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Abstract.

Wildfires can have a significant impact on air quality in Australia during severe burning seasons, but
incomplete knowledge of the injection heights of smoke plumes poses a challenge for quantifying smoke
exposure. In this study, we use two approaches to quantify the fractions of fire emissions injected above
the planetary boundary layer (PBL), and we further investigate the impact of plume injection fractions on
daily mean surface concentrations of fine particulate matter (PM,s) from wildfire smoke in key cities over
northern and southeastern Australia from 2009 to 2020. For the first method, we rely on climatological,
monthly mean vertical profiles of smoke emissions from the Integrated Monitoring and Modelling System
for wildland fires (IS4FIRES), together with assimilated PBL heights from NASA Modern-Era
Retrospective analysis for Research and Application (MERRA) version 2. For the second method, we
develop a novel approach based on the Multi-angle Imaging Spectro-Radiometer (MISR) observations and
a random forest, machine-learning model that allows us to directly predict the daily plume injection
fractions above the PBL in each grid cell. We apply the resulting plume injection fractions quantified by
the two methods to smoke PM, s concentrations simulated by the Stochastic Time-Inverted Lagrangian
Transport (STILT) model in target cities. We find that characterization of the plume injection heights
greatly affects estimates of surface daily smoke PM,s, especially during severe wildfire seasons, when
intense heat from fires can loft smoke high in the troposphere. However, using climatological injection
profiles cannot capture well the spatiotemporal variability of plume injection fractions, resulting in a 63%

underestimate of daily fire emission fluxes injected above the PBL in comparison with those fluxes derived

from MISR injection fractions. Our random forest model successfully reproduces the daily injected fire

emission fluxes against MISR observations (R*= 0.88, normalized mean bias = 10%), which predicts that

27% and 45% of total fire emissions rise above the PBL in northern and southeastern Australia, respectively,
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35 from 2009 to 2020. Using the plume behavior predicted by the random forest method also leads to the best

model agreement with observed surface PM, s in several key cities_near the wildfire source regions, with

smoke PM 5 accounting for 5% to 52% of total PM> s during fire seasons from 2009 to 2020.
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1 Introduction

Wildfire is a strong seasonal source of air pollution in Australia, significantly contributing to poor air
quality especially during severe burning seasons such as the “Black Summer” in 2019 (e.g., Reisen et al.,
2011; Aryal etal., 2018; Ryan et al., 2021; Graham et al., 2021). The peak periods of wildfires over northern
Australia are generally during the dry season (April to October)-evernerthernAustralia, when the high-

pressure systems located in southern Australia bring dry and warm southeasterly winds to the Top End and

Far North Queensland (FNQ) (Australian Bureau of Meteorology, 2023b). The Australian monsoon also

governs fire seasonality in northern Australia. During the monsoon periods from November to April, the

prevailing winds shift to northwesterly, bringing moist air from the ocean and reducing the risk of wildfires

(Australian Bureau of Meteorology, 2023a). In southern Australia, the burning season typically occurs in

austral spring and summer (September to February) when fuels are abundant. However, fire activity in this

region shows large interannual variability. The fire danger increases when low-pressure systems in

Tasmania bring hot and dry westerly winds to the coastal areas (Australian Bureau of Meteorology,

2023Db).a

Smoke emitted from wildfires is a complex mixture of organic carbon (OC), black carbon (BC), and

other types of fine particulate matter (PM> ), together with a suite of trace gases. Of these air pollutants,
smoke PM 5 is among the most harmful to human health and the ambient environment (Reid et al., 2016;
Aguileraetal., 2021; Johnston et al., 2021). There are large uncertainties, however, in estimates of exposure
to smoke PM» s downwind of fires, in part because the transport of wildfire plumes is challenging to quantify
in space and time. In Australia, most fire emissions are released in the planetary boundary layer (PBL), but
sufficient buoyancy generated by the heat from intense wildfires can inject emissions into the free
troposphere or even stratosphere (Fromm et al., 2006; Dirksen et al., 2009; Mims et al., 2010; Val Martin
et al., 2018; Solomon et al., 2022). Val Martin et al. (2018) showed that significant fractions (5% to 25%)
of total column biomass burning emissions were injected above 2 km in Australia during the summer
months from 2008 to 2010. The plume injection heights determine the vertical distribution of fire emissions,
affecting surface smoke exposure.-an€ the long-range transport, and removal processes of emitted pollutants

(e.g., Jian and Fu, 2014; Zhu et al., 2018). A recent study used three plume rise schemes in the Community

Multiscale Air Quality model to study the plume injection heights and their impacts on air quality,

indicating that higher plume injection heights led to lower surface PM, s concentrations near the source

region but higher concentrations in regions downwind due to the transport at higher altitudes followed by

downward mixing (Li et al., 2023). Here, we develop two methods to quantify the fraction of fire emissions

injected above the PBL, and further investigate the impacts of plume injection heights on daily smoke PM; 5

over Australia.
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Previous studies have retrieved the plume injection heights and estimated the climatological injection
profiles from satellite data, including from the Multi-angle Imaging Spectro-Radiometer (MISR), the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instruments (Kahn et al., 2007; Tosca et al.,
2011; Raffuse et al., 2012; Paugam et al., 2016; Val Martin et al., 2010; 2018), and the TROPOspheric
Monitoring Instrument (TROPOMI, Griffin et al., 2020). These approaches have drawbacks. For example,
MISR and CALIOP provide global coverage every nine days and every sixteen days, respectively, near the
equator, though more frequently at high latitudes. These instruments thus may miss fire occurrences due to
their inadequate temporal resolution and the narrow detection swath. In addition, digitizing the plumes of
MISR imagery is both labor intensive and computationally expensive, resulting in limited datasets of plume

injection heights (Nelson et al., 2013; Val Martin et al., 2018). The plume heights retrieved from TROPOMI

offer daily global coverage, but TROPOMI data are available only from 2018 onwards and so cannot be

utilized for long-term study.

To address these issues, several biomass burning emission inventories have incorporated information on
injection height at high spatiotemporal resolution. These include the Global Fire Assimilation System
(GFAS, Rémy et al., 2017) and the Integrated Monitoring and Modelling System for Wildland Fires
(IS4FIRES, Sofiev et al., 2009; Soares et al., 2015). Both GFAS and IS4FIRES rely on a plume rise model
(PRM—Freitas et al., 2007, 2010) and semi-empirical parameterization (Sofiev et al., 2012; 2013) to
determine injection heights. Besides these two studies, Yao et al. (2018) used a machine learning model
(random forest) and CALIOP data to predict the minimum heights of forest fire smoke in Canada. These
three datasets represented the vertical extent of smoke plumes with high-resolution single parameters that
specified the top and bottom heights of plumes, as well as the mean height of maximum injection (MHMI).
However, such parameters do not quantify the fraction of fire emissions within the PBL, a critical value for
quantifying smoke exposure within the PBL. IS4FIRES also provides climatological, monthly mean
profiles of plume injection heights, which do specify the fire emissions that remain within the PBL. But
this climatological dataset cannot capture the large interannual variability of plume injection heights and
wildfire intensity (Val Martin et al., 2010; 2018).

Another challenge in calculating smoke exposure involves the modeling of smoke plume transport.
Previous studies have applied multiple modeling techniques to capture transport, including use of 3-D
offline or online coupled atmospheric chemistry models (e.g., Fann et al., 2018; Liu et al., 2017; Gan et al.,
2017) and Lagrangian particle dispersion models such as HYSPLIT or STILT (e.g., Thelen et al., 2013;
Mallia et al., 2015). The 3-D chemistry models can simulate the physical and chemical processes of smoke
PM, s based on the biomass burning emission inventory but are computationally expensive for long-term
simulations at fine spatial resolution (Johnson et al., 2020). In contrast, Lagrangian modeling applies a

receptor-oriented framework, allowing (1) computationally efficient tracking of the smoke emitted across
4
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a finely gridded, large spatial domain and (2) determination of the contributions of smoke to the air quality
in the receptor city downwind. This modeling framework performs better in terms of numerical stability

and mass conservation than do 3-D models (Lin et al., 2013; Wohltmann and Rex, 2009). However

Lagranigian modeling usually lacks chemical processes and is unable to capture background PM> s

concentrations from other anthropogenic and natural sources.

Many studies on wildfire smoke exposure in Australia are based on ground-based observations (e.g.,
Morgan et al., 2010; Johnston et al., 2021; Cortes-Ramirez et al., 2022). These studies usually use statistical
methods to separate the smoke PM; 5 from background PM. s, as the air quality monitors measure only total
PM,s. This method, however, is unable to determine the spatial distribution of smoke emissions that
contribute to the observed PM,s. Some studies then use atmospheric chemistry models to explicitly
simulate smoke PMa 5 concentrations from open fires and their impacts on air quality and health in Australia
(Reaetal., 2016; Nguyen et al., 2020, 2021; Graham et al., 2021). These studies can provide more accurate
spatiotemporal variability of smoke air quality but focus only on short-term simulations due to

computational expense. Furthermore, the accuracy of simulated smoke PM>s concentrations in these

models depends on reliable meteorology, biomass burning emissions, and plume injection heights.

In this paper, we build on past efforts to model smoke exposure in Australia. Our goal is to improve the
accuracy of smoke exposure in the receptor cities by better quantifying the fraction of smoke plumes
remaining in the PBL across northern and southeastern Australia. We also quantify the source regions of
smoke PM; s in these cities. We first focus on two-impreved methods to quantify the daily fractions of fire
emissions within and above the PBL: (1) the climatological injection profiles from IS4FIRES and (2) plume
injection heights from MISR observations. Both methods are described in Section 2. We apply the predicted
injection fractions to the Lagrangian plume model STILT to simulate the daily smoke PM, s in key cities
across Australia during the fire seasons from 2009 to 2020. In Sections 3 and 4, we compare the plume
injection fractions predicted by our two methods, and we validate the derived smoke PM; 5 concentrations

against the surface PM; 5 observations.

2 Methods and data

2.1 Estimation of plume injection fractions using climatological injection profiles

We estimate the fractions of smoke plumes injected above the PBL using two methods. In the first method,
we first compare the daily PBL and the plume injection heights for each fire event. For those plumes that
rise above the PBL, we use the climatological, monthly mean profile of plume injection heights in that grid

cell to apportion smoke abundance within the PBL and above it.

5
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Daily mean PBL heights across Australia are obtained from the Modern-Era Retrospective Analysis for
Research and Applications Version 2 (MERRA-2, Gelaro et al., 2017) at a spatial resolution of 0.5° latitude

x 0.625° longitude. MERRA-2 is the first long-term global reanalysis to assimilate space-based

observations of aerosols and represent their interactions with other physical processes in the climate system.

This reanalysis is often used to drive chemical transport models such as GEOS-Chem (Bey et al. 2001;

Keller et al., 2014; Kim et al., 2015). We use the daily injection heights compiled by the GFAS emission

inventory (Rémy et al., 2017), which provides four parameters representing the vertical extent of each
smoke plume at 0.1° x 0.1° resolution: the top and bottom heights of plumes, the MHMI, and injection
height (described in appendix S1). These parameters are calculated with two distinct algorithms: the one-

dimensional plume rise modelPRM (Freitas et al., 2007, 2010; Rémy et al., 2017) and the IS4FIRES

parameterization (Sofiev et al., 2012; 2013). The plume rise modelPRM predicts the daily vertical velocity,

horizontal plume velocity, temperature, and plume radius; the model relies on assimilated meteorology
from the European Centre for Medium-Range Weather Forecasts (ECMWF) and active fire area retrieved
from the Moderate Resolution Imaging Spectroradiometer (MODIS). In contrast, IS4FIRES calculates the
daily plume injection height based on fire radiative power (FRP) from MODIS as well as on ECMWF
meteorology (Sofiev et al., 2012).

In addition to plume height, we also reed-te-determine the mass fraction of smoke emitted above the
PBL. IS4FIRES also offers global maps of monthly mean injection profiles of fire emissions at a spatial
resolution of 1° x 1° x 500 m from the surface to 10 km altitude (20 layers), averaged over the years 2000
to 2012 (http://is4fires.fmi.fi, last accessed: October 21, 2022). The IS4FIRES parameterization assumes
that each fire lasts for 24 hours and that the plume heights of this fire depend on fire intensity, which is
based on the mean diurnal variation of the FRP derived from the geostationary orbiting instrument Spinning
Enhanced Visible and Infrared Imager (Roberts et al., 2009, Sofiev et al., 2013). The resulting hourly
injection profiles are averaged over the whole day and aggregated to the monthly level. The profiles are
then normalized by monthly mean emissions in that vertical column. More details are described in Sofiev
et al. (2013).

In this study, we regrid all datasets to a common 0.25° x 0.25° resolution, and then compare the MHMI

derived from the plume rise modelPRM with the associated daily mean PBL height from MERRA-2 to

determine whether the fire emission should be lifted above the PBL at each grid cell. We assume that total

fire emissions remain within the PBL if the daily mean PBL height (Hpyp;) is higher than the MHMI
(Hpyump)- For those grid cells in which the MHMI is higher than the PBL heights, we calculate the daily

injection fractions of fire emissions above the PBL as follows:
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where fapovepsr (i, J, d) is the daily injection fractions at location (i, j) over the day d, and f(i, j, k, m) is
the monthly mean normalized vertical fraction of fire emissions injected into the layer k in month m,
calculated by the IS4FIRES parameterization. We sum up the fractional fire emissions f (i, j, k, m) from
Zpp1, the vertical layer where the daily mean PBL height H,p, (i, j, d) is located, to the top layer of the

normalized injection profile (Z,;). This yields the plume mass fraction above the PBL.

2.2 Estimation of plume injection fractions using machine learning models
2.2.1 MISR data and target variable

We also develop a novel approach using random forest models to predict the fractions of smoke plumes
injected above the PBL in each grid cell. The explanatory variables consist of satellite retrievals of plume
heights, fire information, land use classification, and meteorological variables.

The plume heights used for training are those observed by the MISR instrument—fer-atimited-set-of
months. MISR is on board Terra, a polar-orbiting satellite, overpassing the equator in the descending mode
at 10:30 local time. MISR acquires imagery in four spectral bands along the orbiting track, using nine
cameras with viewing angles from + 70.5° to + 26.1° relative to nadir. The four spectral bands are centered
at wavelengths of 446 nm, 558 nm, 672 nm, and 866 nm (Diner et al., 1998). The swath width of MISR is
380 km, covering Australia every four to five days. Data acquired from the blue (446 nm) and red (672 nm)
bands can be used to retrieve smoke plume heights at horizontal spatial resolutions of 1.1 km and 275 m,
respectively. Although the red-band data have higher spatial resolution, the retrieval quality of the red band
is usually worse than that of the blue band, especially for thin plumes over a bright surface such as is typical
for Australia (Nelson et al., 2013).

The MISR Interactive eXplorer (MINX, https://github.com/nasa/MINX, last accessed: October 21, 2022)
is an interactive software that digitizes the plume heights from MISR data, using a stereoscopic height

retrieval algorithm (Nelson et al., 2008, 2013) i
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~Digitizing the plume heights
using MINX is time-consuming as the perimeters of individual plumes need to be identified manually by

users_(described in Appendix S2). As a consequence, archived MISR retrievals of global plume heights are

available only for a limited number of months — the years 2008 to 2011 and for June, July, and August of
2017 and 2018. These plume heights were calculated for the MISR Plume Height Project 2 (MPHP2,
https://misr.jpl.nasa.gov/get-data/misr-plume-height-project-2/, last accessed: October 21, 2022).

For training and validating the random forest models, we collected 2212 records of plume height
retrievals in Australia, including 2021 records from MPHP2 and 191 supplemental records that we

generated using MINX for November 2019 during the severe wildfire season. These MISR plume records

are mainly distributed over the coastal areas of northern and southern Australia (Figure S1). In general,

each record represents one plume, but sometimes several plumes overlap. There may exist more than one
record per plume, or one record may describe more than one plume. For each identified plume, MINX
digitizes two retrievals of plume heights based on the blue-band and red-band data within the plume
perimeter, each of which is classified as having “Good,” “Fair,” or “Poor” retrieval quality. We exclude
plume records labeled “Poor.” For all other plumes, we choose one record from either the blue-band or red-

better retrieval quality. The-meannumber-of-valid pixelsof

band data, depending on which band exhibits

fer—eorrection—Here we use the zero-wind heights_(described in Appendix S2) to calculate the vertical

profile for each plume. We remove unrealistic heights lower than the terrain heights (i.e., when zero-wind
height minus terrain height < 0 km), as well as those higher than 8 km above the local terrain. Negative
zero-wind heights are due to the retrieval biases of pixels near to or on the ground, while heights greater
than 8 km are likely an artefact caused by pyro-cumulus clouds overlaying the plumes (Val Martin et al.,
2010). We obtain the injection profile by normalizing the vertical distribution of retrieved plume heights
above local terrain in increments of 0.25 km altitude from 0 to 8 km for each plume. We then compute the
injection fractions above the PBL based on Eq. (1), where the daily mean PBL height is the same as the

data described in Section 2.1.

2.2.2 Predictors for random forest model

We use daily meteorological variables, fire information, and land use classifications as predictors (Table
1) for the random forest models. The meteorological variables are from MERRA-2 at 0.5° latitude x 0.625°
longitude resolution and include the daily means of PBL height, air temperature at 2 m above the surface,
surface relative humidity, U/V-wind at 10 m, and total precipitation. Fire information consists of the fire

location for each plume and FRP, both from the MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath
8
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1km V061 (MOD14, Giglio and Justice, 2021). The MINX software calculates the total FRP of the digitized
plume from this dataset. The daily fire emissions of OC from the Global Fire Emission Database Version
4.1 inventory (GFED 4.1s, van der Werf et al., 2017) are also incorporated into the random forest model.
We use only OC emissions because variations in OC and BC, the other main component of smoke PM> s,
are assumed to correlate. We sample the emission grid closest to the initial source point of the smoke plume
specified, based on MOD14. We also include the yearly land cover classification of the International
Geosphere-Biosphere Programme (IGBP) derived from the MODIS Land Cover Climate Modeling Grid
Version 6 (MCDI12C1, Friedl and Sulla-Menashe, 2015) at 0.05° x 0.05° spatial resolution. Wildfires
occurring in various vegetation types such as forest, shrubland, and grassland usually lead to different plume
injection heights, which can be classified by land use data. The MINX software diagnoses the land use type

at the location with the maximum FRP within the digitized plume boundary.
2.2.3 Random forest algorithm

Random forest is a widely used machine learning method for both classification and regression,
containing an ensemble of bootstrap aggregated, or “bagged,” decision trees. Each individual decision tree
is trained using a random sample of the training dataset to reduce the correlation between different decision
trees. The final predictions of a random forest model are based on the average of predictions from each
decision tree (Breiman, 2001). A decision tree is built by splitting the data into left and right nodes
recursively, based on the standard Classification And Regression Tree (CART) algorithm (Breiman, 2001).
In node p, the mean squared error (MSE) is calculated as Eq. (2):

1 _\2
MSE®) = ) = (3~ 3) )
jEP

where y; and y,, are the target variable with observation index j and the mean value of target variable
samples in node p, respectively. P represents the set of all observation indices in node p and n is the sample
size. The algorithm sorts one of the predictors x; (i = 1,2,...,11) and uses each element of x; as a split
point to divide the samples into two subsets. The algorithm then calculates the decline in MSE (AMSE) for

each splitting point as Eq. (3):
AMSE = Z%MSE(p) - Z %MSE(pL) - Z %MSE(pR) 3)

JjEP JEP], JEPR

where the p; and pg are the left and right nodes. The best split point is determined by maximizing the
decline in MSE (AMSE). Each node will stop splitting when there are less than five samples within this
node, which avoids overfitting on the training datasets. To estimate the importance of each predictor, the

algorithm randomly permutes the values of each predictor within the dataset and calculates the increases in

9
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MSE over each decision tree, compared to the original set of MSEs. More important predictors will generate
greater increases in MSE when permuted. The importance of each predictor is then indicated by its mean
value divided by the standard deviation of the increases in MSE over all decision trees.

In this study, we construct the random forest model with 100 regression decision trees. As noted above,
Table 2 shows the predictors and the target variable (i.e., daily plume injection fractions above the PBL).
Total records of the target variable and associated predictors are divided into a training dataset (n = 2012
records) and a test dataset (n = 200 records). We select as test data one record of every ten records in order
of observed dates, which ensures evenly sampling the whole dataset. We first train the random forest model
using the training dataset and then apply the predictors from the test dataset to the resulting random forest
model. Validation is carried out by comparing the predictions with the true values of the target variable

from the test dataset.
2.3 Calculation of smoke PM: s concentrations using the STILT model
2.3.1 STILT and fire emission inventory

We use the STILT model version 2 (Lin et al., 2003, Fasoli et al., 2018) to simulate the daily smoke
PM: 5 concentrations in 12 key cities (shown in Table S1) over Australia during the fire seasons from the
years 2009 to 2020. STILT is a Lagrangian particle dispersion model driven by assimilated meteorology
from the National Oceanic and Atmospheric Administration Air Resources Laboratory and National
Centers for Environmental Prediction (Stein et al., 2015). The model calculates “sensitivity footprints” in
units of concentration divided by emissions (ppm pmol! m? s), as described in appendix S3+. These
footprints relate potential emissions across a source region upwind of a given receptor to air pollution within
the PBL at that receptor. As we describe below, multiplication of these footprints by emissions within the
source region yields the concentration change in an air pollutant at the receptor. The model yields the
concentrations of fire-related black carbon (BC) and organic carbon (OC) particulate matter at each receptor
within the source region via multiplying the sensitivity footprints by the fire emissions on daily timescales.
Smoke PM, s is typically defined as the sum of the fire-related BC and organic matter (OM)_(Chow et al.,
2011; Koplitz et al., 2016; Cusworth et al., 2018 Li et al., 2020). OM is calculated using a mass ratio of
OM to OC, which is assumed to be 2.1 (Philip et al., 2014).

We apply the fire emissions of OC and BC over Australia from the GFED 4.1s inventory (van der Werf
et al., 2017), which compares well with other inventories for Australia (Liu et al., 2020; Desservettaz et al.,
2022) and includes methodologies specifically designed to better capture small fires (Randerson et al.,
2012). GFED 4.1s estimates the monthly emissions at 0.25° spatial resolution from 1997 to present based
on the burned area data from MODIS MCD64A1 (Giglio et al., 2013). The monthly emissions are

10
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redistributed into daily timescales using daily scale factors determined by the MODIS active fire products

(MCD14ML) and the burning day reported in MCD64A1 (van der Werf et al., 2017).

2.3.2 Setup of sensitivity experiments

We conduct three sensitivity experiments to evaluate the effects of plume injection fractions on the
calculations of smoke PM s concentrations. Table 2 shows the configurations of the STILT model and the
sensitivity experiments. The domain covers mainland Australia at 0.25° x 0.25° spatial resolution,
consistent with that of the GFED 4.1s inventory. The STILT simulations are driven by archived
meteorological variables from the Global Data Assimilation System (GDAS) at 0.5° x 0.5° resolution for
2009 to 2018 and from the Global Forecast System (GFS) at 0.25° x 0.25° resolution for 2019 to 2020.
STILT simulates the sensitivity footprints backwards in time for 120 hours, which allows the air parcels to
travel the equivalent of the whole of Australia.

For the control experiment (Case CTL), we assume that all fire emissions are released within the PBL,
where they are evenly distributed. Daily smoke PM, 5 concentrations at the receptors are then derived from
the total fire emissions of OM (scaled from OC) and BC multiplied by the simulated sensitivity footprints.
For the two sensitivity experiments, we consider the impacts of plume injection on the surface
concentrations of smoke PM> s downwind. In both these cases, we scale the fire emissions by the fractions
of smoke mass remaining within the PBL. We assume that the fire emissions injected above the PBL have
no impact on the surface PM, s. For case INJ-CLIM, we estimate these fractions using climatological plume
profiles (Section 2.1), and for case INJ-RF, we make these estimates using the random forest algorithm

(Section 2.2). However, the INJ-CLIM and INJ-RF methods estimate the plume injection fractions only in

the source grids, and they are unable to estimate to what extent smoke plumes mix down to the surface in

remote regions downwind. This assumption may lead to the low biases of surface smoke PM> s in remote

regions, which we discuss in Section 4.

2.4 Calculation of non-fire PM; s concentrations

To validate the simulated smoke PM, s, we need to estimate the contribution of non-fire PM, s to total
PM, s, as only measurements of total PM, s are available (Section 2.5). To that end, we utilize the surface
measurements of PM» s on low-fire days (defined below) to calculate a non-fire PM, s concentration for
each year, as in Cusworth et al. (2018). For each receptor in a given year, we first define an upwind burning
region as those grid cells where the mean simulated footprint sensitivities during the fire season are higher
than a certain threshold, which we arbitrarily specify as 10 ppm umol” m* s. We then analyze the time

series of daily OC fire emissions from the GFEDv4s inventory summed over all grid cells in this upwind

11
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burning region during the wildfire season every year and specify the 20™ percentile at the low end of the
fire emissions frequency distribution as an emission threshold. We tag a day as “low-fire” if the daily OC
fire emissions over the upwind burning region during the previous two days fall below the emission
threshold (Cusworth et al., 2018). The average of all PM, s surface observations at the receptor during the

low-fire days is assumed to be the non-fire PM» 5 concentration for the fire season in that year.
2.5 Ground-based observations of PM:s in Australia

We rely on ground-based measurements of total PM s concentrations to validate the modeled smoke
PM:s. Table S1 shows the sites and time periods of the historical data used for this validation. These data
include hourly ground-based PM,s observations from the Northern Territory Environment Protection
Authority (http://ntepa.webhop.net/NTEPA/Default.ltr.aspx, last accessed: June 7, 2023), the Victoria
Environment Protection Authority (https://www.epa.vic.gov.au/for-community/airwatch, last accessed:
October 21, 2022), the Queensland Government Open Data Portal (https://apps.des.qld.gov.auv/air-
quality/download/, last accessed: June 7, 2023), the New South Wales Department of Planning and
Environment  (https://www.dpie.nsw.gov.au/air-quality/air-quality-data-services/data-download-facility,
last accessed: June 7, 2023), and the Australian Capital Territory Government Open Data Portal
(https://www.data.act.gov.au/Environment/Air-Quality-Monitoring-Data/94a5-zqnn, last accessed: June 7,
2023). Daily PM. s concentrations are calculated as the average of the available hourly observations on each
day. We exclude the daily mean observations when more than eight values of the hourly data are missing

for that day.

3 Plume injection fractions during Australian fire seasons

3.1 Wildfire activity in Australia

Figure 1 shows the spatial distributions of annual mean total OC fire emissions averaged from 2009 to
2020, indicating that the northern and southeastern areas are the most fire-prone in Australia. In this study,
we focus on the regional smoke exposure in northern Australia (118.125°E-150.875°E, 18.875°S-10.125°S)
and southeastern Australia (140.125°E-153.875°E, 43.875°S-24.125°S, dashed boxes in Figure 1), where
seasonal wildfires produce 39.5% and 41.1% of total fire emissions in Australia, and where 80% of the
Australian population lives (Australian Bureau of Statistics, 2022). In northern Australia, the two main
burning regions are located in the Top End and FNQFar Nerth-Queenstand-(FNQJ, which are covered by
eucalypt forests and woodlands. In southeastern Australia, burning regions are mainly distributed in coastal
eucalypt forested areas in New South Wales and Victoria, as well as in the Australian Capital Territory. In
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this study, we focus on the smoke exposure during April to December in northern Australia and August to

January of the next year in southeastern Australia. In 2020, fire activity in southeastern Australia continued

to some extent into February, but this lengthening of the typical fire season was unusual (Ellis et al., 2022).

3.2 Evaluation of plume injection fractions calculated by climatological injection profiles_and
predicted by random forest

Figure 2a compares the plume injection fractions above the PBL (f,50veppr) derived from the MISR
plume records with those calculated by the first method described in Section 2.1. There are 2212 samples
in total. Each sample represents an individual plume digitized from the MISR imagery. Results show that
the estimated daily plume injection fractions are inconsistent with MISR observations with a low correlation
coefficient of 0.24 and a large root mean square error (RMSE) of 0.39, indicating that climatological

profiles cannot reproduce the daily variation of plume injection fractions. We find that 90% of the

overestimated injection fractions with relative low fire emissions are located in the north and central of

Australia, a finding which we attribute to inaccuracies in the climatological plume profiles. The plume

injection height of the plume profile is proportional to the PBL height in this method (appendix S1, Sofiev

etal., 2013), and given the relatively deep PBL in this region, the injection fractions above the PBL tend to

be overestimated. Next, we compare the observed and modeled fire emission fluxes in the atmosphere above

the PBL (Figure 2b). These fluxes are calculated by scaling total emission fluxes from GFED 4.1s using
injection fractions derived from the first method and from MISR observations (Eq. 1). We find that the
climatological method can explain 76% of the variance in the injected emission fluxes derived from MISR,

but still underestimates the mean value by 63%. The large bias is mainly due to the underestimates of
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injection fractions for some megafires, such as those in 2019. The intense heat generated by the megafires
can loft fire emissions high in the troposphere, a process which is not captured by the climatological profiles.

Figure 23ca compares the plume injection fractions above the PBL forecast by the random forest model

against those derived from the MISR plume profiles and daily mean PBL height. These samples are from
the test dataset, which is independent from the data used for random forest training. Our random forest

model generally captures the plume injection fractions compared to the MISR observations, with a

normalized mean bias (NMB) of 1.3%eorrelation—coefficient 0£0-73 and a RMSE of 0.22. The model

explains 53% of the variance in the injection fractions derived from MISR, with overestimates at the low
end and underestimates at the high end of the distribution, which— can be partly attributed to systematic

biases associated with ensemble-tree machine learning regressions (Zhang and Lu, 2011: Belitz and

Stackelberg, 2021). In addition, we include only 191 records of plume height retrievals in November 2019,

most of which are associated with large injection fractions. This relatively limited plume record may not

have been adequate to predict the plume behavior of intense fires with confidence. We also compare the

observed the model fire emission fluxes injected above the PBL (Figure 2d3b). Here our model successfully

captures 88% of the variance in the observed fluxes in the test dataset, with i tas{NMB

of 10%. The high model bias for small injection fractions leads to only a slight overestimate of smoke fluxes
above the boundary layer, as such small fractions are generally associated with low mass fluxes.

3.3 Predictor importance forEvaluation-of predicting plume injection fractions predieted-by random

forest

Figure 3¢ shows the importance of each predictor from the random forest model, which is calculated as

described in Section 2.2.3. Larger values indicate greater importance. We find that the important variables
include daily mean PBL height (PBLH), air temperature at 2 m (T2), meridional wind speed at 10 m (V10),

and the corresponding fire emissions (EMIS). The first three variables are highly related todetermine
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ambient atmospheric stability (Mohan and Siddiqui, 1998) and fire behavior (Schroeder and Buck, 1970).;

and Wildfire smoke disperses more under higher PBL heights and unstable atmospheric conditions, which

in turn may be affected by the movement of warmer air into the area near the surface or colder air into the

area aloft (Schroeder and Buck, 1970). Thermal advection can be highly related to the meridional wind

speed. Ffire emissions implicitly reflect both the fire intensity and fuel load. The combined effects of these
factors thus influence the degree to which the smoke plume is injected above the boundary layer. The
maximum FRP within the plume is relatively less important predicting injection fractions above the PBL,
consistent with previous studies which documented the weak correlation between FRP and injection height
(Kahn et al., 2007; Val Martin et al., 2012). This weak correlation can be traced in part to clouds or smoke
obscuring fires from satellite detection or to incomplete knowledge of the local temperature profile.

Previous studies have attempted to directly correlate plume injection heights with FRP observations.

However, the relationship between observed FRP and the convective heat flux driving the plume rise

depends in large part on the local temperature profile which may not be well known (Kahn et al., 2007). In

addition, the satellite pixels may be only partly filled by fire, leading to an underestimate of the heat flux

driving plume rise.

3.4 Comparison of plume injection fractions calculated by random forest and climatological injection

profiles

Figure 4 illustrates the spatial distributions of annual mean fractions of total fire emissions injected above
the PBL in each grid cell, calculated by the two methods during April to January of the next year, averaged
over 2009 to 2020. (This timeframe includes the fire seasons of both northern and southeastern Australia.)
The injection fractions derived from the climatological injection profiles range from 10 to 50% across much
of northern Australia. In contrast, the random forest method predicts strong lofting of smoke in more limited
regions in FNQ and in the eastern area of the Top End, where about 30% of total fire emissions are injected
into the free troposphere. Elsewhere in northern Australia, the random forest method yields injection
fractions above the PBL of only 10% to 20% of total fire emissions. In the coastal areas of southeastern
Australia, the climatological method estimates that less than 40% of fire emissions are lifted above the
boundary layer, while the random forest method predicts that the injection fractions account for 40-60%.
Put another way, the climatological method predicts that about ~18% less OC emissions remain within the
PBL on average over northern Australia, compared to the random forest method (Figure 4c). Over
southeastern Australia, the situation is reversed, with INJ-CLIM predicting ~14% more emissions within

the PBL on average than INJ-RF (Figure 4c¢). In southeastern Australia, we find that the spatial distribution

of large plume injection fractions predicted by random forest is highly correlated with that of high OC fire
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emissions in coastal areas (Figure 1). Given the good match of these injection fractions with MISR

observations, we conclude that our random forest model better captures extreme wildfire events compared

to the climatological method due to inclusion of daily fire emissions and FRP as predictors.

Figure 5 compares the estimated monthly mean OC fire emissions within the PBL using the two methods
in northern Australia and southeastern Australia during their respective fire seasons from 2009 to 2020. In
northern Australia, the climatological method predicts an average 17.6 Gg month™ of fire-emitted OC lifted
above the PBL, or 45% of the total OC fire emissions (39 Gg month™) during the fire season (April to
December). In contrast, the random forest method predicts just 10.6 Gg month™ of fire-emitted OC lifted
above the PBL, or just 27% of total OC fire emissions on average (Figure 5c¢). Although there is large
interannual variation of monthly mean total OC fire emissions, ranging from 18.6 Gg month™ to 62.9 Gg
month™, neither method shows a long-term trend_of plume injection fractions in northern Australia over the

last decade. In sSoutheastern Australia, -shews-even—mere—dramatiethe interannual changes in both fire

emissions and plume injection fractions estimated by INJ-CLIM and INJ-RF methods are more pronounced

from 2009 to 2020 compared to those in northern Australia. This is due to the dramatic changes in total

amounts of wildfires and fire intensity in this region. In 2019, monthly mean total OC fire emission during

the extreme fire season is 481 Gg month™', significantly higher than in other years, in which total OC fire
emissions average just 13.7 Gg month™ (Figure 5b). In addition, Figure 5d shows that 48% of total OC fire
emissions are released above the PBL in 2019 forecast by the random forest model, much larger than the
injection fraction (30%) estimated by climatological method. During other years, the injection fractions
estimated by the two methods are similar, with mean values of 33.5% (climatological injection profiles)
and 37.9% (random forest model). On average across southeastern Australia, the climatological method
and random forest method yield 31% and 45%, respectively, of total fire emissions rising above the PBL

from 2009 to 2020.

4 Application to smoke PM:s and their contributions to air quality across Australia during fire

seasons
4.1 Validation of total PM, s simulated by sensitivity experiments

We apply the resulting plume injection fractions quantified by the two methods to smoke PM,s
simulations using the STILT model at 12 receptors in nine key cities with large populations during the fire
seasons from 2009 to 2020. Figure 6 shows the receptor locations, which are located in the northern and
southeastern Australia. The three sensitivity experiments (CTL, INJ-CLIM, and INJ-RF) are driven by fire

emissions with different injection scenarios, as described in Section 2.3.2 and Table 2. We rely on the
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ground-based measurements of total PM, s concentrations and the estimated non-fire PM, 5 concentrations
(described in Section 2.4) to test the accuracy of our two approaches for quantifying the plume injection
fractions and their impacts on long-term smoke exposure. Total modeled PM> s is assumed to consist of
smoke PM, s and non-fire PM, 5. Table S1 shows the statistics of annual mean surface total PM, s simulated
by the three sensitivity experiments, compared to total PM, s observations at 12 receptors during the fire
seasons over the last decade. The three experiments reproduce the interannual variability of PMa;s
concentrations with temporal correlation coefficients ranging from 0.54 to 0.99, except for the receptor
Footscray in Melbourne. The NMBs and RMSEs between the simulations and observations vary depending
on the injection scenario, ranging from -32.2% to 19% for NMBs and 0.69 pg mto 7.0 pg m™ for RMSEs.
At most sites, the results from the INJ-RF and INJ-CLIM experiments yield relatively lower RMSEs and
NMBs against observations compared to the CTL experiment, indicating the importance of considering

plume injection heights on modeling smoke concentration for exposure estimatesexpesure in Australia.

However, there are large biases in simulated total PM, s concentrations from the INJ-RF experiment

compared to the observations in Gladstone, Brisbane, Wollongong, and Albury. In Gladstone, Wollongong,

and Albury, we also find the low biases in simulated total PM> s concentrations from the CTL experiment,

indicating that the total fire emissions from the original GFED 4.1s or the estimated non-fire PM s

concentrations may be underestimated. The inclusion of plume injection in the INJ-RF and INJ-CLIM

experiments thus aggravate low biases in simulated smoke PM, s concentrations over the three cities. In

Brisbane, we speculate that these biases arise from neglect in our model setup from downward mixing of

smoke plumes in remote regions (Section 2.3.2).

Figure 7 compares the time series of total PM> s concentrations simulated by the three experiments against
the surface measurements at six representative sites in northern and southeastern Australia during the fire

season in 2019-2020. We use the 10-day averages of simulated total PM» s concentrations to reduce the

impacts of weather conditions on day-to-day variability of non-fire PM> s, which is set to a constant value

for each vear at each receptor in our study, and to smooth out the response of smoke PM> 5 to modeled

fluctuations in fire activity. These fluctuations depend on the daily scale factors provided by GFED 4.1s

and are somewhat uncertain. Fe-redueesome-of-the-variability-caused-byfluetnations—infire-activityor

cemeherdhefoneecheseglhe L0 e e poeane e il Do cnmesiseesione The three experiments

successfully capture the remaining variability of PM, s with temporal correlation coefficients ranging from
0.59 to 0.93, indicating that smoke PM; s contributes much of the synoptic-scale variation of total PM, s in
these cities during the fire season. Compared to the CTL experiment, the INJ-RF experiment significantly
reduces the overestimate of total PM, s concentration in Newcastle (77.5% to 9.2%), Sydney (27.9% to -
6.3%), and Canberra (47% to -8.2%), three cities which are close to the most extreme fire events of 2019-

2020. In particular, compared to results from the INJ-CLIM experiment, the peak values of total PM; s
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simulated by INJ-RF experiment agree best with observations in Newcastle and Sydney during the

megafires of November to January. In Melbourne, three experiments capture fire events from December to

January with temporal correlation coefficients over 0.92. However, the simulated total PM, s concentrations

are underestimated with NMBs ranging from -28.2% to -20.9% in all three experiments. Again, the peak

values of smoke PM, s concentrations are also unable to be captured by CTL experiment, which can be

traced to the low biases from the fire emission inventory.

We further validate the time series of simulated and observed total PM, 5 concentrations at all receptors,

averaged over their respective observation periods (Eigure-Stand-Figure S2). Table S2 shows the statistics

for daily mean PM; 5 concentrations simulated by CTL, INJ-CLIM, and INJ-RF experiments, compared to

the ground-based observations at 12 receptors. These average concentrations reveal the long-term smoke

exposure at these receptors. The three model experiments successfully reproduce the time series of daily

PM: 5 at most receptor cities except for Wollongong and Melbourne, with temporal correlation coefficients

ranging from 0.4 to 0.93. In Wollongong and Melbourne (Footscray), where R=0.27 and 0.254, smoke
PM, s contributes only 10% and 5% of total PM, s from 2009 to 2020 (Figure 6). The daily variations of

PM: 5 in the two cities are thus mainly affected by weather conditions and anthropogenic emissions in some

low-fire years, and our model is unable to capture this.

4.2 Impacts of plume injection heights on annual mean smoke exposure in northern and southeastern

Australia

Figure 8 compares the annual mean smoke PM; s simulated by STILT and background PM, s against
ground-based observations of total PM; s at six representative sites in Australia over the last decade. Figure

S3 shows the results in other six sites. The differences in simulated total PM; s are driven by different plume

injection scenarios and derived smoke PM, s concentrations. Figure 9 shows the mean sensitivity footprints

at six representative cities during the fire seasons from 2009 to 2020. The panels indicate the time-average

source regions of the air masses reaching these receptors within 120 hours. When these air masses originate

from burning regions, the surface PM; 5 concentrations at the receptors show enhancements of smoke PM; s.

In contrast, the impacts of wildfire smoke are quite small when the upwind source regions are over the

ocean or non-burning areas.

Darwin is the capital city of Northern Territory located in the Top End, with long fire seasons from April

to December.Figt

2009+0-2020. We find that this city is significantly affected by biomass burning in the Top End, where the
mean sensitivity footprints are higher than 1x10~ ppm pmol m* s (Figure 9a). In the CTL experiment,

simulated total PM, s is 16.7% higher than the observations on average, with overestimates increasing to
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31%-47% during the years with stronger fire emissions (e.g., 2011, 2012, and 20156). However, the INJ-
CLIM experiment underestimates the simulated total PM» s by 18.0%, indicating a likely overestimate of
fire emissions injected above the PBL. One possible reason for this overestimate can be traced to the
inaccuracies in the input data and the semi-empirical parameterization (Rémy et al., 2017). Based on Sofiev
et al. (2013), plume injection height is proportional to the PBL height, which is usually large in northern
Australia compared to other regions, leading to a higher injection fraction of fire emissions above the PBL.
In the INJ-RF experiment, the mean simulated total PM, s concentrations are in best agreement with the
surface measurements with a NMB of -2.5% averaged from 2011 to 2020. This finding demonstrates the
importance of considering the plume injection heights of smoke PM, s during the severe fire seasons, as
well as the regional differences in fire dynamics.

Gladstone is located on the east coast of Queensland and is influenced by burning in eastern Australia
(Figure 9b). We find that annual mean wildfire contributions to total PM» 5 varies greatly at this site, from
2% to 36% over the last decade _based on the results of INJ-RF experiment. Smoke PM, s concentrations

account for less than 10% of the total PM> s in Gladstone during 2009 to 2010, 2012, and from 2014 to

2017. During low-fire years, the low biases in simulated total PM> 5 are likely caused by an underestimate
of background PM: 5 concentrations from anthropogenic emissions. During the high-fire years of 2013 and
2018, the INJ-RF experiment performs better than the CTL experiment, with negligible NMBs of 0.8% and
6.3%. In 2011 and 2019, however, INJ-RF underestimates total PM> s by 22% and 29.5%. The significant

underestimates of total PM, s can be partially attributed to the low biases in the fire emission inventory,

which also leads to 15% and 18% underestimates of total PM» s from the CTL experiment. Another reason

may be neglect in our model setup of downward mixing of smoke far from the source regions. During the

fire seasons in 2011 and 2019, Gladstone experiences the impacts of smoke from both local and remote

burning regions in eastern coastal area. Hisnot-elearwhethertheseunderestimates—are-due-to-the high

In southeastern Australia, we find similar trends in annual mean smoke PM, s concentrations and their
contributions to total PM, s in Brisbane, Newcastle, and Sydney (Figure 8c, 8d, and 8e). These sites are
sensitive to the fire emissions in eastern coastal areas-(Figure 9, 9d,and-9e). Figure 9c, 9d, and 9e show

that general upwind regions to the three cities are over both land and ocean from 2009 to 2020. During the

2019 high-fire year, the CTL experiment greatly overestimates total PM» 5 concentrations by 73% and 30%
in Newcastle and Sydney, respectively. Annual mean smoke PM> s in the CTL simulation is even larger
than observed total PM,s in Newcastle, which suggests that a considerable fraction of fire emissions is
released above the PBL in the source regions upwind of this city. The CTL experiment also overestimates
total PM, s concentrations by 30% to 54% in Brisbane during 2010, 2012 to 2013, and 2018, and by 15%

to 29% in Sydney from 2012 to 2013. The contributions of smoke PM, s to total PM, s ranges from 20% to
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45% during these years. The INJ-CLIM experiment partially improves the modeled smoke PM> s compared
to the CTL experiment by introducing the climatological plume injection of fire emissions, but the
climatological injection profiles are unable to accurately reflect the fire emissions injections during severe
fire seasons. In contrast, the INJ-RF experiment best matches the smoke PM, s simulations in the cities near
the burning regions during these high-fire years. For example, INJ-RF and INJ-CLIM reduce the large CTL
overestimate of total PM; 5 concentrations in Newcastle from 73% to 6.6% (INJ-RF) and 25.5% (INJ-CLIM)

during 2019. But in remote downwind regions, both INJ-RF and INJ-CLIM experiments underestimate the

smoke PM» s concentrations in 2019, probably due to neglect in our model of downward mixing of fire

plumes from high altitudes. The INJ-CLIM experiment estimates more fire emissions remaining within the

PBL, which yields a smaller low bias in Brisbane. INJ-RF yields NMBs of total PM; 5 ranging from 1.5%

to 24.3% compared to observations in Sydney and Brisbane during 2010, 2012, and 2013, smaller than the
NMBs (6.3% to 54%) in the CTL experiments. During other low-fire years when smoke PM, s contributes
less than 10% of total PM,s, the simulated smoke PM, s concentrations from INJ-CLIM and INJ-RF
experiments are similar.

Figure 8f shows the results of three simulations in Melbourne, where the fire seasons have significantly
varied during the austral summer (December to the following January) over the last decade. The fire season
in Melbourne is shifted later in the year compared to New South Wales and Queensland. The sensitivity
footprint of Figure 9f illustrates that Melbourne is mainly affected by southwesterly winds, which may
bring marine air onshore. Thus, fire emissions from southeastern Australia contribute just 1% to 8% of total
PM: s concentrations at this site, except for the high-fire years 2009, 2011, and 2018-2019, when these
contributions range from 15% to 22%. In the high-fire years, we also find a modest improvement in
simulated total PM, s from the INJ-RF experiment (2009: NMB = 4.4%; 2018: NMB = 11.6%), compared
to the results from the INJ-CLIM experiment (2009: NMB = 13.5%; 2018: NMB = 34.5%).

4.3 Contributions of long-term smoke PM.:s to regional air quality

We next calculate the ratios of simulated smoke PM» s concentrations from the INJ-RF experiment to
observed total PM» 5 concentrations averaged in respective observation periods at 12 receptors to quantify
the long-term contributions of wildfires in key Australian cities (Figure 6). Here we use observations for
total PM» s concentrations in these ratios, rather than the sum of modeled smoke and non-smoke PM, s, as
the observations provide greater certainty. Figure 1054 shows the annual mean contributions of smoke
PM: 5 at all receptors during the last decade. On average, the long-term smoke PM,s accounts for 5% to
52% of total PM 5 across all receptors during the fire seasons. Smoke PM, s contributes the most in Darwin,
accounting for 35% to 74% from 2011 to 2020. In the seven receptors located in the eastern coastal area,
mean smoke PM, s contributions range from 9% to 23% with large interannual variations. For example, at
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the Liverpool site in Sydney, smoke PM, s accounts for 4% to 38% of total PM, s, and as much as 33% to
38% during the intense 2013 and 2019 fire seasons. In other inland receptors and Melbourne, the annual
smoke PM, s contributions are usually less than 10%, but the contributions rise as high as 20% during high-
fire years of 2009, 2011, and 2019 in southeastern Australia. The large mean smoke contribution (73%) in
Florey, a suburb of Canberra, is caused by the extreme fire events in 2019. The smoke contributions are
less than 5% in other years from 2014 to 2020.

Figure S45 shows the contributions of wildfires to total PM, s during the 2019-2020 fire season, when
extreme fire events occurred in southeastern Australia. We find that in northern cities, the smoke PM; s
contributions are consistent with those in the long-term averages (Figure 6). But in some densely populated
cities in southeastern Australia, the contributions of smoke PM, s significantly increase during this time
frame, from 17% to 38% in Sydney, 17% to 54% in Newcastle, 40% to 73% in Canberra, and 9% to 15%
in Melbourne. Our results highlight the short-term impacts that this severe wildfire season had on regional
air quality.

At most sites examined in Australia, smoke PM, s drives the seasonal variations of total PM,s. Figure
S56 shows the monthly mean contributions of smoke PM s at six representative sites over the last decade.
In Darwin, mean smoke PM, 5 contributions rise to over 50% from May to August, but fall to less than 20%

from November to December. This seasonality_is consistent over the last decade and can be traced to the

influence of the Australian monsoon, as described in the IntroductionSeetion3-+. The wildfires in the Top

End and FNQ usually last from April to December. From April to August, a high-pressure system is

typically located in southern Australia. Ssoutheasterly winds from this area are warm and dry, bringing

smoke from burning regions in the Top End to Darwin. After September, the monsoon carries warm and

moist oceanic air into Darwin from the northwest, limiting the impact of wildfire smoke emitted over the

Top End and FNQ on air quality into the city. The- STILT model usually yields a better performance

capturing the patterns of sensitivity footprints due to the reliable meteorological variables provided by

GDAS and GFS. In southeastern Australia, the peak time of smoke PM: s contributions to total PM, s are
from August to the following JanuaryDeeember, lagging that in northern Australia. Adr-quality-in-the-other

m-both-land-and-ecean-In Gladstone, smoke

PM: 5 accounts for less than 5% during April to July as a result of low fire emissions in the upwind eastern
coastal area. During August to December, mean smoke PM 5 contributions in this city increase from 8% to
16% due to more frequent fire activity in the region. In Brisbane, Newcastle, Sydney, and Melbourne, the
peak fire periods occur during October to January, when summer heat dries out the forest and grasses that
fuel the fires. These four cities then become vulnerable to the threat of wildfires smoke, with mean

contributions to total PM,s ranging from 13% to 25%._However, the wildfire events in southeastern

Australia experience large interannual variability, resulting in variable spatiotemporal distributions of fire
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emissions during fire seasons over the last decade. Air quality in the other five cities of southeastern

Australia that we examine are affected by surface air fluxes from both land and ocean. The day-to-day

variability of sensitivity footprints in these receptors are pronounced, which may be challenging for the

STILT model to accurately reproduce.

5 Discussion and conclusion

We have developed two approaches to quantify the plume injection fractions above the PBL over
Australia during the fire seasons from 2009 to 2020, with the goal of improving estimates of smoke PM: 5
exposure in cities downwind of fires. Both methods estimate the daily fraction of smoke plumes injected
above the PBL. The climatological approach is based mainly on the climatological monthly mean injection
profiles from IS4FIRES and daily injection heights compiled by the GFAS emission inventory. For the
second approach, we train a random forest model to predict the daily plume injection fractions, using plume
heights derived from MISR observations, assimilated meteorology, and fire information from MODIS and
GFED 4.1s. The climatological method can explain 76% of variances in daily mass flux of fire emissions
injected above the PBL derived from MISR, but it underestimates the mean value of this flux by 63% in
the test dataset. A likely reason for this weakness is that the climatological injection profiles cannot capture
the spatiotemporal variability of plume injection fractions. The resulting random forest model, in contrast,
more successfully reproduces the mass flux of fire emissions injected above the PBL, with an R* of 0.88
and NMB of 10%, compared to MISR observations. To quantify the impact of plume injection fractions on
smoke air quality, we then apply total fire emissions to STILT together with the plume injection fractions
that remain within the PBL.

We find that characterization of the plume injection fractions greatly affects estimates of the surface daily
smoke PM 5 in northern and southeastern Australia, especially during severe fire seasons when intense heat
from fires can loft smoke high in the troposphere or even to the stratosphere. The random forest model

predicts plume behavior that best agrees with observed surface PM» s, especially over the receptors near the

burning regions during most high-fire years. For example, in northern Australia, when assuming that all

fire emissions are released within the PBL, STILT generates total PM> s concentrations ~16% higher than
surface observations on average in Darwin during the last decade. Using the climatological method,
however, we estimate that ~45% of smoke emissions rise above the PBL at Darwin, while the random forest
method estimates just 27%. Applying these plume injection fractions to STILT reduces the NMBs between
simulated and observed total PM, s concentrations to -18% for the climatological method and -2.5% for the
random forest method. In southeastern Australia, we find that both fire frequency and injection fractions

significantly vary over the last decade. During the severe fire season of 2019, the random forest method
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predicts that 48% of smoke plume mass rises above the PBL, much higher than the 30% estimated by
climatological method. In Sydney and Newcastle, these two methods generate surface concentrations in
better agreement with observations, with NMBs of -4.5% (INJ-RF) to -7.0% (INJ-CLIM) in Sydney and
6.6% (INJ-RF) to 25.5% (INJ-CLIM) in Newcastle. However, the two methods are unable to quantify the

possible downward mixing of fire smoke plumes in downwind regions and the subsequent impact on surface

air in these regions. The INJ-RF method leads to more pronounced underestimates of surface PM; s

concentrations in Brisbane, Gladstone, and Melbourne as it predicts relatively small fractions of fire

emissions remaining within the PBL in the source grids compared to the INJ-CLIM method. In this study,

fire emissions injected above the PBL are assumed to have no impacts on surface PM» s concentrations

downwind. Future studies can explore the impacts of the long-range transport and downward mixing of fire

emissions on surface smoke concentrations by applying the estimated injection fractions to 3-D chemical

transport models.

We further quantify the long-term contributions of smoke PM, s in key Australian cities based on the
simulations with the INJ-RF plume injection scenario. Results show that smoke PM; s accounts for 5% to
52% of the total PM s during the fire seasons from 2009 to 2020. In most cities in southeastern Australia,
we find large interannual variations of smoke PM, 5 contribution to total PM, s, ranging from 1% to 73%,
suggesting the vulnerability of this region to infrequent but extreme smoke events. For example, during the
2019-2020 “Black Summer,” smoke accounts for 38% of total PM, s in Sydney, 54% in Newcastle, and 73%
in the Canberra, indicating the vulnerability of populations living close to the intense wildfires.

Climate change is projected to increase fire frequency in many regions worldwide (Abatzoglou and
Williams, 2016; Di Virgilio et al., 2019; Canadell et al., 2021), and knowledge of plume behavior is
essential to accurately quantify the resulting smoke exposure and health impacts. Our random forest model
for calculating plume injection fractions promises to improve assessment of surface smoke concentrations
downwind of fires. The model can predict the daily plume injection fractions above the PBL at 0.25° x 0.25°
horizontal resolution or higher, depending on the spatial resolution of the fire emission inventory. Thus,
this approach predicts plume behavior at a higher spatiotemporal resolution than the climatological
approach used here. Our method can be easily applied to other regions and implemented in 3-D chemical
transport models, which can better represent the long-term transport of smoke in vertical layers than can
Lagrangian plume models like STILT. The accuracy of the random forest predictions may be further
improved once more satellite retrievals of fire plume heights become available for model training. The
utility of the machine learning approach can also be explored in regions where satellite observations of

plume heights are missed due to cloud obscuration or inadequate overpass frequency.
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Table 1. Predictors and target variable for the random forest model in this study

Target variable

Short name

Description (unit)

Data source

Plume injection

Daily plume injection fractions above

MISR Plume Height Project 2 (1.1 km for blue

fractions the PBL (%) * band, 275 m for red band; daily);
MERRA-2 (0.5° latitude x 0.625° longitude, 1-
hour)
Predictors
Short name Description (unit) Data source (spatial & temporal resolution)
LANDUSE Land use classification (unitless) MODIS Land Cover Climate Modeling Grid
Version 6 (MCD12C1)
(0.05° latitude x 0.05° longitude, yearly)
PBLH Daily mean PBL height (m) MERRA-2
(0.5° latitude x 0.625° longitude, 1-hour)
T2 Daily mean air temperature at 2 m (K)  MERRA-2
(0.5° latitude x 0.625° longitude, 1-hour)
RH Daily mean surface relative humidity MERRA-2
(%) (0.5° latitude x 0.625° longitude, 3-hour)
ulo Daily mean U-wind at 10 m (m s™) MERRA-2
(0.5° latitude x 0.625° longitude, 1-hour)
Vio Daily mean V-wind at 10 m (m s™) MERRA-2
(0.5° latitude x 0.625° longitude, 1-hour)
PRECIP Daily total precipitation (kg m? s MERRA-2
(0.5° latitude x 0.625° longitude, 1-hour)
| EMIS Daily mean OC biomass burning GFED 4.1s
emissions (kg m? s™!) (0.25° latitude x 0.25° longitude, daily)
| LON Longitude of the biomass burning GFED 4.1s
emission grid cell (degree) (0.25° latitude x 0.25° longitude, daily)
| LAT Latitude of the biomass burning GFED 4.1s
emission grid cell (degree) (0.25° latitude x 0.25° longitude, daily)
Maximum fire radiative power within MODIS/Terra Thermal Anomalies/Fire 5-Min L2

| FRP

the plume (MW)

Swath 1km V061 (MOD14)
(2030 km along swath % 2300 km across swath, 5-

minute)

* Fraction of plume pixels injected above the PBL within plume perimeter. Detailed calculation is described in Eq.

985 (1) Section 2.2.1.
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Table 2. Configurations of STILT experiments in this study.

Experiments Case CTL? Case INJ-CLIMP Case INJ-RF*¢

Domain (spatial 112.0° E to 165.5° E, 45.5° S t0 9.5° S (0.25° X 0.25°)

resolution)

Simulation period April 1% to December 31% (for 2 receptors in northern Australia)

August 1% to December 31% (for 10 receptors in southeastern Australia)

Backward simulation 120-hr (00:00:00 AEST, UTC+10)

time (start time)

Air parcel number 1000

Meteorological data, GDAS, 0.5° x 0.5° (2009 to 2018)

spatial resolution (years) GFS, 0.25° x 0.25° (2019 to 2020)

STILT algorithm Gaussian kernel density estimation w/o the hyper-near field vertical mixing depth

correction

Fire emissions No scaling Scaling with injection Scaling with injection
fraction from the fraction from the random
climatological method forest method

990 *Case CTL represents the control experiment that assumes total fire emissions are released within the PBL.
b Case INJ-CLIM represents the first sensitivity experiment that assumes some fire emissions are injected above the
PBL based on injection fractions from the climatological method.
¢ Case INJ-RF represents the second sensitivity experiment that assumes some fire emissions are injected above the

PBL based on injection fractions from the random forest method.
995
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Mean total OC fire emissions

(_GLg month'1)

Southeasti @

Figure 1. Spatial distributions of annual mean total OC fire emissions during April to the following

January from 2009 to 2020, in units of Gg month™'. The dashed boxes represent the northern and
1000 southeastern Australia in this study. Also shown are the locations of the Top End and Far North
Queensland (FNQ).
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Figure 2. {a)—Scatter plots of plume injection fractions above the PBL calculated bywith the—(a)
climatological method and by (c) random forest, compared to the MISR derived plume injection fractions.
{b)-Scatter plots of mass fluxes of fire emissions injected above the PBL estimated by injection fractions
from (b) climatological method and (d) random forest, compared to MISR observations, in units of kg m™
s'. Also shown are the R® values and the RMSEs and NMBs between the predictions and MISR

observations.-The-number-of samplesis 2242-
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PBLH
T2

V10
EMIS
LON
LAT
u10
PRECIP
RH
LANDUSE
FRP

0 2 4 6
Feature Importance

: § he-num m n—th 3 : The importance of each
1015 predlctor in the resultlng random forest model. {PBLH stands for the -is-daily mean PBL height; T2, daily
mean air temperature at 2 m; V10, daily mean meridional wind speed at 10 m; EMIS, daily mean OC fire
emission flux; LON/LAT, the longitude and latitude of the plume source point; U10, zonal wind speed at
10 m, PRECIP: daily total precipitation, RH: daily mean relative humidity; LANDUSE, land use
classification; and FRP, maximum fire radiative power within the plumej.
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Figure 4. Spatial distributions of mean fractions of total OC fire emissions injected above the PBL (in units
of %) estimated by (a) climatological method (INJ-CLIM) and (b) random forest method (INJ-RF), as well
as (c¢) the percent differences in OC fire emissions within the PBL between the two methods relative to total
OC fire emissions during April to the following January from 2009 to 2020.
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Figure 5. (a, b) Estimated monthly mean OC fire emissions released within the PBL and (c, d) annual mean

fractions of OC fire emissions injected above the PBL based on the climatological method (INJ-CLIM,
1030 green bars) and the random forest method (INJ-RF, red bars) summed over all grid cells in northern

Australia during April to December (left column) and in southeastern Australia during August to the

following January (right column) from 2009 to 2020. Also shown are the monthly mean total fire emissions

of OC during the respective fire seasons in northern and southeastern Australia (Total, blue bars in a and

b). The y-axis of panel 5a and 5b areis on ain log scale. We assume that the plume injection fractions for
1035 BC fire emissions are the same as those for OC fire emissions.
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1040

2014-2020 Canberra 2011-2020 Darwin 2009-2020 Gladstone 2009-2020 Brisbane
(Florey) (Palmerston)

(South Gladstone) (Springwood)

2017-2020 Albury 2009-2020 Newcastle
(Albury) (Wallsend)

2009-2020 Melbourne
(Footscray)

2014-2020 Newcastle
(Newcastle)

2009-2020 Melbourne 2009-2020 Wollongong
(Alphington) (Wollongong)

2009-2020 Sydney
(Liverpool)

Figure 6. Contributions of simulated smoke PM,s concentrations from the INJ-RF experiment to the
observed total PM, s concentrations (numbers on the pie charts) at 12 receptors averaged over the fire

seasons of their respective observation periods (Table S1). Names of the observation sites are given in
parentheses. Red sectors represent smoke contributions, while dark yellow sectors signify the differences
between observed total PM» s and simulated smoke PM, s concentrations — i.e., the non-fire PM 5. Small
circles on map represent the locations of these receptors. Different colors (red, blue, and black) are used to
distinguish adjacent receptors.
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1045 Figure 7. Time series of 10-day moving average of observed and simulated total PM» s concentrations from
the CTL (blue), INJ-CLIM (green), and INJ-RF (red) experiments during the fire seasons of 2019-2020 at
six sample receptors: (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (c) Newcastle (Wallsend),
(d) Sydney (Liverpool), (¢) Canberra (Florey), and (f) Melbourne (Footscray). Shown inset are the temporal
correlation coefficients R, NMBs, and RMSEs of daily total PM» s concentrations compared to the surface

1050 measurements.
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Figure 8. Mean simulated concentrations of smoke PM, s and background PM; s from the three sensitivity
experiments (blue: CTL, green: INJ-CLIM, red: INJ-RF), as well as observed total PM> s concentrations
(black: OBS) in (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (c) Brisbane (Springwood), (d)
Newcastle (Wallsend), (e) Sydney (Liverpool), and (f) Melbourne (Alphington). The different receptors
have different observation periods. The modeled total PM> s concentrations are designated by the height of
the colored bars, consisting of smoke PM, s (color-filled bars) and the background PM; s (empty bars) in
units of pg m™.
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(a) Darwin (b) Gladstone (c) Brisbane

(d) Newcastle (e) Sydney (f) Melbourne

; ”

”‘1

Mean footprints
10° 10% 10° 102 10" 10° ppm umol' m? s

Figure 9. Annual-mMean of sensitivity footprints simulated by STILT in unit of ppm umol m” s during
the fire seasons (April to December for Darwin and Gladstone; August to the following January for other
cities) in (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (¢) Brisbane (Springwood), (d)
Newcastle (Wallsend), (e) Sydney (Liverpool) and (f) Melbourne (Alphington) from 2009 to 2020. The
names in parentheses are site names. The black squareseireles represent the locations of receptors.
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1070 Figure 10. Boxplot of annual contributions of simulated smoke PM, s concentrations from the INJ-RF
experiment to observed total PM» 5 concentrations at 12 receptors during the fire seasons of respective

observations periods. The order of 12 receptors in this figure is based on the locations from north to south
in Australia. The bottom, top, and red lines in the middle of each box are the 25" and 75" percentiles, as
well as the median of all data. The distance between the 75" and 25" percentiles is the interquartile range.

1075 The lower and upper whisker limits represent the most extreme data values within 1.5 times the
interquartile range. The data greater than 1.5 times outside the interquartile range are considered outliers
and are shown as red crosses.
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