainfall is 0.5mmd−1. The result is shown in

Fig. 7. Until R∼ 1.2mmd−1, the system stays in the homogeneous equilibrium. At this point, the system undergoes a Turing

bifurcation and jumps to an heterogeneous equilibrium. It is interresting to notice that the patterned branch on which the system

lands is the n= 2 branch. We can understand this transition by looking at Fig. 3. Indeed we see there that the first mode to230

destabilize in a decreasing rainfall scenario is the n= 2. So this simple linear analysis can give us a first idea about the way

the system will be destabilized in a slow change scenario. After that, the system tracks the n= 2 branch until this equilibrium

loses its stability. Finally, the system switches to the only other stable equilibrium, the n= 1. For this experiment, the mixed

states don’t have an influence on the trajectory. But in the following we will see that even if mixed state are unstable, they still

can play a role in the dynamics.235

3.2 Effect of a "Mixed State" on trajectories

Here we address the question of whether unstable mixed state equilibria are also able to influence system transient trajectories.

In this case the rainfall is set to a rainfall R= 1.05mmd−1, for which a mixed state equilibrium exists.

The initial condition is an unstable equilibrium, n= 5, with a small perturbation along the direction of the first eigenvec-

tor. The top panels of Fig. 8 summarize the evolution of the biomass pattern over time and the corresponding trajectory in a240

summary phase space. This summary phase space consists of a two dimensional phase space where the two dimensions are

the mean biomass and the maximum biomass. With that in mind, we observe that the system leaves the n= 5 unstable equi-

librium by first reorganising itself: mean biomass remains constant while max biomass increases. This means that one or more

vegetation bumps are growing at the expense of others. After that initial reorganisation, an excursion on higher mean and max

biomass takes place. It is during this out of equilibrium excursion, that one of the vegetation bumps is lost. At this point in time245

the vegetation profile, containing four vegetation bumps, passes close to the three mixed states originating from zero modes on

the n= 4 branch explained on the previous section. Then, the system undergoes an other transition to the n= 3 equilibrium. To

have a better representation of this trajectory, we also show on the upper right panel of Fig. 8 the time evolution. We see that the

system quite slowly leaves the n= 5 unstable equilibria. The state is indeed unstable, but the associated positive eigenvalues

are small, such that the dynamics around the equilibrium are slow. After abruptly departing from the n= 5 equilibrium, one250

biomass bump disappears, leading to a rearranged state with four bumps. On the three lower panels are represented the biomass

profile for three times and their corresponding positions are also shown on the left upper panel. We see that even though the
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summary phase space may let us think that the system passes close to the mixed state n= 4bis2, we have to keep in mind that

this two dimensional space is obtained by the projection of the infinite-dimensional phase space on a two dimension summary

space. On the three lower panels are represented the biomass profile for three times and their corresponding position are also255

shown on the left upper panel. On each of the lower panels the shape of the n= 4bis3 mixed state is also shown. The shape of

the dynamical solution is actually close to the n= 4bis3. That equilibrium is unstable, but the system lingers in its vicinity for

a considerable period of time before another bump of biomass vanishes, propelling the system towards the stable equilibrium

of n= 3.

Switching from one state to another by losing one or more vegetation bumps is a known feature of vegetation pattern model260

(Bastiaansen and Doelman (2019), Bastiaansen et al. (2020)). This mechanism is called sideband instability (Doelman et al.

(2012), Siteur et al. (2014)). We used the same setup with different rainfall values along the n= 5 branch. The fact that the

system passes close to a mixed state is consistent along the n= 5 branch only for values of rainfall for which mixed state

equilibria exist. For rainfall lower than ∼ 0.91mmd−1, the system jumps directly to the n= 3 equilibrium. Now if we consider

the same rainfall but we start from an other unstable branch like the n= 6 or n= 7, the dynamics is different. For n= 6, we265

observe a different type of destabilization called the period-doubling (Doelman et al. (2012), Siteur et al. (2014)). With that

mechanism the system transitions to the n= 3 equilibrium without passing through a mixed state. And the system spends less

time around the unstable equilibrium of n= 6 compared to the n= 5 case. This might be explained by the fact that the positive

eigenvalue on the n= 6 solution is larger than the one on the n= 5 solution. For n= 7, the transition is even more rapid, as

expected for an even larger positive eigenvalue, but the landing point is still, n= 3. In that case, we observe a destruction of270

four bumps similar to a sideband instability.

4 Discussion

We uncovered the existence of mixed states in Ritkerk’s model and showed their importance for transient dynamics. As far as

we are aware, such mixed states have never been identified nor described in models for vegetation patterns.

Mixed states emerge at the transition between unstable and stable states along a branch of equilibria, and have a functional275

form that appears as the combination of two equilibria from the main branches. We found that while these equilibria are

unstable, they may still influence the system’s dynamics by slowing down its evolution when it passes near them. The influence

of unstable modes on dynamics has been studied in ecological models. For example Sherratt et al. (2009) showed how spatio-

temporal chaos appears in the wake of an unstable wavetrain for the complex Ginzburg-Landeau equation. In the more general

context of ecology, Hastings et al. (2018) and more recently Morozov et al. (2020) proposed a classification of transient280

phenomena in ecological model based on a dynamical system approach. In their definition, a dynamical regime is transient if it

persists for a sufficiently long time (quasi-stable) and if the transition between two regimes occurs on a much shorter timescale

than the time of existence of the quasi-stable regime. According to that definition, the behavior observed in section 3.2 can

be seen as a transient phenomenon. Indeed, the systems spends hundred to thousands of days around unstable states(n= 5,

n= 4bis1 and n= 4bis3) and then takes only a few days to jump to the final stable equilibrium. By following the typology285
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presented in those two papers, the transient observed here can be qualified as a ’crawl by’ transient. Indeed, the transient

observed is linked to the existence of a saddle-type invariant set: the mixed state. Transient dynamics have also been studied in

the context of coexistence in vegetation patterns by Eigentler and Sherratt (2019) and are characterized by the small size of a

positive eigenvalue. Long transients can also be observed in very slow front invasion dynamics (Van De Leemput et al., 2015)

The mechanism behind the transient is different but the effect is the same: the system spends a long time in a region of the290

phase space without attractor.

As we see in section 3.2, the history and the initial conditions of the system are important to see whether the mixed state will

appear or not in the dynamics Other vegetation patterns models exhibit this type of sensitivity to history and initial conditions

(Sherratt (2013), Adams et al. (2003) and Alberti et al. (2015)). Further research is needed to determine whether mixed states

are a common feature of reaction-diffusion systems.295

We adopted periodic boundary conditions, as in previous studies (Rietkerk et al. (2002), Dekker et al. (2007)). As stated by

Dijkstra (2011), the periodic boundary conditions allow for the existence of unstable equilibria with high wavenumber. How-

ever, this boundary condition, widely used in reaction-diffusion models due to its simplicity and convenience, may not reflect

real-world scenarios accurately. More generally, working with a periodic domain discretizes the set of admissible equilibria.

Hence, the significance of mixed states for describing the dynamics of non periodic infinite-size systems needs be further300

assessed.

As a step towards this objective, we computed the bifurcation diagram for a larger domain size of L= 200m, instead

of L= 100m. As expected, we observed more branches in this case but, remarkably, the branches and the stability of the

branches shared between the two domains are the same as for L= 100m. Of course the even n number branches for the

L= 200m domain are the same that the L= 100m domain. The new branches are all designated with odd n number as a305

consequence of the extended domain. The range of rainfall that can support a stable vegetation pattern also increased slightly

with the larger domain size, with the n= 1 branch extending this range.

These findings suggest that the existence of mixed states and their stability properties is robust across domain sizes, even

though how they would manifest themselves in continuous, large domains is still to be established.

5 Conclusions310

We present an in-depth analysis of the Rietkerk model’s behavior that we believe sheds a new light on the dynamics of

vegetation patterns. Our analysis is based on the bifurcation diagram of the vegetation pattern model, which we constructed

using a variety of techniques. First, we performed a linear stability analysis of the homogeneous equilibrium of the system,

which allowed us to delineate the so-called Turing zone. This zone is characterized by the instability of the homogeneous

equilibria to small heterogeneous perturbations, and it serves as a starting point for our analysis. Next, we used perturbed states315

at the edge of the Turing zone, the so-called zero modes, to construct whole branches of equilibria associated with the system.

To obtain these branches, we used a continuation method based on the Newton-Raphson algorithm. By doing so, we were

able to obtain the heterogeneous equilibria for a given size of the domain. As expected, due to the system’s non linearity, we
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discovered that the system allows for multiple equilibria for a given value of parameter, specifically rainfall. We went a step

further by assessing the stability of those equilibria by computing the eigenvalues and associated eigenvectors of the Jacobian320

matrix. This stability analysis showed that inhomogeneous vegetated states can exist and be stable, even for values of rainfall for

which no vegetation exists in the non-spatialized system. Yet, we also found that the main branches of equilibrium originating

from a zero mode are not the only ones present in the system. At the transition between unstable and stable states along one

branch, a new type of equilibrium appears. The latter, which we called "mixed state", are always unstable equilibria and they

look like a mix of two equilibria from the main branches. Although these equilibria are unstable, they affect the dynamics by325

slowing down the evolution of the system when it passes close to it. This slowing effect has been described ecology, but to

the best of our knowledge, the mixed states influence on the dynamics had not been previously shown for vegetation patterns.

Overall, our approach allowed us to construct a bifurcation diagram that gives us valuable insights about the behavior of the

system. This approach is helpful to disentangle the fate of the system in the Busse balloon and could be used to assess the

existence or not of mixed states in spatially extended systems.330

Code availability. All the code used to produce the figures for this manuscript are available here: https://github.com/lvanderveken/Rietkerk_

bif_diag

Appendix A: Random initial conditions with a fixed rainfall

Here, our objective is to verify that the stable pattern branches act as attractors in the dynamics of the system. To this end

we specify a value of rainfall for which multiple stable equilibria exist. Starting with different initial conditions and evolving335

the system, we expect that different runs end in some of the different available stable states for the chosen rain value. To

avoid favoring the attraction to a particular branch we opt for bare soil initial conditions with random noise. Rainfall is set to

R= 1.1mm/d, for which the system has several stable equilibria (n = 2,3 and 4). The model is run for 5000 days with 500

distinct random initial conditions. Those are random from a uniform distribution (positive) noise on top of a homogeneous bare

soil equilibrium. Trajectories, projected onto a summary space (mean and maximum biomass) are shown in Fig. A4. As this is340

a summary space—a projection of the full space—trajectories may appear to cross, but they do not in the full space. Out of the

500 runs, 465 land on the n= 2 equilibrium, and the others land on the n= 3 equilibrium. This indicates that the equilibria that

we identify as stable are the indeed those which attract trajectories. Having no trajectories on the n= 4 equilibrium suggests

that the basin of attraction of the latter is narrow close to the homogeneous bare soil equilibrium, with few chances for a

trajectory starting from random initial conditions to be in the basin of attraction of that equilibrium or, in more informal terms,345

to evolve such as to pass close enough to the n= 4 equilibrium and land on it. The n= 4 equilibrium can however be reached

with carefully designed initial conditions, such as a cosine with a wavenumber equal to n 2π
L .

12

https://github.com/lvanderveken/Rietkerk_bif_diag
https://github.com/lvanderveken/Rietkerk_bif_diag
https://github.com/lvanderveken/Rietkerk_bif_diag


Appendix B: Identification of zero modes along branches

In section 2.3, we showed that new type of equilibrium can appear at the transition between unstable and stable part of a branch.

This transition is linked to the transition from positive to negative of eigenvalue. For example at the transition on the n= 4350

branch, we have three zero modes leading to the appearance of three mixed state branches. In figure A3, we propose a a way

to identify and represent those zero mode. Each of the panel are linked to one of the four highest eigenvalues. If this eigevalue

is positive the line is dashed and if the eigenvalue is negative the line solid. With that in mind, let’s focus on the n= 4 branch,

we see that around R= 0.91mmd−1 the three first eigenvalues become negative. This means that there are three zero modes.

We also observe that for the n= 3 branch, two eigenvalues switch from positive to negative around R= 0.73mmd−1. Again,355

this means that two mixed state branches emanate from the zero mode at the transition.
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Figure 1. Homogeneous equilibria of Rietkerk’s model. From left to rigth are represented the biomass, the soil water and the surface water.

Blue line is the equilibrum with vegetation, yellow is without.
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Figure 2. Contour plot for Ω1(R,κ). The thick black line is the contour Ω1 = 0 and the region inside that contour corresponds to the

parameter region (R,κ) which in which the homogeneous equilibria is linearly unstable against inhomogeneous perturbations, i.e., Ω> 0.
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Figure 3. Zero modes present in a domain of L= 100m. Horizontal lines correspond to harmonics that fit inside the periodic L= 100

domain. The intersection of the horizontal lines with the Ω1 = 0 contour, provides the values of rain R at which new branches of equilibria

might appear. Notice that each of the 9 horizontal lines that intersect the contour, intersect it twice, hence 18 zero modes.
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Figure 4. Bifurcation diagram for the Rietkerk’s model with L= 100m. Each branch is labeled by an integer corresponding to the order of

the wavenumber associated with the zero mode. Solid lines correspond to stable states and dashed lines to unstable states.
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Figure 5. On the upper panels, equilibrium for a given value of R (rainfall) (0.9mmd−1) on the n= 2 branch. The black dot on the left-

hand-side panel shows the position of the equilibrium on the bifurcation diagram. The three other panels show, from left to right, B (biomass)

[gm−2], W (soil water) [mm] and O (surface water) [mm]. On the left-hand-side lower panel, eigenvalues of the Jacobian matrix associated

with the equilibrium. The real part is on x axis and the imaginary part on the y axis. The larger eigenvalue is represented with a red dot.

The black vertical line marks the 0 position. The three other lower panels show, from left to right, the eigenvector associated with the larger

eigenvalue projected on B (biomass), W (soil water) and O (surface water) and with a dashed black line, the first spatial derivative of the

equilibrium rescaled.
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Figure 6. On the left-hand-side upper panel, bifurcation diagram with the addition of mixed state branches. The mixed state branches

originating the zero modes along the n= 4 branch are called n= 4bis1, n= 4bis2 and n= 4bis3. The bifurcation point is marked with a

black dot. On the right-hand-side upper panel, an enhancement of the area around the bifurcation point. On the lower panels, the biomass

profile of the n= 4 and the mixed states for a particular value of rainfall. The position on those equilibria on the bifurcation diagram are

marked by circle on the rigth-hand-side upper panel

Figure 7. Trajectory of the Rietkerk model under a decreasing rainfall scenario. On the left panel, the trajectory in the bifurcation diagram

plotted in bule dashed-dot line. On the middle panel, the rainfall with respect to time and on the right panel, the time evolution of the biomass.
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Figure 8. On the left upper panel, trajectories on a summary phase space from an initial condition close to the n= 5 equilibrium with a fixed

rainfall R= 1.05mmd−1. The relevant equilibria are shown, if the equilibrium is stable (unstable) the marker associated is a circle (cross).

On the right panel, we show the time evolution of the biomass. On the three lower panels, the dynamical solution at three different times

areMM: is represented (in green) and also the shape (in black) of the mixed state denoted by n= 4bis3.

Figure 9. Bifurcation diagram for the Rietkerk’s model with L= 200m. Each branch is labeled by an integer corresponding to the order of

the wavenumber associated with the zero mode. Plain lines correspond to stable states and dashed lines to unstable states.
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Figure A1. A focus in the bifurcation diagram on the n= 1 and n= 2 branches; the stable (unstable) states are noted with a (dashed) line.

On the left-hand side upper panel, a zoom in the area of the bifurcation diagram where the n= 1 branch connects with the n= 2 branch.

This connection is represented by a star. On the lower panels, equilibria along the n= 1 branch are shown. Each corresponds to a black dot

in the right-hand side upper panel.
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Figure A2. A focus in the bifurcation diagram on the n= 2, n= 2bis, n= 3, n= 3 loc and n= 4 branches; the stable (unstable) states

are noted with a (dashed) line. On the left-hand side upper panel we show a zoom of the bottom part of the bifurcation diagram. The n= 3

branch exhibits a double zero-mode, indicated by the green star. Two equilibria emerge from that double-zero mode, the n= 2bis and the

n= 3 loc. The n= 3 loc branch is characterized by a three bumps solutions which are localized. The first one, connects with the n= 2

branch while the second one connects with the n= 4 branch at the zero mode indicated by the orange star. On the lower panels, equilibria

along the n= 3 loc branch are shown. Each corresponds to a black dot in the right-hand side upper panel.
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Figure A3. Bifurcation diagram for which the stability is computed based on the four highest eigenvalues. The solid (dashed) line means

that the eigenvalue considered is negative (positive)
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Figure A4. Trajectories on a summary phase space from random initial condition with a fixed rainfall R= 1.1mmd−1. The relevant equi-

libria are shown, if the equilibrium is stable (unstable) the marker associated is a circle (cross).
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