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Abstract. Low-cost optical particle sensors have the potential to supplement existing particulate matter (PM) monitoring

systems to provide high spatial and temporal resolution. However, low-cost PM sensors have often shown questionable perfor-

mance under various ambient conditions. Temperature, relative humidity (RH), and particle composition have been identified

as factors that directly affect the performance of low-cost PM sensors. This study investigated if NO2, which creates PM2.5 by

chemical reactions in the atmosphere, can be used to improve the calibration performance of low-cost PM2.5 sensors. To this5

end, we evaluated the PurpleAir PA-II, called PA-II, a popular air monitoring system that utilizes two low-cost PM sensors that

is frequently deployed near air quality monitoring sites of the Environmental Protection Agency (EPA). We selected a single

location where 14 PA-II units have operated for more than two years since July 2017. Based on the operating periods of the

PA-II units, we then chose the period of Jan. 2018 to Dec. 2019 for study. Among the 14 units, a single unit containing more

than 23 months of measurement data with a high correlation between the unit’s two PMS sensors was selected for analysis.10

Daily and hourly PM2.5 measurement data from the PA-II unit and a BAM 1020 instrument, respectively, were compared using

the federal reference method (FRM), and a per-month analysis was conducted against the BAM-1020 using hourly PM2.5 data.

In the per-month analysis, three key features, temperature, relative humidity (RH), and NO2, were considered. The NO2, called

collocated NO2, was collected from the reliable instrument collocated with the PA-II unit. The per-month analysis showed the

PA-II unit had a good correlation (coefficient of determination, R2 > 0.819) with the BAM-1020 during the months of Nov.,15

Dec., and Jan. in both 2018 and 2019, but their correlation intensity was moderate during other months, such as July and Sep.

2018, and Aug., Sep., and Oct. 2019. NO2 was shown to be a key factor in increasing the value of R2 in the months when mod-

erate correlation based on only PM2.5 was achieved. This study calibrated a PA-II unit using multiple linear regression (MLR)

and random forest (RF) methods based on the same three features used in the analysis studies as well as their multiplicative

terms. The addition of NO2 had a much larger effect than that of RH when both PM2.5 and temperature were considered for20

calibration in both models. When NO2, temperature, and relative humidity were considered, the MLR method achieved similar

calibration performance to the RF method. In addressing the feasibility of utilizing distant NO2 measurements for calibration

in lieu of collocated data, the study highlights the effectiveness of distant NO2 when correlated strongly with collocated mea-

surements. This finding offers a practical solution for situations where obtaining collocated NO2 data proves challenging or

costly. We assessed the performance of different PA-II units to determine their efficacy. Our investigation reveals a signifi-25

cant enhancement in calibration performance across different PA-II units upon integrating NO2. Importantly, this improvement

remains consistent even when employing models trained with different PA-II units within the same location. Overall, this in-
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vestigation emphasizes the significance of NO2 in improving calibration for low-cost PM2.5 sensors and presents insights into

leveraging distant NO2 measurements as a viable alternative for calibration in the absence of collocated data.

1 Introduction30

Recently, attention has been paid to particulate matter (PM), which not only has adverse effects on visibility but also can impact

human health by contributing to conditions such as cardiovascular disease, asthma, and lung cancer (Liu et al., 2018, 2013). PM

that is less than 2.5 µm in diameter, referred to as PM2.5, can penetrate the lungs and may thus increase the risk to human health.

Globally, the estimated number of adult deaths attributable to PM2.5 exposure is over 0.67, 1.6, and 2.1 million for lung cancer,

cardiopulmonary disease, and all causes, respectively (Evans et al., 2013). To minimize the harmful effects, many countries35

regulate daily and annual PM2.5 concentrations by monitoring PM2.5 levels at air quality monitoring stations. The monitoring

stations use instruments based on Federal Reference Methods (FRMs) or Federal Equivalent Methods (FEMs), which promote

high precision and accuracy. The U.S. Environmental Protection Agency (EPA) approves both FRMs and FEMs as official

designations for measuring ambient concentrations. Furthermore, the U.S. EPA carries out various cooperative programs,

including those on ambient monitoring methods and technologies, with many other countries in the world. These instruments40

can provide high-quality measurements of PM2.5 concentrations at the installed locations and nearby surroundings. However,

these instruments are sparsely distributed due to the high cost of the equipment (ten thousand to tens of thousands of US

dollars), so they cannot provide spatial variability. In other words, traditional monitoring stations frequently provide air quality

data with poor spatio-temporal resolution, due to the limited number of high quality instruments.

As a cost-effective approach for a dense monitoring network, many stakeholders and researchers have turned to low-cost45

PM sensors that use a light scattering technique for measurement. In addition to low cost, these sensors have the advantages

of low energy consumption and high sampling frequency, and they are easy to deploy and operate compared to traditional

monitoring networks. Thus, low-cost PM sensors have been deployed in several communities to measure and report local air

quality information (Jiao et al., 2016; PurpleAir, 2018).

However, low-cost PM sensors are not suitable for regulatory purposes because the data reported can be questionable in50

terms of accuracy, precision, and reliability. In worst-case scenarios, low-cost sensors report no meaningful data at all. Be-

cause manufacturers provide limited information on sensors’ performance, some studies have been conducted to evaluate the

performance of a variety of low-cost sensor models by comparing them with high-cost instruments in laboratory and outdoor

ambient environments (Alvarado et al., 2015; Johnson et al., 2018; Wang et al., 2015; Holstius et al., 2014; Austin et al., 2015;

Gao et al., 2015; Kelly et al., 2017; Mukherjee et al., 2017; Sousan et al., 2016; Feinberg et al., 2018; Crilley et al., 2018;55

Badura et al., 2018; Budde et al., 2018; Liu et al., 2019; Cavaliere et al., 2015; Kelly et al., 2017; Zheng et al., 2018). Most

sensors showed good performance under laboratory tests where the sensors measured, known concentrations of particles, such

as polystyrene latex, in a chamber. On the other hand, under ambient conditions, the performance of low cost sensors varied

depending on the sensor model and its deployed location. Some PM sensor units have inconsistent precision between units of

the same model (Feenstra et al., 2019; Feinberg et al., 2018), while other PM monitors, including the PurpleAir PA-II, have60
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shown good precision (Barkjohn et al., 2020; Pawar and Sinha, 2020; Mailings et al., 2020). Field evaluations of PurpleAir

PA-II units collocated with FEM instruments for approximately two months shown good correlation with the FEM instruments

(SCAQMD, 2017c). Furthermore, it was shown that PMS5003 sensors, which are used in PurpleAir PA-II monitors, have a

good correlation with the FEM monitors (Kelly et al., 2017; Sayahi et al., 2019). However, the sensors still require calibration

for better performance before use in ambient conditions.65

Several studies have developed calibration models for low-cost PM sensors based on the following approaches: simple

linear regression (Zheng et al., 2018), multiple linear regression (Zimmerman et al., 2018), random forest (Zimmerman et al.,

2018), and neural networks (Si et al., 2020). Moreover, to improve calibration performance, several studies have identified

other factors in addition to PM2.5 concentration that can affect the performance of low-cost sensors. These typical factors

include temperature, relative humidity, and particle properties (composition and size distribution) (Holstius et al., 2014; Gao70

et al., 2015; Kelly et al., 2017). In particular, some low-cost PM sensors have been shown to excessively overestimate PM2.5

concentrations under high relative humidity conditions (Jayaratne et al., 2018). The reason for this overestimation is that some

aerosols can uptake water via hygroscopy. To solve this problem, several correction models have been proposed, such as a

correction model based on the κ-Köhler theory (Crilley et al., 2018, 2020), multiple linear regression (Barkjohn et al., 2021;

Nilson et al., 2022), and generalized additive model (Hua et al., 2021). Analysis of direct factors, such as temperature, relative75

humidity, and particle composition, can enhance the performance of low-cost sensors. In addition to these direct factors, we

examine the impact of precursor gase NO2, acting as a source of PM2.5 emissions, on calibration performance in low-cost

PM2.5 sensors. In general, PM2.5 arises by secondary formation from a chemical reaction between precursor gases, such as

NO2, in the atmosphere some distance downwind from the original emission source (Hodan et al., 2004). This study aims

to identify the significance of the precursor NO2 and evaluate its potential for improving the performance of low-cost PM2.580

sensors. To this end, we considered two machine learning methods, Multiple Linear Regression (MLR) and Random Forest

(RF), for calibration models using various feature vectors, including temperature, relative humidity, and NO2. The trained

MLR and RF models were evaluated on the test set, and their performance was compared. From an implementable perspective

on NO2 data, we investigated the feasibility of using data from distant NO2 regulatory instruments due to the questionable data

quality of low-cost NO2 sensors. The results of our study showed that incorporating distant NO2, in addition to temperature85

and relative humidity, into RF models yields lower errors than RF models that only include temperature and relative humidity.

2 Methods

2.1 Measurement data

2.1.1 PurpleAir PA-II Units

The PurpleAir PA-II Outdoor air quality monitor was developed for measuring particulate matter of various sizes. PA-II units90

can measure various particulate matter as well as temperature, relative humidity, and barometric pressure. PurpleAir also devel-
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oped a crowdsourcing platform to share publicly gathered PM measurements obtained from all PA units. From the PurpleAir

website (https://www.purpleair.com/map), we can observe and download data reported by all installed PA units.

A PA-II unit includes two identical PMS 5003 sensors. The PMS 5003 sensors based on a light scattering principle measure

concentrations of PM1.0, PM2.5, and PM10 in real-time. By counting the number of particles per each diameter range that flows95

through a fan at a rate of 0.1L/min. Based on number of particles counted per diameter, each sensor estimates PM1.0, PM2.5,

and PM10 concentrations and then averages the concentrations every 80 s 1. The PA-II unit sends the averaged concentrations

obtained from two PMS sensors (A and B) to the PurpleAir server without storing the data in the unit itself. The PA-II unit

does not calibrate the data, which implies it just collects the measured data.

The PurpleAir website provides the following information about all PA-II units via a JSON formated file: a name, a unique100

ID, a latitude, a longitude, and an installation date. Each PA-II unit has two unique IDs for each of its PMS sensors A and B.

2.1.2 Air quality measurement data from EPA

Outdoor air quality data collected from across the U.S. is publicly available through the U.S. Environmental Protection Agency

(EPA) website (https://epa.gov/outdoor-air-quality-data). The EPA has a description file for monitors, which includes state

code, county code, site number, location (latitude and longitude), parameter code, parameter occurrence code (POC), and last105

method. A combination of state code, county code, and site number can uniquely identify a monitoring site. For example, a

monitoring station located at Bakersfield, CA has a state code of 06, a county code of 029, and a site number of 0014. The

parameter code is an air quality system (AQS) code corresponding to the parameter measured by a monitor. For example,

parameters regarding PM2.5 and NO2 are 88101 and 42602, respectively. A POC is used to identify an instrument among

multiple ones with the same parameter code at a site. For example, two FRM instruments with a parameter of 88101 at the110

Bakersfield site are used to measure daily PM2.5 concentrations and are identified with POC 1 and 2. The last method descriptor

describes the measurement scheme used by the monitor for its most recent sample.

Monitoring ambient air quality for purposes of determining compliance with the U.S. National Ambient Air Quality Stan-

dards (NAAQSs) requires the use of either FRMs or FEMs. FRM and FEM instruments are accepted for methods for monitor-

ing the NAAQS pollutants, such as particulate matters (PM2.5 and PM10), NO2, SO2, O3, and CO. Hourly measurements of115

PM2.5 and PM10, as well as other pollutants such as NO2, SO2, O3, and CO, obtained from FEM and non-FEM instruments

can be downloaded via the EPA’s application programming interface (https://aqs.epa.gov/data/api) (U.S. EPA, 2011). Daily

measurements of PM2.5 obtained from an FRM instrument are also available.

2.1.3 Selection of PA-II units and reference monitoring sites

To investigate the performance of a PA-II unit itself and evaluate its calibration, we focused on PA-II units that are installed120

close to an EPA monitoring site (i.e. reference site) that provides reliable hourly PM2.5 concentrations. We use the location

information of the PA-II units and reference monitors to find PA-II and reference monitor pairs that are located less than 100 m

from each other(Wallace et al., 2021). Among the identified pairs, we selected a monitoring site, located at Rubidoux, CA, that
1After May 30, 2019, the averaging time is changed from 80 s to 120 s.
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has 14 PA-II units as pairs and can measure other pollutants such as NO2 on an hourly basis. The monitoring site is identified

by a state code of 06, a county code of 065, and a site number of 8001 (i.e., 06-065-8001). This monitoring site is located in an125

urban residential area within the south coast air basin at an elevation of 248 m. Air pollutants from the Los Angeles and coastal

areas are transported to this air basin, which is known to have poor ventilation and may experience air stagnation during the

early evening and early morning periods. Local air pollution includes NOx from diesel trucks, since the city of Jurupa Valley,

which includes the community of Rubidoux, is a main transportation corridor for diesel trucks serving three air cargo terminals

and the ports of Los Angeles and Long Beach.130

Table 1 describes information about the 14 PA-II units, such as their IDs, location (latitude and longitude), sensor name, start

time of measurement, end time of measurement, and non-operating months2. While we present the ID for only PMS sensor A

of each PA-II unit, the ID of PMS sensor B is the ID of PMS sensor A plus 1. The geographic information on 14 PA-II units

and the monitoring site is shown in Figure S1. Distances between PA-II units and the monitoring site are shown in Table S1.

The minimum and maximum distance between a PA-II unit and the monitoring site is less than 10 m and 100 m, respectively.135

Based on the non-operating months of the PA-II units found, we selected an appropriate period of sample data from Jan.

2018 to Dec. 2019 (24 months). Among the 14 identified PA-II units, we chose several that had more than 23 months of valid

measurement data during the period selected for study. The selected units are RIVR_Co-loc2, 3, 5, 6, 7, and 8, which we call

PA-II 2, 3, 5, 6, 7, and 8, respectively.

Before using PM2.5 data from the PA-II units, we checked the unit’s data quality. We calculated the correlation among the140

selected PA-II units, considering both PMS 5003 sensors for each PA-II unit for the correlation analysis. Since these PA-II

units are closely located, PM2.5 data should be highly correlated. Figure 1 shows the correlation results for all PMS 5003

sensors included in the PA-II units. The numbers on each axis represent the number of the selected PA-II units. Boxes to the

left and right of each number indicate PMS sensors A and B for its corresponding PA-II unit, respectively. The PMS sensor A

of PA-II unit 2, PMS sensors A and B of PA-II unit 5, and PMS sensor A of PA-II unit 6 all have a poor correlation with other145

PMS sensors. In addition, sensor A of PA-II unit 3 has slightly poor correlation with other sensors. Based on these results, we

selected PA-II units 7 and 8.

2.1.4 Data preprocessing of PA-II units

The PA-II units selected for study are long-term installations, i.e., they have been in operation for more than two years. There-

fore, PA-II units may have abnormal data due to failure and aging drift, so data quality control is required before calibrating150

the PA-II units. The quality control (QC) measure has been shown to be important for developing correction models of PA-II

units (Barkjohn et al., 2021). They performed a QC measure for obtaining daily PM2.5 measurement data, but we applied the

QC measure to obtain hourly PM2.5 measurement data. The QC measure has the following 3 steps: i) data from both channels

A and B was removed when either channel A or B had a missing value, ii) data with abnormal temperature or relative humidity

values was removed, and iii) data from channels A and B were compared. In the first step, when we calculate 1-hour averages155

of PM2.5 measurements generated with 2 min (or 80 sec) intervals, we remove the 1-hour average if the number of PM2.5 mea-

2We define non-operating month as the month, when the number of days without the measurement data is larger than 10 days.
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surements is less than 27 (or 40). We considered two different measurement intervals for a PA-II unit because its old interval

had been 80 sec until May 30, 2019. Its current interval is 2 min. After calculating 1-hour average data, we removed all data

points for the 1-hour interval, where either sensor A or B had a missing value. The second step deals with temperature and

RH data. PA-II units occasionally report extremely high or low values of temperature and relative humidity that are inaccurate.160

Therefore, we removed the data points whose corresponding time interval contained unrealistic measurement of temperature or

relative humidity. In this study, the acceptable ranges of temperature and RH are (0 ◦F, 200 ◦F) and (0%, 100%), respectively.

Once the unacceptable data points were removed, we calculated the 1-hour average for temperature and RH. The last step was

to compare results sensors A and B in a PA unit to check data consistency. To do this, we used symmetric percentage error

(SPE) as follows:165

SPE =
2(|PMA

2.5| − |PMB
2.5|)

|PMA
2.5 +PMB

2.5|
, (1)

where PMA
2.5 and PMB

2.5 are hourly averaged PM2.5 concentrations from sensors A and B in the same PA-II unit, respectively.

We removed the relevant data points with SPE larger than 0.61, which is 2 standard deviation. This value of SPE threshold

has been used for 24-hr average PM2.5 concentrations (Barkjohn et al. (2021)), but we use it here for 1-hour averaged PM2.5

concentrations. The number of data points processed for each pre-processing step in PA-II 7 is summarized in Table S2.170

2.2 Instrument intercomparisons

The monitoring site we considered has an FRM instrument and a BAM-1020 instrument with the parameter of 88502. These

instruments produce daily and hourly PM2.5 measurement data, respectively. Since we measure the PA-II units at intervals

much shorter than a full day, it is much more reasonable to compare the PM2.5 measurement of PA-II units with that of a

BAM-1020 instrument with a shorter measurement interval, rather than that of an FRM instrument for evaluating the accurate175

calibration performance of PA-II units. However, we face the limitation that a BAM-1020 instrument can be classified as a non-

FEM-compliant device. Therefore, our approach for analyzing PA-II units to appropriately resolve these issues is as follows: we

compared the BAM-1020 instrument’s readings with daily PM2.5 concentrations collected from an FRM instrument to ensure

the BAM-1020 provides an acceptable level of performance as an FRM instrument, which is enough to assess the calibration

performance of PA-II units. According to this affirmative observation, the BAM-1020 instrument can be used to evaluate the180

calibration performance of low-cost PM2.5 sensors by comparing its readings with hourly PM2.5 measurement data of PA-II

units.

We compared daily and hourly PM2.5 measurement data obtained from an FRM and BAM-1020 intruments and PA-II 7

unit. Table 3 shows summary statistics of daily and hourly PM2.5 measurement data from FRM and BAM instruments and

PA-II 7 3. These data suggest that a BAM-1020 instrument using non-FEM methods compares well to the statistics achieved185

with the FRM method. However, the measurements are not enough to evaluate how similar the performance of the BAM-1020

3A PMS 5003 sensor that collects PM2.5 concentrations from within a PA-II unit exhibits a maximum consistency error of ±10 µg/m3 at 0-100 µg/m3

and ±10% at 100-500 µg/m3. The sensor reports PM2.5 concentrations as integer values on a per-second basis. A PA-II unit generates readings of its own

PM2.5 concentrations by averaging its 1-second PM2.5 concentrations over 80 (or 120) seconds.
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is to that of the FRM instrument. Hence, this study compared the performance of two instruments using a linear fitting scheme.

Figure 2 shows the calibration performance using linear regression. The R2, slope, and intercept are 0.896, 0.923, and 0.741,

respectively. Also, the value of RMSE is 2.211 µg/m3. The BAM-1020 is close to an FEM instrument with the parameter

of 88101. In order for the BAM-1020 to attain the 88101 code in terms of performance, the following conditions must be190

satisfied: R2 is larger than 0.9, a slope is larger than 0.9 and less than 1.1, and an absolute value of the intercept is less than

2.0. Slope and intercept are satisfied with the requirement, while R2 does not meet the condition very slightly. Nonetheless,

the BAM-1020 instrument provides an acceptable level of performance to evaluate the calibration performance of PA-II units

on an hourly basis.

Compared to the FRM and BAM-1020 instruments, the PA-II 7 unit overestimates the maximum daily PM2.5 concentrations.195

Additionally, the mean daily PM2.5 concentration from the PA-II 7 unit was higher than that of the FRM and BAM-1020

instruments. These results show that the PA-II unit has a good correlation (r) with the FRM instrument for the two-year period

of interest, since its value is very close to 1. However, a comparison of metrics from the FRM instrument and the PA-II 7 unit

did not correlate as favorably.

Next, we compared the PA-II unit’s hourly PM2.5 data with that of the BAM-1020 instrument over the course of the same200

two-year period. We did not consider the FRM instrument for exploring hourly PM2.5 measurement data, since it only produces

daily concentrations. The PA-II unit’s maximum hourly PM2.5 measurement was almost twice that of the BAM-1020. In other

words, the PA-II unit overestimates hourly PM2.5 concentrations. Figure 3 shows the comparison of PM2.5 measurement data

obtained from the BAM-1020 and the selected PA-II 7 unit, as well as temperature and relative humidity measured from the

selected PA-II 7 unit during winter season (from Dec. 2018 to Feb. 2019). The PA-II 7 unit showed a similar trend of PM2.5205

concentration measurements to that of the BAM-1020 instrument, but it generally overestimated hourly PM2.5 concentrations

more often than the BAM-1020.

In addition, we compared the hourly PM2.5 concentrations of the PA-II unit with that of the BAM-1020 instrument in terms

of RMSE, MSE, MAE, and r. The results are as follows: RMSE of 6.194 µg/m3, MSE of 38.369 µg/m3, MAE of 7.919

µg/m3, and r of 0.876. The PA-II unit had a good correlation with the BAM-1020 instrument based on r. However, other210

metrics, such as RMSE, MSE, and MAE, did not correlate well.

2.3 Feature selection for calibration models

Temperature and relative humidity have been identified in previous studies as key factors for effective calibration. In particular,

relative humidity has been shown to affect low-cost PM sensors under high relative humidity conditions. Furthermore, few

papers have considered NO2 in calibration models (Hua et al., 2021) because NO2, which is known to be a precursor to the215

formation of PM2.5 through chemical reactions in the atmosphere, may indirectly affect PM2.5 concentrations. Therefore, we

investigated the suitability of temperature, relative humidity, and NO2 for the calibration of the PA-II 7 unit.

To identify the independent variables relevant for calibration, we conducted a correlation analysis involving PM2.5 mea-

surements from BAM-1020 and PA-II 7 unit readings, as well as temperature and relative humidity data, spanning a two-year

period. The results are illustrated in Figure S2. The highest correlation was observed between PM2.5 from BAM-1020 and220
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PA-II 7 unit, followed by NO2 measurements. Subsequently, relative humidity and temperature exhibited the next level of

correlation. As a result, we have identified temperature, relative humidity, and NO2 as the selected candidate features.

To explore the potential for enhancing the calibration performance of low-cost PM sensors using temperature, relative

humidity, and NO2 as features, we conducted linear fitting. Before considering temperature, relative humidity, and NO2, we

evaluate the monthly performance based on hourly PM2.5 data from the PA-II 7 unit compared to the BAM-1020 instrument.225

Table 2 shows the value of R2, RMSE, and MAE of hourly PM2.5 measurement data from the PA-II 7 unit compared to that

of the BAM-1020 instrument and the corresponding slope and intercept of each optimal linear fitting. During the months of

Nov., Dec., and Jan., the PA-II unit is shown to have a high correlation, R2 of 0.813 to 0.936, with the BAM-1020 instrument.

This result is supported by the field evaluation of PA-II units taken by the Air Quality Sensor Performance Evaluation Center

(AQ-SPEC) during the period of Dec. 2016 - Jan. 2017, which showed the value of R2 as being 0.868 to 0.921 when the PA-II230

units were compared with the FEM. (Sayahi et al., 2019) showed that PMS sensors have a high correlation with tapered element

oscillating microbalances (TEOM) instruments during the winter season by providing R2 of 0.866 to 0.892. That is, the hourly

PM2.5 measurement data from PA-II units seem to be highly correlated with that of FEM instruments during the months of

November, December, and January, which implies the PM2.5 measurement performance of PA-II is reliable, especially during

winter seasons. These months have different slopes and intercepts; for example, Jan. 2018 has a slope of 0.502 and an intercept235

of 3.898, while Jan. 2019 has 0.397 and 1.961, respectively.

On the other hand, the PA-II 7 unit has a correlation lower than 0.6 for months of Jul. and Sep. 2018 as well as Aug., Sep.,

and Oct. 2019. These months, except Sep. 2019, have larger RMSE values compared to other months over the two-year period,

which need to be calibrated.

For multiple features, such as temperature, relative humidity, and NO2, we used an MLR approach for regression analysis of240

PA-II units compared to the BAM-1020 instrument. A per-month analysis was conducted based on hourly PM2.5 measurements

from the PA-II 7 unit under several feature vectors, such as (PM2.5), (PM2.5, T), (PM2.5, RH), (PM2.5, NO2), (PM2.5, T, RH),

and (PM2.5, T, NO2), where T and RH represent temperature and relative humidity, respectively. For notational simplicity, we

defined the above feature vectors (PM2.5), (PM2.5, T), (PM2.5, RH), (PM2.5, NO2), (PM2.5, T, RH), and (PM2.5, T, NO2) as 1,

2, 3, 4, 5, and 6, respectively. Figure 4 shows the R2 and RMSE results of multiple linear regression for selected months with245

the above varying feature vectors. We considered feature vector 1 as a baseline for comparison among other feature vectors.

On Jan. 2018, feature vector 5, referring to temperature and relative humidity, had little effect on the regression performance of

R2 and RMSE. The amount of R2 increase by feature vector 5 from the baseline was around 0.001, and the amount of RMSE

decrease was 0.038 µg/m3. In the case of feature vector 6, including NO2 instead of RH, R2 increased from the baseline by

0.015, while RMSE was improved by 0.518 µg/m3. Similarly, for Apr. 2018, R2 (or RMSE) for feature vector 5 increased (or250

decreased) by 0.01 (or 0.072 µg/m3) compared to its baseline. R2 and RMSE for feature vector 6 increase by 0.05 and decrease

by 0.52 µg/m3 from the baseline, respectively. For regressions in Aug. and Sep. 2019, an increase in R2 was larger than 0.17

when feature vector 6 was considered, but it was less than 0.07 when feature vector 5 was considered. These remarkable

results suggest that NO2 is generally a key factor that can improve the performance of PA-II units over a year, even though
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the enhancement by NO2 does not meet the values of 0.7 of R2 and 3.5 µg/m3 of RMSE during certain months, such as July255

2018, August 2019, October 2019.

2.4 Calibration methods

A per-month analysis with a combination of features, including T, RH, and NO2, showed an effect on calibration for the PA-II

unit. However, it is challenging to use the per-month linear fitting result to calibrate PA-II units because each month has a

different slope and intercept defined for the linear fitting. Moreover, their values exhibit a change over the years. For example,260

notably, the linear fitting result in Apr. 2018 exhibited a higher RMSE than the fitting result in Apr. 2019. On the contrary, the

calibration performance in Aug. 2018 was worse than that in Aug. 2019.

We used a machine learning approach to develop a calibration model, employing two machine learning algorithms, such as

multiple linear regression (MLR) and random forest (RF). For both calibration methods, we considered various combinations of

features, including PM2.5 measured from a PA-II unit, temperature, relative humidity, NO2, and their multiplicative interaction265

terms.

2.4.1 Multiple linear regression (MLR)

An MLR method can be expressed as follows:

ŷ = β0 +β1x1 + · · ·+βnxn, (2)

where ŷ represents a response, n is the number of predictor variables, βi for i= 0,1, . . . ,n are regression coefficients, and xi for270

i= 1,2, . . . ,n represent predictor variables (called features). Using a linear equation with multiple variables, we investigated

the relationship between features and a response.

All features in an MLR method should be independent. However, many studies have considered PM2.5, temperature, and RH,

which are not independent (Magi et al. (2019); Mailings et al. (2020)). Some studies have introduced multiplicative interaction

terms (i.e., PM2.5×RH) to exploit interdependence between features (Barkjohn et al. (2021)). We also consider multiplicative275

interaction terms in this study.

We use PM2.5 concentrations obtained from a reference monitor as the response. As predictor variables, we consider multiple

features, such as PM2.5 measurement data from a PA-II unit, temperature, relative humidity, NO2, and their multiplicative

interaction terms (i.e., PM2.5×RH, T×RH, PM2.5×RH×T).

2.4.2 Random forest (RF)280

An RF is an ensemble of K regression trees. Each regression tree is trained with a bootstrap sample of an original training

dataset. The output of an RF is the aggregation of regression trees, i.e., averaging estimates over all trees. Each regression

tree is grown by selecting random m features among M input features at each possible split. The best cut is calculated at the

randomly chosen features. Optimal cuts can be achieved using the Classification and Regression Trees split criterion (CART),
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which compares the variance of the uncut node and one of all possible cuts along m directions. Every tree is fully grown with285

these splits (Breiman, 2001).

2.5 Performance evaluation metrics

In this study, we examined the root mean square error (RMSE), mean squared error (MSE), mean absolute error (MAE), and

Pearson correlation coefficient r between daily PM2.5 data from the FRM instrument and that from the PA-II units. In the cases

of the RMSE, MSE, and MAE, the lower its value is, the better the performance or the lower the difference in measurement data290

between the FRM instrument and the PA-II units. The Pearson correlation coefficient is a metric measuring a linear correlation

between two variables. It is a number between -1 and 1 that measures the strength and direction of their relationship. As the

coefficient approaches an absolute value of 1, the values of measurement data from the FRM instrument and the PA-II units

become more similar. These performance metrics are expressed as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2, (3)295

MSE =
1

n

n∑
i=1

(xi − yi)
2, (4)

MAE =
1

n

n∑
i=1

|xi − yi|, (5)

where xi represents 1-hour averaged (24-hour period) sensor PM2.5 concentrations for the ith hour (day) (µg/m3), yi represents

1-hour averaged (24-hour period) FRM or BAM-1020 PM2.5 concentrations for the ith hour (day) (µg/m3), and n is the number

of data points.300

3 Results and discussions

3.1 Calibration performance

The two-year dataset was divided into training and test sets at a 1:1 ratio, meaning the measurement data in the years 2018

and 2019 were used for training and testing, respectively. We used the training set to learn calibration models based on MLR

and RF, and then used the test set to evaluate the calibration performance in terms of RMSE, MAE, and R2. A calibration305

performance for the PA-II 7 unit using MLR and RF methods was compared with several features, including temperature,

relative humidity, and NO2, as well as their multiplicative terms.

3.1.1 MLR-based calibration model

Recently, calibration methods have employed multiplicative interaction terms, such as PM2.5×RH and T×RH. In our MLR

models, we considered both additive and multiplicative interaction terms. The additive terms in our models include raw Pur-310

pleAir PM2.5, T, RH, and NO2. We considered multiplicative interaction terms that involve less than four additive terms when
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NO2 was not included (i.e., we consider PM2.5×T×RH), and less than three additive terms when NO2 is included. There are

95 combinations of features. Out of 95 combinations tested, only 52 combinations had a p-value of less than 0.05. Of those, we

select 21 combinations, among 52 combinations, by increasing the number of additive terms and the number of multiplicative

interaction terms and identifying the combinations with the lowest RMSE among the same numbers of additive terms and315

multiplicative interaction terms. The selected combinations were shown in Table 4.

The calibration results of the PA-II 7 unit for test datasets using the MLR method with 21 selected combinations are presented

in Table 5. Multicollinearity is a known issue with MLR models, as it can cause instability. One common method to diagnose

this issue is to use the variance inflation factor (VIF) test for multicollinearity (Mansfield and Helms , 1982). Out of the 21

combinations tested, most VIF values were less than 5, indicating the absence of collinearity issues.320

When a single additive term, such as T or RH, was applied, the RMSE values for two combinations, #2 and #3, improved by

more than 0.208 µg/m3, compared to considering only PM2.5. The inclusion of an additive RH term in an MLR yielded a lower

error than an additive T term did, since both RMSE and MAE for combination #3 were less than those for combination #2. The

MLR model with PM2.5, the single additive term with RH, and its multiplicative interaction term with PM2.5 yielded similar

RMSE and MAE to the MLR model using PM2.5 and two meteorological variables, such as T and RH, as demonstrated by325

the results of combinations #4 and #5. When we considered two meteorological variables and incorporated four multiplicative

interaction terms, such as PM2.5×T, PM2.5×RH, and T×RH, the MLR model resulted in the lowest error with an RMSE of

4.151 µg/m3 and an MAE of 3.023 µg/m3, compared to all combinations generated from PM2.5, T, RH, and their multiplicative

terms.

The MLR model of combination #10 with PM2.5 and NO2 had an RMSE of 4.424 µg/m3, which was lower than that330

of the MLR model with only PM2.5, whose RMSE was 4.513 µg/m3, but larger than that of combination #2 with a single

environmental variable and an RMSE of 4.305 µg/m3. This implies that the addition of a single multiplicative term in that

model has no performance enhancement. However, when the additive term T is incorporated into an MLR model with PM2.5

and NO2, an RMSE of 3.997 µg/m3 can be achieved, which is lower than the values of all combination cases, not including

NO2, i.e., combinations #1 to #9. Coefficients of PM2.5, T, and NO2 in the MLR model, including T and NO2, were around335

0.446, 0.110, and 0.112, respectively. The temperature had more impact on error than relative humidity when considering NO2.

Considering both temperature and relative humidity together with NO2 may cause a non-zero correlation of relative humidity

with other factors due to a p-value of 0.083. When some multiplicative terms were additionally integrated into T, RH, and NO2,

the MLR calibration models passed a p-value test. The model based on combination #18 with four additive terms, i.e., PM2.5,

T, RH, and NO2, and multiplicative interaction terms, including PM2.5×RH and T×RH, achieved the lowest RMSE of 3.912340

µg/m3. Considering multiplicative terms with T and RH had little effect on calibration performance as shown in the results of

combinations #15, #19, and #20. From these results, we conclude that considering NO2 together with meteorological variables

and their multiplicative terms or a single variable, such as temperature, can improve the calibration performance of PA-II units.

11



3.1.2 RF-based calibration model

This study validated performance of RF-based calibration for PA-II units with 95 combinations of predictor variables mentioned345

in the previous subsection. An RF was implemented using the scikit-learn package in Python. An RF has several hyperparam-

eters, such as n_estimators, max_depth, min_samples_leaf, and max_features, that need to be set for the best performance

over each combination of features. For this study, the hyperparameters were tuned with a random search method by 5-fold

cross-validation based on the training set. For a random search, the number of trees (n_estimators) was set to 10, 20, 50, 100,

200, and 400. The range of max_depth was set to 2, 4, 6, 8, 10, 16, and None. The range of min_samples_leaf was set to 1, 2,350

3, 4, and 5. The range of min_samples_split was set to 2, 3, 5, 7, and 10. The range of max_features was set to None.

We selected 22 combinations according to the above mentioned method. The selected combinations were listed in Table 6.

Table 7 summarizes calibration results, including R2, RMSE, and MAE of test sets for PA-II units using the RF method with

the selected combinations of features.

Like the MLR method, the RF method showed better performance on the training set than on the test set. Some combinations355

had larger RMSE differences than 0.6 µg/m3 between training and test sets, while others have differences smaller than 0.4

µg/m3. We note that some combinations with multiplicative terms showed significant RMSE differences between two datasets,

which might have occurred because of overfitting the training dataset. Nonetheless, the RF models with the other combinations

had lower RMSE than the model using only PM2.5. Considering a single environmental variable together with PM2.5 improved

the calibration performance in terms of values of RMSE and MAE compared to the RF model with only PM2.5. Specifically,360

RH had more significant impact on the performance enhancement of the RF calibration model than T as seen in the results

of combinations #2 and #3. Including the additional multiplicative term of PM2.5×RH had an insignificant effect on RMSE

compared to the RF model with PM2.5 and RH. Both meteorological variables together, i.e., combination #5, yielded lower

RMSE in the training set compared to the RF model with PM2.5 and RH, i.e., combination #3, but similar RMSE in test set. In

contrast to MLR models, more than one multiplicative term, i.e., combinations #6 to #9, bring about insignificant difference in365

RMSE compared to considering a single meteorological variable. When we analyze calibration methods without NO2, the RF

model with PM2.5, T, and RH improved RMSE by 0.117 µg/m3, compared to the best MLR model.

Utilizing NO2 on RF models had different effects on calibration performance, depending on the combinations of predictor

variables. The RF model of combination #10 with the additional NO2 term resulted in an RMSE of 4.434 µg/m3, which was

little improvement compared to combination #1 with only PM2.5 and an RMSE of 4.439 µg/m3. The RF model with PM2.5370

and NO2 had a larger RMSE than the MLR model with the same features, but the difference was not significant, it did not show

enough performance improvement to warrant adding the multiplicative term of PM2.5×NO2 from combination #10. Adding

single or two meteorological variables to RF models of combinations #12 and #16 lead to remarkable performance enhancement

over combination #10, with RH, RMSE decreasing by 0.462 µg/m3. Furthermore, RMSE dropped an additional 0.130 µg/m3

when T was added as an additional feature. The combinations consisting of one or more multiplicative interaction terms resulted375

in either an insignificant improvement or a slight decline in the performance in terms of RMSE and MAE when compared with
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combination #16 consisting of PM2.5, T, RH, and NO2. In other words, there is no need to consider multiplicative interaction

terms when we use the RF model, because there is no outstanding performance improvement.

As with the MLR method, it was shown that including NO2 as a consideration in RF methods can improve calibration

performance. Moreover, by integrating two additional variables, such as T and RH, even better calibration performance can be380

achieved.

The RF method was shown to have a better performance than the MLR method when NO2 was not considered. From the

viewpoint of RMSE, the best performance from MLR and RF methods was 4.151 µg/m3 and 4.014 µg/m3, respectively.

However, when we consider NO2, the best MLR model is not significantly different from the best RF model. For instance,

the RMSE values from the best MLR and RF models were 3.912 µg/m3 and 3.840 µg/m3, respectively. Their corresponding385

R2 values differ slightly, since their gap is only 0.008. Nonetheless, the MAE of 2.777 µg/m3 achieved from the best MLR

is lower than that achieved by the best RF, which is 2.831 µg/m3. From these results, we conclude that better calibration can

be obtained by considering NO2 additionally. Furthermore, when NO2 is considered, the MLR model can enhance calibration

performance without the need for an RF model.

3.2 Effect of distant NO2 on calibration performance390

In the previous subsections, it was demonstrated that including NO2 as a consideration can effectively improve the calibration

performance of PA-II units. However, it is not always feasible to have an NO2 instrument with high accuracy collocated with a

low-cost PM sensor. Instead, an alternative approach is to collocate a low-cost NO2 sensor with a PA-II unit, but this approach

is hindered by the unreliability of NO2 sensors. To address this issue, we investigated the usefulness of using data from distant

NO2 instruments installed with PA-II units for the calibration algorithm.395

We selected two monitoring sites that measure NO2 near the Rubidoux site. Two monitoring sites identified were 06-065-

8005 and 06-071-0027. The distances between the two monitoring sites and the Rubidoux site are 7.05 km and 18.87 km,

respectively. The correlations of NO2 measurements obtained from the Rubidoux site with that of 06-065-8005 and 06-071-

0027 were 0.895 and 0.621, respectively. The site 06-065-8005 had NO2 measurements that are much more highly correlated

with the Rubidoux site compared with those from the site 06-071-0027. This result can occur when the distance from the400

Rubidoux site to the site 06-065-8005 is shorter than it is to the site 06-071-0027.

To evaluate the usefulness of distant NO2 measurements on the calibration of a low-cost PM sensor, we used NO2 data

measured from monitoring sites near the PA-II 7 unit as a test dataset, rather than data from the collocated Rubidoux site.

When we trained calibration models with the measurements from the PA-II 7 unit over 2018, we used highly accurate NO2

concentrations measured by FEM instruments at the Rubidoux site. Subsequently, to verify the trained calibration models,405

we utilized a separate test dataset featuring distant NO2 measurements taken by FEM instruments at sites 06-065-8005 and

06-071-0027. We considered this scenario to evaluate our proposed calibration models, previously trained with collocated NO2

concentrations and distant NO2 concentrations, when collocated NO2 measurements cannot be collected.

Table 8 shows calibration performance using MLR and RF methods with NO2 collected from the air quality monitoring

sites near the PA-II unit. In the case of MLR methods used with 06-065-8005 data, the difference in RMSE between NO2 data410
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obtained from a collocated NO2 instrument, called collocated NO2, and a distant NO2 instrument, called distant NO2, was less

than 0.06 µg/m3 for every selected combination defined in previous two subsections for the MLR and RF methods. All MLR

models using distant NO2, except combinations #10 and #11, yielded lower errors than all MLR models without NO2 as shown

in Table 5. For example, the worst RMSE of the MLR methods using distant NO2 data (except combinations #10 and #11) was

4.018 µg/m3, while the best RMSE without NO2 was 4.151 µg/m3. Like RMSE, other metrics, such as R2 and MAE, also415

showed a calibration performance enhancement for these combinations with distant NO2.

When we used an MLR algorithm with NO2 data, the result of the calibration performance for the monitoring site 06-

071-0027 showed a new aspect from that of 06-065-8005. All MLR methods using distant NO2 data from site 06-071-0027

had a higher RMSE than the MLR algorithm was based on data that did not include NO2 data from the collocated Rubidoux

instrument, which had an RMSE of 4.513 µg/m3 as shown in Table 5. This result can be explained by comparing correlation420

of NO2 measured from the Rubidoux site with measurements from site 06-065-8005 as well as site 06-071-0027. The NO2

correlation between Rubidoux measurements and site 06-065-8005 was 0.895, while the correlation with site 06-071-0027 was

0.621. These results shows that 06-065-8005 data is much more correlated with the Rubidoux site in terms of NO2.

In the case of RF models, the use of the distant NO2 data from site 06-065-8005 increased RMSE compared to using

collocated NO2 data, but not significantly, since the maximum gap of RMSE values for all feature vectors considered was just425

0.060 µg/m3. Similar to the MLR method, all RF models referring to distant NO2 from site 06-065-8005, except combinations

#11, resulted in a better calibration performance than was seen in combination #1 without NO2 which had an RMSE of 4.439

µg/m3 shown in Table 7. Other metrics, such as R2 and MAE, also showed a calibration performance improvement. In the case

of RF models using data from site 06-071-0027, calibration performance for each combination was degraded compared to the

corresponding combination using collocated NO2, which had similar results of the MLR model. As we explained previously,430

the higher the correlation of NO2 measurements from the Rubidoux site with measurements from sites 06-065-8005 and 06-

071-0027, the better the calibration performance of the RF model; that is, all combinations with distant NO2 from 06-065-8005

provide a lower RMSE than those from 06-071-0027. Moreover, when we consider 06-065-8005 having a high correlation of

NO2 with the expensive NO2 instrument collocated with the PA-II 7 unit, the best RMSE for all combinations using the RF

model is slightly lower than that based on the MLR method.435

In the case of 06-065-8005, RF models using distant NO2 resulted in lower, but insignificant, RMSE values, compared to

MLR models using distant NO2. From these results, we draw the conclusion that the use of NO2 collected from distant instru-

ments with a high correlation with a collocated NO2 site of PA-II units can improve the PA-II unit’s calibration performance.

Furthermore, both MLR and RF models can be good calibration models when distant NO2 is considered. This is different from

the conclusion that calibration performance of RF models is better than MLR models (Zimmerman et al., 2018).440

3.3 Applicability of other PA-II units

We evaluated PA-II 8’s calibration performance under the following three cases:
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Case 1: Calibration model is learned with the measurements collected from the PA-II 8 in 2018 and calibration perfor-

mance for the trained model is evaluated using data measured from the PA-II 8 in 2019.

Case 2: This is similar to Case 1, except that the calibration model is trained with the data measured from the PA-II 7 in445

2018.

Case 3: The measurement data from the PA-II 8 with collocated NO2 concentration in 2018 is used as a training dataset,

while the data collected from the PA-II 8 with either collocated NO2 or distant NO2 concentration in 2019 is used as a

test dataset.

In Case 1, we evaluated the calibration model’s performance with a test dataset consisting of measurement data from the PA-450

II 8 in 2019. The calibration model is trained with data collected from the same PA-II 8 in 2018. Table 9 shows the calibration

results of the PA-II 8 using an MLR method under two different cases: with and without NO2. We selected the same feature

vectors as defined in Table 4. We observed that NO2 can enhance calibration performance because all MLR models using NO2,

except combinations #10 and #11, yield lower errors and larger R2 than those without NO2. This observation aligns with the

results shown in Table 5. Additionally, compared to the calibration performance for PA-II 7 shown in Table 5, PA-II 8 shows455

slightly larger RMSE and MAE, but similar R2.

In Case 2, we evaluated the calibration model’s performance using a training dataset collected from PA-II 7 in 2018, and

a test dataset collected from PA-II 8 in 2019. Table 10 shows calibration results for PA-II 8 using the MLR method under

two different conditions, such as with and without NO2. As with the observation in Table 9, NO2 is the key factor enhancing

calibration performance. With the exceptions of #10 and #11, all MLR models using NO2 yield lower errors and larger R2460

than those without NO2. It is important to compare this result with that shown in Table 5, as we used different test datasets. It

could be expected that the much worse performance for all feature combinations listed in Table 10 is achieved than for every

corresponding feature vector in Table 5, since the calibration model considered in Table 10 is tested with the data measured

from the PA-II 8, whereas it is trained with the measurement data collected from the PA-II 7. R2 values of all feature vectors

in Table 10 are similar to those for each corresponding feature vector in Table 5. Unlike R2, we observe larger RMSE and465

MAE when we populate the training dataset with measurements from PA-II 8 rather than PA-II 7. The maximum differences

of RMSE and MAE for each feature vector in Tables 10 and 5 are 0.177 µg/m3 and 0.196 µg/m3, respectively.

The results shown in Table 9 and Table 10 support our conclusion that reliable and consistent PA-II units, which contain two

PMS 5003 sensors with high correlation, demonstrate similar calibration performance. This implies that a proposed calibration

method can be applied to reliable and consistent PA-II units generally.470

Lastly, in Case 3, we evaluated the effect of collocated and distant NO2 on PA-II 8 unit’s calibration performance. Table

11 shows the results of MLR-based calibration model for the PA-II 8 when it is verified with the test data considering either

collocated or distant NO2. As we explained in Section 3.2, we considered two monitoring sites measuring NO2 near the

Rubidoux site. One site (ID 06-065-8005) had NO2 measurements that are much more highly correlated with the Rubidoux

site than those from the other site (ID 06-071-00247). We refer to the NO2 concentrations measured from these two sites as475

"distant NO2". Three columns, describing the values of R2, RMSE, and MAE, of collocated NO2 in Table 11 are exactly the
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same as those of NO2 included (i.e., collocated NO2) in Table 9. In the case of site 06-065-8005 with high correlation with

the Rubidoux site, the consideration of the distant NO2 facilitates improvement of the calibration performance, since all MLR-

based calibration models using distant NO2, except combinations #10 and 11, produce lower errors and larger R2 than those

without NO2. This result is similar to when we consider the collocated NO2. However, we observe that adding distant NO2480

to the test dataset, which is not highly correlated to the NO2 measurement from the reference site, deteriorates the calibration

performance. This is likely because all combinations from #10 to #21 yield lower R2 and greater errors than all combinations

excluding NO2, as shown in Table 9. This result is the same as the observation of the PA-II 7 unit’s calibration results in Table

8.

Hence, these results we draw from Table 11 support the same conclusions we drew from Tables 9 and 10. Reliable and485

consistent PA-II units achieve similar calibration performance, and our proposed calibration model can be applied to these

units generally.

3.4 Effect of training period

We evaluated the effect of the training period on calibration performances. We consider four different training periods (i.e., 3,

6, 9, and 12 months), and each training set is constructed as follows: The training sets all end at the close of 2018. Their start490

points are set in reverse order based on training periods. For example, for 3 months, the training set is from Oct. 2018 to Dec.

2018. Table S4 shows PA-II 7’s calibration results using the MLR method for all four training periods. The 3-month training

period has the worst performance. The 6- and 9- month training periods generated better performances than the 12-month

training period. From a viewpoint of using NO2, NO2 can improve calibration performance in all four cases, compared to

using only temperature and relative humidity. As the length of the training period increases, calibration performance improves.495

3.5 Uncertainty analysis

We performed an uncertainty analysis of the MLR-based calibration model by using a bootstrapping technique on a test

dataset. Table 12 shows statistics of uncertainty analysis for each feature vector and t-values between two feature vectors

whose difference is the existence of NO2. We selected 8 feature vectors with various independent variables to verify whether500

the addition of NO2 affects the performance of our calibration model. The 4 feature vectors we considered are PM2.5, PM2.5, T,

PM2.5, RH, and PM2.5, T, RH. We also added NO2 to create four other feature vectors, PM2.5, NO2, PM2.5, T, NO2, PM2.5, RH,

NO2, and PM2.5, T, RH, NO2. We generated 1,000 test sets using a bootstrapping technique with replacement. We evaluated

mean and standard deviation values of RSME calculated over 1,000 test sets for each feature vector. In addition, we applied a

t-test to verify the effectiveness of adding NO2 to each feature vector. Consideration of NO2 additionally reduces mean values505

of RMSE for all 4 feature vectors. Contrary to mean value, standard deviation of RMSE for every feature vector increases

slightly with the addition of NO2. We evaluated t-value for the mean values of RMSE for two feature vectors, with and without

NO2; for example, the t-value between PM2.5 and PM2.5, NO2. Hence, we can evaluate 4 t-values. The Degree of Freedom

(DoF) is 1,998, so the relevant p-values are much less than 0.00001. Therefore, the difference in the mean RMSE values of

16



the PM2.5–included and PM2.5-excluded groups is significant. From these results, we can conclude that the performance of the510

MLR-based calibration model can be enhanced with consideration of PM2.5 concentrations.

4 Conclusions

The factors, directly affecting the performance of a low-cost PM sensor, including temperature, relative humidity, and particle

composition, have been scrutinized for their impact on sensors’ performance enhancement. Additionally, this study investigated

the potential of NO2, a precursor gas that gives rise to PM2.5 through atmospheric chemical reactions, to improve performance515

of the calibration model. To this end, we used the PurpleAir PA-II unit, which contains two Plantower PMS 5003 sensors, as

a low-cost PM2.5 sensor. The PA-II units need to be typically installed close to reference monitoring sites measuring PM2.5

concentrations and other pollutants, such as NO2, in order to analyze their calibration. We identified a EPA-certified monitoring

instrument whose deployed location is within close proximity to the installed location of 14 PA-II units, which satisfied the

condition for co-location with a reference monitoring site. The monitoring site is located in Rubidoux, CA, USA. A study520

period of two years, i.e., from Jan. 2018 to Dec. 2019, was selected to include all seasons. Two units among 14 PA-II units

were selected based on the availability of 23 months or more of measurement data from each PA-II unit, as well as its low

intra-model variability through correlation analysis.

One of the two selected PA-II units was compared to FRM and BAM-1020 instruments based on daily and hourly PM2.5

measurements. A comparison of the BAM-1020 instrument with the FRM instrument was also conducted on a daily PM2.5525

measurement basis to evaluate the performance of the BAM-1020. The BAM-1020 instrument had a slope of 0.923, an intercept

of 0.741, and a R2 of 0.896 against the FRM instrument, which implies it provides acceptable performance as a reference mon-

itor for the calibration of low-cost PM2.5 sensors. For a PA-II unit, the Pearson correlation coefficient against the BAM-1020

instrument was shown to be 0.928 on an hourly basis. The per-month analysis was conducted on hourly PM2.5 measurements

of the PA-II unit against the BAM-1020. Results showed the PA-II unit has a good correlation during the winter season, i.e.,530

Nov., Dec., and Jan., with an R2 value between 0.819 and 0.906, but a lower correlation during other months. The performance

of the PA-II units was not notably affected by temperature or relative humidity (RH) during the winter months. Temperature

and/or RH were found to improve R2 during June and July 2018, but this effect in 2019 was not the same as in 2018.

A per-month analysis showed that NO2 is a key factor that increased the value of R2 during Sep. 2018, and Aug. and

Sep. 2019. The effect of the addition of NO2 for calibration of PA-II units was much larger when RH and temperature were535

considered together. In particular, NO2 was shown to have more effect during months when the performance of PA-II units is

moderate. It is expected that NO2 can be used to improve the performance of low-cost PM2.5 sensors, but the effect of NO2

should be further investigated for various ambient conditions.

Two methods for calibrating PA-II units, the Multiple Linear Regression (MLR) and Random Forest (RF), were evaluated

on a test set of one year of data. We considered additive and multiplicative terms in two calibration methods. The RF method540

yielded better performance than the MLR method because it provides a larger R2 as well as smaller RMSE, and MAE when

NO2, called collocated NO2, measured from the collocated monitoring site was not used for calibration. However, when
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collocated NO2 is considered, MLR models showed similar performance to RF models. When several features, such as PM2.5,

temperature, RH, NO2, and their multiplicative terms, are considered together to calibrate PM2.5 measurement data using

the MLR method, the calibration performance was shown to increase remarkably compared to cases where only PM2.5 are545

considered. For instance, the RMSE value decreased from 4.513 µg/m3 to 3.912 µg/m3. In RF models with collocated NO2,

inclusion of temperature and RH improved R2, RMSE, and MAE by an increase of 0.018, a decrease of 0.172 µg/m3, and 0.119

µg/m3, respectively, compared to the best RF models without NO2. Contrary to the MLR model, multiplicative interaction

terms do not affect calibration performance with a certain direction, compared to those without NO2; some combinations of

features provide slight enhancement, while the others cause worse performance.550

We showed that NO2 data could improve calibration performance in both MLR and RF models. The NO2 data we referred

to was measured from an expensive reference monitor and is very reliable. However, it is not always feasible to have an NO2

instrument with high accuracy collocated with a low-cost PM sensor. An alternatives is to use low-cost NO2 sensors. However,

their performance remains questionable. To solve this issue, we investigated the effectiveness of using NO2 measurements

collected from distant reliable NO2 monitoring sites, called distant NO2, whose location is not that far from a low-cost PM2.5555

sensor. It was demonstrated that distant NO2 is effective for calibration models based on the MLR and RF algorithms when

distant NO2 has a high correlation with collocated NO2. Furthermore, we showed that MLR method can achieve a similar

calibration performance to the RF method when reliable distant NO2 is considered.

We performed an evaluation of different PA-II units and found that incorporating NO2 significantly enhanced calibration

performance across different PA-II units. This consistency held even when using models trained with different sensors at the560

same location, reinforcing the reliability of generating consistent data across these units. Additionally, the uncertainty analysis

underscored a substantial performance boost by including NO2 in the MLR method, showing a marked difference compared

to its omission.
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Table 1. Information about 14 PA-II units, such as their ID, location (latitude and longitude), sensor name, start time of measurement, end

time of measurement, and non-operating months.

ID
Latitude Longitude Sensor Name Start Time of End Time of Non-Operating

Measurement Measurement Months

1866 33.999978 -117.41676 RIVR_Co-loc1 7/10/17 4/27/20 Sep., Oct., Nov., and Dec. 2018

1854 33.999503 -117.41602 RIVR_Co-loc2 7/10/17 4/27/20

2346 33.999978 -117.41676 RIVR_Co-loc3 7/31/17 4/27/20

2325 33.999978 -117.41676 RIVR_Co-loc4 7/31/17 4/27/20 Sep., Oct., Nov., and Dec. 2018

2167 33.999978 -117.41676 RIVR_Co-loc5 7/17/17 4/27/20

2155 33.999978 -117.41676 RIVR_Co-loc6 7/17/17 4/27/20 May, 2018

2612 33.999515 -117.41595 RIVR_Co-loc7 8/7/17 4/27/20

2758 33.999978 -117.41676 RIVR_Co-loc8 8/11/17 4/27/20 Sep. 2018

3537 33.999381 -117.41601 RIVR_Co-loc9 9/20/17 4/27/20 May, Sep., Oct., Nov., and Dec. 2018

4748 33.999516 -117.41594 RIVR_Co-loc10 11/22/17 4/27/20 May, Aug., Sep., Oct., Nov., and Dec. 2018

and Jan 2019

4731 33.999504 -117.41593 RIVR_Co-loc11 11/22/17 3/1/19 Jan., Feb., Mar., Sep., Oct., Nov., and Dec. 2018

5280 33.99946 -117.41594 RIVR_Co-loc12 12/12/17 4/27/20 May, Sep., Oct., Nov., and Dec. 2018

5284 33.999451 -117.41591 RIVR_Co-loc13 12/12/17 4/27/20 May, Sep., Oct., Nov., and Dec. 2018

6806 33.999583 -117.41621 RIVR_Co-loc14 1/30/18 4/27/20 Apr., Sep., Oct., and Nov. 2018

6912 33.999482 -117.41627 RIVR_Co-loc15 1/31/18 4/27/20 Apr., Sep., Oct., and Nov. 2018

9226 33.999389 -117.41633 RIVR_Co-loc16 3/24/18 4/27/20 Apr., Sep., Oct., Nov., and Dec. 2018

9358 33.999319 -117.41638 RIVR_Co-loc17 3/25/18 4/27/20 Apr., Sep., Oct., Nov., and Dec. 2018

Table 2. R2, RMSE, and MAE of the PA-II unit against the BAM-1020 based on the hourly PM2.5 measurement data for each month.

Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

R2 0.936 0.799 0.845 0.759 0.659 0.695 0.359 0.816 0.591 0.784 0.829 0.905

RMSE 4.201 3.735 2.932 3.938 3.477 4.097 5.615 3.204 4.550 3.650 3.832 3.765

MAE 3.171 2.721 2.196 3.098 2.716 3.267 3.597 2.424 3.358 2.844 2.913 2.743

Intercept 3.898 4.229 2.898 7.090 4.694 7.925 6.721 4.692 6.357 2.682 3.269 1.445

Slope 0.502 0.475 0.525 0.446 0.486 0.475 0.434 0.459 0.382 0.420 0.409 0.472

Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19

R2 0.884 0.750 0.735 0.618 0.801 0.730 0.893 0.405 0.441 0.523 0.880 0.813

RMSE 3.326 2.940 2.753 3.703 3.146 3.403 4.127 4.220 3.292 4.768 4.474 3.866

MAE 2.485 2.216 2.124 2.892 2.349 2.700 3.082 2.564 2.558 3.360 3.238 2.934

Intercept 1.961 2.190 1.881 4.065 2.525 3.225 3.070 5.649 5.312 5.088 2.976 1.165

Slope 0.397 0.354 0.427 0.385 0.418 0.383 0.575 0.428 0.511 0.483 0.497 0.572
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Table 3. A summary statistics of daily and hourly PM2.5 measured from an FRM, BAM-1020, and PA-II 7 unit

Daily PM2.5 Hourly PM2.5

FRM BAM-1020 PA-II BAM-1020 PA-II

Min (µg/m3) 1.2 0 0.199 0 0.019

Max (µg/m3) 66.3 68.3 129.069 159 263.062

Mean (µg/m3) 11.69 12.13 18.247 12.171 18.367

Standard deviation (µg/m3) 6.88 9.16 13.854 9.23 17.61
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Table 4. A list of selected feature vectors in MLR methods

Feature

Vector PM2.5 T RH NO2 PM2.5×T PM2.5×RH PM2.5×NO2 T×RH T×NO2 RH×NO2 PM2.5×T×RH

1 X

2 X X

3 X X

4 X X X

5 X X X

6 X X X X

7 X X X X X

8 X X X X X X

9 X X X X X X X

10 X X

11 X X X

12 X X X

13 X X X X

14 X X X X X

15 X X X X X X

16 X X X X

17 X X X X X

18 X X X X X X

19 X X X X X X X

20 X X X X X X X X

21 X X X X X X X X X
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Table 5. Calibration result (R2, RMSE (µg/m3), and MAE (µg/m3)) of hourly PM2.5 concentrations using MLR for the PA-II 7 unit based

on the selected combinations.

NO2 not included NO2 included

Feature

Vector

Training Set Test Set
Feature

Vector

Training Set Test Set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

1 0.803 4.272 3.279 0.731 4.513 3.418 10 0.806 4.241 3.259 0.741 4.424 3.329

2 0.814 4.150 3.185 0.755 4.305 3.194 11 0.806 4.236 3.255 0.741 4.423 3.326

3 0.813 4.160 3.203 0.760 4.263 3.165 12 0.826 4.010 3.075 0.789 3.997 2.871

4 0.820 4.087 3.109 0.763 4.232 3.132 13 0.827 3.997 3.071 0.789 3.993 2.857

5 0.816 4.125 3.174 0.763 4.234 3.129 14 0.829 3.977 3.042 0.792 3.962 2.843

6 0.821 4.069 3.093 0.765 4.211 3.100 15 0.829 3.975 3.041 0.793 3.954 2.838

7 0.822 4.054 3.098 0.772 4.154 3.043 16 0.826 4.008 3.077 0.790 3.986 2.866

8 0.824 4.040 3.086 0.772 4.151 3.023 17 0.829 3.979 3.028 0.789 3.990 2.863

9 0.825 4.022 3.075 0.771 4.161 3.012 18 0.831 3.958 3.029 0.798 3.912 2.793

19 0.831 3.950 3.026 0.796 3.925 2.790

20 0.832 3.945 3.025 0.797 3.920 2.782

21 0.832 3.941 3.019 0.797 3.913 2.777
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Table 6. A list of selected feature vectors in RF methods

Feature

Vector PM2.5 T RH NO2 PM2.5×T PM2.5×RH PM2.5×NO2 T×RH T×NO2 RH×NO2 PM2.5×T×RH

1 X

2 X X

3 X X

4 X X X

5 X X X

6 X X X X

7 X X X X X

8 X X X X X X

9 X X X X X X X

10 X X

11 X X X

12 X X X

13 X X X X

14 X X X X X

15 X X X X X X

16 X X X X

17 X X X X X

18 X X X X X X

19 X X X X X X X

20 X X X X X X X X

21 X X X X X X X X X

22 X X X X X X X X X X
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Table 7. Calibration result (R2, RMSE (µg/m3), and MAE (µg/m3)) of hourly PM2.5 concentrations using RF for for the PA-II 7 unit based

on the selected combinations.

NO2 not included NO2 included

Feature

Vector

Training Set Test Set
Feature

Vector

Training Set Test Set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

1 0.826 4.014 3.072 0.739 4.439 3.318 10 0.820 4.080 3.116 0.740 4.434 3.300

2 0.842 3.830 2.933 0.764 4.223 3.156 11 0.821 4.074 3.109 0.738 4.451 3.305

3 0.857 3.632 2.785 0.786 4.026 2.951 12 0.861 3.588 2.748 0.791 3.972 2.925

4 0.875 3.398 2.611 0.786 4.024 2.957 13 0.885 3.269 2.522 0.794 3.945 2.861

5 0.883 3.290 2.526 0.785 4.034 2.970 14 0.885 3.262 2.519 0.797 3.918 2.887

6 0.862 3.568 2.740 0.787 4.014 2.955 15 0.886 3.250 2.505 0.793 3.957 2.875

7 0.884 3.276 2.515 0.779 4.092 2.964 16 0.893 3.154 2.427 0.805 3.842 2.836

8 0.861 3.584 2.747 0.782 4.059 2.956 17 0.920 2.720 2.092 0.797 3.918 2.840

9 0.905 2.968 2.257 0.785 4.029 2.853 18 0.920 2.722 2.095 0.805 3.840 2.831

19 0.921 2.706 2.080 0.794 3.942 2.860

20 0.921 2.699 2.073 0.795 3.936 2.857

21 0.894 3.130 2.401 0.794 3.946 2.856

22 0.915 2.800 2.121 0.798 3.912 2.850
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Table 8. Calibration result (R2, RMSE (µg/m3), and MAE (µg/m3)) of hourly PM2.5 concentrations using MLR and RF models for the

PA-II 7 unit based on the selected combinations additionally with distant NO2.

MLR RF

Site

ID

Feature

Vector

collocated NO2 Distant NO2 collocated NO2 Distant NO2

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

0

10 0.741 4.424 3.329 0.742 4.417 3.320 0.740 4.434 3.300 0.739 4.442 3.304

6

11 0.741 4.423 3.326 0.743 4.411 3.311 0.738 4.451 3.305 0.738 4.454 3.306

-

12 0.789 3.997 2.871 0.786 4.018 2.879 0.791 3.972 2.925 0.790 3.983 2.934

0

13 0.789 3.993 2.857 0.787 4.011 2.861 0.794 3.945 2.861 0.789 3.994 2.902

6

14 0.792 3.962 2.843 0.791 3.978 2.842 0.797 3.918 2.887 0.791 3.970 2.923

5

15 0.793 3.954 2.838 0.791 3.978 2.844 0.793 3.957 2.875 0.787 4.017 2.917

-

16 0.790 3.986 2.866 0.787 4.009 2.875 0.805 3.842 2.836 0.802 3.873 2.854

8

17 0.789 3.990 2.863 0.787 4.011 2.870 0.797 3.918 2.840 0.793 3.951 2.860

0

18 0.798 3.912 2.793 0.795 3.936 2.803 0.805 3.840 2.831 0.802 3.870 2.848

0

19 0.796 3.925 2.790 0.794 3.950 2.800 0.794 3.942 2.860 0.790 3.983 2.884

5

20 0.797 3.920 2.782 0.795 3.933 2.780 0.795 3.936 2.857 0.791 3.978 2.877

21 0.797 3.913 2.777 0.796 3.931 2.777 0.794 3.946 2.856 0.790 3.986 2.879

0.798 3.912 2.850 0.794 3.946 2.865

0

10 0.741 4.424 3.329 0.715 4.645 3.563 0.740 4.434 3.300 0.734 4.488 3.345

6

11 0.741 4.423 3.326 0.715 4.641 3.549 0.738 4.451 3.305 0.729 4.525 3.367

-

12 0.789 3.997 2.871 0.694 4.807 3.739 0.791 3.972 2.925 0.781 4.069 2.994

0

13 0.789 3.993 2.857 0.695 4.799 3.706 0.794 3.945 2.861 0.692 4.826 3.624

7

14 0.792 3.962 2.843 0.696 4.797 3.673 0.797 3.918 2.887 0.693 4.815 3.646

1

15 0.793 3.954 2.838 0.682 4.906 3.778 0.793 3.957 2.875 0.689 4.850 3.648

-

16 0.790 3.986 2.866 0.701 4.751 3.681 0.805 3.842 2.836 0.761 4.247 3.170

0

17 0.789 3.990 2.863 0.714 4.651 3.576 0.797 3.918 2.840 0.733 4.494 3.325

0

18 0.798 3.912 2.793 0.720 4.602 3.531 0.805 3.840 2.831 0.746 4.381 3.289

2

19 0.796 3.925 2.790 0.721 4.593 3.516 0.794 3.942 2.860 0.722 4.586 3.423

7

20 0.797 3.920 2.782 0.721 4.595 3.516 0.795 3.936 2.857 0.721 4.592 3.422

21 0.797 3.913 2.777 0.702 4.746 3.669 0.794 3.946 2.856 0.744 4.401 3.256

0.798 3.912 2.850 0.727 4.542 3.386
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Table 9. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using MLR-based calibration model learned

with training data collected from the PA-II 8 in 2018.

NO2 not included NO2 included

Feature

Vector

Training Set Test Set
Feature

Vector

Training Set Test Set

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

1 0.786 4.312 3.304 0.731 4.559 3.468 10 0.788 4.292 3.295 0.741 4.468 3.381

2 0.798 4.196 3.211 0.749 4.397 3.299 11 0.789 4.289 3.293 0.742 4.459 3.375

3 0.797 4.208 3.231 0.760 4.307 3.223 12 0.809 4.079 3.127 0.783 4.087 2.982

4 0.803 4.142 3.147 0.763 4.277 3.191 13 0.810 4.070 3.123 0.785 4.072 2.966

5 0.800 4.173 3.201 0.759 4.311 3.219 14 0.811 4.051 3.099 0.788 4.042 2.951

6 0.805 4.123 3.127 0.762 4.281 3.185 15 0.811 4.050 3.099 0.788 4.040 2.950

7 0.806 4.111 3.134 0.767 4.242 3.143 16 0.809 4.076 3.128 0.785 4.071 2.970

8 0.807 4.099 3.127 0.768 4.227 3.121 17 0.811 4.050 3.083 0.785 4.071 2.967

9 0.808 4.091 3.121 0.770 4.214 3.128 18 0.813 4.033 3.087 0.791 4.015 2.915

19 0.814 4.028 3.084 0.791 4.019 2.911

20 0.814 4.023 3.083 0.792 4.006 2.895

21 0.814 4.021 3.081 0.792 4.002 2.892

Table 10. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using MLR-based calibration model learned

with training data collected from the PA-II 7 in 2018.

NO2 not included NO2 included

Feature

Vector

Test Set
Feature

Vector

Test Set

R2 RMSE MAE R2 RMSE MAE

1 0.737 4.638 3.546 10 0.747 4.549 3.458

2 0.757 4.459 3.364 11 0.748 4.538 3.446

3 0.763 4.400 3.322 12 0.788 4.162 3.054

4 0.765 4.383 3.293 13 0.790 4.145 3.031

5 0.765 4.388 3.301 14 0.794 4.104 3.003

6 0.766 4.373 3.275 15 0.795 4.097 3.000

7 0.772 4.323 3.222 16 0.789 4.151 3.048

8 0.772 4.318 3.208 17 0.789 4.158 3.050

9 0.774 4.301 3.208 18 0.796 4.089 2.985

19 0.795 4.100 2.984

20 0.795 4.095 2.974

21 0.796 4.090 2.970
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Table 11. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using MLR-based calibration model learned

with training data collected from the PA-II 8 in 2018 (Site ID indicates the monitoring sites for distant NO2).

MLR

Site

ID

Feature

Vector

collocated NO2 Distant NO2

R2 RMSE MAE R2 RMSE MAE

0

10 0.741 4.468 3.381 0.742 4.458 3.371

6

11 0.742 4.459 3.375 0.744 4.442 3.359

-

12 0.783 4.087 2.982 0.783 4.089 2.976

0

13 0.785 4.072 2.966 0.786 4.066 2.951

6

14 0.788 4.042 2.951 0.789 4.031 2.927

5

15 0.788 4.040 2.950 0.789 4.033 2.930

-

16 0.785 4.071 2.970 0.785 4.075 2.966

8

17 0.785 4.071 2.967 0.785 4.076 2.960

0

18 0.791 4.015 2.915 0.790 4.022 2.911

0

19 0.791 4.019 2.911 0.790 4.026 2.908

5

20 0.792 4.006 2.895 0.793 3.998 2.877

21 0.792 4.002 2.892 0.793 3.995 2.875

0

10 0.741 4.468 3.381 0.716 4.681 3.600

6

11 0.742 4.459 3.375 0.716 4.680 3.591

-

12 0.783 4.087 2.982 0.684 4.937 3.887

0

13 0.785 4.072 2.966 0.684 4.937 3.864

7

14 0.788 4.042 2.951 0.680 4.965 3.850

1

15 0.788 4.040 2.950 0.672 5.030 3.914

-

16 0.785 4.071 2.970 0.693 4.870 3.816

0

17 0.785 4.071 2.967 0.706 4.764 3.704

0

18 0.791 4.015 2.915 0.710 4.733 3.676

2

19 0.791 4.019 2.911 0.713 4.705 3.646

7

20 0.792 4.006 2.895 0.713 4.709 3.643

21 0.792 4.002 2.892 0.699 4.818 3.756
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Table 12. Statistics of uncertainty analysis to selected feature vectors and t-values.

Feature

Vector

Mean of

RMSE

Std. Dev.

of RMSE

Feature

Vector

Mean of

RMSE

Std. Dev.

of RMSE
t-value DoF

{PM2.5} 4.5095 0.1026 {PM2.5, NO2} 4.4202 0.1037 19.3580 1,998

{PM2.5, T} 4.3084 0.1000 {PM2.5, T, NO2} 3.9979 0.1173 63.7008 1,998

{PM2.5, RH} 4.2598 0.0995 {PM2.5, RH, NO2 } 4.1548 0.1074 22.6792 1,998

{PM2.5, T, RH} 4.2387 0.1050 {PM2.5, T, RH, NO2} 3.9865 0.1156 51,0686 1,998

31



Figure 1. Correlation among all PMS 5003 sensors of the selected units PA-II 2, 3, 5, 6, 7, and 8. The left and right of each number on the

x-axis represent PMS A and B sensors for its corresponding PA-II unit, respectively.
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Figure 2. Scatter plot for daily PM2.5 comparison of BAM-1020 (Non-FEM) instrument with the FRM instrument.
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Figure 3. Hourly PM2.5 concentrations measured from BAM-1020 (Non-FEM) and PA-II 7, and hourly temperature and relative humidity

measured from PA-II 7 from Dec. 2018 to Feb. 2019.
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Figure 4. R2 and RMSE using MLR method for the PA-II unit with the BAM-1020 for the selected months based on the following feature

vectors; 1:(PM2.5), 2:(PM2.5, T), 3:(PM2.5, RH), 4:(PM2.5, NO2), 5:(PM2.5, T, RH), and 6:(PM2.5, T, NO2).
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