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The authors would like to thank the referees for their careful reviews and valuable insight. We 

prepared our response to each of the editors’ and referees’ comments and revised our 

manuscript by reflecting all feedback.  

 



Referee #2  

The authors appreciate Referee #2’s kind and valuable comments. 

 

[Major Comments] 

 

1. Very limited in scope and performance improvement: Given that the authors focused the 

comparison on calibration of a single sensor, the weight of “substantial contribution” of this 

manuscript falls on performance improvements of calibration models associated with that 

sensor. Unfortunately, the improvements on inclusion of NO2 are quite minimal. For example, 

in Tables 3 and 4, the best performances of models with and without NO2 are ~5% of each 

other. Does that qualify this work as “represent(ing) a substantial contribution to scientific 

progress” as is required by AMT? I disagree. I suggest that the authors conduct the analysis for 

the excluded sensor (sensor #8) that otherwise passes all checks, but was not included in the 

analysis for an unknown reason, as also pointed by reviewer 1. 

 

(Response) 

We appreciate the reviewer's perspective on the performance improvement for our proposed 

calibration models with the addition of NO2 concentration as well as observation for one single 

PA-II unit. It may be that the improvements of around 5% observed in Tables 5 and 7 may not 

be substantial in absolute terms. However, it is important to consider the context and 

significance of these improvements. 

First, even if calibration enhancement is modest in percentage, it can have practical 

implications in real-world application of low-cost PM2.5 sensors, such as the PA-II units. A 5% 

improvement in low-cost PM2.5 sensors can translate to more accurate and reliable 

measurements. The following three different feature vectors in Table 5 need to be addressed: 

feature vector #1, containing only PM2.5; feature vector #5 containing PM2.5, temperature (T), 

and relative humidity (RH); and feature vector #16, consisting of a combination of PM2.5, T, 

RH and NO2.  

We observed that the MLR-based calibration model considering feature vectors #1, #5, and 

#16 provides R2 values of 0.731, 0.763, and 0.790, respectively. These values demonstrate that 

the MLR-based calibration model using PM2.5, T, and RH results in an improvement of 4.4% 

in terms of R2 compared to a calibration model only considering PM2.5. Furthermore, the 

addition of NO2 leads to an additional enhancement of 3.5% in comparison with the feature 



vector consisting of PM2.5, T, and RH. Hence, feature vector #16 can achieve a calibration 

performance improvement of up to 8.1% over feature vector #1, which uses only PM2.5 

concentrations. We must also consider that the PA-II units measuring PM2.5 are low-cost 

sensors and may therefore face constraints in their performance. In other words, an R2 of 0.790 

is not easily the calibration model for a low-cost sensor. Hua et al. showed that a generalized 

additive model (GAM) using four variables, such as PM2.5, T, RH, and CO, brings about a 7.3% 

improvement of R2 compared to a GAM using one variable of PM2.5 under dry conditions (Hua 

et al. 2021). Therefore, the authors consider an R2 of 0.790 and the calibration improvement of 

8.1% achieved by considering T, RH, and NO2 to be significant results for calibration 

performance, especially taken across all four seasons.  

Second, the significance of our study’s contribution does not lie solely with the magnitude 

of performance improvement. The study’s impact can also be evaluated in terms of its 

methodology, its novelty, and its potential to inspire further research. Including NO2 measured 

by an expensive FEM-based device for calibration models, and not a collocated low-cost sensor, 

might be a novel approach that opens up new possibilities for research in this area.  

Regarding the suggestion to conduct the analysis using PA-II 8 rather than the PA-II 7 unit 

used in original manuscript, it is a valid point raised by the reviewer 1 and thus we added 

analysis results for PA-II 8. We studied three cases of the PA-II 8 unit and showed that reliable 

and consistent PA-II units, which contain two PMS 5003 sensors with high correlation to each 

other, demonstrate similar calibration performance. This implies that a proposed calibration 

method can be applied to reliable and consistent PA-II units generally. The three case studies 

are included as follows: 

Case 1: Calibration model is learned with the measurements collected from PA-II 8 in 2018 

and calibration performance for the trained model is evaluated using data measured from PA-

II 8 in 2019. 

Case 2: This is similar to Case 1, except that the calibration model is trained with data 

measured from PA-II 7 in 2018.   

Case 3: The measurement data from PA-II 8 with collocated NO2 concentration in 2018 is 

used as a training dataset, while the data collected from PA-II 8 with either collocated NO2 or 

distant NO2 concentration in 2019 is used as a test dataset. 

 

 

 



2. Choice of performance parameters and lack of uncertainty analysis: While the authors 

include three performance measures, despite considering models with multiple and changing 

number of variables, the authors fail to include the most important one: adjusted R2. The 

authors have clearly used the multiple R2 squared value to compare model fits; however, 

multiple R2 will increase on addition of even poorly correlated variables. I suggest that the 

authors report adjusted R2 results. Additionally, presentation of such calibration results would 

also benefit from an uncertainty analysis, and a key manuscript cited by the authors uses 

bootstrapping to do just that (Hua et al., 2021). I strongly recommend uncertainty (in terms of 

standard deviation) be considered when presenting performance metrics associated with such 

comparisons. The authors can then answer the question: are the distributions of performance 

parameters statistically significantly different with or without NO2? I would consider 

answering that question as a significant contribution. 

 

(Response) 

We appreciate the reviewer's perspective about the performance metric R2. The adjusted R2 

is formulated as follows:  

𝑎𝑑𝑗	𝑅! =	 (#$%)'
!$(($%)

#$(
, 

where N is the number of observations and M is the number of independent variables. To more 

accurately gauge the relationship between a PA-II unit and regulatory measurements over 

seasonality, we used whole-year data for training and test datasets, which are measured in 2018 

and 2019, respectively. Our training and test datasets contained 7,198 and 7,621 samples, 

respectively. These numbers are much larger than the number of independent variables. Thus, 

from the equation of adjusted R2 above, M has little effect on the value of adjusted R2. In other 

words, adjusted R2 is not significantly different from R2 in our study. Table R1 shows the 

values of both R2 and adjusted R2 for an MLR-based calibration model on test datasets. The 

maximum difference between two values for every feature vector is 0.01. 
 

Table R1. Comparison of R2 and adjusted R2 for MLR-based calibration model. 

Feature 
Vector 

R2 Adjusted R2 Feature 
Vector 

R2 Adjusted R2 

1 0.731 0.731 10 0.741 0.741 

2 0.755 0.755 11 0.741 0.741 

3 0.760 0.760 12 0.789 0.789 

4 0.763 0.763 13 0.789 0.789 



 
 
 
 
 
 
 
 
 
 
 
 

 
 

We performed an uncertainty analysis of the MLR-based calibration model by using a 

bootstrapping technique on a test dataset. Table R2 shows statistics of uncertainty analysis for 

each feature vector and t-values between two feature vectors whose difference is the existence 

of NO2. We selected 8 feature vectors with various independent variables to verify whether the 

addition of NO2 affects the performance of our calibration model. The 4 feature vectors we 

considered are {PM2.5}, {PM2.5, T}, {PM2.5, RH}, and {PM2.5, T, RH}. We also added NO2 to 

create four other feature vectors, {PM2.5, NO2}, {PM2.5, T, NO2}, {PM2.5, RH, NO2}, and 

{PM2.5, T, RH, NO2}. We generated 1,000 test sets using a bootstrapping technique with 

replacement. We evaluated mean and standard deviation values of RSME calculated over 1,000 

test sets for each feature vector. In addition, we applied a t-test to verify the effectiveness of 

adding NO2 to each feature vector. Consideration of NO2 additionally reduces mean values of 

RMSE for all 4 feature vectors. Contrary to mean value, standard deviation of RMSE for every 

feature vector increases slightly with the addition of NO2.  

We evaluated t-value for the mean values of RMSE for two feature vectors, with and without 

NO2; for example, the t-value between {PM2.5} and {PM2.5, NO2}. Hence, we can evaluate 4 

t-values. Degree of Freedom (DoF) is 1,998, so the relevant p-values are much less than 

0.00001. Therefore, the difference in the mean RMSE values of the NO2–included and NO2-

excluded groups is significant.   

From these results, we can conclude that the performance of the MLR-based calibration 

model can be enhanced with consideration of NO2 concentrations.   
 

Table R2. Statistics of uncertainty analysis to selected feature vectors and t-values. 

5 0.763 0.763 14 0.792 0.792 

6 0.765 0.765 15 0.793 0.793 

7 0.772 0.772 16 0.790 0.790 

8 0.772 0.772 17 0.789 0.789 

9 0.771 0.771 18 0.798 0.797 

   19 0.796 0.796 

   20 0.797 0.797 

   21 0.797 0.797 

Feature 
Vector 

Mean of 
RMSE 

Std. Dev.  
of RMSE 

Feature 
Vector 

Mean of 
RMSE 

Std. Dev.  
of RMSE t-value DoF 

{PM2.5} 4.5095 0.1026 {PM2.5, NO2} 4.4202 0.1037 19.3580 1,998 



 
  

{PM2.5, T} 4.3084 0.1000 {PM2.5, T, NO2} 3.9979 0.1173 63.7008 1,998 

{PM2.5, RH}  4.2598 0.0995 {PM2.5, RH, NO2} 4.1548 0.1074 22.6792 1,998 

{PM2.5, T, RH} 4.2387 0.1050 {PM2.5, T, RH, NO2} 3.9865 0.1156 51.0686 1,998 



3. Poor presentation: Large sections of the manuscript are unnecessarily detailed, and could be 

moved into tabular form whether in the main manuscript or the supplement. These include 

large portion of the lines 198-222 and 233-246 which are two representative examples. 

Additional examples include lists of variables shown in text format, which is laborious to read 

or keep track of (e.g., Lines 355-364). Additionally, key details of the authors’ methodology 

such as performance metrics and intercomparison exercises are dispersed throughout the 

Results section (Sect. 3.1 to 3.6). I suggest that authors separate the methods portions of these 

results and discuss them in a separate subsection under Methods called “Instrument 

intercomparisons”. 

 
(Response) 

We appreciate the reviewer’s suggestion to streamline our presentation by consolidating 

certain portions into tabular format and creating a dedicated subsection within the Methods 

section. Hence, we implemented these changes to improve the overall clarity and accessibility 

of our work. We carefully reorganized the manuscript to enhance readability and ensure that 

we present key methodological details more cohesively.  

 

1) We restructured Sections 2 and 3 as follows:  

 
2. Methods  

2.1 Measurement data  

2.1.1 PurpleAir PA-II units 

2.1.2 Air quality measurement data from EPA 

2.1.3 Selection of PA-II units and reference monitoring sites 

  - Note: We merged Subsection 2.3 with Subsection 3.1  

2.1.4 Data preprocessing of PA-II units 

 

2.2 Instrument intercomparisons  

- Note: We merged Subsections 3.2 and 3.3. We also eliminated redundancy by creating 

a table for summary statistics of daily and hourly PM2.5 measurement data, and removing 

detailed explanations of maximum, minimum, mean, and standard deviations of various 

measurement data.  

 



2.3 Feature vector selection for calibration models 

- We merged Subsections 3.3 and 3.4. We then shifted the merged text into this subsection 

and simplified the contents for greater cohesion from the viewpoint of feature selections. 

 

2.4 Calibration models 

2.4.1 Multiple Linear Regression (MLR) 

2.4.2 Random Forest (FR) 

 

2.5 Performance evaluation metrics 

 

3. Results and discussion  

3.1 Calibration performance  

3.1.1 MLR-based calibration model  

3.1.2 RF-based calibration model  

 

3.2 Effect of distant NO2 on calibration performance 

 

3.3 Applicability of other PA-II Units  

 

3.4 Effect of training period  

 
3.5 Uncertainty analysis  
 

  

 2) We added two Tables describing the selected feature vectors used in analyzing our MLR- 

and RF-based calibration models, which had previously been written as text in our original 

manuscript. In the original manuscript, this included Lines 311-318 and 354-362.  

 

 3) We added a subsection on performance evaluation metrics to improve readability. 

 
 
  



[Minor Comments]  
 
1.  Lines 123-139 The authors start off with a large dataset but remove data points using some 

filters. I suggest that the authors add a supplementary table showing how many data points 

were removed at each step.  
 

 

(Response) 

We included the following information in the supplementary document regarding the 

number of data points processed for each step of pre-processing. 

 
Table R1 Number of data points processed for each step of pre-processing. 

Applied Method Number of data points 
 Original (01/01/2018 – 12/31/2019)  703,369 
 Remove data with N/A  703,369 
 Valid data with 0<=Temperature<=200  703,368 
 Valid data with 0<=RH<=100  703,339 
 Valid data with PM2.5 <= 2,000  703,339 
 Averaging data for hourly PM2.5  17,507 
 Hourly Averaging with sufficient data points  17,198 
 Comparison of PMS 5003 A and B using SPE  16,966 

 
 
 
2. Lines 412-413 and Lines 287-290 The language used by the authors is unclear. I suggest 

either expanding on these sentences or rephrasing them so that the point is made clearly.  
 

(Response)  

We rewrote Lines 410-413 as follows:  

To evaluate the usefulness of distant NO2 measurements on the calibration of a low-cost PM 

sensor, we used NO2 data measured from monitoring sites near the PA-II 7 unit as a test dataset, 

rather than data from the collocated Rubidoux site. When we trained calibration models with 

the measurements from the PA-II 7 unit over 2018, we used highly accurate NO2 concentrations 

measured by FEM instruments at the Rubidoux site. Subsequently, to verify the trained 

calibration models, we utilized a separate test dataset featuring distant NO2 measurements 

taken by FEM instruments at sites 06-065-8005 and 06-071-0027. We considered this scenario 

to evaluate our proposed calibration models, previously trained with collocated NO2 

concentrations and distant NO2 concentrations, when collocated NO2 measurements cannot be 

collected.      



 

We rewrote Lines 287-290 as follows: 

These remarkable results suggest that NO2 is generally a key factor that can improve the 

performance of PA-II units over a year, even though the enhancement by NO2 does not meet 

the values of 0.7 of R2 and 3.5 μg/m3 of RMSE during certain months, such as July 2018, August 

2019, and October 2019.  
 


