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Abstract. 

Wildfires can have a significant impact on air quality in Australia during severe burning seasons, but 

incomplete knowledge of the injection heights of smoke plumes poses a challenge for quantifying smoke 15 

exposure. In this study, we use two approaches to quantify the fractions of fire emissions injected above 

the planetary boundary layer (PBL), and we further investigate the impact of plume injection fractions on 

daily mean surface concentrations of fine particulate matter (PM2.5) from wildfire smoke in key cities over 

northern and southeastern Australia from 2009 to 2020. For the first method, we rely on climatological, 

monthly mean vertical profiles of smoke emissions from the Integrated Monitoring and Modelling System 20 

for wildland fires (IS4FIRES), together with assimilated PBL heights from NASA Modern-Era 

Retrospective analysis for Research and Application (MERRA) version 2. For the second method, we 

develop a novel approach based on the Multi-angle Imaging Spectro-Radiometer (MISR) observations and 

a random forest, machine-learning model that allows us to directly predict the daily plume injection 

fractions above the PBL in each grid cell. We apply the resulting plume injection fractions quantified by 25 

the two methods to smoke PM2.5 concentrations simulated by the Stochastic Time-Inverted Lagrangian 

Transport (STILT) model in target cities. We find that characterization of the plume injection heights 

greatly affects estimates of surface daily smoke PM2.5, especially during severe wildfire seasons, when 

intense heat from fires can loft smoke high in the troposphere. However, using climatological injection 

profiles cannot capture well the spatiotemporal variability of plume injection fractions, resulting in a 63% 30 

underestimate of daily fire emission fluxes injected above the PBL in comparison with those fluxes derived 

from MISR injection fractions. Our random forest model successfully reproduces the daily injected fire 

emission fluxes against MISR observations (R2 = 0.88, normalized mean bias = 10%), which predicts that 

27% and 45% of total fire emissions rise above the PBL in northern and southeastern Australia, respectively, 
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from 2009 to 2020. Using the plume behavior predicted by the random forest method also leads to the best 35 

model agreement with observed surface PM2.5 in several key cities near the wildfire source regions, with 

smoke PM2.5 accounting for 5% to 52% of total PM2.5 during fire seasons from 2009 to 2020. 
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1 Introduction 

Wildfire is a strong seasonal source of air pollution in Australia, significantly contributing to poor air 40 

quality especially during severe burning seasons such as the “Black Summer” in 2019 (e.g., Reisen et al., 

2011; Aryal et al., 2018; Ryan et al., 2021; Graham et al., 2021). The peak periods of wildfires over northern 

Australia are generally during the dry season (April to October) over northern Australia, when the high-

pressure systems located in southern Australia bring dry and warm southeasterly winds to the Top End and 

Far North Queensland (FNQ) (Australian Bureau of Meteorology, 2023b). The Australian monsoon also 45 

governs fire seasonality in northern Australia. During the monsoon periods from November to April, the 

prevailing winds shift to northwesterly, bringing moist air from the ocean and reducing the risk of wildfires 

(Australian Bureau of Meteorology, 2023a). In southern Australia, the burning season typically occurs in 

austral spring and summer (September to February) when fuels are abundant. However, fire activity in this 

region shows large interannual variability. The fire danger increases when low-pressure systems in 50 

Tasmania bring hot and dry westerly winds to the coastal areas (Australian Bureau of Meteorology, 

2023b).and in austral spring and summer (September to February) over southeastern Australia. 

Smoke emitted from wildfires is a complex mixture of organic carbon (OC), black carbon (BC), and 

other types of fine particulate matter (PM2.5), together with a suite of trace gases. Of these air pollutants, 

smoke PM2.5 is among the most harmful to human health and the ambient environment (Reid et al., 2016; 55 

Aguilera et al., 2021; Johnston et al., 2021). There are large uncertainties, however, in estimates of exposure 

to smoke PM2.5 downwind of fires, in part because the transport of wildfire plumes is challenging to quantify 

in space and time. In Australia, most fire emissions are released in the planetary boundary layer (PBL), but 

sufficient buoyancy generated by the heat from intense wildfires can inject emissions into the free 

troposphere or even stratosphere (Fromm et al., 2006; Dirksen et al., 2009; Mims et al., 2010; Val Martin 60 

et al., 2018; Solomon et al., 2022). Val Martin et al. (2018) showed that significant fractions (5% to 25%) 

of total column biomass burning emissions were injected above 2 km in Australia during the summer 

months from 2008 to 2010. The plume injection heights determine the vertical distribution of fire emissions, 

affecting surface smoke exposure, and the long-range transport, and removal processes of emitted pollutants 

(e.g., Jian and Fu, 2014; Zhu et al., 2018). A recent study used three plume rise schemes in the Community 65 

Multiscale Air Quality model to study the plume injection heights and their impacts on air quality, 

indicating that higher plume injection heights led to lower surface PM2.5 concentrations near the source 

region but higher concentrations in regions downwind due to the transport at higher altitudes followed by 

downward mixing (Li et al., 2023). Here, we develop two methods to quantify the fraction of fire emissions 

injected above the PBL, and further investigate the impacts of plume injection heights on daily smoke PM2.5 70 

over Australia.  
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Previous studies have retrieved the plume injection heights and estimated the climatological injection 

profiles from satellite data, including from the Multi-angle Imaging Spectro-Radiometer (MISR), the 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instruments (Kahn et al., 2007; Tosca et al., 

2011; Raffuse et al., 2012; Paugam et al., 2016; Val Martin et al., 2010; 2018), and the TROPOspheric 75 

Monitoring Instrument (TROPOMI, Griffin et al., 2020). These approaches have drawbacks. For example, 

MISR and CALIOP provide global coverage every nine days and every sixteen days, respectively, near the 

equator, though more frequently at high latitudes. These instruments thus may miss fire occurrences due to 

their inadequate temporal resolution and the narrow detection swath. In addition, digitizing the plumes of 

MISR imagery is both labor intensive and computationally expensive, resulting in limited datasets of plume 80 

injection heights (Nelson et al., 2013; Val Martin et al., 2018). The plume heights retrieved from TROPOMI 

offer daily global coverage, but TROPOMI data are available only from 2018 onwards and so cannot be 

utilized for long-term study.  
To address these issues, several biomass burning emission inventories have incorporated information on 

injection height at high spatiotemporal resolution. These include the Global Fire Assimilation System 85 

(GFAS, Rémy et al., 2017) and the Integrated Monitoring and Modelling System for Wildland Fires 

(IS4FIRES, Sofiev et al., 2009; Soares et al., 2015). Both GFAS and IS4FIRES rely on a plume rise model 

(PRM, Freitas et al., 2007, 2010) and semi-empirical parameterization (Sofiev et al., 2012; 2013) to 

determine injection heights. Besides these two studies, Yao et al. (2018) used a machine learning model 

(random forest) and CALIOP data to predict the minimum heights of forest fire smoke in Canada. These 90 

three datasets represented the vertical extent of smoke plumes with high-resolution single parameters that 

specified the top and bottom heights of plumes, as well as the mean height of maximum injection (MHMI).  

However, such parameters do not quantify the fraction of fire emissions within the PBL, a critical value for 

quantifying smoke exposure within the PBL. IS4FIRES also provides climatological, monthly mean 

profiles of plume injection heights, which do specify the fire emissions that remain within the PBL. But 95 

this climatological dataset cannot capture the large interannual variability of plume injection heights and 

wildfire intensity (Val Martin et al., 2010; 2018). 

Another challenge in calculating smoke exposure involves the modeling of smoke plume transport.  

Previous studies have applied multiple modeling techniques to capture transport, including use of 3-D 

offline or online coupled atmospheric chemistry models (e.g., Fann et al., 2018; Liu et al., 2017; Gan et al., 100 

2017) and Lagrangian particle dispersion models such as HYSPLIT or STILT (e.g., Thelen et al., 2013; 

Mallia et al., 2015). The 3-D chemistry models can simulate the physical and chemical processes of smoke 

PM2.5 based on the biomass burning emission inventory but are computationally expensive for long-term 

simulations at fine spatial resolution (Johnson et al., 2020). In contrast, Lagrangian modeling applies a 

receptor-oriented framework, allowing (1) computationally efficient tracking of the smoke emitted across 105 
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a finely gridded, large spatial domain and (2) determination of the contributions of smoke to the air quality 

in the receptor city downwind. This modeling framework performs better in terms of numerical stability 

and mass conservation than do 3-D models (Lin et al., 2013; Wohltmann and Rex, 2009). However, 

Lagranigian modeling usually lacks chemical processes and is unable to capture background PM2.5 

concentrations from other anthropogenic and natural sources. 110 

Many studies on wildfire smoke exposure in Australia are based on ground-based observations (e.g., 

Morgan et al., 2010; Johnston et al., 2021; Cortes-Ramirez et al., 2022). These studies usually use statistical 

methods to separate the smoke PM2.5 from background PM2.5, as the air quality monitors measure only total 

PM2.5. This method, however, is unable to determine the spatial distribution of smoke emissions that 

contribute to the observed PM2.5. Some studies then use atmospheric chemistry models to explicitly 115 

simulate smoke PM2.5 concentrations from open fires and their impacts on air quality and health in Australia 

(Rea et al., 2016; Nguyen et al., 2020, 2021; Graham et al., 2021). These studies can provide more accurate 

spatiotemporal variability of smoke air quality but focus only on short-term simulations due to 

computational expense. Furthermore, the accuracy of simulated smoke PM2.5 concentrations in these 

models depends on reliable meteorology, biomass burning emissions, and plume injection heights. 120 

In this paper, we build on past efforts to model smoke exposure in Australia. Our goal is to improve the 

accuracy of smoke exposure in the receptor cities by better quantifying the fraction of smoke plumes 

remaining in the PBL across northern and southeastern Australia. We also quantify the source regions of 

smoke PM2.5 in these cities. We first focus on two improved methods to quantify the daily fractions of fire 

emissions within and above the PBL: (1) the climatological injection profiles from IS4FIRES and (2) plume 125 

injection heights from MISR observations. Both methods are described in Section 2. We apply the predicted 

injection fractions to the Lagrangian plume model STILT to simulate the daily smoke PM2.5 in key cities 

across Australia during the fire seasons from 2009 to 2020. In Sections 3 and 4, we compare the plume 

injection fractions predicted by our two methods, and we validate the derived smoke PM2.5 concentrations 

against the surface PM2.5 observations.  130 

2 Methods and data 

2.1 Estimation of plume injection fractions using climatological injection profiles 

We estimate the fractions of smoke plumes injected above the PBL using two methods. In the first method, 

we first compare the daily PBL and the plume injection heights for each fire event. For those plumes that 

rise above the PBL, we use the climatological, monthly mean profile of plume injection heights in that grid 135 

cell to apportion smoke abundance within the PBL and above it.  
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Daily mean PBL heights across Australia are obtained from the Modern-Era Retrospective Analysis for 

Research and Applications Version 2 (MERRA-2, Gelaro et al., 2017) at a spatial resolution of 0.5° latitude 

× 0.625° longitude. MERRA-2 is the first long-term global reanalysis to assimilate space-based 

observations of aerosols and represent their interactions with other physical processes in the climate system. 140 

This reanalysis is often used to drive chemical transport models such as GEOS-Chem (Bey et al. 2001; 

Keller et al., 2014; Kim et al., 2015). We use the daily injection heights compiled by the GFAS emission 

inventory (Rémy et al., 2017), which provides four parameters representing the vertical extent of each 

smoke plume at 0.1° × 0.1° resolution: the top and bottom heights of plumes, the MHMI, and injection 

height (described in appendix S1). These parameters are calculated with two distinct algorithms: the one-145 

dimensional plume rise modelPRM (Freitas et al., 2007, 2010; Rémy et al., 2017) and the IS4FIRES 

parameterization (Sofiev et al., 2012; 2013). The plume rise modelPRM predicts the daily vertical velocity, 

horizontal plume velocity, temperature, and plume radius; the model relies on assimilated meteorology 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) and active fire area retrieved 

from the Moderate Resolution Imaging Spectroradiometer (MODIS). In contrast, IS4FIRES calculates the 150 

daily plume injection height based on fire radiative power (FRP) from MODIS as well as on ECMWF 

meteorology (Sofiev et al., 2012). 

In addition to plume height, we also need to determine the mass fraction of smoke emitted above the 

PBL. IS4FIRES also offers global maps of monthly mean injection profiles of fire emissions at a spatial 

resolution of 1° × 1° × 500 m from the surface to 10 km altitude (20 layers), averaged over the years 2000 155 

to 2012 (http://is4fires.fmi.fi, last accessed: October 21, 2022). The IS4FIRES parameterization assumes 

that each fire lasts for 24 hours and that the plume heights of this fire depend on fire intensity, which is 

based on the mean diurnal variation of the FRP derived from the geostationary orbiting instrument Spinning 

Enhanced Visible and Infrared Imager (Roberts et al., 2009, Sofiev et al., 2013). The resulting hourly 

injection profiles are averaged over the whole day and aggregated to the monthly level. The profiles are 160 

then normalized by monthly mean emissions in that vertical column. More details are described in Sofiev 

et al. (2013). 

In this study, we regrid all datasets to a common 0.25° × 0.25° resolution, and then compare the MHMI 

derived from the plume rise modelPRM with the associated daily mean PBL height from MERRA-2 to 

determine whether the fire emission should be lifted above the PBL at each grid cell. We assume that total 165 

fire emissions remain within the PBL if the daily mean PBL height (𝐻!"# ) is higher than the MHMI 

(𝐻$%$&). For those grid cells in which the MHMI is higher than the PBL heights, we calculate the daily 

injection fractions of fire emissions above the PBL as follows: 
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/0.#$%

, 𝐻$%$&(𝑖, 𝑗, 𝑑) ≥ 𝐻!"#(𝑖, 𝑗, 𝑑)
																																									(1) 

where 𝑓'"()*+,-(𝑖, 𝑗, 𝑑) is the daily injection fractions at location (𝑖, 𝑗) over the day 𝑑, and 𝑓(𝑖, 𝑗, 𝑘,𝑚) is 170 

the monthly mean normalized vertical fraction of fire emissions injected into the layer 𝑘 in month 𝑚, 

calculated by the IS4FIRES parameterization. We sum up the fractional fire emissions 𝑓(𝑖, 𝑗, 𝑘,𝑚) from 

𝑍!"#, the vertical layer where the daily mean PBL height 𝐻!"#(𝑖, 𝑗, 𝑑) is located, to the top layer of the 

normalized injection profile (𝑍1(!). This yields the plume mass fraction above the PBL. 

2.2 Estimation of plume injection fractions using machine learning models 175 

2.2.1 MISR data and target variable 

We also develop a novel approach using random forest models to predict the fractions of smoke plumes 

injected above the PBL in each grid cell. The explanatory variables consist of satellite retrievals of plume 

heights, fire information, land use classification, and meteorological variables.  

The plume heights used for training are those observed by the MISR instrument for a limited set of 180 

months. MISR is on board Terra, a polar-orbiting satellite, overpassing the equator in the descending mode 

at 10:30 local time. MISR acquires imagery in four spectral bands along the orbiting track, using nine 

cameras with viewing angles from ± 70.5° to ± 26.1° relative to nadir. The four spectral bands are centered 

at wavelengths of 446 nm, 558 nm, 672 nm, and 866 nm (Diner et al., 1998). The swath width of MISR is 

380 km, covering Australia every four to five days. Data acquired from the blue (446 nm) and red (672 nm) 185 

bands can be used to retrieve smoke plume heights at horizontal spatial resolutions of 1.1 km and 275 m, 

respectively. Although the red-band data have higher spatial resolution, the retrieval quality of the red band 

is usually worse than that of the blue band, especially for thin plumes over a bright surface such as is typical 

for Australia (Nelson et al., 2013). 

The MISR Interactive eXplorer (MINX, https://github.com/nasa/MINX, last accessed: October 21, 2022) 190 

is an interactive software that digitizes the plume heights from MISR data, using a stereoscopic height 

retrieval algorithm (Nelson et al., 2008, 2013). The key input data for MINX is MISR Level 1 terrain-

referenced imagery (L1B2 Terrain Radiance, Diner et al., 1998; Jovanovic et al., 1998). Given the perimeter 

and direction of each plume in the MISR imagery, MINX digitizes the plume height, wind speed, and terrain 

height at each pixel within the identified plume perimeter. The algorithm computes both zero-wind height 195 

and wind-corrected height at each pixel. For zero-wind heights, the apparent plume motions observed by 

different viewing angles are assumed to be entirely due to parallax; for wind-corrected heights, the heights 
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are adjusted to consider plume advection by local winds (Nelson et al., 2013). Digitizing the plume heights 

using MINX is time-consuming as the perimeters of individual plumes need to be identified manually by 

users (described in Appendix S2). As a consequence, archived MISR retrievals of global plume heights are 200 

available only for a limited number of months – the years 2008 to 2011 and for June, July, and August of 

2017 and 2018. These plume heights were calculated for the MISR Plume Height Project 2 (MPHP2, 

https://misr.jpl.nasa.gov/get-data/misr-plume-height-project-2/, last accessed: October 21, 2022). 

For training and validating the random forest models, we collected 2212 records of plume height 

retrievals in Australia, including 2021 records from MPHP2 and 191 supplemental records that we 205 

generated using MINX for November 2019 during the severe wildfire season. These MISR plume records 

are mainly distributed over the coastal areas of northern and southern Australia (Figure S1). In general, 

each record represents one plume, but sometimes several plumes overlap. There may exist more than one 

record per plume, or one record may describe more than one plume. For each identified plume, MINX 

digitizes two retrievals of plume heights based on the blue-band and red-band data within the plume 210 

perimeter, each of which is classified as having “Good,” “Fair,” or “Poor” retrieval quality. We exclude 

plume records labeled “Poor.” For all other plumes, we choose one record from either the blue-band or red-

band data, depending on which band exhibits better retrieval quality. The mean number of valid pixels of 

retrieved zero-wind heights per plume over Australia is 200, greater than that of wind-corrected heights 

(120 valid pixels). The reason for this difference may be traced to missing values in the wind fields used 215 

for correction. Here we use the zero-wind heights (described in Appendix S2) to calculate the vertical 

profile for each plume. We remove unrealistic heights lower than the terrain heights (i.e., when zero-wind 

height minus terrain height < 0 km), as well as those higher than 8 km above the local terrain. Negative 

zero-wind heights are due to the retrieval biases of pixels near to or on the ground, while heights greater 

than 8 km are likely an artefact caused by pyro-cumulus clouds overlaying the plumes (Val Martin et al., 220 

2010). We obtain the injection profile by normalizing the vertical distribution of retrieved plume heights 

above local terrain in increments of 0.25 km altitude from 0 to 8 km for each plume. We then compute the 

injection fractions above the PBL based on Eq. (1), where the daily mean PBL height is the same as the 

data described in Section 2.1.  

2.2.2 Predictors for random forest model 225 

We use daily meteorological variables, fire information, and land use classifications as predictors (Table 

1) for the random forest models. The meteorological variables are from MERRA-2 at 0.5° latitude × 0.625° 

longitude resolution and include the daily means of PBL height, air temperature at 2 m above the surface, 

surface relative humidity, U/V-wind at 10 m, and total precipitation. Fire information consists of the fire 

location for each plume and FRP, both from the MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 230 
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1km V061 (MOD14, Giglio and Justice, 2021). The MINX software calculates the total FRP of the digitized 

plume from this dataset. The daily fire emissions of OC from the Global Fire Emission Database Version 

4.1 inventory (GFED 4.1s, van der Werf et al., 2017) are also incorporated into the random forest model. 

We use only OC emissions because variations in OC and BC, the other main component of smoke PM2.5, 

are assumed to correlate. We sample the emission grid closest to the initial source point of the smoke plume 235 

specified, based on MOD14. We also include the yearly land cover classification of the International 

Geosphere-Biosphere Programme (IGBP) derived from the MODIS Land Cover Climate Modeling Grid 

Version 6 (MCD12C1, Friedl and Sulla-Menashe, 2015) at 0.05° × 0.05° spatial resolution. Wildfires 

occurring in various vegetation types such as forest, shrubland, and grassland usually lead to different plume 

injection heights, which can be classified by land use data. The MINX software diagnoses the land use type 240 

at the location with the maximum FRP within the digitized plume boundary.  

2.2.3 Random forest algorithm 

Random forest is a widely used machine learning method for both classification and regression, 

containing an ensemble of bootstrap aggregated, or “bagged,” decision trees. Each individual decision tree 

is trained using a random sample of the training dataset to reduce the correlation between different decision 245 

trees. The final predictions of a random forest model are based on the average of predictions from each 

decision tree (Breiman, 2001). A decision tree is built by splitting the data into left and right nodes 

recursively, based on the standard Classification And Regression Tree (CART) algorithm (Breiman, 2001). 

In node 𝑝, the mean squared error (MSE) is calculated as Eq. (2): 

𝑀𝑆𝐸(𝑝) =0
1
𝑛
<𝑦2 − 𝑦?!@

3

2∈+

																																																																													(2) 250 

where	𝑦2  and 𝑦?!  are the target variable with observation index 𝑗 and the mean value of target variable 

samples in node 𝑝, respectively. 𝑃 represents the set of all observation indices in node 𝑝 and 𝑛 is the sample 

size. The algorithm sorts one of the predictors 𝑥5 	(𝑖 = 1,2, … ,11) and uses each element of 𝑥5 as a split 

point to divide the samples into two subsets. The algorithm then calculates the decline in MSE (Δ𝑀𝑆𝐸) for 

each splitting point as Eq. (3):  255 

Δ𝑀𝑆𝐸 =0
1
𝑛

2∈+

𝑀𝑆𝐸(𝑝) − 0
1
𝑛

2∈+&

𝑀𝑆𝐸(𝑝-) − 0
1
𝑛
𝑀𝑆𝐸(𝑝6)

2∈+'

																																																	(3) 

where the 𝑝- and 𝑝6 are the left and right nodes. The best split point is determined by maximizing the 

decline in MSE (Δ𝑀𝑆𝐸). Each node will stop splitting when there are less than five samples within this 

node, which avoids overfitting on the training datasets. To estimate the importance of each predictor, the 

algorithm randomly permutes the values of each predictor within the dataset and calculates the increases in 260 
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MSE over each decision tree, compared to the original set of MSEs. More important predictors will generate 

greater increases in MSE when permuted. The importance of each predictor is then indicated by its mean 

value divided by the standard deviation of the increases in MSE over all decision trees. 

In this study, we construct the random forest model with 100 regression decision trees. As noted above, 

Table 2 shows the predictors and the target variable (i.e., daily plume injection fractions above the PBL). 265 

Total records of the target variable and associated predictors are divided into a training dataset (n = 2012 

records) and a test dataset (n = 200 records). We select as test data one record of every ten records in order 

of observed dates, which ensures evenly sampling the whole dataset. We first train the random forest model 

using the training dataset and then apply the predictors from the test dataset to the resulting random forest 

model. Validation is carried out by comparing the predictions with the true values of the target variable 270 

from the test dataset. 

2.3 Calculation of smoke PM2.5 concentrations using the STILT model 

2.3.1 STILT and fire emission inventory 

We use the STILT model version 2 (Lin et al., 2003, Fasoli et al., 2018) to simulate the daily smoke 

PM2.5 concentrations in 12 key cities (shown in Table S1) over Australia during the fire seasons from the 275 

years 2009 to 2020. STILT is a Lagrangian particle dispersion model driven by assimilated meteorology 

from the National Oceanic and Atmospheric Administration Air Resources Laboratory and National 

Centers for Environmental Prediction (Stein et al., 2015). The model calculates “sensitivity footprints” in 

units of concentration divided by emissions (ppm μmol-1 m2 s), as described in appendix S31. These 

footprints relate potential emissions across a source region upwind of a given receptor to air pollution within 280 

the PBL at that receptor. As we describe below, multiplication of these footprints by emissions within the 

source region yields the concentration change in an air pollutant at the receptor. The model yields the 

concentrations of fire-related black carbon (BC) and organic carbon (OC) particulate matter at each receptor 

within the source region via multiplying the sensitivity footprints by the fire emissions on daily timescales. 

Smoke PM2.5 is typically defined as the sum of the fire-related BC and organic matter (OM) (Chow et al., 285 

2011; Koplitz et al., 2016; Cusworth et al., 2018; Li et al., 2020). OM is calculated using a mass ratio of 

OM to OC, which is assumed to be 2.1 (Philip et al., 2014). 

We apply the fire emissions of OC and BC over Australia from the GFED 4.1s inventory (van der Werf 

et al., 2017), which compares well with other inventories for Australia (Liu et al., 2020; Desservettaz et al., 

2022) and includes methodologies specifically designed to better capture small fires (Randerson et al., 290 

2012). GFED 4.1s estimates the monthly emissions at 0.25° spatial resolution from 1997 to present based 

on the burned area data from MODIS MCD64A1 (Giglio et al., 2013). The monthly emissions are 
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redistributed into daily timescales using daily scale factors determined by the MODIS active fire products 

(MCD14ML) and the burning day reported in MCD64A1 (van der Werf et al., 2017). 

2.3.2 Setup of sensitivity experiments 295 

We conduct three sensitivity experiments to evaluate the effects of plume injection fractions on the 

calculations of smoke PM2.5 concentrations. Table 2 shows the configurations of the STILT model and the 

sensitivity experiments. The domain covers mainland Australia at 0.25° × 0.25° spatial resolution, 

consistent with that of the GFED 4.1s inventory. The STILT simulations are driven by archived 

meteorological variables from the Global Data Assimilation System (GDAS) at 0.5° × 0.5° resolution for 300 

2009 to 2018 and from the Global Forecast System (GFS) at 0.25° × 0.25° resolution for 2019 to 2020. 

STILT simulates the sensitivity footprints backwards in time for 120 hours, which allows the air parcels to 

travel the equivalent of the whole of Australia.  

 For the control experiment (Case CTL), we assume that all fire emissions are released within the PBL, 

where they are evenly distributed. Daily smoke PM2.5 concentrations at the receptors are then derived from 305 

the total fire emissions of OM (scaled from OC) and BC multiplied by the simulated sensitivity footprints. 

For the two sensitivity experiments, we consider the impacts of plume injection on the surface 

concentrations of smoke PM2.5 downwind. In both these cases, we scale the fire emissions by the fractions 

of smoke mass remaining within the PBL. We assume that the fire emissions injected above the PBL have 

no impact on the surface PM2.5. For case INJ-CLIM, we estimate these fractions using climatological plume 310 

profiles (Section 2.1), and for case INJ-RF, we make these estimates using the random forest algorithm 

(Section 2.2). However, the INJ-CLIM and INJ-RF methods estimate the plume injection fractions only in 

the source grids, and they are unable to estimate to what extent smoke plumes mix down to the surface in 

remote regions downwind. This assumption may lead to the low biases of surface smoke PM2.5 in remote 

regions, which we discuss in Section 4.  315 

2.4 Calculation of non-fire PM2.5 concentrations 

To validate the simulated smoke PM2.5, we need to estimate the contribution of non-fire PM2.5 to total 

PM2.5, as only measurements of total PM2.5 are available (Section 2.5). To that end, we utilize the surface 

measurements of PM2.5 on low-fire days (defined below) to calculate a non-fire PM2.5 concentration for 

each year, as in Cusworth et al. (2018). For each receptor in a given year, we first define an upwind burning 320 

region as those grid cells where the mean simulated footprint sensitivities during the fire season are higher 

than a certain threshold, which we arbitrarily specify as 10-4 ppm µmol-1 m2 s. We then analyze the time 

series of daily OC fire emissions from the GFEDv4s inventory summed over all grid cells in this upwind 
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burning region during the wildfire season every year and specify the 20th percentile at the low end of the 

fire emissions frequency distribution as an emission threshold. We tag a day as “low-fire” if the daily OC 325 

fire emissions over the upwind burning region during the previous two days fall below the emission 

threshold (Cusworth et al., 2018). The average of all PM2.5 surface observations at the receptor during the 

low-fire days is assumed to be the non-fire PM2.5 concentration for the fire season in that year. 

2.5 Ground-based observations of PM2.5 in Australia 

    We rely on ground-based measurements of total PM2.5 concentrations to validate the modeled smoke 330 

PM2.5. Table S1 shows the sites and time periods of the historical data used for this validation. These data 

include hourly ground-based PM2.5 observations from the Northern Territory Environment Protection 

Authority (http://ntepa.webhop.net/NTEPA/Default.ltr.aspx, last accessed: June 7, 2023), the Victoria 

Environment Protection Authority (https://www.epa.vic.gov.au/for-community/airwatch, last accessed: 

October 21, 2022), the Queensland Government Open Data Portal (https://apps.des.qld.gov.au/air-335 

quality/download/, last accessed: June 7, 2023), the New South Wales Department of Planning and 

Environment (https://www.dpie.nsw.gov.au/air-quality/air-quality-data-services/data-download-facility, 

last accessed: June 7, 2023), and the Australian Capital Territory Government Open Data Portal 

(https://www.data.act.gov.au/Environment/Air-Quality-Monitoring-Data/94a5-zqnn, last accessed: June 7, 

2023). Daily PM2.5 concentrations are calculated as the average of the available hourly observations on each 340 

day. We exclude the daily mean observations when more than eight values of the hourly data are missing 

for that day.  

3 Plume injection fractions during Australian fire seasons 

3.1 Wildfire activity in Australia 

Figure 1 shows the spatial distributions of annual mean total OC fire emissions averaged from 2009 to 345 

2020, indicating that the northern and southeastern areas are the most fire-prone in Australia. In this study, 

we focus on the regional smoke exposure in northern Australia (118.125°E-150.875°E, 18.875°S-10.125°S) 

and southeastern Australia (140.125°E-153.875°E, 43.875°S-24.125°S, dashed boxes in Figure 1), where 

seasonal wildfires produce 39.5% and 41.1% of total fire emissions in Australia, and where 80% of the 

Australian population lives (Australian Bureau of Statistics, 2022). In northern Australia, the two main 350 

burning regions are located in the Top End and FNQFar North Queensland (FNQ), which are covered by 

eucalypt forests and woodlands. In southeastern Australia, burning regions are mainly distributed in coastal 

eucalypt forested areas in New South Wales and Victoria, as well as in the Australian Capital Territory. In 
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this study, we focus on the smoke exposure during April to December in northern Australia and August to 

January of the next year in southeastern Australia. In 2020, fire activity in southeastern Australia continued 355 

to some extent into February, but this lengthening of the typical fire season was unusual (Ellis et al., 2022). 

Wildfires occur frequently throughout the dry season, which is generally from April to December. During 

this period, high-pressure systems located in southern Australia bring dry and warm southeasterly winds to 

northern Australia. The Australian monsoon also governs the seasonality of fire seasons in northern 

Australia. During the monsoon periods from November to April, the prevailing winds shift to northwesterly, 360 

bringing moist air from the ocean and reducing the risk of wildfires. In southeastern Australia, burning 

regions are mainly distributed in coastal eucalypt forested areas in New South Wales and Victoria, as well 

as in the Australian Capital Territory. The burning season usually occurs in austral spring and summer when 

fuels are abundant, but fire activity shows large interannual variability. The fire danger increases when low-

pressure systems in Tasmania bring hot and dry westerly winds to the coastal areas. In this study, we focus 365 

on the smoke exposure during April to December in northern Australia and August to January of the next 

year in southeastern Australia. In 2020, fire activity in southeastern Australia continued to some extent into 

February, but this lengthening of the typical fire season was unusual (Ellis et al., 2022). 

3.2 Evaluation of plume injection fractions calculated by climatological injection profiles and 
predicted by random forest 370 

Figure 2a compares the plume injection fractions above the PBL (𝑓'"()*+,-) derived from the MISR 

plume records with those calculated by the first method described in Section 2.1. There are 2212 samples 

in total. Each sample represents an individual plume digitized from the MISR imagery. Results show that 

the estimated daily plume injection fractions are inconsistent with MISR observations with a low correlation 

coefficient of 0.24 and a large root mean square error (RMSE) of 0.39, indicating that climatological 375 

profiles cannot reproduce the daily variation of plume injection fractions. We find that 90% of the 

overestimated injection fractions with relative low fire emissions are located in the north and central of 

Australia, a finding which we attribute to inaccuracies in the climatological plume profiles. The plume 

injection height of the plume profile is proportional to the PBL height in this method (appendix S1, Sofiev 

et al., 2013), and given the relatively deep PBL in this region, the injection fractions above the PBL tend to 380 

be overestimated. Next, we compare the observed and modeled fire emission fluxes in the atmosphere above 

the PBL (Figure 2b). These fluxes are calculated by scaling total emission fluxes from GFED 4.1s using 

injection fractions derived from the first method and from MISR observations (Eq. 1). We find that the 

climatological method can explain 76% of the variance in the injected emission fluxes derived from MISR, 

but still underestimates the mean value by 63%. The large bias is mainly due to the underestimates of 385 
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injection fractions for some megafires, such as those in 2019. The intense heat generated by the megafires 

can loft fire emissions high in the troposphere, a process which is not captured by the climatological profiles. 

Figure 23ca compares the plume injection fractions above the PBL forecast by the random forest model 

against those derived from the MISR plume profiles and daily mean PBL height. These samples are from 

the test dataset, which is independent from the data used for random forest training. Our random forest 390 

model generally captures the plume injection fractions compared to the MISR observations, with a 

normalized mean bias (NMB) of 1.3%correlation coefficient of 0.73 and a RMSE of 0.22. The model 

explains 53% of the variance in the injection fractions derived from MISR, with overestimates at the low 

end and underestimates at the high end of the distribution, which.  can be partly attributed to systematic 

biases associated with ensemble-tree machine learning regressions (Zhang and Lu, 2011; Belitz and 395 

Stackelberg, 2021). In addition, we include only 191 records of plume height retrievals in November 2019, 

most of which are associated with large injection fractions. This relatively limited plume record may not 

have been adequate to predict the plume behavior of intense fires with confidence. We also compare the 

observed the model fire emission fluxes injected above the PBL (Figure 2d3b). Here our model successfully 

captures 88% of the variance in the observed fluxes in the test dataset, with a normalized mean bias (NMB) 400 

of 10%. The high model bias for small injection fractions leads to only a slight overestimate of smoke fluxes 

above the boundary layer, as such small fractions are generally associated with low mass fluxes. 

3.3 Predictor importance forEvaluation of predicting plume injection fractions predicted by random 

forest  

Figure 3a compares the plume injection fractions above the PBL forecast by the random forest model against 405 

those derived from the MISR plume profiles and daily mean PBL height. These samples are from the test 

dataset, which is independent from the data used for random forest training. Our random forest model 

generally captures the plume injection fractions compared to the MISR observations, with a correlation 

coefficient of 0.73 and a RMSE of 0.22. The model explains 53% of the variance in the injection fractions 

derived from MISR, with overestimates at the low end and underestimates at the high end of the distribution. 410 

We also compare the observed the model fire emission fluxes injected above the PBL (Figure 3b). Here our 

model successfully captures 88% of the variance in the observed fluxes in the test dataset, with a normalized 

mean bias (NMB) of 10%. The high model bias for small injection fractions leads to only a slight overestimate 

of smoke fluxes above the boundary layer, as such small fractions are generally associated with low mass fluxes. 

Figure 3c shows the importance of each predictor from the random forest model, which is calculated as 415 

described in Section 2.2.3. Larger values indicate greater importance. We find that the important variables 

include daily mean PBL height (PBLH), air temperature at 2 m (T2), meridional wind speed at 10 m (V10), 

and the corresponding fire emissions (EMIS). The first three variables are highly related todetermine 
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ambient atmospheric stability (Mohan and Siddiqui, 1998) and fire behavior (Schroeder and Buck, 1970)., 

and Wildfire smoke disperses more under higher PBL heights and unstable atmospheric conditions, which 420 

in turn may be affected by the movement of warmer air into the area near the surface or colder air into the 

area aloft (Schroeder and Buck, 1970). Thermal advection can be highly related to the meridional wind 

speed. Ffire emissions implicitly reflect both the fire intensity and fuel load. The combined effects of these 

factors thus influence the degree to which the smoke plume is injected above the boundary layer. The 

maximum FRP within the plume is relatively less important predicting injection fractions above the PBL, 425 

consistent with previous studies which documented the weak correlation between FRP and injection height 

(Kahn et al., 2007; Val Martin et al., 2012). This weak correlation can be traced in part to clouds or smoke 

obscuring fires from satellite detection or to incomplete knowledge of the local temperature profile. 

Previous studies have attempted to directly correlate plume injection heights with FRP observations. 

However, the relationship between observed FRP and the convective heat flux driving the plume rise 430 

depends in large part on the local temperature profile which may not be well known (Kahn et al., 2007). In 

addition, the satellite pixels may be only partly filled by fire, leading to an underestimate of the heat flux 

driving plume rise. 

3.4 Comparison of plume injection fractions calculated by random forest and climatological injection 

profiles 435 

Figure 4 illustrates the spatial distributions of annual mean fractions of total fire emissions injected above 

the PBL in each grid cell, calculated by the two methods during April to January of the next year, averaged 

over 2009 to 2020. (This timeframe includes the fire seasons of both northern and southeastern Australia.) 

The injection fractions derived from the climatological injection profiles range from 10 to 50% across much 

of northern Australia. In contrast, the random forest method predicts strong lofting of smoke in more limited 440 

regions in FNQ and in the eastern area of the Top End, where about 30% of total fire emissions are injected 

into the free troposphere. Elsewhere in northern Australia, the random forest method yields injection 

fractions above the PBL of only 10% to 20% of total fire emissions. In the coastal areas of southeastern 

Australia, the climatological method estimates that less than 40% of fire emissions are lifted above the 

boundary layer, while the random forest method predicts that the injection fractions account for 40-60%. 445 

Put another way, the climatological method predicts that about ~18% less OC emissions remain within the 

PBL on average over northern Australia, compared to the random forest method (Figure 4c). Over 

southeastern Australia, the situation is reversed, with INJ-CLIM predicting ~14% more emissions within 

the PBL on average than INJ-RF (Figure 4c). In southeastern Australia, we find that the spatial distribution 

of large plume injection fractions predicted by random forest is highly correlated with that of high OC fire 450 
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emissions in coastal areas (Figure 1). Given the good match of these injection fractions with MISR 

observations, we conclude that our random forest model better captures extreme wildfire events compared 

to the climatological method due to inclusion of daily fire emissions and FRP as predictors. 

Figure 5 compares the estimated monthly mean OC fire emissions within the PBL using the two methods 

in northern Australia and southeastern Australia during their respective fire seasons from 2009 to 2020. In 455 

northern Australia, the climatological method predicts an average 17.6 Gg month-1 of fire-emitted OC lifted 

above the PBL, or 45% of the total OC fire emissions (39 Gg month-1) during the fire season (April to 

December). In contrast, the random forest method predicts just 10.6 Gg month-1 of fire-emitted OC lifted 

above the PBL, or just 27% of total OC fire emissions on average (Figure 5c). Although there is large 

interannual variation of monthly mean total OC fire emissions, ranging from 18.6 Gg month-1 to 62.9 Gg 460 

month-1, neither method shows a long-term trend of plume injection fractions in northern Australia over the 

last decade. In sSoutheastern Australia,  shows even more dramaticthe interannual changes in both fire 

emissions and plume injection fractions estimated by INJ-CLIM and INJ-RF methods are more pronounced 

from 2009 to 2020 compared to those in northern Australia. This is due to the dramatic changes in total 

amounts of wildfires and fire intensity in this region. In 2019, monthly mean total OC fire emission during 465 

the extreme fire season is 481 Gg month-1, significantly higher than in other years, in which total OC fire 

emissions average just 13.7 Gg month-1 (Figure 5b). In addition, Figure 5d shows that 48% of total OC fire 

emissions are released above the PBL in 2019 forecast by the random forest model, much larger than the 

injection fraction (30%) estimated by climatological method. During other years, the injection fractions 

estimated by the two methods are similar, with mean values of 33.5% (climatological injection profiles) 470 

and 37.9% (random forest model). On average across southeastern Australia, the climatological method 

and random forest method yield 31% and 45%, respectively, of total fire emissions rising above the PBL 

from 2009 to 2020. 

4 Application to smoke PM2.5 and their contributions to air quality across Australia during fire 

seasons 475 

4.1 Validation of total PM2.5 simulated by sensitivity experiments 

We apply the resulting plume injection fractions quantified by the two methods to smoke PM2.5 

simulations using the STILT model at 12 receptors in nine key cities with large populations during the fire 

seasons from 2009 to 2020. Figure 6 shows the receptor locations, which are located in the northern and 

southeastern Australia. The three sensitivity experiments (CTL, INJ-CLIM, and INJ-RF) are driven by fire 480 

emissions with different injection scenarios, as described in Section 2.3.2 and Table 2. We rely on the 
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ground-based measurements of total PM2.5 concentrations and the estimated non-fire PM2.5 concentrations 

(described in Section 2.4) to test the accuracy of our two approaches for quantifying the plume injection 

fractions and their impacts on long-term smoke exposure. Total modeled PM2.5 is assumed to consist of 

smoke PM2.5 and non-fire PM2.5. Table S1 shows the statistics of annual mean surface total PM2.5 simulated 485 

by the three sensitivity experiments, compared to total PM2.5 observations at 12 receptors during the fire 

seasons over the last decade. The three experiments reproduce the interannual variability of PM2.5 

concentrations with temporal correlation coefficients ranging from 0.54 to 0.99, except for the receptor 

Footscray in Melbourne. The NMBs and RMSEs between the simulations and observations vary depending 

on the injection scenario, ranging from -32.2% to 19% for NMBs and 0.69 μg m-3 to 7.0 μg m-3 for RMSEs. 490 

At most sites, the results from the INJ-RF and INJ-CLIM experiments yield relatively lower RMSEs and 

NMBs against observations compared to the CTL experiment, indicating the importance of considering 

plume injection heights on modeling smoke concentration for exposure estimatesexposure in Australia. 

However, there are large biases in simulated total PM2.5 concentrations from the INJ-RF experiment 

compared to the observations in Gladstone, Brisbane, Wollongong, and Albury. In Gladstone, Wollongong, 495 

and Albury, we also find the low biases in simulated total PM2.5 concentrations from the CTL experiment, 

indicating that the total fire emissions from the original GFED 4.1s or the estimated non-fire PM2.5 

concentrations may be underestimated. The inclusion of plume injection in the INJ-RF and INJ-CLIM 

experiments thus aggravate low biases in simulated smoke PM2.5 concentrations over the three cities. In 

Brisbane, we speculate that these biases arise from neglect in our model setup from downward mixing of 500 

smoke plumes in remote regions (Section 2.3.2). 

Figure 7 compares the time series of total PM2.5 concentrations simulated by the three experiments against 

the surface measurements at six representative sites in northern and southeastern Australia during the fire 

season in 2019-2020. We use the 10-day averages of simulated total PM2.5 concentrations to reduce the 

impacts of weather conditions on day-to-day variability of non-fire PM2.5, which is set to a constant value 505 

for each year at each receptor in our study, and to smooth out the response of smoke PM2.5 to modeled 

fluctuations in fire activity. These fluctuations depend on the daily scale factors provided by GFED 4.1s 

and are somewhat uncertain. To reduce some of the variability caused by fluctuations in fire activity or 

weather, the figures show the 10-day moving average of daily PM2.5 concentrations. The three experiments 

successfully capture the remaining variability of PM2.5 with temporal correlation coefficients ranging from 510 

0.59 to 0.93, indicating that smoke PM2.5 contributes much of the synoptic-scale variation of total PM2.5 in 

these cities during the fire season. Compared to the CTL experiment, the INJ-RF experiment significantly 

reduces the overestimate of total PM2.5 concentration in Newcastle (77.5% to 9.2%), Sydney (27.9% to -

6.3%), and Canberra (47% to -8.2%), three cities which are close to the most extreme fire events of 2019-

2020. In particular, compared to results from the INJ-CLIM experiment, the peak values of total PM2.5 515 
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simulated by INJ-RF experiment agree best with observations in Newcastle and Sydney during the 

megafires of November to January. In Melbourne, three experiments capture fire events from December to 

January with temporal correlation coefficients over 0.92. However, the simulated total PM2.5 concentrations 

are underestimated with NMBs ranging from -28.2% to -20.9% in all three experiments. Again, the peak 

values of smoke PM2.5 concentrations are also unable to be captured by CTL experiment, which can be 520 

traced to the low biases from the fire emission inventory. 

We further validate the time series of simulated and observed total PM2.5 concentrations at all receptors, 

averaged over their respective observation periods (Figure S1 and Figure S2). Table S2 shows the statistics 

for daily mean PM2.5 concentrations simulated by CTL, INJ-CLIM, and INJ-RF experiments, compared to 

the ground-based observations at 12 receptors. These average concentrations reveal the long-term smoke 525 

exposure at these receptors. The three model experiments successfully reproduce the time series of daily 

PM2.5 at most receptor cities except for Wollongong and Melbourne, with temporal correlation coefficients 

ranging from 0.4 to 0.93. In Wollongong and Melbourne (Footscray), where R=0.27 and 0.254, smoke 

PM2.5 contributes only 10% and 5% of total PM2.5 from 2009 to 2020 (Figure 6). The daily variations of 

PM2.5 in the two cities are thus mainly affected by weather conditions and anthropogenic emissions in some 530 

low-fire years, and our model is unable to capture this.  

4.2 Impacts of plume injection heights on annual mean smoke exposure in northern and southeastern 

Australia 

Figure 8 compares the annual mean smoke PM2.5 simulated by STILT and background PM2.5 against 

ground-based observations of total PM2.5 at six representative sites in Australia over the last decade. Figure 535 

S3 shows the results in other six sites. The differences in simulated total PM2.5 are driven by different plume 

injection scenarios and derived smoke PM2.5 concentrations. Figure 9 shows the mean sensitivity footprints 

at six representative cities during the fire seasons from 2009 to 2020. The panels indicate the time-average 

source regions of the air masses reaching these receptors within 120 hours. When these air masses originate 

from burning regions, the surface PM2.5 concentrations at the receptors show enhancements of smoke PM2.5. 540 

In contrast, the impacts of wildfire smoke are quite small when the upwind source regions are over the 

ocean or non-burning areas. 

Darwin is the capital city of Northern Territory located in the Top End, with long fire seasons from April 

to December. Figure 9a shows the annual mean sensitivity footprints in Darwin during the fire seasons from 

2009 to 2020. We find that this city is significantly affected by biomass burning in the Top End, where the 545 

mean sensitivity footprints are higher than 1×10-3 ppm µmol-1 m2 s (Figure 9a). In the CTL experiment, 

simulated total PM2.5 is 16.7% higher than the observations on average, with overestimates increasing to 
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31%-47% during the years with stronger fire emissions (e.g., 2011, 2012, and 20156). However, the INJ-

CLIM experiment underestimates the simulated total PM2.5 by 18.0%, indicating a likely overestimate of 

fire emissions injected above the PBL. One possible reason for this overestimate can be traced to the 550 

inaccuracies in the input data and the semi-empirical parameterization (Rémy et al., 2017). Based on Sofiev 

et al. (2013), plume injection height is proportional to the PBL height, which is usually large in northern 

Australia compared to other regions, leading to a higher injection fraction of fire emissions above the PBL. 

In the INJ-RF experiment, the mean simulated total PM2.5 concentrations are in best agreement with the 

surface measurements with a NMB of -2.5% averaged from 2011 to 2020. This finding demonstrates the 555 

importance of considering the plume injection heights of smoke PM2.5 during the severe fire seasons, as 

well as the regional differences in fire dynamics.  

Gladstone is located on the east coast of Queensland and is influenced by burning in eastern Australia 

(Figure 9b). We find that annual mean wildfire contributions to total PM2.5 varies greatly at this site, from 

2% to 36% over the last decade based on the results of INJ-RF experiment. Smoke PM2.5 concentrations 560 

account for less than 10% of the total PM2.5 in Gladstone during 2009 to 2010, 2012, and from 2014 to 

2017. During low-fire years, the low biases in simulated total PM2.5 are likely caused by an underestimate 

of background PM2.5 concentrations from anthropogenic emissions. During the high-fire years of 2013 and 

2018, the INJ-RF experiment performs better than the CTL experiment, with negligible NMBs of 0.8% and 

6.3%. In 2011 and 2019, however, INJ-RF underestimates total PM2.5 by 22% and 29.5%. The significant 565 

underestimates of total PM2.5 can be partially attributed to the low biases in the fire emission inventory, 

which also leads to 15% and 18% underestimates of total PM2.5 from the CTL experiment. Another reason 

may be neglect in our model setup of downward mixing of smoke far from the source regions. During the 

fire seasons in 2011 and 2019, Gladstone experiences the impacts of smoke from both local and remote 

burning regions in eastern coastal area. It is not clear whether these underestimates are due to the high 570 

biases in the fire emissions inventory or to weaknesses in the random forest model (Section 3.3). 

In southeastern Australia, we find similar trends in annual mean smoke PM2.5 concentrations and their 

contributions to total PM2.5 in Brisbane, Newcastle, and Sydney (Figure 8c, 8d, and 8e). These sites are 

sensitive to the fire emissions in eastern coastal areas (Figure 9c, 9d, and 9e). Figure 9c, 9d, and 9e show 

that general upwind regions to the three cities are over both land and ocean from 2009 to 2020. During the 575 

2019 high-fire year, the CTL experiment greatly overestimates total PM2.5 concentrations by 73% and 30% 

in Newcastle and Sydney, respectively. Annual mean smoke PM2.5 in the CTL simulation is even larger 

than observed total PM2.5 in Newcastle, which suggests that a considerable fraction of fire emissions is 

released above the PBL in the source regions upwind of this city. The CTL experiment also overestimates 

total PM2.5 concentrations by 30% to 54% in Brisbane during 2010, 2012 to 2013, and 2018, and by 15% 580 

to 29% in Sydney from 2012 to 2013. The contributions of smoke PM2.5 to total PM2.5 ranges from 20% to 
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45% during these years. The INJ-CLIM experiment partially improves the modeled smoke PM2.5 compared 

to the CTL experiment by introducing the climatological plume injection of fire emissions, but the 

climatological injection profiles are unable to accurately reflect the fire emissions injections during severe 

fire seasons. In contrast, the INJ-RF experiment best matches the smoke PM2.5 simulations in the cities near 585 

the burning regions during these high-fire years. For example, INJ-RF and INJ-CLIM reduce the large CTL 

overestimate of total PM2.5 concentrations in Newcastle from 73% to 6.6% (INJ-RF) and 25.5% (INJ-CLIM) 

during 2019. But in remote downwind regions, both INJ-RF and INJ-CLIM experiments underestimate the 

smoke PM2.5 concentrations in 2019, probably due to neglect in our model of downward mixing of fire 

plumes from high altitudes. The INJ-CLIM experiment estimates more fire emissions remaining within the 590 

PBL, which yields a smaller low bias in Brisbane. INJ-RF yields NMBs of total PM2.5 ranging from 1.5% 

to 24.3% compared to observations in Sydney and Brisbane during 2010, 2012, and 2013, smaller than the 

NMBs (6.3% to 54%) in the CTL experiments. During other low-fire years when smoke PM2.5 contributes 

less than 10% of total PM2.5, the simulated smoke PM2.5 concentrations from INJ-CLIM and INJ-RF 

experiments are similar.  595 

Figure 8f shows the results of three simulations in Melbourne, where the fire seasons have significantly 

varied during the austral summer (December to the following January) over the last decade. The fire season 

in Melbourne is shifted later in the year compared to New South Wales and Queensland. The sensitivity 

footprint of Figure 9f illustrates that Melbourne is mainly affected by southwesterly winds, which may 

bring marine air onshore. Thus, fire emissions from southeastern Australia contribute just 1% to 8% of total 600 

PM2.5 concentrations at this site, except for the high-fire years 2009, 2011, and 2018-2019, when these 

contributions range from 15% to 22%. In the high-fire years, we also find a modest improvement in 

simulated total PM2.5 from the INJ-RF experiment (2009: NMB = 4.4%; 2018: NMB = 11.6%), compared 

to the results from the INJ-CLIM experiment (2009: NMB = 13.5%; 2018: NMB = 34.5%).  

4.3 Contributions of long-term smoke PM2.5 to regional air quality 605 

We next calculate the ratios of simulated smoke PM2.5 concentrations from the INJ-RF experiment to 

observed total PM2.5 concentrations averaged in respective observation periods at 12 receptors to quantify 

the long-term contributions of wildfires in key Australian cities (Figure 6). Here we use observations for 

total PM2.5 concentrations in these ratios, rather than the sum of modeled smoke and non-smoke PM2.5, as 

the observations provide greater certainty. Figure 10S4 shows the annual mean contributions of smoke 610 

PM2.5 at all receptors during the last decade. On average, the long-term smoke PM2.5 accounts for 5% to 

52% of total PM2.5 across all receptors during the fire seasons. Smoke PM2.5 contributes the most in Darwin, 

accounting for 35% to 74% from 2011 to 2020. In the seven receptors located in the eastern coastal area, 

mean smoke PM2.5 contributions range from 9% to 23% with large interannual variations. For example, at 
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the Liverpool site in Sydney, smoke PM2.5 accounts for 4% to 38% of total PM2.5, and as much as 33% to 615 

38% during the intense 2013 and 2019 fire seasons. In other inland receptors and Melbourne, the annual 

smoke PM2.5 contributions are usually less than 10%, but the contributions rise as high as 20% during high-

fire years of 2009, 2011, and 2019 in southeastern Australia. The large mean smoke contribution (73%) in 

Florey, a suburb of Canberra, is caused by the extreme fire events in 2019. The smoke contributions are 

less than 5% in other years from 2014 to 2020. 620 

Figure S45 shows the contributions of wildfires to total PM2.5 during the 2019-2020 fire season, when 

extreme fire events occurred in southeastern Australia. We find that in northern cities, the smoke PM2.5 

contributions are consistent with those in the long-term averages (Figure 6). But in some densely populated 

cities in southeastern Australia, the contributions of smoke PM2.5 significantly increase during this time 

frame, from 17% to 38% in Sydney, 17% to 54% in Newcastle, 40% to 73% in Canberra, and 9% to 15% 625 

in Melbourne. Our results highlight the short-term impacts that this severe wildfire season had on regional 

air quality. 

At most sites examined in Australia, smoke PM2.5 drives the seasonal variations of total PM2.5. Figure 

S56 shows the monthly mean contributions of smoke PM2.5 at six representative sites over the last decade. 

In Darwin, mean smoke PM2.5 contributions rise to over 50% from May to August, but fall to less than 20% 630 

from November to December. This seasonality is consistent over the last decade and can be traced to the 

influence of the Australian monsoon, as described in the IntroductionSection 3.1. The wildfires in the Top 

End and FNQ usually last from April to December. From April to August, a high-pressure system is 

typically located in southern Australia. Ssoutheasterly winds from this area are warm and dry, bringing 

smoke from burning regions in the Top End to Darwin. After September, the monsoon carries warm and 635 

moist oceanic air into Darwin from the northwest, limiting the impact of wildfire smoke emitted over the 

Top End and FNQ on air quality into the city. The  STILT model usually yields a better performance 

capturing the patterns of sensitivity footprints due to the reliable meteorological variables provided by 

GDAS and GFS. In southeastern Australia, the peak time of smoke PM2.5 contributions to total PM2.5 are 

from August to the following JanuaryDecember, lagging that in northern Australia. Air quality in the other 640 

five cities that we examine are affected by surface air fluxes from both land and ocean. In Gladstone, smoke 

PM2.5 accounts for less than 5% during April to July as a result of low fire emissions in the upwind eastern 

coastal area. During August to December, mean smoke PM2.5 contributions in this city increase from 8% to 

16% due to more frequent fire activity in the region. In Brisbane, Newcastle, Sydney, and Melbourne, the 

peak fire periods occur during October to January, when summer heat dries out the forest and grasses that 645 

fuel the fires. These four cities then become vulnerable to the threat of wildfires smoke, with mean 

contributions to total PM2.5 ranging from 13% to 25%. However, the wildfire events in southeastern 

Australia experience large interannual variability, resulting in variable spatiotemporal distributions of fire 
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emissions during fire seasons over the last decade. Air quality in the other five cities of southeastern 

Australia that we examine are affected by surface air fluxes from both land and ocean. The day-to-day 650 

variability of sensitivity footprints in these receptors are pronounced, which may be challenging for the 

STILT model to accurately reproduce.  

5 Discussion and conclusion 

We have developed two approaches to quantify the plume injection fractions above the PBL over 

Australia during the fire seasons from 2009 to 2020, with the goal of improving estimates of smoke PM2.5 655 

exposure in cities downwind of fires. Both methods estimate the daily fraction of smoke plumes injected 

above the PBL. The climatological approach is based mainly on the climatological monthly mean injection 

profiles from IS4FIRES and daily injection heights compiled by the GFAS emission inventory. For the 

second approach, we train a random forest model to predict the daily plume injection fractions, using plume 

heights derived from MISR observations, assimilated meteorology, and fire information from MODIS and 660 

GFED 4.1s. The climatological method can explain 76% of variances in daily mass flux of fire emissions 

injected above the PBL derived from MISR, but it underestimates the mean value of this flux by 63% in 

the test dataset. A likely reason for this weakness is that the climatological injection profiles cannot capture 

the spatiotemporal variability of plume injection fractions. The resulting random forest model, in contrast, 

more successfully reproduces the mass flux of fire emissions injected above the PBL, with an R2 of 0.88 665 

and NMB of 10%, compared to MISR observations. To quantify the impact of plume injection fractions on 

smoke air quality, we then apply total fire emissions to STILT together with the plume injection fractions 

that remain within the PBL.  

We find that characterization of the plume injection fractions greatly affects estimates of the surface daily 

smoke PM2.5 in northern and southeastern Australia, especially during severe fire seasons when intense heat 670 

from fires can loft smoke high in the troposphere or even to the stratosphere. The random forest model 

predicts plume behavior that best agrees with observed surface PM2.5, especially over the receptors near the 

burning regions during most high-fire years. For example, in northern Australia, when assuming that all 

fire emissions are released within the PBL, STILT generates total PM2.5 concentrations ~16% higher than 

surface observations on average in Darwin during the last decade. Using the climatological method, 675 

however, we estimate that ~45% of smoke emissions rise above the PBL at Darwin, while the random forest 

method estimates just 27%. Applying these plume injection fractions to STILT reduces the NMBs between 

simulated and observed total PM2.5 concentrations to -18% for the climatological method and -2.5% for the 

random forest method. In southeastern Australia, we find that both fire frequency and injection fractions 

significantly vary over the last decade. During the severe fire season of 2019, the random forest method 680 
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predicts that 48% of smoke plume mass rises above the PBL, much higher than the 30% estimated by 

climatological method. In Sydney and Newcastle, these two methods generate surface concentrations in 

better agreement with observations, with NMBs of -4.5% (INJ-RF) to -7.0% (INJ-CLIM) in Sydney and 

6.6% (INJ-RF) to 25.5% (INJ-CLIM) in Newcastle. However, the two methods are unable to quantify the 

possible downward mixing of fire smoke plumes in downwind regions and the subsequent impact on surface 685 

air in these regions. The INJ-RF method leads to more pronounced underestimates of surface PM2.5 

concentrations in Brisbane, Gladstone, and Melbourne as it predicts relatively small fractions of fire 

emissions remaining within the PBL in the source grids compared to the INJ-CLIM method. In this study, 

fire emissions injected above the PBL are assumed to have no impacts on surface PM2.5 concentrations 

downwind. Future studies can explore the impacts of the long-range transport and downward mixing of fire 690 

emissions on surface smoke concentrations by applying the estimated injection fractions to 3-D chemical 

transport models. 

We further quantify the long-term contributions of smoke PM2.5 in key Australian cities based on the 

simulations with the INJ-RF plume injection scenario. Results show that smoke PM2.5 accounts for 5% to 

52% of the total PM2.5 during the fire seasons from 2009 to 2020. In most cities in southeastern Australia, 695 

we find large interannual variations of smoke PM2.5 contribution to total PM2.5, ranging from 1% to 73%, 

suggesting the vulnerability of this region to infrequent but extreme smoke events. For example, during the 

2019-2020 “Black Summer,” smoke accounts for 38% of total PM2.5 in Sydney, 54% in Newcastle, and 73% 

in the Canberra, indicating the vulnerability of populations living close to the intense wildfires. 

Climate change is projected to increase fire frequency in many regions worldwide (Abatzoglou and 700 

Williams, 2016; Di Virgilio et al., 2019; Canadell et al., 2021), and knowledge of plume behavior is 

essential to accurately quantify the resulting smoke exposure and health impacts. Our random forest model 

for calculating plume injection fractions promises to improve assessment of surface smoke concentrations 

downwind of fires. The model can predict the daily plume injection fractions above the PBL at 0.25° × 0.25° 

horizontal resolution or higher, depending on the spatial resolution of the fire emission inventory. Thus, 705 

this approach predicts plume behavior at a higher spatiotemporal resolution than the climatological 

approach used here. Our method can be easily applied to other regions and implemented in 3-D chemical 

transport models, which can better represent the long-term transport of smoke in vertical layers than can 

Lagrangian plume models like STILT. The accuracy of the random forest predictions may be further 

improved once more satellite retrievals of fire plume heights become available for model training. The 710 

utility of the machine learning approach can also be explored in regions where satellite observations of 

plume heights are missed due to cloud obscuration or inadequate overpass frequency. 
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Table 1. Predictors and target variable for the random forest model in this study 

Target variable 

Short name Description (unit) Data source  

Plume injection 

fractions 

Daily plume injection fractions above 

the PBL (%) a 

MISR Plume Height Project 2 (1.1 km for blue 

band, 275 m for red band; daily);  

MERRA-2 (0.5° latitude × 0.625° longitude, 1-

hour) 

Predictors 

Short name Description (unit) Data source (spatial & temporal resolution) 

LANDUSE Land use classification (unitless) MODIS Land Cover Climate Modeling Grid 

Version 6 (MCD12C1)  

(0.05° latitude × 0.05° longitude, yearly) 

PBLH Daily mean PBL height (m) MERRA-2  

(0.5° latitude × 0.625° longitude, 1-hour) 

T2 Daily mean air temperature at 2 m (K) MERRA-2  

(0.5° latitude × 0.625° longitude, 1-hour) 

RH Daily mean surface relative humidity 

(%) 

MERRA-2 

(0.5° latitude × 0.625° longitude, 3-hour) 

U10 Daily mean U-wind at 10 m (m s-1) MERRA-2 

(0.5° latitude × 0.625° longitude, 1-hour) 

V10 Daily mean V-wind at 10 m (m s-1) MERRA-2 

(0.5° latitude × 0.625° longitude, 1-hour) 

PRECIP Daily total precipitation (kg m-2 s-1) MERRA-2 

(0.5° latitude × 0.625° longitude, 1-hour) 

EMIS Daily mean OC biomass burning 

emissions (kg m-2 s-1) 

GFED 4.1s 

(0.25° latitude × 0.25° longitude, daily) 

LON Longitude of the biomass burning 

emission grid cell (degree) 

GFED 4.1s 

(0.25° latitude × 0.25° longitude, daily) 

LAT Latitude of the biomass burning 

emission grid cell (degree) 

GFED 4.1s 

(0.25° latitude × 0.25° longitude, daily) 

FRP Maximum fire radiative power within 

the plume (MW) 

MODIS/Terra Thermal Anomalies/Fire 5-Min L2 

Swath 1km V061 (MOD14)  

(2030 km along swath × 2300 km across swath, 5-

minute) 
a Fraction of plume pixels injected above the PBL within plume perimeter. Detailed calculation is described in Eq. 
(1) Section 2.2.1. 985 
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Table 2. Configurations of STILT experiments in this study. 

Experiments Case CTLa Case INJ-CLIMb Case INJ-RFc 
Domain (spatial 
resolution) 

112.0° E to 165.5° E, 45.5° S to 9.5° S (0.25° × 0.25°) 

Simulation period April 1st to December 31st (for 2 receptors in northern Australia) 
August 1st to December 31st (for 10 receptors in southeastern Australia) 

Backward simulation 
time (start time) 

120-hr (00:00:00 AEST, UTC+10) 

Air parcel number 1000 

Meteorological data, 
spatial resolution (years) 

GDAS, 0.5° × 0.5° (2009 to 2018) 
GFS, 0.25° × 0.25° (2019 to 2020) 

STILT algorithm Gaussian kernel density estimation w/o the hyper-near field vertical mixing depth 
correction 

Fire emissions No scaling Scaling with injection 
fraction from the 
climatological method 

Scaling with injection 
fraction from the random 
forest method 

a Case CTL represents the control experiment that assumes total fire emissions are released within the PBL. 990 
b Case INJ-CLIM represents the first sensitivity experiment that assumes some fire emissions are injected above the 
PBL based on injection fractions from the climatological method. 
c Case INJ-RF represents the second sensitivity experiment that assumes some fire emissions are injected above the 
PBL based on injection fractions from the random forest method. 
  995 
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Figure 1. Spatial distributions of annual mean total OC fire emissions during April to the following 
January from 2009 to 2020, in units of Gg month-1. The dashed boxes represent the northern and 
southeastern Australia in this study. Also shown are the locations of the Top End and Far North 1000 
Queensland (FNQ).  
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Figure 2. (a) Scatter plots of plume injection fractions above the PBL calculated bywith the (a) 
climatological method and by (c) random forest, compared to the MISR derived plume injection fractions. 
(b) Scatter plots of mass fluxes of fire emissions injected above the PBL estimated by injection fractions 1005 
from (b) climatological method and (d) random forest, compared to MISR observations, in units of kg m-2 
s-1. Also shown are the R2 values and the RMSEs and NMBs between the predictions and MISR 
observations. The number of samples is 2212.  
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Figure 3. (a) Scatter plot of plume injection fractions above the PBL predicted by random forest, compared 1010 
to the MISR derived plume injection fractions. (b) Scatter plot of mass fluxes of fire emissions injected 
above the PBL estimated by injection fractions from random forest predictions, compared to MISR 
observations, in units of kg m-2 s-1. Also shown are the R-squareds and RMSEs between the predictions and 
MISR observations. The number of samples from the test dataset is 200. (c) The importance of each 
predictor in the resulting random forest model. (PBLH stands for the  is daily mean PBL height; T2, daily 1015 
mean air temperature at 2 m; V10, daily mean meridional wind speed at 10 m; EMIS, daily mean OC fire 
emission flux; LON/LAT, the longitude and latitude of the plume source point; U10, zonal wind speed at 
10 m, PRECIP: daily total precipitation, RH: daily mean relative humidity; LANDUSE, land use 
classification; and FRP, maximum fire radiative power within the plume).  
  1020 
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Figure 4. Spatial distributions of mean fractions of total OC fire emissions injected above the PBL (in units 
of %) estimated by (a) climatological method (INJ-CLIM) and (b) random forest method (INJ-RF), as well 
as (c) the percent differences in OC fire emissions within the PBL between the two methods relative to total 
OC fire emissions during April to the following January from 2009 to 2020. 1025 
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Figure 5. (a, b) Estimated monthly mean OC fire emissions released within the PBL and (c, d) annual mean 
fractions of OC fire emissions injected above the PBL based on the climatological method (INJ-CLIM, 
green bars) and the random forest method (INJ-RF, red bars) summed over all grid cells in northern 1030 
Australia during April to December (left column) and in southeastern Australia during August to the 
following January (right column) from 2009 to 2020. Also shown are the monthly mean total fire emissions 
of OC during the respective fire seasons in northern and southeastern Australia (Total, blue bars in a and 
b). The y-axis of panel 5a and 5b areis on ain log scale. We assume that the plume injection fractions for 
BC fire emissions are the same as those for OC fire emissions. 1035 
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Figure 6. Contributions of simulated smoke PM2.5 concentrations from the INJ-RF experiment to the 
observed total PM2.5 concentrations (numbers on the pie charts) at 12 receptors averaged over the fire 
seasons of their respective observation periods (Table S1). Names of the observation sites are given in 
parentheses. Red sectors represent smoke contributions, while dark yellow sectors signify the differences 1040 
between observed total PM2.5 and simulated smoke PM2.5 concentrations – i.e., the non-fire PM2.5. Small 
circles on map represent the locations of these receptors. Different colors (red, blue, and black) are used to 
distinguish adjacent receptors.   
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Figure 7. Time series of 10-day moving average of observed and simulated total PM2.5 concentrations from 1045 
the CTL (blue), INJ-CLIM (green), and INJ-RF (red) experiments during the fire seasons of 2019-2020 at 
six sample receptors: (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (c) Newcastle (Wallsend), 
(d) Sydney (Liverpool), (e) Canberra (Florey), and (f) Melbourne (Footscray). Shown inset are the temporal 
correlation coefficients R, NMBs, and RMSEs of daily total PM2.5 concentrations compared to the surface 
measurements.  1050 
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Figure 8. Mean simulated concentrations of smoke PM2.5 and background PM2.5 from the three sensitivity 
experiments (blue: CTL, green: INJ-CLIM, red: INJ-RF), as well as observed total PM2.5 concentrations 
(black: OBS) in (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (c) Brisbane (Springwood), (d) 1055 
Newcastle (Wallsend), (e) Sydney (Liverpool), and (f) Melbourne (Alphington). The different receptors 
have different observation periods. The modeled total PM2.5 concentrations are designated by the height of 
the colored bars, consisting of smoke PM2.5 (color-filled bars) and the background PM2.5 (empty bars) in 
units of μg m-3. 

  1060 
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Figure 9. Annual mMean of sensitivity footprints simulated by STILT in unit of ppm umol-1 m2 s during 
the fire seasons (April to December for Darwin and Gladstone; August to the following January for other 
cities) in (a) Darwin (Palmerston), (b) Gladstone (South Gladstone), (c) Brisbane (Springwood), (d) 
Newcastle (Wallsend), (e) Sydney (Liverpool) and (f) Melbourne (Alphington) from 2009 to 2020. The 1065 
names in parentheses are site names. The black squarescircles represent the locations of receptors. 
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Figure 10. Boxplot of annual contributions of simulated smoke PM2.5 concentrations from the INJ-RF 1070 
experiment to observed total PM2.5 concentrations at 12 receptors during the fire seasons of respective 
observations periods. The order of 12 receptors in this figure is based on the locations from north to south 
in Australia. The bottom, top, and red lines in the middle of each box are the 25th and 75th percentiles, as 
well as the median of all data. The distance between the 75th and 25th percentiles is the interquartile range. 
The lower and upper whisker limits represent the most extreme data values within 1.5 times the 1075 
interquartile range. The data greater than 1.5 times outside the interquartile range are considered outliers 
and are shown as red crosses. 
 


