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Referee #1  

The authors appreciate Referee #1’s kind and valuable comments. 

 

[Major Comments] 

1. Section 3.1: 14 sensors were originally identified in this study, however only 5 were selected 

based on their months of valid measurements data. Of these 5, 2 were explicitly eliminated 

based on correlation analysis between the sensors' and their A and B units. Based on Figure 1 

it seems like both PA-II 7 and 8 would be suitable for this study while PA-II 2, 3, 5, & 6 were 

not (Sensor 5 included in Figure 1 but not on line 188). Your final results will be more 

applicable if you are able to demonstrate improvements in more than 1 sensor, even if the study 

period is less than 2 years. 

(Response) 

We showed a series of results for PA-II 7 in our original manuscript. As the referee suggested, 

we evaluated PA-II 8’s calibration performance under the following three cases: 

 

Case 1: Calibration model is learned with the measurements collected from PA-II 8 in 2018 

and calibration performance for the trained model is evaluated using data measured from PA-

II 8 in 2019. 

Case 2: This is similar to Case 1, except that the calibration model is trained with data 

measured from PA-II 7 in 2018.   

Case 3: The measurement data from PA-II 8 with collocated NO2 concentration in 2018 is 

used as a training dataset, while the data collected from PA-II 8 with either collocated NO2 or 

distant NO2 concentration in 2019 is used as a test dataset. 

 

In Case 1, we evaluated the calibration model’s performance with a test dataset consisting 

of measurement data from PA-II 8 in 2019. The calibration model is trained with data collected 

from the same PA-II 8 in 2018. Table R1 shows the calibration results of the PA-II 8 using a 

multiple linear regression (MLR) method under two different conditions: with and without NO2. 

We selected the same feature vectors as defined in the original manuscript. We observed that 

NO2 can enhance calibration performance because all MLR models using NO2, except 



combinations #10 and #11, yield lower errors and larger R2 than those without NO2. This 

observation aligns with the results shown in Table 3 of the original manuscript.  

Additionally, compared to the calibration performance for PA-II 7 shown in Table 3 of the 

original manuscript, PA-II 8 shows slightly larger RMSE and MAE, but similar R2.  

 
Table R1. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using 

MLR-based calibration model learned with training data collected from the PA-II 8 in 2018.  

NO2 not included NO2 included (i.e., collocated NO2) 
Feature 
Vector R2 RMSE MAE Feature 

Vector R2 RMSE MAE 
1 0.731 4.559 3.468 10 0.741 4.468 3.381 
2 0.749 4.397 3.299 11 0.742 4.459 3.375 
3 0.760 4.307 3.223 12 0.783 4.087 2.982 
4 0.763 4.277 3.191 13 0.785 4.072 2.966 
5 0.759 4.311 3.219 14 0.788 4.042 2.951 
6 0.762 4.281 3.185 15 0.788 4.040 2.950 
7 0.767 4.242 3.143 16 0.785 4.071 2.970 
8 0.768 4.227 3.121 17 0.785 4.071 2.967 
9 0.770 4.214 3.128 18 0.791 4.015 2.915 
    19 0.791 4.019 2.911 
    20 0.792 4.006 2.895 
    21 0.792 4.002 2.892 

 

In Case 2, we evaluated the calibration model’s performance using a training dataset 

collected from PA-II 7 in 2018, and a test dataset collected from PA-II 8 in 2019. Table R2 

shows calibration results for PA-II 8 using the MLR method under two different conditions, 

such as with and without NO2. As with the observation in Table R1, NO2 is the key factor 

enhancing calibration performance. With the exceptions of #10 and 11, all MLR models using 

NO2 yield lower errors and larger R2 than those without NO2. It is important to compare this 

result with that shown in Table 3 of the original manuscript, as we used different test datasets. 

It could be expected that the much worse performance for all feature combinations listed in 

Table R2 is achieved than for every corresponding feature vector in Table 3 of original 

manuscript, since the calibration model considered in Table R2 is tested with the data measured 

from the PA-II 8, whereas it is trained with the measurement data collected from the PA-II 7. 

R2 values of all feature vectors in Table 10 are similar to those for each corresponding feature 

vector in Table 5. Unlike R2, we observe larger RMSE and MAE when we populate the training 

dataset with measurements from PA-II 8 rather than PA-II 7. The maximum differences of 

RMSE and MAE for each feature vector in Tables 10 and 5 are 0.177 μg/m3 and 0.196 μg/m3, 

respectively. 



The results shown in Tables R1 and R2 support our conclusion that reliable and consistent 

PA-II units, which contain two PMS 5003 sensors with high correlation, demonstrate similar 

calibration performance. This implies that a proposed calibration method can be applied to 

reliable and consistent PA-II units generally. 

  
Table R2. Calibration results of hourly PM2.5 concentrations measured from PA-II 8 in 2019 using MLR-

based calibration model learned with training data collected from PA-II 7 in 2018. 

NO2 not included NO2 included (i.e., collocated NO2) 
Feature 
Vector R2 RMSE MAE Feature 

Vector R2 RMSE MAE 

1 0.737 4.638 3.546 10 0.747 4.549 3.458 
2 0.757 4.459 3.364 11 0.748 4.538 3.446 
3 0.763 4.400 3.322 12 0.788 4.162 3.054 
4 0.765 4.383 3.293 13 0.790 4.145 3.031 
5 0.765 4.388 3.301 14 0.794 4.104 3.003 
6 0.766 4.373 3.275 15 0.795 4.097 3.000 
7 0.772 4.323 3.222 16 0.789 4.151 3.048 
8 0.772 4.318 3.208 17 0.789 4.158 3.050 
9 0.774 4.301 3.208 18 0.796 4.089 2.985 
    19 0.795 4.100 2.984 
    20 0.795 4.095 2.974 
    21 0.796 4.090 2.970 

 
Lastly, in Case 3, we evaluated the effect of collocated and distant NO2 on the PA-II 8 unit’s 

calibration performance. Table R3 shows the results of MLR-based calibration model for the 

PA-II 8 when it is verified with the test data considering either collocated or distant NO2. As 

we explained in the original manuscript, we considered two monitoring sites measuring NO2 

near the Rubidoux site. One site (ID 06-065-8005) had NO2 measurements that were much 

more highly correlated with the Rubidoux site than those from the other site (ID 06-071-00247). 

We refer to the NO2 concentrations measured from these two sites as “distant NO2.” Three 

columns, describing the values of R2, RMSE, and MAE, of collocated NO2 in Table R3 are 

exactly the same as those of NO2 included (i.e., collocated NO2) in Table R1. In the case of site 

06-065-8005 with high correlation to the Rubidoux site, the consideration of the distant NO2 

facilitates improvement of the calibration performance, since all MLR-based calibration 

models using distant NO2, except combinations #10 and 11, produce lower errors and higher 

R2 than those without NO2. This result is similar to when we consider the collocated NO2. 

However, we observe that adding distant NO2 to the test dataset, which is not highly correlated 

to the NO2 measurement from the reference site, deteriorates the calibration performance. This 



is likely because all combinations from #10 to 21 yield lower R2 and greater errors than all 

combinations excluding NO2, as shown in Table R1. This result is the same as our observation 

of the PA-II 7 unit’s calibration results in Table 5 of the original manuscript.  

Hence, these results we draw from Table R3 support the same conclusions we drew from 

Tables R1 and R2. Reliable and consistent PA-II units achieve similar calibration performance, 

and our proposed calibration model can be applied to these units generally.  

 
Table R3. Calibration results of hourly PM2.5 concentrations taken from PA-II 8 in 2019 using an MLR-

based calibration model learned with data collected from PA-II 8 in 2018 (Site ID indicates the monitoring 

sites for distant NO2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 MLR 
Site  
ID 

Feature 
Vector 

Collocated NO2 Distant NO2 
R2 RMSE MAE R2 RMSE MAE 

6 
- 
0 
6 
5 
- 
8 
0 
0 
5 

10 0.741 4.468 3.381 0.742 4.458 3.371 
11 0.742 4.459 3.375 0.744 4.442 3.359 
12 0.783 4.087 2.982 0.783 4.089 2.976 
13 0.785 4.072 2.966 0.786 4.066 2.951 
14 0.788 4.042 2.951 0.789 4.031 2.927 
15 0.788 4.040 2.950 0.789 4.033 2.930 
16 0.785 4.071 2.970 0.785 4.075 2.966 
17 0.785 4.071 2.967 0.785 4.076 2.960 
18 0.791 4.015 2.915 0.790 4.022 2.911 
19 0.791 4.019 2.911 0.790 4.026 2.908 
20 0.792 4.006 2.895 0.793 3.998 2.877 
21 0.792 4.002 2.892 0.793 3.995 2.875 

        
6 
- 
0 
7 
1 
- 
0 
0 
2 
7 

10 0.741 4.468 3.381 0.716 4.681 3.600 
11 0.742 4.459 3.375 0.716 4.680 3.591 
12 0.783 4.087 2.982 0.684 4.937 3.887 
13 0.785 4.072 2.966 0.684 4.937 3.864 
14 0.788 4.042 2.951 0.680 4.965 3.850 
15 0.788 4.040 2.950 0.672 5.030 3.914 
16 0.785 4.071 2.970 0.693 4.870 3.816 
17 0.785 4.071 2.967 0.706 4.764 3.704 
18 0.791 4.015 2.915 0.710 4.733 3.676 
19 0.791 4.019 2.911 0.713 4.705 3.646 
20 0.792 4.006 2.895 0.713 4.709 3.643 
21 0.792 4.002 2.892 0.699 4.818 3.756 



We added the above study on Cases 1 to 3 as a new manuscript subsection, as follows:  

 

3. 3 Applicability of Other PA-II Units 

We evaluated PA-II 8’s calibration performance under the following three cases: 

 

Case 1: Calibration model is learned with the measurements collected from PA-II 8 in 2018 

and calibration performance for the trained model is evaluated using data measured from PA-

II 8 in 2019. 

Case 2: This is similar to Case 1, except that the calibration model is trained with data 

measured from PA-II 7 in 2018.   

Case 3: The measurement data from PA-II 8 with collocated NO2 concentration in 2018 is 

used as a training dataset, while the data collected from PA-II 8 with either collocated NO2 or 

distant NO2 concentration in 2019 is used as a test dataset. 

 
 In Case 1, we evaluated the calibration model’s performance with a test dataset consisting 

of measurement data from the PA-II 8 in 2019. The calibration model is trained with data 

collected from the same PA-II 8 in 2018. Table 9 shows the calibration results of the PA-II 8 

using an MLR method under two different cases: with and without NO2. We selected the same 

feature vectors as defined in Table 4. We observed that NO2 can enhance calibration 

performance because all MLR models using NO2, except combinations #10 and #11, yield 

lower errors and larger R2 than those without NO2. This observation aligns with the results 

shown in Table 5. Additionally, compared to the calibration performance for PA-II 7 shown in 

Table 5, PA-II 8 shows slightly larger RMSE and MAE, but similar R2.  

 
Table 9. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using an 

MLR-based calibration model learned with training data collected from PA-II 8 in 2018. 

NO2 not included NO2 included (i.e., collocated NO2) 
Feature 
Vector R2 RMSE MAE Feature 

Vector R2 RMSE MAE 
1 0.731 4.559 3.468 10 0.741 4.468 3.381 
2 0.749 4.397 3.299 11 0.742 4.459 3.375 
3 0.760 4.307 3.223 12 0.783 4.087 2.982 
4 0.763 4.277 3.191 13 0.785 4.072 2.966 
5 0.759 4.311 3.219 14 0.788 4.042 2.951 
6 0.762 4.281 3.185 15 0.788 4.040 2.950 
7 0.767 4.242 3.143 16 0.785 4.071 2.970 
8 0.768 4.227 3.121 17 0.785 4.071 2.967 
9 0.770 4.214 3.128 18 0.791 4.015 2.915 



    19 0.791 4.019 2.911 
    20 0.792 4.006 2.895 
    21 0.792 4.002 2.892 

 

In Case 2, we evaluated the calibration model’s performance using a training dataset 

collected from PA-II 7 in 2018, and a test dataset collected from PA-II 8 in 2019. Table 10 

shows calibration results for PA-II 8 using the MLR method under two different conditions, 

such as with and without NO2. As with the observation in Table 9, NO2 is the key factor 

enhancing calibration performance. With the exceptions of #10 and #11, all MLR models using 

NO2 yield lower errors and larger R2 than those without NO2. It is important to compare this 

result with that shown in Table 5, as we used different test datasets. It could be expected that 

the much worse performance for all feature combinations listed in Table 10 is achieved than 

for every corresponding feature vector in Table 5, since the calibration model considered in 

Table 9 is tested with the data measured from the PA-II 8, whereas it is trained with the 

measurement data collected from the PA-II 7. R2 values of all feature vectors in Table 10 are 

similar to those for each corresponding feature vector in Table 5. Unlike R2, we observe larger 

RMSE and MAE when we populate the training dataset with measurements from PA-II 8 rather 

than PA-II 7. The maximum differences of RMSE and MAE for each feature vector in Tables 

10 and 5 are 0.177 μg/m3 and 0.196 μg/m3, respectively. 

The results shown in Tables 9 and 10 support our conclusion that reliable and consistent PA-

II units, which contain two PMS 5003 sensors with high correlation, demonstrate similar 

calibration performance. This implies that a proposed calibration method can be applied to 

reliable and consistent PA-II units generally. 

 
Table 10. Calibration results of hourly PM2.5 concentrations measured from the PA-II 8 in 2019 using MLR-

based calibration model learned with training data collected from the PA-II 7 in 2018. 

NO2 not included NO2 included (i.e., collocated NO2) 
Feature 
Vector R2 RMSE MAE Feature 

Vector R2 RMSE MAE 

1 0.737 4.638 3.546 10 0.747 4.549 3.458 
2 0.757 4.459 3.364 11 0.748 4.538 3.446 
3 0.763 4.400 3.322 12 0.788 4.162 3.054 
4 0.765 4.383 3.293 13 0.790 4.145 3.031 
5 0.765 4.388 3.301 14 0.794 4.104 3.003 
6 0.766 4.373 3.275 15 0.795 4.097 3.000 
7 0.772 4.323 3.222 16 0.789 4.151 3.048 
8 0.772 4.318 3.208 17 0.789 4.158 3.050 
9 0.774 4.301 3.208 18 0.796 4.089 2.985 



    19 0.795 4.100 2.984 
    20 0.795 4.095 2.974 
    21 0.796 4.090 2.970 

 
 

Lastly, in Case 3, we evaluated the effect of collocated and distant NO2 on the PA-II 8 unit’s 

calibration performance. Table 11 shows the results of MLR-based calibration model for the 

PA-II 8 when it is verified with the test data considering either collocated or distant NO2. As 

we explained in Section 3.2, we considered two monitoring sites measuring NO2 near the 

Rubidoux site. One site (ID 06-065-8005) had NO2 measurements that were much more highly 

correlated with the Rubidoux site than those from the other site (ID 06-071-00247). We refer 

to the NO2 concentrations measured from these two sites as “distant NO2.” Three columns, 

describing the values of R2, RMSE, and MAE, of collocated NO2 in Table 11 are exactly the 

same as those of NO2 included (i.e., collocated NO2) in Table 9. In the case of site 06-065-8005 

with high correlation to the Rubidoux site, the consideration of the distant NO2 facilitates 

improvement of the calibration performance, since all MLR-based calibration models using 

distant NO2, except combinations #10 and 11, produce lower errors and higher R2 than those 

without NO2. This result is similar to when we consider the collocated NO2. However, we 

observe that adding distant NO2 to the test dataset, which is not highly correlated to the NO2 

measurement from the reference site, deteriorates the calibration performance. This is likely 

because all combinations from #10 to 21 yield lower R2 and greater errors than all combinations 

excluding NO2, as shown in Table 9. This result is the same as our observation of the PA-II 7 

unit’s calibration results in Table 8.  

Hence, these results we draw from Table 11 support the same conclusions we drew from 

Tables 9 and 10. Reliable and consistent PA-II units achieve similar calibration performance, 

and our proposed calibration model can be applied to these units generally. 

 
Table 11. Calibration results of hourly PM2.5 concentrations measured from PA-II 8 in 2019 using an MLR-

based calibration model learned with training data collected from the PA-II 8 in 2018 (Site ID indicates the 

monitoring sites for distant NO2). 

 MLR 
Site  
ID 

Feature 
Vector 

Collocated NO2 Distant NO2 
R2 RMSE MAE R2 RMSE MAE 

0 
6 
- 

10 0.741 4.468 3.381 0.742 4.458 3.371 
11 0.742 4.459 3.375 0.744 4.442 3.359 
12 0.783 4.087 2.982 0.783 4.089 2.976 
13 0.785 4.072 2.966 0.786 4.066 2.951 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

We added the following subsection on the effect of various training periods:  

 

3.4 Effect of Training Period  

We evaluated the effect of the training period on calibration performances. We consider four 

different training periods (i.e., 3, 6, 9, and 12 months), and each training set is constructed as 

follows: The training sets all end at the close of 2018. Their start points are set in reverse order 

based on training periods. For example, for 3 months, the training set is from Oct. 2018 to Dec. 

2018. Table S4 shows PA-II 7’s calibration results using the MLR method for all four training 

periods. The 3-month training period had the worst performance. The 6- and 9-month training 

periods generated better performances than the 12-month training period. From a viewpoint of 

using NO2, NO2 can improve calibration performance in all four cases, compared to using only 

temperature and relative humidity. As the length of the training period increases, calibration 

performance improves.  

 
Table S4 Effect of training period length on calibration performance using MLR-based calibration model 

 3 6 9 12 
Feature 
Vector 

R2 RM
SE 

MAE R2 RM
SE 

MA
E 

R2 RM
SE 

MAE R2 RM
SE 

MAE 

1 0.738 4.447 3.193 0.750 4.344 3.204 0.729 4.524 3.436 0.731 4.513 3.418 
2 0.746 4.382 3.132 0.775 4.125 2.925 0.763 4.231 3.110 0.755 4.305 3.194 
3 0.752 4.329 3.094 0.776 4.111 2.971 0.761 4.253 3.163 0.760 4.263 3.165 

0 
6 
5 
- 
8 
0 
0 
5 

14 0.788 4.042 2.951 0.789 4.031 2.927 
15 0.788 4.040 2.950 0.789 4.033 2.930 
16 0.785 4.071 2.970 0.785 4.075 2.966 
17 0.785 4.071 2.967 0.785 4.076 2.960 
18 0.791 4.015 2.915 0.790 4.022 2.911 
19 0.791 4.019 2.911 0.790 4.026 2.908 
20 0.792 4.006 2.895 0.793 3.998 2.877 
21 0.792 4.002 2.892 0.793 3.995 2.875 

0 
6 
- 
0 
7 
1 
- 
0 
0 
2 
7 

10 0.741 4.468 3.381 0.716 4.681 3.600 
11 0.742 4.459 3.375 0.716 4.680 3.591 
12 0.783 4.087 2.982 0.684 4.937 3.887 
13 0.785 4.072 2.966 0.684 4.937 3.864 
14 0.788 4.042 2.951 0.680 4.965 3.850 
15 0.788 4.040 2.950 0.672 5.030 3.914 
16 0.785 4.071 2.970 0.693 4.870 3.816 
17 0.785 4.071 2.967 0.706 4.764 3.704 
18 0.791 4.015 2.915 0.710 4.733 3.676 
19 0.791 4.019 2.911 0.713 4.705 3.646 
20 0.792 4.006 2.895 0.713 4.709 3.643 
21 0.792 4.002 2.892 0.699 4.818 3.756 



4 0.757 4.286 3.051 0.779 4.083 2.930 0.762 4.237 3.136 0.763 4.232 3.132 
5 0.743 4.411 3.171 0.779 4.090 2.906 0.767 4.193 3.080 0.763 4.234 3.129 
6 0.745 4.393 3.151 0.782 4.061 2.869 0.769 4.182 3.056 0.765 4.211 3.100 
7 0.749 4.355 3.127 0.787 4.012 2.828 0.779 4.091 2.964 0.772 4.154 3.043 
8 0.748 4.364 3.073 0.786 4.020 2.823 0.779 4.087 2.950 0.772 4.151 3.023 
9 0.742 4.420 3.058 0.783 4.051 2.798 0.778 4.101 2.940 0.771 4.161 3.012 
10 0.735 4.477 3.181 0.762 4.243 3.100 0.736 4.470 3.383 0.741 4.424 3.329 
11 0.721 4.592 3.208 0.762 4.246 3.101 0.736 4.468 3.382 0.741 4.423 3.326 
12 0.774 4.133 2.882 0.806 3.832 2.651 0.794 3.946 2.805 0.789 3.997 2.871 
13 0.762 4.244 2.880 0.806 3.832 2.639 0.794 3.946 2.806 0.789 3.993 2.857 
14 0.764 4.226 2.874 0.811 3.782 2.579 0.798 3.908 2.787 0.792 3.962 2.843 
15 0.762 4.241 2.888 0.811 3.775 2.572 0.799 3.900 2.783 0.793 3.954 2.838 
16 0.769 4.178 2.949 0.805 3.842 2.646 0.794 3.950 2.805 0.790 3.986 2.866 
17 0.769 4.175 2.944 0.806 3.833 2.631 0.793 3.960 2.804 0.789 3.990 2.863 
18 0.775 4.126 2.919 0.807 3.821 2.663 0.805 3.840 2.693 0.798 3.912 2.793 
19 0.770 4.168 2.900 0.806 3.831 2.668 0.805 3.841 2.693 0.796 3.925 2.790 
20 0.770 4.170 2.904 0.803 3.858 2.690 0.805 3.835 2.687 0.797 3.920 2.782 
21 0.765 4.218 2.936 0.803 3.860 2.692 0.805 3.837 2.690 0.797 3.913 2.777 

 

  



2. Line 298: What is the reasoning behind this 1:1 data split, specifically using the whole year 

of 2018 to train the models and apply to 2019. This implies that in practice you have to wait a 

whole year before collecting valid/corrected data with this method which hinders the use of 

low-cost sensors. And assuming minimal sensor drift from 2018 to 2019 and similar 

environmental conditions. 

 
(Response) 

The 1:1 data split reflects seasonal patterns in PM2.5 and other environmental parameters, 

such as temperature and relative humidity. To more accurately gauge the relationship between 

a PA-II unit and regulatory measurements across seasons, we used whole-year data for training. 

To support our efforts, we studied the training period’s effect on calibration performance. As 

shown in Table S4, training with a shorter period like 3 months yields lower RMSE and MAE 

than training with 6, 9, or 12-month periods. Hence, it is necessary to train calibration models 

with data collected over a long enough period to fully account for seasonality and provide 

reliable performance.   

Over time, the degradation of electrical components or dust accumulation can cause drift in 

low-cost PM sensors. Figure R1 shows PM2.5 concentrations obtained from both PA-II 7 and 8 

units whose internal PMS 5003 sensors have high correlation with each other. Both PA-II units 

render similar PM2.5 concentrations over time, which makes it challenging to verify the amount 

of drift experienced by each unit. Therefore, we assume that each PA-II unit has different and 

minimal drift. Under this assumption, when we compare the performance of the two calibration 

models, which are trained with distinct datasets from the PA-II 7 and PA-II 8 units in 2018, 

respectively, and verified with the same test dataset collected from PA-II 8 in 2019, minimal 

drift has a minor effect on calibration performance, since both units demonstrate similar 

calibration performance through RMSE and MAE. This comparison was described and 

explained in Tables 9 and 10.  



 
Figure R1. Results of PM2.5 concentrations from both PA-II 7 and 8 units 

 
 
 
 
[Minor Comments] 
 
1. Figure 1: Please include info about PA sensors A and B in the caption as you did on line 

193. 

 
(Response) 

We updated the caption for Figure 1 as follows: 

Correlation among all PMS 5003 sensors of the selected units PA-II 2, 3, 5, 6, 7, and 8.  The 

left and right of each number on the x-axis represent PMS A and B sensors for its corresponding 

PA-II unit, respectively. 

 
 
 
2. Figure 2: Include a 1:1 line for comparison. 

 

(Response) 

We added a 1:1 line to Figure 1.  

 

 



3. Figure 3: Ensure x-axes are the same for the PM2.5 graph and temperature+RH graph. Figure 

sizes could be increased to improve readability. 

 

(Response) 

We modified the x-axes in the two subfigures to reflect this suggestion. 

 

 

4. Line 36: Please clarify that FRM and FEM are US EPA designations and may not be 

applicable to every county.  

 

(Response) 

We updated the sentence on line 36 as follows: 

The monitoring stations use instruments based on Federal Reference Methods (FRMs) or 

Federal Equivalent Methods (FEMs), which promote high precision and accuracy. The U.S. 

Environmental Protection Agency (EPA) approves both FRMs and FEMs as official 

designations for measuring ambient concentrations. Furthermore, the U.S. EPA carries out 

various cooperative programs, including those on ambient monitoring methods and 

technologies, with many other countries in the world. 

 
 
5. Line 61: "good a correlation" Please correct to "a good correlation". 

 

(Response) 

We modified our text as recommended. 

 

 

6. Line 74: More discussion needed on how NO2 contributes to PM2.5 formation. 

 

(Response) 

We updated the sentence on line 74 as follows: 

In addition to these direct factors, we examine the impact of the precursor gas NO2, acting 

as a source of PM2.5 emissions, on calibration performance in low-cost PM2.5 sensors. In 

general, PM2.5 arises by secondary formation from a chemical reaction between precursor gases, 



such as NO2, in the atmosphere some distance downwind from the original emission source 

(Hodan et al., 2004).  

 

  {Reference}: Hodan, W.H. and Barnard, W.R.: Evaluating the Contribution of PM2.5 

Precursor Gases and Re-entrained Road Emissions to Mobile Source PM2.5 Particulate Matter 

Emissions, MACTEC Federal Programs, 2004. 

 

 

7. Line 127: Typo for US EPA 

 

(Response) 

We modified it as recommended. 

 

 

8. Line 131: What is the purpose of the 2-minute vs 80 sec interval? 

 

(Response) 

We updated the sentence on line 131 as follows: 

In the first step, when we calculate 1-hour averages of PM2.5 measurements generated with 

2 min (or 80 sec) intervals, we remove the 1-hour average if the number of PM2.5 measurements 

is less than 27 (or 40). We considered two different measurement intervals for a PA-II unit 

because its old interval had been 80 sec until May 30, 2019. Its current interval is 2 min. 

 

 

9. Line 178: Please clarify the difference between the FRM instrument and the BAM instrument. 

Does the FRM only report daily values? 

 

(Response) 

We updated the sentence on line 178 as follows: 

The monitoring site we considered has an FRM instrument and a BAM-1020 instrument 

with the parameter of 88502. These instruments produce daily and hourly PM2.5 measurement 

data, respectively. Since we measure the PA-II units at intervals much shorter than a full day, 

it is much more reasonable to compare the PM2.5 measurement of PA-II units with that of a 



BAM-1020 instrument with a shorter measurement interval, rather than an FRM instrument for 

evaluating the accurate calibration performance of PA-II units. However, we face the limitation 

that a BAM-1020 instrument can be classified as a non-FEM-compliant device. Therefore, our 

approach for analyzing PA-II units to appropriately resolve these issues is as follows: we 

compared the BAM-1020 instrument’s readings with daily PM2.5 concentrations collected from 

an FRM instrument to ensure the BAM-1020 provides an acceptable level of performance as 

an FRM instrument, which is enough to assess the calibration performance of PA-II units. 

According to this affirmative observation, the BAM-1020 instrument can be used to evaluate 

the calibration performance of low-cost PM2.5 sensors by comparing its readings with hourly 

PM2.5 measurement data of PA-II units.  

 

Also, we updated the sentence on line 203 as follows: 

These data suggest that a BAM-1020 instrument using non-FEM methods compares well 

to the statistics achieved with the FRM method. 

 

 

10. Line 206 + 236: You list 6 significant figures/3 decimal points for several of the PA-II 

sensors, yet these sensors are not that accurate. As per the manufacturer +/-10 ug/m3 for 0-

100 ug/m3 and +/-10% for 100-500 ug/m3. Please correct. 

 

(Response) 

We deleted Lines 206 and 235. Instead, we added the following footnote in Table 3 

describing summary statistics of daily and hourly PM2.5 concentrations from a FRM instrument, 

a BAM-1020 instrument, and a PA-II unit:  

 

[Footnote] A PMS 5003 sensor that collects PM2.5 concentrations from within a PA-II unit 

exhibits a maximum consistency error of +/-10 μg/m3 at 0-100 μg/m3 and +/-10% at 100-500 

μg/m3. The sensor reports PM2.5 concentrations as integer values on a per-second basis. A PA-

II unit generates readings of its own PM2.5 concentrations by averaging its 1-second PM2.5 

concentrations over 80 (or 120) seconds. In this study, daily (hourly) PM2.5 concentrations are 

calculated by averaging PM2.5 concentrations rendered by a PA-II unit over 24 hours (1 hour), 

and thus can be represented with a decimal number. In other words, the presence of decimal 



numbers in daily and hourly PM2.5 concentrations reported by the PA-II 7 unit does not indicate 

precise concentration measurements. 

 

 

 

11. Line 219: How are you defining the r correlation of 0.928 as "good"? 

 

(Response) 

We updated the sentence on line 209 as follows: 

In this study, we examined the root mean square error (RMSE), mean squared error (MSE), 

mean absolute error (MAE), and Pearson correlation coefficient, r, between daily PM2.5 data 

from the FRM instrument and that from the PA-II units. In the cases of the RMSE, MSE, and 

MAE, the lower its value is, the better the performance or the lower the difference in 

measurement data between the FRM instrument and the PA-II units. The Pearson correlation 

coefficient is a metric measuring a linear correlation between two variables. It is a number 

between -1 and 1 that measures the strength and direction of their relationship. As the 

coefficient approaches an absolute value of 1, the values of measurement data from the FRM 

instrument and the PA-II units becomes more similar. 

 

We updated the sentence on line 219 as follows: 

These results show that the PA-II unit has a good correlation (r) with the FRM instrument 

for the two-year period of interest, since its value is very close to 1. 

 

 

12. Line 220: You say performance of FRM and BAM did not correlate favorably, yet in line 

203 you state that the non-FEM method compared well to FRM? Why do you conclude that 

the BAM is less favorably correlated to the FRM when its statistics are better than the PAs? 

 
(Response) 

We modified Line 220 as follows: 

However, a comparison of metrics from the FRM instrument and the PA-II unit did not 

correlate as favorably. 

 



 

13. Line 230: Please clarify why the FRM instrument was not used to evaluate hourly 

performance? Were hourly FRM measurements not available? 

 

(Response) 

We updated the sentence on line 233 as follows: 

Next, we compared the PA-II unit’s hourly PM2.5 data with that of the BAM-1020 instrument 

over the course of the same two-year period. We did not consider the FRM instrument for 

exploring hourly PM2.5 measurement data, since it only produces daily concentrations. 

 

 

14. Line 272: The referenced article does not actually consider NO2 in their 

PM2.5 calibration. They only used PM2.5, Temperature, RH, CO, and wind speed in their 

models. 

 

(Response) 

The author of the article (Hua et al., 2021) claimed that PM2.5 exhibits positive associations 

with NO2, which indicates that NO2 emissions make a large contribution to PM2.5 pollution in 

the winter. 

 

  

15. Line 293: "because month has a different slope..." Do you mean " because each 

month..."? 

 

(Response) 

We updated the sentence on line 293 as follows: 

These results show that the PA-II unit has a good correlation (r) with the FRM instrument 

for the two-year period of interest, since its value is very close to 1. It is challenging to use the 

per-month linear fitting result to calibrate PA-II units because each month has a different slope 

and intercept defined for the linear fitting. 

 

 



16. Lines 311 + 355: Can these lists be included as Tables rather than in-text to improve 

readability and when readers look at Tables 3-5. 

 

(Response) 

We added Tables for listing the selected feature vectors as a referee suggested.  

 

 

17. Line 395: "Corresponding R2 values did not differ meaningfully" Based on what 

statistics, do you have a p-value? 

 

(Response) 

We updated the sentence on line 394 as follows: 

For instance, the RMSE values from the best MLR and RF models were 3.912 μg/m3 and 

3.840 μg/m3, respectively. Their corresponding R2 values differ slightly, since their gap is only 

0.008. Nonetheless, the MAE of 2.777 μg/m3 achieved from the best MLR is lower than that 

achieved by the best RF, which is 2.831 μg/m3.  

 
 
18. Line 408: How are you defining moderate and high correlations? 

 

(Response) 

We updated the sentence on line 408 as follows: 

The site 06-065-8005 had NO2 measurements that are much more highly correlated with the 

Rubidoux site compared with those from the site 06-071-0027. This result can occur when the 

distance from the Rubidoux site to the site 06-065-8005 is shorter than it is to the site 06-071-

0027. 

 

 

19. Line 412: "We used NO2 for training a calibration model" Which NO2 data to train from, 

from Rubidoux? Please clarify. 

 

(Response) 

We updated the sentence on line 408 as follows: 



In other words, we used NO2 data collected from the Rubidoux site to train a calibration 

model and used the NO2 data measured from sites 06-065-8005 and 06-071-0027 to test it. 

 

We rewrote Lines 410-413 as follows:  

To evaluate the usefulness of distant NO2 measurements on the calibration of a low-cost PM 

sensor, we used NO2 data measured from monitoring sites near the PA-II 7 unit as a test dataset, 

rather than data from the collocated Rubidoux site. When we trained calibration models with 

the measurements from the PA-II 7 unit over 2018, we used highly accurate NO2 concentrations 

measured by FEM instruments at the Rubidoux site. Subsequently, to verify the trained 

calibration models, we utilized a separate test dataset featuring distant NO2 measurements 

taken by FEM instruments at sites 06-065-8005 and 06-071-0027. We considered this scenario 

to evaluate our proposed calibration models, previously trained with collocated NO2 

concentrations and distant NO2 concentrations, when collocated NO2 measurements cannot be 

collected. 

 

 

20. Line 430: "but not significantly" Based on what statistics, do you have a p-value? 

 

(Response) 

We updated the sentence on line 423 as follows: 

All MLR methods using distant NO2 data from site 06-071-0027 had a higher RMSE than 

the MLR algorithm was based on data that did not include NO2 data from the collocated 

Rubidoux instrument, which had an RMSE of 4.439 μg/m3 as shown in Table 7. 

 

We updated the sentence on line 430 as follows: 

In the case of RF models, the use of the distant NO2 data from site 06-065-8005 increased 

RMSE compared to using collocated NO2 data, but not significantly, since the maximum gap 

of RMSE values for all feature vectors considered was just 0.060 μg/m3. 

 

 

21. Line 447: Please re-word sentence as the point is unclear. 

 

(Response) 



We updated the sentence on line 447 as follows: 

The factors, directly affecting the performance of a low-cost PM sensor, including 

temperature, relative humidity, and particle composition, have been scrutinized for their impact 

on sensors’ performance enhancement. 

 

 

22. Line 448: Please re-word to clarify that the inclusion of NO2 as an environmental factor 

in the calibration has potential to improve... 

 

(Response) 

We updated the sentence on line 448 as follows: 

Additionally, this study investigated the potential of NO2, a precursor gas that gives rise to 

PM2.5 through atmospheric chemical reactions, to improve performance of the calibration 

model.   

 

 

23. Section 2.2 Please include more information about the monitoring instrumentation used, 

especially the NO2 monitoring sites.  

 

(Response) 

We updated the sentence on line 110 as follows: 

Monitoring ambient air quality for purposes of determining compliance with the U.S. 

National Ambient Air Quality Standards (NAAQSs) requires the use of either FRMs or FEMs. 

FRM and FEM instruments are accepted as methods for monitoring the NAAQS pollutants, 

including  particulate matters (i.e., PM2.5 and PM10), NO2, SO2, O3, and CO. Hourly 

measurements of PM2.5, and other pollutants, such as NO2, SO2, O3, and CO, obtained from 

FEM and non-FEM instruments can be downloaded via the EPA's application programming 

interface (https://aqs.epa.gov/data/api). [U.S. EPA]  

 

{Reference}: U.S. Environmental Protection Agency, Reference and Equivalent Method 

Applications: Guidelines for Applicants, Sep. 2011. 

 

 

https://aqs.epa.gov/data/api)


24. Section 3.2 + 3.3: At various points you include or drop units for your RMSE, MSE, 

MAE and r stats. Please be consistent. Shouldn't r (R2) be unitless? Please be consistent in 

using r vs R2. 

 

(Response) 

We modified these units throughout the paper, as recommended. 

 

 

25. Section 3.6.3: Please check units of ug/m3 as you often have "ugm3" in this section. 

 

(Response) 

We modified these units throughout the paper, as recommended. 

 

 

26. Equations 3, 4, & 5 could be included in the methods section rather than results. 

 

(Response) 

As recommended, we created a new subsection called Performance Evaluation Metrics, 

and moved the relevant paragraph to a new subsection. 

 
 
 



Referee #2  

The authors appreciate Referee #2’s kind and valuable comments. 

 

[Major Comments] 

 

1. Very limited in scope and performance improvement: Given that the authors focused the 

comparison on calibration of a single sensor, the weight of “substantial contribution” of this 

manuscript falls on performance improvements of calibration models associated with that 

sensor. Unfortunately, the improvements on inclusion of NO2 are quite minimal. For example, 

in Tables 3 and 4, the best performances of models with and without NO2 are ~5% of each 

other. Does that qualify this work as “represent(ing) a substantial contribution to scientific 

progress” as is required by AMT? I disagree. I suggest that the authors conduct the analysis for 

the excluded sensor (sensor #8) that otherwise passes all checks, but was not included in the 

analysis for an unknown reason, as also pointed by reviewer 1. 

 

(Response) 

We appreciate the reviewer's perspective on the performance improvement for our proposed 

calibration models with the addition of NO2 concentration as well as observation for one single 

PA-II unit. It may be that the improvements of around 5% observed in Tables 5 and 7 may not 

be substantial in absolute terms. However, it is important to consider the context and 

significance of these improvements. 

First, even if calibration enhancement is modest in percentage, it can have practical 

implications in real-world application of low-cost PM2.5 sensors, such as the PA-II units. A 5% 

improvement in low-cost PM2.5 sensors can translate to more accurate and reliable 

measurements. The following three different feature vectors in Table 5 need to be addressed: 

feature vector #1, containing only PM2.5; feature vector #5 containing PM2.5, temperature (T), 

and relative humidity (RH); and feature vector #16, consisting of a combination of PM2.5, T, 

RH and NO2.  

We observed that the MLR-based calibration model considering feature vectors #1, #5, and 

#16 provides R2 values of 0.731, 0.763, and 0.790, respectively. These values demonstrate that 

the MLR-based calibration model using PM2.5, T, and RH results in an improvement of 4.4% 

in terms of R2 compared to a calibration model only considering PM2.5. Furthermore, the 

addition of NO2 leads to an additional enhancement of 3.5% in comparison with the feature 



vector consisting of PM2.5, T, and RH. Hence, feature vector #16 can achieve a calibration 

performance improvement of up to 8.1% over feature vector #1, which uses only PM2.5 

concentrations. We must also consider that the PA-II units measuring PM2.5 are low-cost 

sensors and may therefore face constraints in their performance. In other words, an R2 of 0.790 

is not easily the calibration model for a low-cost sensor. Hua et al. showed that a generalized 

additive model (GAM) using four variables, such as PM2.5, T, RH, and CO, brings about a 7.3% 

improvement of R2 compared to a GAM using one variable of PM2.5 under dry conditions (Hua 

et al. 2021). Therefore, the authors consider an R2 of 0.790 and the calibration improvement of 

8.1% achieved by considering T, RH, and NO2 to be significant results for calibration 

performance, especially taken across all four seasons.  

Second, the significance of our study’s contribution does not lie solely with the magnitude 

of performance improvement. The study’s impact can also be evaluated in terms of its 

methodology, its novelty, and its potential to inspire further research. Including NO2 measured 

by an expensive FEM-based device for calibration models, and not a collocated low-cost sensor, 

might be a novel approach that opens up new possibilities for research in this area.  

Regarding the suggestion to conduct the analysis using PA-II 8 rather than the PA-II 7 unit 

used in original manuscript, it is a valid point raised by the reviewer 1 and thus we added 

analysis results for PA-II 8. We studied three cases of the PA-II 8 unit and showed that reliable 

and consistent PA-II units, which contain two PMS 5003 sensors with high correlation to each 

other, demonstrate similar calibration performance. This implies that a proposed calibration 

method can be applied to reliable and consistent PA-II units generally. The three case studies 

are included as follows: 

Case 1: Calibration model is learned with the measurements collected from PA-II 8 in 2018 

and calibration performance for the trained model is evaluated using data measured from PA-

II 8 in 2019. 

Case 2: This is similar to Case 1, except that the calibration model is trained with data 

measured from PA-II 7 in 2018.   

Case 3: The measurement data from PA-II 8 with collocated NO2 concentration in 2018 is 

used as a training dataset, while the data collected from PA-II 8 with either collocated NO2 or 

distant NO2 concentration in 2019 is used as a test dataset. 

 

 

 



2. Choice of performance parameters and lack of uncertainty analysis: While the authors 

include three performance measures, despite considering models with multiple and changing 

number of variables, the authors fail to include the most important one: adjusted R2. The 

authors have clearly used the multiple R2 squared value to compare model fits; however, 

multiple R2 will increase on addition of even poorly correlated variables. I suggest that the 

authors report adjusted R2 results. Additionally, presentation of such calibration results would 

also benefit from an uncertainty analysis, and a key manuscript cited by the authors uses 

bootstrapping to do just that (Hua et al., 2021). I strongly recommend uncertainty (in terms of 

standard deviation) be considered when presenting performance metrics associated with such 

comparisons. The authors can then answer the question: are the distributions of performance 

parameters statistically significantly different with or without NO2? I would consider 

answering that question as a significant contribution. 

 

(Response) 

We appreciate the reviewer's perspective about the performance metric R2. The adjusted R2 

is formulated as follows:  

𝑎𝑑𝑗	𝑅! =	 (#$%)'
!$(($%)

#$(
, 

where N is the number of observations and M is the number of independent variables. To more 

accurately gauge the relationship between a PA-II unit and regulatory measurements over 

seasonality, we used whole-year data for training and test datasets, which are measured in 2018 

and 2019, respectively. Our training and test datasets contained 7,198 and 7,621 samples, 

respectively. These numbers are much larger than the number of independent variables. Thus, 

from the equation of adjusted R2 above, M has little effect on the value of adjusted R2. In other 

words, adjusted R2 is not significantly different from R2 in our study. Table R1 shows the 

values of both R2 and adjusted R2 for an MLR-based calibration model on test datasets. The 

maximum difference between two values for every feature vector is 0.01. 
 

Table R1. Comparison of R2 and adjusted R2 for MLR-based calibration model. 

Feature 
Vector 

R2 Adjusted R2 Feature 
Vector 

R2 Adjusted R2 

1 0.731 0.731 10 0.741 0.741 

2 0.755 0.755 11 0.741 0.741 

3 0.760 0.760 12 0.789 0.789 

4 0.763 0.763 13 0.789 0.789 



 
 
 
 
 
 
 
 
 
 
 
 

 
 

We performed an uncertainty analysis of the MLR-based calibration model by using a 

bootstrapping technique on a test dataset. Table R2 shows statistics of uncertainty analysis for 

each feature vector and t-values between two feature vectors whose difference is the existence 

of NO2. We selected 8 feature vectors with various independent variables to verify whether the 

addition of NO2 affects the performance of our calibration model. The 4 feature vectors we 

considered are {PM2.5}, {PM2.5, T}, {PM2.5, RH}, and {PM2.5, T, RH}. We also added NO2 to 

create four other feature vectors, {PM2.5, NO2}, {PM2.5, T, NO2}, {PM2.5, RH, NO2}, and 

{PM2.5, T, RH, NO2}. We generated 1,000 test sets using a bootstrapping technique with 

replacement. We evaluated mean and standard deviation values of RSME calculated over 1,000 

test sets for each feature vector. In addition, we applied a t-test to verify the effectiveness of 

adding NO2 to each feature vector. Consideration of NO2 additionally reduces mean values of 

RMSE for all 4 feature vectors. Contrary to mean value, standard deviation of RMSE for every 

feature vector increases slightly with the addition of NO2.  

We evaluated t-value for the mean values of RMSE for two feature vectors, with and without 

NO2; for example, the t-value between {PM2.5} and {PM2.5, NO2}. Hence, we can evaluate 4 

t-values. Degree of Freedom (DoF) is 1,998, so the relevant p-values are much less than 

0.00001. Therefore, the difference in the mean RMSE values of the NO2–included and NO2-

excluded groups is significant.   

From these results, we can conclude that the performance of the MLR-based calibration 

model can be enhanced with consideration of NO2 concentrations.   
 

Table R2. Statistics of uncertainty analysis to selected feature vectors and t-values. 

5 0.763 0.763 14 0.792 0.792 

6 0.765 0.765 15 0.793 0.793 

7 0.772 0.772 16 0.790 0.790 

8 0.772 0.772 17 0.789 0.789 

9 0.771 0.771 18 0.798 0.797 

   19 0.796 0.796 

   20 0.797 0.797 

   21 0.797 0.797 

Feature 
Vector 

Mean of 
RMSE 

Std. Dev.  
of RMSE 

Feature 
Vector 

Mean of 
RMSE 

Std. Dev.  
of RMSE t-value DoF 

{PM2.5} 4.5095 0.1026 {PM2.5, NO2} 4.4202 0.1037 19.3580 1,998 



 
  

{PM2.5, T} 4.3084 0.1000 {PM2.5, T, NO2} 3.9979 0.1173 63.7008 1,998 

{PM2.5, RH}  4.2598 0.0995 {PM2.5, RH, NO2} 4.1548 0.1074 22.6792 1,998 

{PM2.5, T, RH} 4.2387 0.1050 {PM2.5, T, RH, NO2} 3.9865 0.1156 51.0686 1,998 



3. Poor presentation: Large sections of the manuscript are unnecessarily detailed, and could be 

moved into tabular form whether in the main manuscript or the supplement. These include 

large portion of the lines 198-222 and 233-246 which are two representative examples. 

Additional examples include lists of variables shown in text format, which is laborious to read 

or keep track of (e.g., Lines 355-364). Additionally, key details of the authors’ methodology 

such as performance metrics and intercomparison exercises are dispersed throughout the 

Results section (Sect. 3.1 to 3.6). I suggest that authors separate the methods portions of these 

results and discuss them in a separate subsection under Methods called “Instrument 

intercomparisons”. 

 
(Response) 

We appreciate the reviewer’s suggestion to streamline our presentation by consolidating 

certain portions into tabular format and creating a dedicated subsection within the Methods 

section. Hence, we implemented these changes to improve the overall clarity and accessibility 

of our work. We carefully reorganized the manuscript to enhance readability and ensure that 

we present key methodological details more cohesively.  

 

1) We restructured Sections 2 and 3 as follows:  

 
2. Methods  

2.1 Measurement data  

2.1.1 PurpleAir PA-II units 

2.1.2 Air quality measurement data from EPA 

2.1.3 Selection of PA-II units and reference monitoring sites 

  - Note: We merged Subsection 2.3 with Subsection 3.1  

2.1.4 Data preprocessing of PA-II units 

 

2.2 Instrument intercomparisons  

- Note: We merged Subsections 3.2 and 3.3. We also eliminated redundancy by creating 

a table for summary statistics of daily and hourly PM2.5 measurement data, and removing 

detailed explanations of maximum, minimum, mean, and standard deviations of various 

measurement data.  

 



2.3 Feature vector selection for calibration models 

- We merged Subsections 3.3 and 3.4. We then shifted the merged text into this subsection 

and simplified the contents for greater cohesion from the viewpoint of feature selections. 

 

2.4 Calibration models 

2.4.1 Multiple Linear Regression (MLR) 

2.4.2 Random Forest (FR) 

 

2.5 Performance evaluation metrics 

 

3. Results and discussion  

3.1 Calibration performance  

3.1.1 MLR-based calibration model  

3.1.2 RF-based calibration model  

 

3.2 Effect of distant NO2 on calibration performance 

 

3.3 Applicability of other PA-II Units  

 

3.4 Effect of training period  

 
3.5 Uncertainty analysis  
 

  

 2) We added two Tables describing the selected feature vectors used in analyzing our MLR- 

and RF-based calibration models, which had previously been written as text in our original 

manuscript. In the original manuscript, this included Lines 311-318 and 354-362.  

 

 3) We added a subsection on performance evaluation metrics to improve readability. 

 
 
  



[Minor Comments]  
 
1.  Lines 123-139 The authors start off with a large dataset but remove data points using some 

filters. I suggest that the authors add a supplementary table showing how many data points 

were removed at each step.  
 

 

(Response) 

We included the following information in the supplementary document regarding the 

number of data points processed for each step of pre-processing. 

 
Table R1 Number of data points processed for each step of pre-processing. 

Applied Method Number of data points 
 Original (01/01/2018 – 12/31/2019)  703,369 
 Remove data with N/A  703,369 
 Valid data with 0<=Temperature<=200  703,368 
 Valid data with 0<=RH<=100  703,339 
 Valid data with PM2.5 <= 2,000  703,339 
 Averaging data for hourly PM2.5  17,507 
 Hourly Averaging with sufficient data points  17,198 
 Comparison of PMS 5003 A and B using SPE  16,966 

 
 
 
2. Lines 412-413 and Lines 287-290 The language used by the authors is unclear. I suggest 

either expanding on these sentences or rephrasing them so that the point is made clearly.  
 

(Response)  

We rewrote Lines 410-413 as follows:  

To evaluate the usefulness of distant NO2 measurements on the calibration of a low-cost PM 

sensor, we used NO2 data measured from monitoring sites near the PA-II 7 unit as a test dataset, 

rather than data from the collocated Rubidoux site. When we trained calibration models with 

the measurements from the PA-II 7 unit over 2018, we used highly accurate NO2 concentrations 

measured by FEM instruments at the Rubidoux site. Subsequently, to verify the trained 

calibration models, we utilized a separate test dataset featuring distant NO2 measurements 

taken by FEM instruments at sites 06-065-8005 and 06-071-0027. We considered this scenario 

to evaluate our proposed calibration models, previously trained with collocated NO2 

concentrations and distant NO2 concentrations, when collocated NO2 measurements cannot be 

collected.      



 

We rewrote Lines 287-290 as follows: 

These remarkable results suggest that NO2 is generally a key factor that can improve the 

performance of PA-II units over a year, even though the enhancement by NO2 does not meet 

the values of 0.7 of R2 and 3.5 μg/m3 of RMSE during certain months, such as July 2018, August 

2019, and October 2019.  
 



Referee #3  

The authors appreciate Referee #3’s kind and valuable comments. 

 

[Major Comments] 

 

1. Unfortunately, the study structure and data do not support the authors' claims due to the lack 

of a robust dataset and an unclear strategy between model training and model evaluation data 

groups. 

 

(Response) 

Thank you for your kind and valuable comments. We acknowledge the need for a clearer 

representation of our strategy for training and testing calibration models within the paper's 

structure. To address this concern, we restructured the paper by emphasizing a more explicit 

delineation of our approach in training and testing the calibration models. 

Specifically, we understand the potential for confusion with a per-month analysis based on 

MLR methods in the context of training and testing calibration models. The aim of monthly 

analysis was to illustrate the impact of NO2 as a new feature vector on calibration performance 

in a monthly manner. To rectify this ambiguity, we have refined the structure by reorganizing 

the discussion of the monthly analysis method into the subsection “Feature Vector Selection 

for Calibration Models” within the Methods section. 

 

 

2. The article is confusing and hard to follow. Too much detail is given for non-relevant 

information but not enough for evaluation.  

 

(Response) 

Thank you for your thorough feedback on the manuscript.  

We streamlined the presentation by consolidating certain portions into a tabular format and 

creating a dedicated subsection, called “Instrument Intercomparisons,” within the Methods 

section. We implemented these changes to improve the overall clarity and accessibility of our 

work.  

We carefully reorganized the manuscript to enhance readability and ensure that we present 

key methodological details more cohesively.  



 

1) We restructured Sections 2 and 3 as follows:  

 
2. Methods  

2.1 Measurement data  

2.1.1 PurpleAir PA-II units 

2.1.2 Air quality measurement data from EPA 

2.1.3 Selection of PA-II units and reference monitoring sites 

  - Note: We merged Subsection 2.3 with Subsection 3.1  

2.1.4 Data preprocessing of PA-II units 

 

2.2 Instrument intercomparisons  

- Note: We merged Subsections 3.2 and 3.3. We also eliminated redundancy by creating 

a table for summary statistics of daily and hourly PM2.5 measurement data, and removing 

detailed explanations of maximum, minimum, mean, and standard deviations of various 

measurement data.  

 

2.3 Feature vector selection for calibration models 

- We merged Subsections 3.3 and 3.4. We then shifted the merged text into this subsection 

and simplified the contents for greater cohesion from the viewpoint of feature selections. 

 

2.4 Calibration models 

2.4.1 Multiple Linear Regression (MLR) 

2.4.2 Random Forest (FR) 

 

2.5 Performance evaluation metrics 

 

3. Results and discussion  

3.1 Calibration performance  

3.1.1 MLR-based calibration model  

3.1.2 RF-based calibration model  

 

3.2 Effect of distant NO2 on calibration performance 



 

3.3 Applicability of other PA-II units  

 

3.4 Effect of training period  

 
3.5 Uncertainty analysis  
  

  

 2) We added two Tables describing the selected feature vectors used in analyzing our MLR- 

and RF-based calibration models, which had previously been written as text in our original 

manuscript. In the original manuscript, this included Lines 311-318 and 354-362.  

 

 3) We added a subsection on performance evaluation metrics to improve readability. 

 

 

3. The authors argue against multivariable linear regression analyses but use MLR without 

offering a reasonable justification for its use nor explain why its results from RF and MLR are 

comparable. 

 

(Response) 

Thank you for your comment. We'd like to clarify our approach regarding the use of 

Multivariable Linear Regression (MLR) and Random Forest (RF) methods in our study. 

We're not against MLR methods. Please refer to the following sentences in our manuscript: 

“A per-month analysis with a combination of features, including T, RH, and NO2, showed an 

effect on calibration for the PA-II unit. It can be challenging to apply the per-month linear 

fitting result to calibrate PA-II units because month has a different slope and intercept defined 

for the linear fitting. Moreover, their values differ over two years even for the same month. For 

example, notably, the linear fitting result in Apr. 2018 exhibited a higher RMSE than the linear 

fitting result yielded in Apr. 2019. On the contrary, the calibration performance in Aug. 2018 

was worse than that in Aug. 2019.” Here, we are saying that we don't think performing MLR-

based calibrations on a monthly basis is a good approach to proofreading. In addition, the 

monthly MLR analyses were primarily conducted for feature selection rather than calibration, 

specifically to confirm the viability of NO2 as a feature for improving calibration performance. 

In evaluating the impact of NO2, we considered MLR and RF algorithms.  



Our findings revealed a significant enhancement in the calibration performance of both MLR 

and RF models after incorporating NO2 concentrations. This inclusion notably reduced the 

performance disparity between MLR and RF models, which resulted in enhancement of 

calibration performance for both methodologies. 

 

 

[Minor Comments]  

 

1. Title misspelled "Collocated". 

 

(Response) 

We modified “colocated” to “collocated”.  

 
 
2. Line 47: "however" seems to be misplaced. 

 

(Response) 

We updated as follows:  

  However, low-cost PM sensors are not suitable for regulatory purposes because the data 

reported can be questionable in terms of accuracy, precision, and reliability.  

 

 

3. Line 121: This sentence is poorly constructed and confusing.  

 
(Response) 

We rewrote the sentence as follows:  

Therefore, PA-II units may have abnormal data due to failure and aging drift, so data quality 

control is required before calibrating the PA-II units.  

  




