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Supplement S1 

This section shows volumes of water withdrawal for irrigation and of ET increase from ORCHIDEE and 10 

AQUASTAT for 1998-2002, as well as the irrigation rate (Sacks et al., 2009) in Fig. S1. Figures S2 and 

S3 show difference between Irr and NoIrr for additional variables, including energy terms. Figure S4 

shows basins included in the analysis of the effect of the new irrigation module, and the corresponding 

discharge stations. Figure S5 shows the fraction of irrigated paddy rice, with a focus on Southeast Asia. 

S6 shows the irrigated area for both datasets used on the simulations, HID and LUH2. Finally, S7 shows 15 

the spatial distribution of ET bias compared to FLUXCOM, and zonal average values for simulated and 

observed datasets, and S8 shows the same information (bias modelling compared to LAI3g and zonal 

average values) for LAI. 

 

We also present two tables. Table S1 shows goodness-of-fit metrics for ORCHIDEE discharge values 20 

and observed values from GRDC selected stations. We use four metrics: relative bias (equation 1), the 

relative change of amplitude of average monthly values (equation 2), the Pearson's correlation coefficient 

r (equation 3, (Helsel and Hirsch, 1992) and Kling-Gupta Efficiency KGE (equation 4, (Gupta et al., 2009; 

Kling et al., 2012)). 
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Here S and O represents simulated and observed values, respectively, n represents the monthly values 

from the time-series, j represents one of 12 the months in a year, 𝜎 represents the standard deviation, and 

𝜇 represents the average value, with indices s and o indicating simulated or observed time series. 35 

 

In table S2 we show the sum of the capacity of dams used for irrigation. We also present the average 

values at large river basin for irrigated fraction and irrigated paddy fraction, and the bias of 

evapotranspiration and irrigation. In table S3 we present trends on TWSA from our simulations and from 

GRACE datasets, the trends of the differences between simulations and GRACE, and the depletion 40 

estimates from (Wada et al., 2012). 

Text on figures S7 and S8 

The NoIrr simulation has a negative bias distribution when we compare this simulation with Fluxcom 

dataset in irrigated areas (Fig. S7-a). The activation of irrigation in Irr does not correct the distribution of 

the bias. At the regional scale however, we observe that irrigation activation reduces ET bias, for instance 45 

in Southern Asia and India, and in Southern Europe and the Mediterranean (for instance Spain). In China 

and the US, two irrigation hotspots, the reduction of the negative ET bias in the Irr simulation is small 

when we compare NoIrr and Irr simulations. Other areas pass from a negative to a positive bias between 

NoIrr and Irr simulations, for instance in Australia and South America. 
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The average zonal values at yearly, boreal winter, and boreal summer periods in the irrigated areas (Fig. 

S7-b) confirm that both simulations NoIrr and Irr underestimate ET when compared to the Fluxcom, with 
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local exceptions. On the other hand, the activation of irrigation reduces the ET bias for Fluxcom and leads 

to an overestimation for Gleam. Seasonal effects do not change this general pattern, but the extension and 

localization of the bias reduction.  55 

 

In the case of LAI, we observe that the NoIrr simulation has a positive bias when we compare it to the 

LAI3g dataset (Fig. S8-a) and that this positive bias increases in the Irr simulation, because irrigation 

enhances transpiration, thus photosynthesis and biomass production. In some areas of India, like the Indus 

river basin or Middle East, the activation of irrigation reduces a negative bias, but in general, the positive 60 

bias increases, for example in China.  

 

The mean zonal values (Fig. S8-b) show that the LAI increase is mostly found in the northern hemisphere 

and in a small part of the southern hemisphere, roughly following the increase in ET. Seasonally, increases 

of LAI also are mostly found in the northern hemisphere. For example, in the boreal winter (austral 65 

summer, thus high biomass production in the southern hemisphere), just small latitude bands in the 

southern hemisphere show a statistically detected change due to activation of irrigation. This is probably 

led by the zonal distribution of irrigated areas, mostly concentrated in the northern hemisphere. Other 

factors like PFT distribution and local climate could also influence the small effect of irrigation on LAI 

in the southern hemisphere. 70 
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Figure S.1  Volumes of water withdrawal for irrigation and ET increase (called irrigation 

requirement in AQUASTAT dataset) by country from ORCHIDEE (Irr simulation, average value 

for 1998-2002), and AQUASTAT (value around 2000), in km3/year (a). Irrigation rate from (Sacks 

et al., 2009) for year 2000, mm/d. 75 
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Figure S2  Yearly average difference for 1980 - 2013 between Irr and NoIrr of ET, mm/d (a), SM, 

mm (b), drainage, mm/d (c ), total runoff, mm/d (d ), groundwater reservoir, mm (e), river 

reservoir, mm (f), TWS, mm (g), and LAI, m/m (h). Statistical significance of the mean differences 
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is tested at each point with a Student’s test (p = 0.05). The areas with insignificant changes are left 

gray. 85 

 

 

Figure S3  Yearly average difference for 1980 - 2013 between Irr and NoIrr of bare soil E, mm/d 

(a), T, mm/d (b), net radiation W/m2 (c), SHF, W/m2 (d), mean surface temperature, °C (e),  and 

max. surface temperature, °C (f). Statistical significance of the mean differences is tested at each 90 

point with a Student’s test (p = 0.05). The areas with insignificant changes are left gray. 
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Figure S4  Limits of large basins used in the regional analysis (a). Discharge stations used in the 

comparison with ORCHIDEE outputs (b). 100 
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Figure S5  Fraction of irrigated paddy rice, and focus on Southeast Asia. Data comes from 

MIRCA2000 (Portmann et al., 2010). 

 

 

 110 

 



9 

 

 

 

 

 115 

 

Figure S6  Total irrigated surface in km2, for HID (Siebert et al., 2015) and LUH2 (Hurtt et al., 

2020). 
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Figure S7 Difference of yearly average values for 1980 - 2013 between NoIrr and Irr simulations, 

and Fluxcom (a) and for NoIrr and Irr simulations, for ET in mm/d. Statistical significance of the 

mean differences is tested at each point with a Student’s test (p = 0.05). The areas with insignificant 125 

changes or no irrigated fraction are left gray.  Zonal average values of areas with irrigated fractions 

for yearly, boreal summer (JJA) and boreal winter (DJF) of ET for period 1980 - 2013 (b) in mm/d. 

Gray areas for zonal average values depict the latitudes with significant differences between Irr 

and NoIrr simulation, according to the Student t-test (p = 0.05). 
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Figure S8 Difference of yearly average values for 1980 - 2013 between NoIrr and Irr simulations, 

and LAI3g (a) for LAI in $m^2$/$m^2$. Statistical significance of the mean differences is tested at 

each point with a Student’s test (p = 0.05). The areas with insignificant changes or no irrigated 

fraction are left gray. Zonal average values of areas with irrigated fractions for yearly, boreal 

summer (JJA) and boreal winter (DJF) of LAI for period 1980 - 2013 (b) in $m^2$/$m^2$. Gray 140 

areas for zonal average values depict the latitudes with significant differences between Irr and 

NoIrr simulation, according to the t-student test (p = 0.05).
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Table S1 Goodness-of-fit metrics for ORCHIDEE discharge values and GRDC selected stations. RelAmpli stands 

for relative change on amplitude, r for Pearson correlation coefficient, KGE for Kling-Gupta efficiency. 
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Table S2 Dams capacity used for irrigation, irrigated fraction and paddy irrigated fraction, ET and irrigation bias 150 

at large river basin scale. 

 

 

 

 155 

 

 

 

 



16 

 

Table S3 Trends of TWSA values from simulations (NoIrr and Irr) and from the average of GRACE datasets by 160 

country, difference between simulated trends and GRACE, and comparison with depletion values from (Wada et 

al., 2012). 

id Country NoIrr 
km3/y 

Irr 
km3/y 

GRACE 
km3/y 

NoIrr-GRACE 
km3/y 

Irr-GRACE 
km3/y 

Depletion from 
(Wada et al., 
2012)  km3/y 

1 India 10.42 8.03 -11.10 27.02 28.46 71.00 

2 United States 3.70 3.51 -64.58 69.71 65.08 32.00 

3 China 24.57 24.49 -15.16 38.16 38.36 22.00 

4 Pakistan 4.78 4.58 1.43 3.28 2.76 37.00 

5 Iran -0.18 -0.28 -20.40 19.93 20.29 27.00 

6 Mexico 1.62 1.35 -0.72 3.39 2.93 11.00 

7 Saudi Arabia -1.02 -0.98 -15.71 15.00 15.00 15.00 

8 Russian Federation 7.92 7.67 -70.76 69.62 60.27 1.50 

9 Italy 0.40 0.42 -0.59 0.86 0.97 2.30 

10 Turkey 0.12 0.16 -3.73 3.81 3.61 2.40 

11 Uzbekistan -0.83 -0.79 -2.69 1.81 1.89 4.00 

12 Egypt -0.88 -0.89 -4.49 3.65 3.32 3.00 

13 Bulgaria -0.01 -0.04 -0.63 0.57 0.56 2.00 

14 Spain -0.15 -0.14 0.10 0.33 0.30 1.70 

15 Argentina -11.43 -11.10 -34.76 25.09 25.23 0.90 

16 Libya -1.35 -1.34 -5.70 4.44 4.22 3.10 

17 Ukraine 0.71 0.63 -4.69 6.16 5.95 0.30 

18 Romania 0.78 0.43 -1.44 1.99 1.82 1.30 

19 Kazakhstan -1.08 -0.79 -18.33 19.06 19.30 2.00 

20 South Africa 0.64 0.70 3.92 -3.23 -3.19 1.50 

21 Algeria 1.07 1.07 -3.37 4.68 4.90 1.70 

22 Greece -0.17 -0.18 -0.21 0.11 0.10 0.34 

23 Morocco 1.09 1.04 1.63 -0.26 -0.19 1.60 

24 Australia 17.46 17.78 25.21 -3.25 -4.16 1.00 

25 Tajikistan -0.31 -0.31 -1.08 0.68 0.42 1.20 

26 Yemen -0.11 -0.11 -1.26 1.13 1.15 0.90 
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27 Turkmenistan -0.77 -0.70 0.00 -0.86 -0.85 1.25 

28 Syria -0.46 -0.42 -2.32 2.03 2.03 1.23 

29 United Arab Emirates 0.10 0.10 -0.19 0.33 0.33 1.18 

30 Tunisia -0.17 -0.16 -0.67 0.54 0.49 0.65 

31 Peru -6.17 -6.20 -4.44 -3.01 -3.74 0.32 

32 Bolivia 5.85 5.79 0.61 4.95 5.09 0.25 

33 Israel -0.06 -0.05 -0.13 0.08 0.09 0.38 

34 Kyrgyzstan -0.52 -0.47 -0.78 0.52 0.45 0.31 

35 Jordan -0.12 -0.12 -0.97 0.89 0.85 0.22 

36 Mauritania 0.94 0.94 1.12 -0.38 -0.45 0.36 

37 Oman 1.08 1.08 -0.69 1.88 1.83 0.20 

38 Kuwait -0.06 -0.06 -0.05 -0.01 0.00 0.25 

39 Qatar -0.01 -0.01 -0.05 0.04 0.04 0.15 
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