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Abstract 

To investigate the potential value of tree-ring blue intensity as a robust climate proxy in central 10 

and western China, 4 species from 5 sites were assessed. As well as latewood inverted blue intensity, 

we also examined earlywood blue intensity. To explore the sensitivity of using different extraction 

parameter settings using the software CooRecorder, seven percentile (P) variant settings for earlywood 

blue intensity and latewood inverted blue intensity were used, namely P50:50, P60:40, P70:30, P80:20, 

P85:15, P90:10, and P95:5. Age-dependent spline was used for all and that positive trends were not 15 

retained. Correlation analysis was applied between the tree ring parameter chronologies and 

monthly/seasonal mean temperature, precipitation, and Self-Calibrated Palmer Drought Severity Index 

variables. Linear regression was also used to further highlight the potential of developing climate 

reconstructions using these species. Only subtle differences were found between the different percentile 

extraction variants. As has been shown for many other northern hemisphere studies, latewood inverted 20 

blue intensity expresses a strong positive relationship with growing season temperatures (the two 

southern sites explain almost 56% of the temperature variance when combined). However, the low 

latitude of these sites shows an exciting potential for regions south of 30oN that are traditionally not 

targeted for temperature reconstructions. Earlywood blue intensity also shows good potential to 

reconstruct hydroclimate parameters in some humid areas.  25 
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1 Introduction 

Tree-ring blue intensity (BI), also sometimes called blue reflectance, was initially explored as a 

substitute for maximum latewood density (MXD). It has been shown to express similar dendroclimatic 

potential as density parameters and is relatively inexpensive and easy to produce (Yanosky and 30 

Robinove, 1986; Björklund et al., 2015; Björklund et al., 2019; Reid and Wilson, 2020; Kaczka et al., 

2018; Wilson et al., 2014).  Sheppard et al. (1996) first confirmed that reflected-light image analysis 

could provide a substitute for X-ray densitometry for dendroclimatology and derived the first reflected 

light-based temperature reconstruction. These earlier studies (Sheppard et al., 1996; Yanosky and 

Robinove, 1986) used video-camera-based systems for image capture. McCarroll et al. (2002) later 35 

showed that a scanner-based system could be used to capture suitable digital images and assessed the 

suitability of mean, maximum, and minimum reflectance values for red, green and blue visible light, as 

well as ultraviolet bands by correlating the reflectance data with maximum density, which showed that 

minimum blue reflectance was the most robust proxy measure of latewood density.  McCarroll et al. 

(2002) proposed that the minimum blue light reflectance measured the amount of light absorbed by 40 

lignin in the latewood cell walls. Campbell et al. (2007, 2011) advanced the scanner-based system 

method (Mccarroll et al., 2002) by avoiding reliance on specialist image analysis software and utilized 

the commercial and widely used software WinDENDROTM to confirm that minimum blue intensity 

measurements from resin-extracted Scots pine laths provided a robust and reliable surrogate for 

maximum density and summer temperatures. Compared to WinDENDROTM, a lower-cost alternative 45 

for measuring BI was incorporated into the CooRecorder/CDendro software package, by which several 

early experiments were conducted, and protocols proposed (Rydval et al., 2014; Wilson et al., 2012; 

Wilson et al., 2014). This approach is now becoming more and more popular in the tree ring 

community (Kaczka and Wilson, 2021). 

BI-based tree ring research, focusing on both climate and ecological-based studies, has been 50 

widely carried out in Europe (Helama et al., 2013; Babst et al., 2009; Mccarroll et al., 2002; Campbell 

et al., 2007; Rydval et al., 2014; Dolgova, 2016; Fuentes et al., 2018) and North America (Wilson et al., 

2014; Wiles et al., 2019; Harley et al., 2021; Heeter et al., 2021; Wilson et al., 2019; Wang et al., 2020). 

Recently, some attempts have been made to explore the utility of BI for dendroclimatology in Australia 

(Wilson et al., 2021; Brookhouse and Graham, 2016; Blake et al., 2020; O'connor et al., 2022) and Asia 55 
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(Buckley et al., 2018; Cao et al., 2022; Davi et al., 2021). As the biggest territory in Asia, China has 

several types of climates due to different geographical zones, providing a golden opportunity to 

conduct BI-based dendroclimatic experimental research. To date, tree ring metrics, such as tree ring 

width (RW), stable isotopes, and density have been used in a very unbalanced way in China. A recent 

review (He et al., 2019) detailing advances in dendroclimatology in China, showed that tree-ring width, 60 

stable oxygen, stable carbon, and density account for 73%, 13%, 7%, and 7% of all reviewed 

chronologies from China respectively, with BI not being mentioned at all. In fact, BI-based 

dendroclimate research is extremely rare in China to date (Cao et al., 2022; Cao et al., 2020). It is 

obvious that there are significant gaps and opportunities for BI-based dendroclimate research in China. 

Building on Rydval et al. (2014), which provided a methodological guide for the generation of BI data 65 

using CooRecorder, we present here extended experiments exploring the sensitivity of using a range of 

percentile extraction parameterizations for both dark (latewood) and light (earlywood) pixels for BI 

data generation. Our study utilizes samples from 4 conifer species from western and central China 

(Fig.1) and assesses the potential of these species for BI-based dendroclimate research. 

Figure 1 70 

2 Materials and methods 

2.1 Study location and sample information 

For this study, increment cores were taken between 2013 and 2021 for 4 coniferous tree species 

from 5 sites across China (Table 1). Picea crassifolia from Wulan County (WL) and Xiariha (XRH) in 

Dulan County of Qinghai Province, Abies fargesii from Jinhouling (JHL) of Shennongjia Mountain in 75 

Hubei Province, Picea likiangensis and Abies fargesii var.faxoniana from Yulong Snow Mountain (YL) 

and Laojunshan Mountain (LJS) in Yunnan Province.  

Table 1 

The climatological context of the sampled sites is very diverse. Using the CRU TS4.05 (Harris et 

al., 2020) climate data grid (1991-2020), annual mean temperatures for WL, XRH, JHL, YL, and LJS 80 

are -3.43 °C, 2.34°C, 15.40°C, 6.15°C, 7.28°C, while total annual precipitation is 203.78 mm, 265.05 

mm, 1041.24 mm, 870.14 mm, and 935.00 mm respectively (Fig.2).  The sites, therefore, represent a 
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range from high elevation cold and dry sites (e.g. WL and XRH, are located in a high elevation arid 

plateau climatic region) to lower elevation warm and humid locations (JHL). 

Figure 2 85 

2.2 Tree ring data 

As the spruce and fir samples do not express a visible heartwood-sapwood color change, no pre-

treatment (i.e. resin extraction) was performed (Dolgova, 2016; Wilson et al., 2019). The mounted 

cores were sanded from 240 to 800 grit grade before being scanned with a flatbed Epson V850 Pro 

scanner. The scanner was calibrated using the SilverFast scanner software to the IT8 color card Target 90 

(IT8.7/2) printed on Kodak Professional Endura paper. This calibration step is important to ensure 

consistency between labs as well addressing the potential temporal instability in the power or intensity 

of the light because bulbs tend to fade over time, leading to a potential drift in blue intensity values 

(Campbell et al., 2011).  

All tree ring samples were scanned at 3200 DPI with the scanner covered by a box (with matt 95 

black side walls) to minimize bias from external ambient light and internal box reflections of light 

(Rydval et al. 2014). The scanned digital image of each sample was then imported into CooRecorder 

and the ring boundaries were marked by both manual and automatic placement (Maxwell and Larsson, 

2021). COFECHA (Grissino-Mayer, 2001) was utilized to validate the reliability of the tree ring dating. 

Inverted latewood blue intensity (Rydval et al., 2014) data were generated using frame specification 100 

parameters controlling the “window” from which reflectance intensity measurements were derived 

(width-offset-limiting-depth-margin, 300-3-5-500-0.5). Earlywood blue intensity data were generated 

using frame specifications (200-3-0-500-0.5). A range of percentile (P) values for earlywood BI (EWB) 

and latewood inverted BI (LWBinv) was used to extract different light and dark wood reflection 

intensity information, including P50:50, P60:40, P70:30, P80:20, P85:15, P90:10, and P95:5. This 105 

novel approach was explored to test whether there is a methodological influence on the relationship 

between the variable BI parameters and climate variables for varying percentile extraction options for 

these parameters. To develop the chronologies, both the LWBinv and EWB data, along with the RW 

data, were detrended using an age-depend spline (ADS) without retention of positive trends (Melvin et 

al., 2007). The spline had an initial starting 50-year spline, which better captures the juvenile and long-110 

term trajectory of radial growth compared to more rigid approaches like negative exponential functions.  
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2.3 Climate data 

Considering most meteorological stations were not founded before the 1950s in study areas, 

monthly climate data for the period 1951-2012, including mean temperature (TMP), precipitation 

(PRE), and self-calibrating palmer drought severity index (scPDSI) were extracted from the CRU 115 

TS4.05 climate data grid (http://climexp.knmi.nl/) with a resolution of 0.5◦ × 0.5◦. We used the mean of 

the four closest gridded points to each sampling site. 

2.4 Data analysis 

To assess the different statistical qualities between the tree-ring variable chronology variants, the 

coefficient of variation (CV), first-order autocorrelation (AC1), and mean inter-series correlation (Rbar) 120 

were evaluated. CV, which is the ratio of the standard deviation to the mean, quantifies the relative 

variance of the chronologies. It is useful to compare variance between data sets with different units (i.e. 

ring-width vs. BI) or with widely different means. The higher the CV, the greater the relative 

dispersion around the mean. AC1 measures the persistence structure in time series (i.e. the year-to-year 

correlation of a time series with itself at lag 1). The higher the AC1, the stronger the relationship 125 

between consecutive years of data. Rbar is the mean inter-series correlation of all possible detrended 

bivariate pairs of tree ring series in a chronology. The higher the Rbar, the stronger the common signal 

in the data that makes up the chronology. To further explore the potential of these tree species and 

variables for dendroclimatic research, correlation analysis was carried out between tree ring 

chronologies and monthly/seasonal variables of each climate variable using the common time interval 130 

1951-2012 (Table 1). Finally, multiple linear regression was performed for the strongest tree ring 

parameter vs climate relationships that are biologically most meaningful to highlight the potential for 

dendroclimatic reconstruction for these tree species. 

3 Results and discussion 

3.1 Chronology statistical properties 135 

Compared to the tree-ring EWB and LWBinv, RW chronologies exhibit a larger amplitude of 

fluctuations (Fig.S1). CV is much higher for RW than EWB and LWBinv (Fig.3a), an observation 

detailed for other studies comparing RW with BI parameters (Wilson et al., 2021; Wilson et al., 2014).  
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The CV values for LWBinv are similar to EWB. These low relative variance values are one reason why 

the signal strength statistics are often weaker for BI parameters than other parameters such as RW and 140 

MXD as any non-climatic signal (e.g. wood discoloration) could have a large impact on the Rbar 

values (see below).  

AC1 values for RW are also higher compared to EWB and LWBinv (Fig. 3b), a well-known 

property of RW chronologies (Lücke et al. 2019). The YL site shows significantly lower values, 

leading to a much broader range for EWB. Overall, LWBinv AC1 values are generally lower, again 145 

agreeing with other studies (Reid and Wilson, 2020; Kaczka et al., 2018) assessing both LWBinv and 

MXD which generally express low 1st autocorrelation for conifers from temperature-sensitive sites. 

This is a desirable property as LWBinv often correlates strongly with summer temperatures and also 

expresses low AC1. 

The range in Rbar values between RW and LWBinv is larger than EWB (Fig.3c). RW expresses the 150 

highest overall Rbar values – with the WL RW data showing a very strong common signal and LJS 

weakest. EWB and LWBinv express much weaker signal strength, with median values for LWBinv 

marginally higher than EWB. LWBinv expresses a much greater range than EWB with WL expressing a 

strong common signal where only about 13 cores are needed to attain an EPS of 0.85. LJS on the other 

hand shows a very weak common signal where theoretically more than 50 cores are needed to attain an 155 

EPS of 0.85 (Wilson and Elling, 2004). The weaker common signal of the BI parameters has been 

noted in several studies (Wilson et al., 2021; Wiles et al., 2019; Blake et al., 2020; Harley et al., 2021), 

with both EWB and LWB requiring greater sample replication than RW to reach widely accepted 

thresholds of chronology reliability (Blake et al., 2020; Harley et al., 2021). However, as has been 

shown in several previous studies, the weaker common signal in BI chronologies does not necessarily 160 

mean that the climate signal is weaker than RW (Wilson et al., 2019; Rydval et al., 2014).  

Figure 3 

The differences in CV, AC1, and Rbar values are subtle between the different percentile extraction 

chronology versions (Fig.3 and Supplementary Table 1). There appears to be little consistency as to 

which of the percentile extraction methods leads to consistent high or low values of CV, AC1, and 165 

Rbar. For EWB, the highest CV values are noted for the P50:50 variants (P60:40 shows the same value 

for YL) except for JHL where P70:30 expresses the highest CV value. Regarding LWB, once again, the 
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P50:50 variants exhibit higher CV values (except for XRH, where P60:40 and P70:30 show the same 

value, and for JHL, where P60:40 shows the same value). However, LJS deviates from this trend, with 

the P85:15 to P95:5 variants showing the highest values. For AC1, there appears to be no consistent 170 

pattern of high and low values between each percentile variant for both BI parameters. However, either 

P50:50 or P95:5 or together with the adjacent percentile variants, express the highest value except for 

XRH EWB and YL LWBinv. In terms of Rbar, the WL EWB and XRH EWB variants demonstrate the 

highest value for the P50:50. The LJS EWB variant shows the highest value for both the P50:50 and 

P95:05. The JHL EWB variant exhibits the highest value for the P70:30, while the YL EWB variant 175 

displays the highest value for the P95:5. while for LWBinv, the results are equally variable. Overall, the 

chronology characteristics based on different extraction percentiles vary minimally, suggesting that the 

percentile extraction settings are not a significant methodological factor for either EWB or LWBinv data 

generation.  

3.2 Climate response of the chronology variants 180 

The strength of correlations between the RW chronologies and monthly TMP, PRE, and scPDSI 

vary substantially across the different sites (Fig.S2). Over the period 1951-2012, WL RW expresses 

significant positive correlations with scPDSI for January through August (Fig.4a, Fig.S2), which may 

result from the relatively dry conditions indicated by the negative scPDSI values for this location 

(Fig.2). WL RW explains 37.4% of the Jan-Aug scPDSI variance. Except for Jun TMP at LJS, the 185 

correlations between RW and climate for XRH, JHL, YL, and LJS, are not significant as the climatic 

influence on RW is mixed and hence no reconstruction of past climate, using this parameter, is possible 

in these regions.  

Figure 4 

EWB measures the max intensity values of the light pixels, reflecting the lumen size of the 190 

earlywood - i.e. large vacuole and thin cell walls - and so reflects tree ring minimum density (Buckley 

et al., 2018). EWB exhibits diverse responses to TMP, PRE, and scPDSI, with the strongest response 

observed for TMP and scPDSI, and the weakest response observed for PRE. For TMP, there are no 

significant positive correlations (Fig.S3), which may result from a higher spring TMP promoting tree 

growth (Zheng et al., 2016). The observed negative correlations with TMP could suggest that inverted 195 

EWB data, which would reflect minimum density, could be worth exploring for future studies. For PRE, 
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only October at JHL and May at YL show a significant positive influence respectively (Fig.S4). 

Although the first finding at JHL is biologically meaningless as earlywood has already formed before 

October. The results for YL are encouraging and align with recent research in Sweden where 

precipitation calibrations based on BI can explain 20% more hydroclimatic variance compared to ring 200 

width (Seftigen et al., 2020). scPDSI expresses a universal positive influence on EWB at all sites 

except WL (Fig.S5). A positive relationship with PRE (Fig.S4) and a negative response to TMP 

(Fig.S3), indicates that drought conditions are the main limiting factor for the variability of lumen size 

(Begović et al., 2020).  

For LWBinv, although the sample sites are not located near the upper tree line, a significant TMP 205 

response is noted for all the sampling sites (Fig.S3), which suggests the possibility to enhance the 

climate response of BI chronologies via sampling closer to the upper tree line (Heeter et al., 2021). 

Especially significant is the relationship between LWBinv and August TMP (r = 0.595 for P85:15) at 

JHL (Fig.S3). To eliminate the potential inflation of correlation values due to coherent low-frequency 

trends between time series, we also calculated the correlation after first differencing both LWBinv and 210 

August TMP. The first differenced correlations are even stronger at > 0.68 suggesting that there is 

some degree of dissimilarity at decadal and longer timescales between BI and the climate data (Wilson 

et al., 2019; Blake et al., 2020). The positive relation between LWBinv and TMP is analogous to the 

positive relation between MXD and growing-season temperature (Briffa et al., 2002). The strongest 

inverse influence shown by PRE on LWBinv is identified at comparatively humid sites JHL and YL, 215 

which fits in with the positive temperature response of LWBinv with TMP and the inverse correlation 

between PRE and TMP. Though the correlations between LWBinv and scPDSI are relatively weak, 

significant positive correlations with scPDSI are observed for WL during January through April, while 

inverse correlations are noted for YL during the autumn.  

We utilized the single-month correlation function analysis (Fig.S3-S5) and systematic correlation 220 

function analysis results (Fig.4) to identify the optimal, and biologically most relevant, single-month or 

seasonal window to maximize the tree ring parameter and climate relationships. We then use this single 

month or season to test how the correlation value between these optimized relationships changed for 

the different percentile variants.  Overall, there is no one single percentile combination for EWB and 

LWBinv that stands out for those monthly and seasonal relationships that express the strongest 225 



10 

 

correlations (Fig.5). Utilizing different ratios, such as P50:50, P60:40, P85:15, P90:10, and P95:5, can 

potentially yield optimal results in certain circumstances, as illustrated in Fig.5, although the 

differences are subtle. However, as higher resolution methods are employed for image capture, we urge 

the community to continue experimenting with varying percentile extraction settings to help provide a 

theoretical basis for optimal settings.  230 

Figure 5 

LWBinv, which has proven to be a robust proxy for summer temperature at high northern latitudes 

reconstruction TMP (Björklund et al. 2015; Wilson et al. 2019; Harley et al., 2021), can also express 

very strong TMP signals for the mid-to-low latitude (Heeter et al., 2021). However, most BI studies to 

date are still primarily geographically restricted to high latitudes. More studies are needed to evaluate 235 

the applicability of BI methods across different regions, especially at high-elevation, low-latitude 

locations, where certain tree species still produce distinct annual growth rings (Buckley et al. 2018; 

Heeter et al., 2020). The lower latitude sites, including JHL, YL, and LJS in central and southwestern 

China, with a collective strong TMP signals response in LWBinv (Fig.4 and Fig.S3), show great 

potential to reconstruct past temperatures for these relatively lower latitudes. The cool and rather humid 240 

climate regime of YL, a site type that traditionally has been overlooked in tree ring studies for 

hydroclimate, shows great potential when using EWB due to the strong implicit hydroclimatic signal 

expressed with PRE (Fig.5d and Fig.S4) and scPDSI (Fig.5e and Fig.S5). This observation, along with 

similar results for southern Sweden confirms the importance and potential of both EWB and LWBinv 

for understanding hydroclimate variability in regions with a humid climate (Seftigen et al., 2020).  245 

Finally, we use simple and stepwise multiple regression of multi-site-parameter BI data to 

highlight the improvement, by using data from multiple sites, over these single parameter results 

(Fig.6). Focusing on regionally grouped data sets, EWB data from YL explain 37% of the Apr-Jun 

(AMJ) scPDSI variance. Although these results are modest, we hypothesize that expanding the number 

of sites and including RW data would result in substantially improved scPDSI reconstructions for this 250 

region. Further, by also using the LWBinv data from LJS and YL, the multiple regression combination 

of these data results in an extremely strong calibration with June-October mean temperatures (R2
adj = 

0.56, Fig.6), with the reconstruction representing a large region of low latitude China. These results 
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demonstrate the considerable potential of using BI to enhance current RW-based climate 

reconstructions in China.  255 

Figure 6 

4 Conclusions 

In this study, we measured RW, EWB, and LWBinv for 5 sites in western and central China to 

investigate the potential application of BI variables to enhance dendroclimate research. We have 

focused on species (Picea and Abies) that express no visible color change from the heartwood to 260 

sapwood so minimizing trend biases in the BI data. We further explored how sensitive the results are to 

different percentile extraction parameter settings for attaining blue intensity data using CooRecorder. 

The results presented herein, strongly indicate that BI parameters will enable a significant improvement 

upon RW-based dendroclimatic reconstructions in China. Perhaps the most compelling factor of the BI 

method is that tests can be easily and quickly made on multiple samples, sites, and species from 265 

varying locations, so a broader picture of the potential of measuring multiple tree-ring parameters from 

many species can be easily tested. Our results indicate and agree with most other northern hemisphere 

studies exploring conifer response to climate (Rydval et al., 2014; Heeter et al., 2021), that LWBinv 

expresses a positive relationship with growing season temperatures. Despite data from only two sites, 

the combined information from sites LJS and YL explain almost 56% of the temperature variance 270 

which is on par with some of the strongest calibrations noted in the northern hemisphere (Wilson et al., 

2016). However, these results are particularly exciting due to the low latitude location of these sites 

where traditionally, temperature reconstructions are poorly constrained at latitudes south of 30oN 

(Anchukaitis et al., 2017; Wilson et al., 2016). We hypothesize that these results would improve by 

sampling more trees and sampling more sites closer to the upper tree line.  275 

EWB is still a relatively untested parameter in dendroclimatology. Our experiments strongly 

suggest that this parameter could greatly enhance reconstructions of past hydroclimate, especially 

scPDSI, over those relying solely on RW data. Further research is however needed as to whether EWB 

should be inverted in the same way as LWB data as this has implications on what wood anatomical 

features the EWB data are actually measuring – i.e. the lumen size or the cell wall thickness. 280 
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Experiments using different percentile extraction parameters for EWB and LWBinv did not identify 

a clear optimal set of settings for the BI data extraction, so we encourage the community to continue 

further experimentation with different data extraction parameterizations in CooRecorder, as our current 

results were produced from scanned images. It is entirely possible that as labs start experimenting with 

higher-resolution image capture methods (e.g. ATRICS, Levanič, 2007), different extraction 285 

parameters may be needed to improve climate response. 

The challenge now is to expand the network of Chinese BI chronologies with more species and 

locations, but also identify preserved wood sources that will allow a significant extension back in time. 

Finding older stands of trees is of course a priority, but that is not always possible in regions where 

humans have lived for a significant length of time. The focus must therefore be on extending the 290 

shorter living chronologies using preserved material from historic buildings (Wilson et al., 2004) or 

natural environments where wood is preserved such as in anoxic lake sediments or river gravels. 

Moreover, as several long chronologies have been produced by other labs an important and feasible 

way for creating long climate sensitive BI chronologies would be through inter-lab collaboration 

allowing the reprocessing of extant samples. 295 
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Fig.1 Study sampling sites across China 

 

 465 

  

 

Fig.2 Monthly mean (calculated over the 1991-2020 period) temperatures, precipitation, and 

scPDSI climate diagrams summarizing the climatology at the 5 sampling sites 
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 470 

Fig.3 CV, AC1, and Rbar for each ADS detrended chronology – delineated by parameter, BI 

percentile extraction, and site 

 

Fig.4 Correlation analysis of select parameter ADS chronologies against different climate 

targets for different end months (along the y-axis) and different season lengths (the number 475 

along the diagonal line). Both the ratio & color of the shaded portion of the pie denotes the 

correlation coefficient. The P85:15 variants were used for these examples. 
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Fig.5 Correlations for different percentile extraction variants for those parameter 

chronologies and climate variables that express the strongest signal 480 

. 
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Fig.6 Experimental simple and multiple regression calibration (1951-2012) results for LJS 

and YL. P85:15 variants used. 485 

Table 1 Sample site information 

Site code Species Climate Zone 
Elevation 

 (m) 
Hight below 
tree line (m) 

Vertical distribution 
range (m) 

Cores Full Period 

WL Picea 
crassifolia 

Plateau climatic region 3700 100 2600-3800 34 1821-2014 

XRH Picea 
crassifolia 

Plateau climatic region 3720 80 2600-3800 44 1907-2014 

JHL Abies fargesii North subtropical zone 2564 541 2000-3105 69 1830-2021 
YL Picea 

likiangensis 
Mid subtropical zone 3377 823 3100-4200 35 1936-2013 

LJS 
Abies fargesii 
var.faxoniana 

Mid subtropical zone 3587 413 3000-4000 33 1688-2013 

 


