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Abstract. Reliable statistics on anthropogenic CO2 emissions are fundamental for carbon cycle and climate change research. 

Satellite observations offer a potential objective and efficient alternative to the current self-reporting mechanism. However, 10 

the current satellite projects provide only column-averaged CO2 amount (XCO2) data. This paper proposes a direct estimation 

method based on satellite-based CO2 column amount, different from the conventional “top-down” approaches, which usually 

adopt satellite-observed data as an indicator to disaggregate consumption statistics. Here, the monthly CO2 emissions from 

2010 to 2019 are estimated globally using CO2 data retrieved from the Greenhouse Gases Observing Satellite. The 

geographically and temporally weighted regression model is adopted to account for local spatial and temporal variability. The 15 

enhanced XCO2 data and the local wind speed, vertical velocity, air temperature, water vapor concentration, and fire emissions 

are included in the estimation process. The validation results of the newly derived CO2 emissions strongly agree with the Open-

source Data Inventory for Anthropogenic CO2 data (R2 = 0.929). This high global consistency demonstrates the great potential 

of direct estimation from satellites, with improved frequency and a broader coverage range. 

1 Introduction 20 

Carbon dioxide (CO2) is one of the most important greenhouse gases contributing to Earth’s radiative budget and climate 

change (Pachauri et al., 2015; Solomon et al., 2007, 2009). It has a long lifetime in the atmosphere and is uniformly distributed 

with other atmospheric components. Over the past few decades, the concentration of atmospheric CO2 has risen steadily owing 

to human activities, particularly those resulting in fossil fuel emissions (Friedlingstein et al., 2021, 2019; Schneising et al., 

2011). To promote a sustainable low-carbon economy, the Paris Agreement of the UN Framework Convention on Climate 25 

Change (UNFCCC) proposed greenhouse gas mitigation pledges for countries to contribute to carbon emission reduction. A 

reliable and accurate monitoring system for anthropogenic greenhouse gas emissions and removal is urgently required to enable 

various governments to assess the mitigation progress.  
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Observations from ground-based stations provide valuable insights into the growth rate and trend of atmospheric CO2 

(Solomon et al., 2009; O’Neill et al., 2012); however, the observation network is too sparse to enable the accurate inference 30 

of carbon emissions on a global scale. CO2 inventories are fundamental for managing CO2 emissions at multiple scales, 

investigating emissions sources, and analyzing development trends (Le Quéré et al., 2020; Liu et al., 2020). The correlations 

between CO2 emissions and population density (Olivier et al., 2005), night light (Oda and Maksyutov, 2011), and other 

geographical information such as point source locations and road networks (Crippa et al., 2022) are considered in the 

construction of gridded emissions maps. However, the capacity and quality of the self-reported datasets vary across and within 35 

countries (Xu, 2020), which makes it difficult to guarantee the accuracy and consistency of the estimated results. 

Space-based remote sensing observations provide complementary measurements from the existing surface-based greenhouse 

gas monitoring network over the globe (Crowell et al., 2019). Several satellite missions have been developed to obtain the 

column-averaged CO2 dry air mole fraction (XCO2) as an indicator for the vertically integrated CO2 in an entire atmospheric 

column (Cogan et al., 2012; Yang et al., 2021). The cluster analysis of XCO2 anomalies (ΔXCO2) extracted from the Orbiting 40 

Carbon Observatory-2 (OCO-2) confirmed the positive correlation between CO2 and emission inventories, allowing for the 

isolation of low-emission areas (Hakkarainen et al., 2016). However, this research was greatly limited, as it did not include a 

quantitative estimation of CO2 emissions. Pan et al. (2021) proposed a multiple linear regression model to estimate CO2 

emissions from OCO-2 XCO2 data in China, and validation against the Open-source Data Inventory for Anthropogenic CO2 

(ODIAC) showed that the overall R2 was 0.486. The discrepancies between the modeled data and ODIAC indicate that the 45 

model’s estimation did not fully explain the CO2 emissions. Yang et al. (2019) proposed a general regression neural network 

model to estimate anthropogenic CO2 emissions using ΔXCO2 anomalies derived from the Greenhouse gases Observing 

SATellite (GOSAT) in China, with an R2 of 0.65. Unfortunately, the annual estimation frequency considerably restricts the 

applicability of the model for the global characterization of carbon emissions. 

In this study, a novel approach for the direct estimation of global anthropogenic emissions with multi-year XCO2 data from 50 

GOSAT is proposed. Unlike previous studies that usually employed auxiliary data, emission inventories, or other proxies to 

estimate CO2 emissions, this study utilized the geographically and temporally weighted regression (GTWR) model to estimate 

anthropogenic emissions from satellite-based CO2 columns. The GTWR model simultaneously incorporates temporal 

information into spatial variability through a spatial-temporal weighting mechanism, providing a robust and complementary 

estimation of CO2 emissions using enhanced XCO2 data retrieved from satellite images. The primary objectives of this study 55 

are threefold: to develop an independent method to estimate CO2 emissions directly from satellite-based measurement; to adopt 

the neat space-time statistical model GTWR in the estimation process; and to validate and analyze the applicability of the 

estimated results for future environmental research. 
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2 Data 

2.1 XCO2 and local enhancement 60 

GOSAT was launched in January 2009 to monitor CO2 column amounts from space (Yokota et al., 2009; Patra et al., 2021). 

The thermal and near-infrared sensor for carbon observation-Fourier-transform spectrometer (TANSO-FTS) onboard detects 

CO2 columns by observing the short-wavelength infrared light reflected from Earth’s surface under cloud-free conditions over 

land (Yokota et al., 2009). A series of XCO2 datasets with different spatial and temporal resolutions were estimated from 

GOSAT using the global atmospheric transfer model (Kuze et al., 2016). Although we intended to estimate CO2 emissions 65 

with the highest spatial and temporal resolutions, the level 2 CO2 column amount, which provides measurements with a spatial 

resolution of 10.5 km at the subsatellite point, is too sparse for further analysis. A longer observation period will extend the 

coverage of satellite images, and temporal averaging will smooth out the short-term fluctuations.  

 
Figure 1. Distribution map of TCCON stations. 70 

To identify the best temporal resolution that can accurately capture the variation trends while maintaining a high global 

coverage rate, the XCO2 data obtained from the Total Carbon Column Observing Network (TCCON) were examined. The 

TCCON network observes multiple components with a high temporal resolution (Wunch et al., 2015). Because of its high 

precision, it has been widely adopted for validating satellite XCO2 retrievals (Cogan et al., 2012; Zhang et al., 2017; Hong et 

al., 2022). The daily mean, daily median, 30-day moving average, and monthly mean of XCO2 obtained in 2012–2020 at the 75 

Caltech station were analyzed. The daily data exhibited strong fluctuations, while seasonal variations were observed among 

all datasets. The 30-day moving average and monthly mean data reveal the seasonal cycle while smoothening the daily 

variations. Since the estimation method requires the XCO2 products to be sampled as densely and frequently as possible, the 
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monthly GOSAT XCO2 Level 3 product (FTS_C01S_3) with a spatial resolution of 2.5 × 2.5 degrees was employed to estimate 

CO2 emissions. 80 

 
Figure 2. Daily mean, daily median, monthly mean, 30-day moving average of XCO2 observed from the Caltech station 

from 2012 to 2020. The green-shaded area represents the σ on each day of a year. 

The monthly mean XCO2 data were calculated at the 24 stations within the TCCON network and employed as the ground truth 

to validate the GOSAT XCO2 product. A good correlation between the GOSAT XCO2 and the ground-based observation from 85 

TCCON, with a root mean square error of 1.564 ppm (Figure 3), proving that the satellite-derived XCO2 data were accurate 

and could be used to estimate anthropogenic emissions. 

 
Figure 3. Comparison of monthly mean XCO2 emissions obtained from GOSAT and its collocated TCCON stations in 

2010–2019. The color bar denotes the sample size. 90 

https://doi.org/10.5194/egusphere-2023-1347
Preprint. Discussion started: 30 August 2023
c© Author(s) 2023. CC BY 4.0 License.



5 
 

The overall variation in the atmospheric CO2 column concentration was potentially influenced by anthropogenic emissions, 

long-range atmospheric transport, and natural fluxes. While anthropogenic CO2 emissions only account for a small percentage 

of carbon fluxes (Streets et al., 2013), identifying the CO2 fluxes arising from natural sources and anthropogenic emissions is 

critical. The monthly median from the sub-region was considered the background CO2 fluxes and subtracted at each grid cell 

to isolate the anthropogenic emissions from CO2 columns (Hakkarainen et al., 2016). Seven sub-regions were defined in this 95 

study according to their climatic characteristics and geographical locations: Tropical (23 °S–23 °N), North America (23 °N–

60 °N, 180 °W–60 °W), Mediterranean (23 °N–60 °N, 0°–60 °E), East Asia (23 °N–60 °N, 60 °–180 °E), South America (23 

°S–60 °S, 90 °W–30 °W), Africa (23 °S–60 °S, 0°–60 °E), and Oceania (23 °S–60 °S, 90 °E–180 °E). The XCO2 anomaly 

(ΔXCO2) was derived as follows: 

 Δ𝑋𝐶𝑂! =	𝑋𝐶𝑂!(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) − 𝑋𝐶𝑂!(𝑚𝑜𝑛𝑡ℎ𝑙𝑦	𝑚𝑒𝑑𝑖𝑎𝑛) (1) 

This step detrends the XCO2 data while reducing the impact of potential regional-scale biases in the GOSAT product. 100 

 

Figure 4. Distribution map of (a) the mean XCO2 observed from the GOSAT project; (b) the mean of ΔXCO2 observed 

from 2010 to 2019. 

2.2 Ancillary data 

In addition to the enhanced ΔXCO2 from GOSAT, atmospheric conditions such as total column water vapor (tcwv), air 105 

temperature, local wind speed, and vertical velocity from ERA5 were also adopted as ancillary data (Table 1). The probability 

density function (PDF) of each input variable obtained from 2010 to 2019 on the global scale is provided in Figure 5. Although 

datasets with hourly and daily estimations were also available for ERA5, the analysis focused on monthly averaged data to 

align the reanalysis with the temporal resolution of the GOSAT product. To standardize the datasets obtained from multiple 

resources for further estimation, these data records were re-grided to a spatial resolution of 2.5 × 2.5 degrees. 110 

(a) (b)
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Table 1. Summary of data characteristics on XCO2 and ancillary data used in model development and validation 

analysis. 

Data type Data source Description Resolution 

XCO2 

GOSAT 
Averaged CO2 dry air mole 

fraction unit: ppm 

Monthly mean, 

2.5 × 2.5 degrees 

TCCON 
Averaged CO2 dry air mole 

fraction unit: ppm 
24 stations 

w500 ERA5 
Vertical velocity at 500 hPa 

unit: hPa/day 

Monthly mean, 

0.25 × 0.25 degrees 

Wind speed ERA5 

u-component of wind at 1000, 

975, and 950 hPa 

unit: m/s 

Monthly mean, 

0.25 × 0.25 degrees 

Air temperature ERA5 

Mean monthly near-surface 

temperature 

unit: °C 

Monthly mean, 

0.5 × 0.5 degrees 

Total column 

water vapor 
ERA5 

Total column of vertically 

integrated water vapor 

unit: kg/m2 

Monthly mean, 

0.25 × 0.25 degree 

Carbon emissions GFED 

Monthly emissions from biomass 

burning 

unit: gC/m2/month  

Monthly mean, 

0.25 × 0.25 degree 

Anthropogenic 

emissions 
ODIAC 

CO2 emissions from fossil fuel 

combustion, cement production, 

and gas flaring 

unit: gC/m2/d 

Monthly mean, 

1 × 1 degree 

ERA5 is the global climate and weather reanalysis developed by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), and it integrates model simulations with observational data (Hersbach et al., 2020). Previous study has indicated 

that high wind speeds accelerate the spread of CO2 thus weakening XCO2 signals (Zheng et al., 2020). Therefore, the local 115 

wind field was used in the estimation process as an indicator of atmospheric movement in the horizontal direction in this study. 

The average wind speeds at 1000, 975, and 950 hPa were calculated to approximate the wind speed below 500 m (Beirle et 

al., 2011; Zheng et al., 2020). The positive value indicating air movement toward the east, and a negative value indicating air 

movement toward the west. 
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Large-scale atmospheric circulation is another driving force influencing regional changes in atmospheric concentration (Ma et 120 

al., 2018). Here the vertical velocity at 500 hPa (w500) was utilized as the proxy of large-scale circulation (Bony et al., 2004). 

The negative values are related to convective motions, and the positive values are related to subsiding motions (Brogniez and 

Pierrehumbert, 2007). The w500 peaked at 10 hPa/day, indicating that the large-scale movement was dominated by the Hadley 

subsidence. 

The carbon emissions resulting from fires, obtained from the Global Fire Emissions Database (GFED), were also considered 125 

in the estimation process. This dataset was generated from MODIS (Moderate Resolution Imaging Spectroradiometer) direct 

broadcast burned-area products (Giglio et al., 2013; Shi et al., 2015; Jones et al., 2020). The monthly dataset at a spatial 

resolution of 0.25 × 0.25 degrees was adopted and re-grided for further analysis.  

The bottom-up inventory of CO2 emissions of ODIAC is a global high-resolution emissions data product for fossil fuel carbon 

dioxide emissions commonly adopted as reference data on CO2 emissions (Oda et al., 2018). ODIAC combines the space-130 

based nighttime light data and individual power plant emission/location profiles to estimate the global spatial extent of fossil 

fuel-related CO2 emissions. It is used as a reference dataset for both model development and validation.  

 

Figure 5. Normalized PDF for model inputs: (a) ΔXCO2, (b) w500, (c) wind speed, (d) air temperature, (e) tcwv, and 

(f) carbon emissions from fire in 2010–2019 on a global scale. 135 

(a) (b) (c)

(d) (e) (f)
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2.3 Dataset optimization 

A total of 118,390 groups of samples were obtained for the period 2010 to 2019. The number of valid collocated data points 

obtained at each grid cell during the observation period is displayed in Figure 6. The data points were unevenly distributed 

across the globe. To accurately capture the spatial and temporal variations, grid cells with more than 84 measurements 

(representing 70% of the observation period) were further separated into training (~70%, 46,341 samples) and testing (~30%, 140 

19,860 samples) subsets through the bootstrap resampling method. These subsets were utilized for model development and 

cross-validation, while the remaining grid cells were solely used for validation analysis. The aim of this resampling step was 

to collocate datasets into independent training and testing subsets while reducing the impact of the varying spatial distribution 

of the data points and the biases of satellite observation (Batista et al., 2004). Notably, none of the grid cells had more than 84 

measurements in the high-latitude region; therefore, the emissions from this area were not considered. 145 

 

Figure 6. Number of valid GOSAT XCO2 measurements in 2010–2019 in each grid cell. The color bar denotes the 

sample size. 

3 Methodology 

The core objective of this research was to accurately and directly estimate anthropogenic CO2 emissions from enhanced 150 

satellite-based XCO2 data using the GTWR model. Before the new model was developed, the XCO2 data obtained from 

GOSAT were examined against ground-based measurements. ΔXCO2 was extracted to enhance the emissions signals. 

Atmospheric transport is critical in estimating CO2 emissions. Therefore, the atmospheric parameters, including atmospheric 

circulation in the horizontal and vertical directions, along with the near-surface air temperature and humidity information, 

should also be included as input variables in the estimation process. Additionally, ODIAC emissions data were employed as a 155 
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reference for CO2 emissions for model development and validation analysis. As the research focused on global estimation, the 

considerable spatial and temporal variabilities in the relationship between ΔXCO2 and CO2 emissions were considered using 

the GTWR model. Grid cells with fewer than 70% valid measurements during the observation period (corresponding to ~84 

measurements) could not sufficiently characterize the temporal variability. Therefore, only grid cells with more than 84 

measurements were adopted for model training. Finally, the estimated results were validated against the ODIAC emissions 160 

dataset. 

 
Figure 7. Flowchart of anthropogenic emissions estimation using ΔXCO2 data obtained from GOSAT. 

3.1 CO2 emissions 

The seasonality of variation trends, long atmospheric lifetime, and large variations in atmospheric background significantly 165 

complicate the measurement of anthropogenic CO2 emissions (Streets et al., 2013; Hakkarainen et al., 2016; Pan et al., 2021). 

Here, ΔXCO2 was calculated to enhance the emissions signals. To analyze the relationship between the CO2 emissions and the 

input parameters, the composite of ODIAC emissions data were analyzed through the decomposition of the emissions data 

according to different intervals of the input variables. The mean of CO2 emissions in a particular interval was analyzed, and 

the results revealed that the CO2 emissions evolution was related to the atmospheric variables. A positive correlation existed 170 

between CO2 emissions and ΔXCO2 (Figure 8a), as the emissions increased with increasing ΔXCO2. The inconsistent data 

Enhanced XCO2 from GOSAT
2010 ~ 2019

Ancillary data on atmospheric 
conditions and GFED emission

ODIAC emission

Resample the valid data using 
bootstrap resampling method 
into training (70%) and testing 

(30%) subsets 

Select the collocated grid cells 
with more than 84 valid 

measurements for model 
development

Grid cells with fewer than 
84 valid measurements

Testing subsets

Training subsets
Establish the best fitting on a

regional scale using GTWR 
model

Estimate anthropogenic 
emission using GTWR

Estimated anthropogenic emission

Validation
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points for intervals with high ΔXCO2 are possibly due to the limited number of measurements. Similar growth trends in CO2 

emissions were also observed for intervals of air temperature and tcwv, indicating a positive correlation between CO2 emissions 

and the two atmospheric parameters. The decomposition of CO2 emissions according to w500 showed that regions with a 

strong subsiding motion (w500 > 50 hPa/day) were associated with high CO2 emissions. The areas with a weak subsiding 175 

motion associated with the low CO2 emissions. Moreover, a negative correlation existed between CO2 emissions and fire 

emissions. 

 

Figure 8: Composite CO2 emissions under different atmospheric condition intervals: (a) ΔXCO2 from GOSAT; (b) 

w500; (c) wind speed; (d) air temperature; (e) tcwv; (f) fire carbon emissions in 2010–2019 on a global scale. 180 

3.2 GTWR model 

The GTWR model was adopted to simulate the relationship between ΔXCO2 and anthropogenic emissions with localized 

correction (Huang et al., 2010; He and Huang, 2018; Wu et al., 2021). This model captures spatiotemporal heterogeneity by 

incorporating a weighting matrix that considers both spatial and temporal dimensions. Because ΔXCO2 is potentially an effect 

of human activities, long-range atmospheric transport, and natural fluxes, anthropogenic emissions can be expressed as 185 

follows: 

(a) (b) (c)

(d) (e) (f)
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 𝐴𝐸" = 𝛽#(𝜇" , 𝜈" , 𝑡") + 𝛽$(𝜇" , 𝜈" , 𝑡") × Δ𝑋𝐶𝑂!" + 𝛽!(𝜇" , 𝜈" , 𝑡") × 𝜔500" + 𝛽%(𝜇" , 𝜈" , 𝑡") ×𝑊𝑆"
+ 𝛽&(𝜇" , 𝜈" , 𝑡") × 𝐴𝑇" + 𝛽'(𝜇" , 𝜈" , 𝑡") × 𝑇𝐶𝑊𝑉" + 𝛽((𝜇" , 𝜈" , 𝑡") × 𝐹𝐸" + 𝜀" 

(2) 

where 𝐴𝐸" are the monthly anthropogenic emissions of sample 𝑖 at location (𝜇" , 𝜈") at time 𝑡". 𝛽# is the intercept at location 

(𝜇" , 𝜈") at time 𝑡". 𝛽$–𝛽( denote the location-and-time-specific slopes for ΔXCO2 observed from GOSAT, w500, wind speed 

(WS), air temperature (AT), total column water vapor (TCWV), and fire emissions (FE), respectively, and 𝜀" represents the 

offset. The detailed statistics on the input variables for model development for each sub-region are presented in Table 2.  190 

Table 2. Statistics of the input variables for model development for each sub-region. 

Sub-region  

Input parameters 

ΔXCO2 

(ppm) 

w500 

(hPa/day) 

WS 

(m/s) 

AT 

(° C) 

TCWV 

(kg/m2) 

FE 

(gC/m2/month) 

Tropical 

(13,826) 

Max 6.65 265.63 9.56 34.80 65.04 191.97 

Min −7.45 −340.13 −10.92 3.45 1.73 0.00 

Mean −0.37 4.06 −1.76 23.47 27.81 5.53 

North America 

(8,243) 

Max 6.02 699.26 6.09 34.55 53.58 340.95 

Min −4.59 −355.47 −8.70 −9.70 3.30 0.00 

Mean 0.24 4.75 0.14 16.05 18.66 1.72 

Mediterranean 

(7,128) 

Max 6.25 649.94 9.33 38.80 39.01 27.21 

Min −7.75 −385.73 −9.12 −11.75 3.03 0.00 

Mean −0.05 4.30 −0.16 16.06 16.26 0.91 

East Asia 

(8,683) 

Max 8.66 747.07 8.64 35.75 70.84 81.95 

Min −6.13 −358.13 −8.49 −22.90 0.72 0.00 

Mean 0.64 9.91 −0.15 13.36 18.46 1.23 

South America 

(4,120) 

Max 3.86 1466.46 7.70 29.90 52.09 228.27 

Min −3.65 −1101.55 −7.41 −3.90 0.78 0.00 

Mean 0.12 10.94 −0.95 16.91 20.71 1.41 

Africa 

(1,874) 

Max 2.69 252.71 3.26 29.45 47.51 89.21 

Min −2.83 −148.27 −8.05 6.35 4.17 0.00 

Mean −0.02 4.51 −0.59 19.31 17.47 2.00 

Oceania 

(2,467) 

Max 3.34 649.28 6.71 33.75 45.09 1115.40 

Min −4.13 −248.97 −8.95 −1.10 5.19 0.01 

Mean −0.06 21.67 −0.91 18.64 18.70 4.72 
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4 Results 

4.1 Validation of CO2 emissions 

The monthly anthropogenic emissions were estimated with the GTWR model using the ΔXCO2 extracted from GOSAT XCO2 

data and the corresponding atmospheric information. To analyze the differences between the two data records, the mean bias 195 

(MB) was calculated: 

 
𝑀𝐵 =

1
𝑛L(𝐴𝐸)*+,"-.+, − 𝐴𝐸/0123)

4

"5$

 (2) 

where n denotes the sample size, 𝐴𝐸)*+,"-.+, denotes the anthropogenic emissions obtained from the GOSAT product, and 

𝐴𝐸/0123 denotes the reference data on CO2 emissions obtained from ODIAC. 

 
Figure 9: Distribution map of (a) the MB between anthropogenic emissions estimated using satellite-based 200 

measurement and the reference ODIAC data; (b) the PDF of the MB. 

The distribution map of the MB on CO2 emissions measured from 2010 to 2019 is presented in Figure 9. The spatially changing 

patterns of the emissions data estimated from satellite-based XCO2 measurements are similar to the ODIAC product. 

Underestimation was observed in East China, South India, the British Isles, Germany, and the eastern United States, where 

high-emission regions are located. Despite the differences between the two datasets, the majority of the MBs between the two 205 

data records were within ±0.05 gC/m2/month, demonstrating the robust accuracy of the model on a global scale. 

To further evaluate the performance of the newly derived satellite-based CO2 emissions dataset, the coefficient of 

determination (R2) was calculated as follows: 

(a) (b)
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𝑅! =

⎣
⎢
⎢
⎡ ∑ (𝐴𝐸/0123 − 𝐴𝐸/0123RRRRRRRRRR)(𝐴𝐸6*+,"-.+, − 𝐴𝐸6*+,7-.+,RRRRRRRRRRRRRR)4

"5$

S∑ (𝐴𝐸/0123 − 𝐴𝐸/0123RRRRRRRRRR)!(𝐴𝐸6*+,"-.+, − 𝐴𝐸6*+,7-.+,RRRRRRRRRRRRRR)!4
"5$ ⎦

⎥
⎥
⎤
!

 (3) 

where 𝐴𝐸/0123RRRRRRRRRR and 𝐴𝐸6*+,7-.+,RRRRRRRRRRRRRR denote the average values of anthropogenic emissions from ODIAC and the satellite-based 

measurements, respectively. The overall verification for the training dataset and the validation for the testing dataset are shown 210 

in Figure 10. High correlations existed between the satellite-derived emissions and the ODIAC reference data, with R2 of 0.951 

and 0.929 for the training and testing subsets, respectively. 

 
Figure 10: Scatter plot of anthropogenic emissions estimated from GOSAT and the collocated ODIAC product from 

2010 to 2019 for (a) the training dataset and (b) the testing dataset. 215 

4.2 Variations in CO2 emissions 

The characteristics of global emissions were investigated using the CO2 emissions data. The annual mean of CO2 emissions 

was calculated, and the interannual variation (DCO2) was obtained as follows: 

 DCO!(𝑔𝑟𝑖𝑑, 𝑡) = 𝐴𝐸（8*",,.） − 𝐴𝐸(8*",,.;$) (4) 

where DCO!(𝑔𝑟𝑖𝑑, 𝑡) indicates the interannual variation of anthropogenic emissions for each grid in year t.	𝐴𝐸（8*",,.）and 

𝐴𝐸(8*",,.;$) denote the anthropogenic emission at each grid in year t and the year before, respectively. 220 

The distribution maps of the mean DCO2 obtained from the newly derived emissions data from the GOSAT and ODIAC 

products in 2010–2019 are displayed in Figure 11. Positive values indicate an increasing trend in CO2 emissions, while negative 

values indicate a decreasing trend. As shown in the figure, most areas maintained a steady emissions rate. Although some 

discrepancies exist between the two datasets, both records show an increasing trend in emissions in Canada, Colombia, several 

(a) (b)
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West African countries, northern Europe, India, and China during the observation period, while emissions in the United States 225 

decreased over time from 2010 to 2019.  

 
Figure 11: (a) Distribution map of the mean DCO2 from anthropogenic emissions estimated from the satellite-based 

measurement from GOSAT in 2010–2019; (b) mean DCO2 from ODIAC; (c) the PDF of DCO2 of the estimated data. 

The PDFs of DCO2 for the two data records are displayed in Figure 11(c). Although most areas maintained a steady emissions 230 

rate during the observation period, many areas exhibited a decrease in CO2 emissions over time. The good agreement between 

the two data records demonstrates the applicability of the newly derived data record for observing the variability of CO2 

emissions on a global scale. 

(a) (b)

(c)

Mean ∆CO2 (Estimated), 2010 - 2019 Mean ∆CO2 (ODIAC), 2010 - 2019

PDF of ∆CO2
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5 Conclusions 

Accurate and reliable statistics on anthropogenic CO2 emissions are critical for evaluating mitigation progress. Unlike the 235 

conventional method that calculates emissions using “bottom-up” inventories, the estimation of anthropogenic emissions from 

satellites is a data-driven approach that provides an independent measurement of carbon emissions. The XCO2 retrieved from 

GOSAT, the atmospheric information (including w500, wind speed, air temperature, and tcwv), and the fire emissions data 

from GFED were employed as input parameters for the model development. The GTWR model, which accounts for spatial 

and temporal variations in data through a spatiotemporal weighting mechanism, was applied to estimate anthropogenic 240 

emissions from satellite-based measurements. Moreover, the bootstrap resampling method was employed to reduce the 

potential impacts of the varying spatial distribution of the data points and the effects of the biases of satellite retrieval. 

The newly derived anthropogenic CO2 emissions dataset from the enhanced XCO2 measurements revealed the variation trend 

of CO2 emissions on a global scale. The emissions data were validated against the ODIAC product, and the satellite-derived 

data strongly agreed with the reference data, with an R2 of 0.929. The majority of the MBs on a global scale were within ±0.05 245 

gC/m2/month, demonstrating the spatial independence of the model on a global scale. The agreement in characteristics 

observed between the estimated results and ODIAC demonstrates the applicability of the newly estimated data record for 

observing the variability of CO2 emissions on a global scale.  

In summary, this study demonstrated a feasible method for accurately estimating CO2 emissions from satellite-derived CO2 

column amounts. The validation results showed that the CO2 emissions estimated using the GTWR model were robust both 250 

spatially and temporally on a global scale. The findings have significant implications for applications involving the use of CO2 

satellite data to independently monitor CO2 emissions at different scales. Although characterizing atmospheric dynamics solely 

based on the above model inputs could be considered a simplification, the atmospheric parameters considered in our approach 

can serve as a meaningful proxy for atmospheric conditions, making our approach easily applicable on a global scale. Satellite 

images with finer spatiotemporal resolution will provide more information in the future. 255 
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