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Abstract.

Irrigation activities are important for sustaining food production, and account for 70% of total global water withdrawals.

In addition, due to increased evapotranspiration (ET) and changes on leaf area index (LAI), these activities have an impact

on hydrology and climate. In this paper we present a new irrigation scheme within the land surface model ORCHIDEE. It

restrains actual irrigation according to available freshwater by including a simple environmental limit and using allocation5

rules depending on local infrastructure. We perform a simple sensitivity analysis and parameter tuning to set the parameter

values and match the observed irrigation amounts against reported values, assuming uniform parameter values over land. Our

scheme matches irrigation withdrawals amounts at global scale, but we identify some areas in India, China and the US (some

of the most intensively irrigated regions worldwide) where irrigation is underestimated. In all irrigated areas, the scheme

reduces the negative bias of ET. It also exacerbates the positive bias of the leaf area index (LAI) except for the very intensively10

irrigated areas, where irrigation reduces a negative LAI bias. The increase of ET decreases river discharge values, in some cases

significantly, although this does not necessarily lead to a better representation of discharge dynamics. Irrigation, however, does

not have a large impact on the simulated total water storage anomalies (TWSA) and its trends. This may be partly explained

by the absence of non-renewable groundwater use, and its inclusion could increase irrigation estimates in arid and semiarid

regions by increasing the supply. Correlation of irrigation biases with landscape descriptors suggests that inclusion of irrigated15

rice and dam management could improve the irrigation estimates as well. Regardless of this complexity, our results show that

the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, which is important to

explore the joint evolution of climate, water resources and irrigation activities.
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1 Introduction20

Irrigation seeks to increase crop yields by reducing plant water stress (Siebert and Döll, 2010; Klein Goldewijk et al., 2017), and

supports about 43% of the world’s food production on about 20% of arable land (Siebert and Döll, 2010; Grafton et al., 2017).

The beneficial effects of irrigation on food production, population and economic growth, have dramatically pushed the increase

of irrigated areas during the 20th century, from 28 Mha in 1850 to 276 Mha in 2000 (Klein Goldewijk et al., 2017; Siebert

et al., 2015). As a consequence, by the year 2000, irrigation accounted for 70% of the total water withdrawn (between 265725

and 3594 km3/year). The consumptive water use, i.e. the part of the withdrawn water that actually becomes evapotranspiration

(ET) and does not flow to surface supplies and groundwater, represents half of that volume (between 1021-1598 km3/year,

around 1.7% of total continental ET of 75.6x103 km3/year according to Jung et al. (2019)) and represents around 90% of the

total consumptive water use by human activities (Pokhrel et al., 2016; Döll et al., 2012; Hoogeveen et al., 2015).

Water abstraction and corresponding ET increase have a direct impact on the water and energy balances, and on surface and30

subsurface hydrology (Döll et al., 2012; Taylor et al., 2013; Vicente-Serrano et al., 2019). Atmosphere reacts as well to these

changes on land surface fluxes, for instance with regional increases/decreases in rainfall rate, or decreases in temperature ex-

tremes (Lo and Famiglietti, 2013; Guimberteau et al., 2012b; Cook et al., 2015; Al-Yaari et al., 2019; Thiery et al., 2020). Thus

it was recently shown that climate models better capture historical trends in evapotranspiration if they account for irrigation

and its expansion, although the resulting cooling effect is too strong if irrigation is not limited by water availability (Al-Yaari35

et al., 2022). Finally, with the acceleration of climate change, the irrigation water demand is likely to increase, not only by

expansion of the irrigated area, but also by increasing temperature and changing precipitation variability (Wada et al., 2013).

All these impacts and effects have promoted the inclusion of irrigation inside land surface models (LSMs), which represent the

continental branch of the hydrologic cycle in the earth system models (Pokhrel et al., 2016).

Besides LSMs, global hydrology models (GHMs) also represent irrigation at global scale. Originally, GHMs were developed40

to assess water resources availability and water use. In GHMs, irrigation demand is equal to the increase of ET due to irrigation

(i.e. water that becomes evapotranspiration). This ET increase is estimated as the differences between crop-specific potential ET

and actual ET with no irrigation (Siebert and Döll, 2010; Mekonnen and Hoekstra, 2011; Wada and Bierkens, 2014; Chiarelli

et al., 2020). Following Allen G. et al. (2006), the crop specific potential ET is defined as ETc = kc ·ET0, where parameter

kc depends on crop-type and growing stage, and ET0 is the reference crop ET, corresponding to the atmospheric evaporative45

demand. Some models also consider conveyance losses and return flows to rivers and aquifers, i.e. they consider the total

water withdrawal (water demand plus losses), by using empirical ratios of irrigation efficiency (ratio of ET increase to water

withdrawal) or specific rules according to the irrigation technique (Rost et al., 2008; Jägermeyr et al., 2015). The advantage of

calculating the withdrawn volume is that it allows comparison and validation with datasets of reported values, for example the

FAO AQUASTAT dataset (Frenken and Gillet, 2012). GHMs explicitly represents water supply sources (Döll et al., 2012) and50

allow the estimation of non-sustainable groundwater used for irrigation (Wada et al., 2012). Some GHMs also simulate water

allocation (use of water by type of source) based on rules that use information of local infrastructure and environmental flow

estimations (Siebert et al., 2010; Hanasaki et al., 2008a).
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LSMs do not use in general a PET to estimate irrigation demand. The reason is that LSMs do not deduce ET from daily

PET input data but from surface energy balance at hourly and subhourly time steps. This difference raises consistency issues55

between empirical PET formulas and potential ET rates in LSMs (Barella-Ortiz et al., 2013). Some LSMs prescribe irrigation

rates estimated offline (Lo and Famiglietti, 2013; Cook et al., 2015), but most of LSMs and some GHMs estimate irrigation

demand by calculating a deficit, for instance, a soil moisture deficit between actual and a target soil moisture (Haddeland et al.,

2006; Hanasaki et al., 2008a; Leng et al., 2014; Pokhrel et al., 2015; Jägermeyr et al., 2015). Some LSMs, which benefit from

a physically based description of surface runoff and drainage, can explicitly calculate return flow, but conveyance losses are60

not explicitly included (Yin et al., 2020; Leng et al., 2017). In addition, irrigation shortage due to water availability is not

always well represented in those LSMs (and GHMs) including this feature, as some of them include a virtual infinite reservoir

to fulfill irrigation demand (Ozdogan et al., 2010; Leng et al., 2014; Pokhrel et al., 2012). This virtual reservoir may represent

fossil groundwater use and water table depletion, which is important in some areas like US high plains and India (Pokhrel

et al., 2015; Leng et al., 2017; Felfelani et al., 2021). Water allocation is commonly based on a stream-water-supply first rule65

(Guimberteau et al., 2012b) with some exceptions that use the global groundwater inventory from Siebert et al. (2010) (Leng

et al., 2017; Felfelani et al., 2021). These rather simple irrigation schemes are used in land surface-atmosphere simulations

to assess irrigation effects on climate (Puma and Cook, 2010; Lo and Famiglietti, 2013; Guimberteau et al., 2012b; Lo et al.,

2021) but not on water resources assessment.

ORCHIDEE, the LSM of the IPSL (Institut Pierre Simon Laplace) Earth system model (Krinner et al., 2005; Boucher70

et al., 2020) has been used to assess irrigation effects on climate. First attempts to crudely represent irrigation were based on

potential evaporation and potential transpiration for a generic crop type (de Rosnay et al., 2003; Guimberteau et al., 2012b). This

irrigation scheme restraints irrigation according to available water, and includes simple allocation rules. Recently, ORCHIDEE-

CROP, a version of the model that includes a crop phenology module, improved the irrigation scheme by representing flood

and paddy irrigation techniques, and was tested in offline mode in China (Yin et al., 2020). These improvements open the75

possibility to assess irrigation effects on water resources. This is important, as there is evidence that some modelling biases

within ORCHIDEE in offline and coupled modes are correlated to the surface equipped for irrigation (Mizuochi et al., 2021).

Here, we present evidence on the effect of irrigation on reduction of modelling biases in some key variables like ET and leaf

area index (LAI), and on river discharge and total water storage dynamics (TWSA). After describing the ORCHIDEE model

and the global irrigation scheme, we set the parameter values by using short simulations. We perform a sensitivity analysis and a80

simple parameter tuning to fit observed irrigation rates. We then perform long simulations and we compare irrigation estimates

to observations and corresponding variability due to parameter values and input maps. We validate irrigation estimates by

reported values, and we assess the spatial variability of the modelling bias. Then we assess the modelling bias against observed

datasets using a factor analysis, with and without irrigation, for ET and LAI. In large basins with extensive irrigation activities,

we compare simulated and observed values of discharge, and total water storage anomalies (TWSA). We also show some85

results on the correlation between the irrigation bias and some landscape descriptors, as a first step to improve the realism of

the scheme. Finally, we discuss the results and we present the main conclusions and perspectives.
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2 Model description

2.1 ORCHIDEE v2.2

ORCHIDEE describes the fluxes of mass, momentum, and heat between the surface and the atmosphere (Krinner et al., 2005).90

Here we use version 2.2, which is close to the version used for CMIP6 (corresponding to 2.0). Version 2.0 has been largely

described in many papers (Cheruy et al., 2020; Boucher et al., 2020; Tafasca et al., 2020) and version 2.2 only adds a few minor

bug corrections. We summarize the main characteristics of the model that mediate in the simulation of irrigation.

In each grid cell, vegetation is represented by a mosaic of up to 15 plant functional types (PFTs), including generic C3 and

C4 crops, as well as generic C4 grasses, and tropical, boreal and temperate C3 grasses. The PFTs fractions are described by95

the LUHv2 dataset (Lurton et al., 2020), and each PFT is characterized by a specific set of parameters, applied to same set of

equations (Boucher et al., 2020; Mizuochi et al., 2021). Plant phenology is controlled by the STOMATE module, which couples

photosynthesis and the carbon cycle and computes the evolution of the leaf area index (LAI), all these processes depending on

CO2 atmospheric concentration (Krinner et al., 2005).

A specialized version of ORCHIDEE has been proposed by Wu et al. (2016) and evaluated by Müller et al. (2017) to better100

describe temperate crops, with phenology thresholds based on accumulated degree days after sowing date, improved carbon

allocation to reconcile the calculations for leaf and root biomass and grain yield, and nitrogen limitation related to fertilization.

It was not used in this work by lack of ubiquitous parameters at global scale, so that C3 and C4 crops are simply assumed

to have the same phenology as natural grasslands, but with higher carboxylation rates and adapted maximum possible LAI

(Krinner et al., 2005). The crop growing season depends on mean annual air temperature, as detailed in Krinner et al. (2005).105

In cool regions, it starts after a predefined number of growing degree days, while in warm regions, it starts a predefined number

of days after soil moisture has reached its minimum during the dry season. In intermediate zones, the two criteria have to be

fulfilled. The end of the growing season also depends on temperature and water stress, and on leaf age.

Roots constitute an important link between the carbon and the water balance. In each PFT, root density decreases exponen-

tially with depth, and the parameter that controls the decay is PFT-dependent. It is worth noting that the root density profile is110

constant in time and goes down to the bottom of the soil column, set at 2 m, but forest PFTs have much denser roots than crop

and grass PFTs, especially in the bottom part of the soil (Wang et al., 2018). The resulting root density profile is combined

with the soil moisture profile and a water stress function to define the water stress factor of each PFT on transpiration (Tafasca

et al., 2020) and to estimate the water uptake for transpiration (de Rosnay et al., 2002).

Evapotranspiration is represented by a classical aerodynamic approach and is composed of snow sublimation, interception115

loss, bare soil evaporation (E), and transpiration (T). The first two proceed at a potential rate, while bare soil evaporation is

limited by upward diffusion of water through the soil, and transpiration is controlled by a stomatal resistance, which depends

on soil moisture and vegetation parameters. The vegetation types are grouped into three soil columns according to their physio-

logical behavior: high vegetation (eight forest PFTs), low vegetation (six PFTs for grasses and crops), and bare soil. While the

energy balance is calculated for the whole grid cell (Boucher et al., 2020), a separate water budget is calculated independently120

for each soil column, in order to prevent forest PFTs from depriving the other PFTs of soil moisture.
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Vertical soil water flow is represented by a 1-D Richards equation coupled to a mass balance, and lateral flow between cells

and soil columns is neglected (de Rosnay et al., 2002; Campoy et al., 2013). Here, soil depth is set to 2 meters, and discretized

into 22 layers to finely model lower layers implicated in drainage. Infiltration is simulated as a sharp wetting front based on the

Green and Ampt model (Tafasca et al., 2020; D’Orgeval et al., 2008). The resulting increase in top soil moisture is redistributed125

by the Richards equation. The bottom boundary condition assumes free drainage, equal to the hydraulic conductivity of the

deepest node. The saturated hydraulic conductivity decreases with depth, but roots increase the hydraulic conductivity near the

surface (D’Orgeval et al., 2008). Soil parameters are a function of soil texture (Tafasca et al., 2020), and the spatial distribution

is taken from the Zobler (1986) map.

A routing scheme transfers surface runoff and drainage from land to the ocean through a cascade of linear reservoirs (Ngo-130

Duc et al., 2007; Guimberteau et al., 2012a). Each grid cell is split into sub-basins according to a 0.5° flow direction map. Three

reservoirs are considered inside every sub-basin, representing groundwater, overland, and river reservoir, and each one presents

a distinct residence time (Ngo-Duc et al., 2007). The groundwater reservoir collects drainage from the soil column, while the

overland reservoir collects surface runoff. Both reservoirs are internal to each subbasin and flow to the stream reservoir, which

also collects streamflow from the upstream basins and contributes to large-scale routing across sub-basins and grid cells. Note135

that there are two surface reservoirs, overland representing the headwater streams, and river reservoir representing large rivers.

The water and energy budgets and the routing scheme are computed at the same 30-minute time step, while the carbon and

plant phenology processes in STOMATE are solved with a daily time step.

2.2 Irrigation scheme

The irrigation scheme (Figure 1) is based on the flood irrigation representation from Yin et al. (2020), but it includes some140

changes in the parameterization to run at global scale. The flood irrigation technique (which consists of adding water to the

soil surface to achieve a certain soil moisture content) is chosen for global simulations, as it is the most used (Jägermeyr et al.,

2015; Sacks et al., 2009).

Firstly, the scheme defines a root zone depth in the crop and grass soil column, based on the cumulative root density (CRD),

ranging from 0 at the soil surface to 1 at the soil bottom: the root zone comprises all soil layers with a CRD below a user-145

defined threshold, Rootlim. When the threshold is set to 0.9, the root zone includes 90% of the root system. For a 2-m soil

column with 22 layers, and an exponential root density decay of 4 (default value for crops and grasses in ORCHIDEE), this

threshold defines a root zone depth of 0.65 m, encompassing 11 soil layers.

We can then define a soil moisture deficit D [mm] in the root zone, as the sum of the difference between actual soil moisture

and a soil moisture target, in all layers of the root zone:150

D =
∑

i∈Root zone

max(0,βW fc
i −Wi), (1)

where Wi and W fc
i (both in mm) are the actual and field capacity soil moisture in soil layer i, respectively, and β is a user-

dependent parameter that controls the target value with respect to field capacity (shown in Fig. S10 with soil texture). When soil

moisture drops below the target, irrigation is triggered. To prevent irrigation when there is no plant development, for example
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Figure 1. ORCHIDEE model and new irrigation scheme. See text for explanation of parameters.

during winter, we set the deficit D to zero if all crops and grasses are below a certain LAI threshold, LAIlim. By doing so, we155

overlook irrigation used to enhance germination, and tend to underestimate irrigation amounts.

The irrigation requirement Ireq [mm/s] is calculated as:

Ireq = firr min(D/∆t,Imax), (2)

where firr is the fraction of irrigated surface [-] in the grid cell, defined by a map of irrigated fractions. The map that

prescribes the irrigated fraction may change every year, but note that we do not separate the irrigated area into a separate soil160

column, i.e. the soil column includes crops (both irrigated and rainfed) and grasses. Imax is a user-defined maximum hourly

irrigation rate [mm/h]. This third threshold is used to avoid excessive runoff production when the deficit is larger than the

infiltration capacity of the soil. Therefore, the deficit is fulfilled progressively, over the subsequent time step. The effective

irrigation (I , see below) is uniformly applied over the crop and grass soil column. Therefore, care must be taken by the model

that the irrigated fraction is not greater than the soil column. If the fraction of irrigated surface is much smaller than the crop165

and grass soil column, irrigation will eventually be spread over a larger area than the actually irrigated surface. This particular

case (an important difference in irrigated fraction and soil column fraction) could likely result in overestimation of the amount

of irrigation (mainly because the water put on the surface will not be sufficient to reach the soil moisture target, see Figure
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S9). Besides, the fraction of irrigation water that actually evaporates could be larger than in reality. The latter could lead to an

overestimation of the evapotranspiration increase, especially in areas that are energy-controlled (Puma and Cook, 2010) and an170

overestimation of irrigation efficiency.

Irrigation can be withdrawn from three routing reservoirs, but the effective water availability, Aw [mm], also depends on the

facility to access surface water and groundwater, and it can be reduced to preserve environmental flows:

Aw = fsw (a1S1 + a2S2)+ fgw a3S3. (3)

In this equation, Sj [mm] is the volume storage in each routing reservoir, with index j equal 1, 2 and 3 for the stream,175

overland, and renewable-groundwater (i.e. shallow aquifers that are recharged by drainage at the soil bottom) reservoirs, re-

spectively. To prevent complete depletion of these reservoirs, which all feed streamflow and support aquatic ecosystems, we

mimic an environmental flow regulation by reducing the available volume owing to a user-defined parameter aj , between 0 and

1. It is set here to 0.9 for all three reservoirs, such as to keep at least 10% of the available water at each time step. The facility to

irrigate from surface water reservoirs (S1 and S2) and groundwater reservoir (S3) is accounted for by factors fsw and fgw, also180

ranging between 0 if the reservoirs cannot be used and 1 if they are fully accessible. In the present application, these factors

represent the fraction of irrigated areas that are equipped for irrigation with surface and groundwater, respectively, following

the global map of Siebert et al. (2010). We do not consider irrigation from non-conventional sources (e.g., wastewater and

water from desalination plants). This map assumes that a grid-cell is either equipped for groundwater irrigation or for surface

water irrigation, so fsw + fgw = 1.185

Eventually, the actual irrigation I [mm/s] is estimated at each time step by comparing Ireq, i.e. the demand, to water avail-

ability Aw [mm], i.e. the supply:

I =min(Aw/dt,Ireq). (4)

If we assumed that water abstraction Qj from each natural reservoir due to irrigation withdrawal is simply proportional to

available water in each of them, it would be given by the following equations, the sum of the three right-hand side terms being190

equal to I:

dS1

dt
= −Q1 =−fsw a1S1

Aw
I (5)

dS2

dt
= −Q2 =−fsw a2S2

Aw
I (6)

dS3

dt
= −Q3 =−fgw a3S3

Aw
I (7)

But we chose to implement an additional constraint for surface water withdrawals, which are withdrawn from the stream195

reservoir (corresponding to large rivers) in priority. This new constraint leads to define the revised set of equations, where the
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total surface water availability is Asw = fsw (a1S1 + a2S2):

dS1

dt
= −Q1 =−min

(
Asw

Aw
I ,

fsw a1S1

∆t

)
(8)

dS2

dt
= −Q2 =−min

(
Asw

Aw
I −Q1 ,

fsw a2S2

∆t

)
(9)

dS3

dt
= −Q3 =−fgw a3S3

Aw
I (10)200

The sum of Q1, Q2, and Q3, still equals I .

When Ireq − I > 0, i.e. there is a deficit and the water supply cannot satisfy the irrigation demand, the scheme may adduct

water from the neighboring grid cell with the largest streamflow volume. The choice of water adduction was introduced in

Guimberteau et al. (2012b), but was disabled due to the coarse modelling resolution (grid-cell larger than 100 x 100 km of

size). Here we use a similar parameterization, but we add a user-defined parameter to take into account the facility to access205

distant river reservoirs:

dS1,add

dt
=−Q1,add =−min(Ireq − I ,

a1,addS1,add

dt
) (11)

In this equation, water adduction Q1,add from the largest river reservoir in the neighboring grid cell S1,add, will depend on the

facility of access represented by the factor a1,add. This factor can range between 0 if there is no adduction, and 1 if the distant

river reservoir is fully accessible for water adduction.210

The irrigation water, I +Q1,add, is finally added at the soil surface for infiltration, thus resembling a flood or drip irrigation

technique. We note that irrigation is not restricted to an optimal period during the day, but may be triggered at any moment.

It may lead to an overestimation of evapotranspiration (Ozdogan et al., 2010). We do not represent dams operation in this

simulation, even if they play an important role to modulate the temporal dynamics of surface water and assure a water supply

for irrigation in many large river basins (Pokhrel et al., 2016; Hanasaki et al., 2008a).215

3 Data description

3.1 Input data for ORCHIDEE

Firstly, ORCHIDEE is run at global scale in offline mode. We run the model for the period 1970 - 2013, but we leave the first

10 years as warm-up, and we focus our analysis on the period 1980 - 2013. We use the GSWP3 (van den Hurk et al., 2016) as

meteorological forcing (http://hydro.iis.u-tokyo.ac.jp/GSWP3/) with a resolution of 0.5 degrees. We also run short simulations220

for the sensitivity analysis and parameter tuning (see below in Section 4). We prescribe the irrigated surfaces in transient mode,

i.e. irrigated surfaces may change every year, based on the Historical Irrigation Dataset (HID) from Siebert et al. (2015) and

on Land Use Harmonization 2 (LUHv2) dataset from Hurtt et al. (2020).

HID presents a map every 10 years before 1980 and every 5 years after at 5 arcmin resolution, and for each year, we use the

nearest map in time to avoid data interpolation, LUHv2 presents a map every year with a 0.25 degrees resolution. The main225

difference between the HID and LUHv2 maps is that HID prescribes the area that is equipped for irrigation (AEI), while LUHv2
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Table 1. Simulations with inputs and parameter values. In brackets, the units of the parameter, [-] means that the parameter corresponds to a

fraction and does not have a unit. In bold the change in parameter values with respect to the Irr simulation.

Simulation Irrigation
Irrigated

surfaces
β [-] ai [-]

Imax

[mm/h]
Adduction [-]

NoIrr No – – – – –

Irr_NoTuned Yes HID 1.0 0.9,0.0,0.9 1.0 0.0

Irr Yes HID 0.9 0.9,0.9,0.9 3.0 0.05

Irr_LUH Yes LUHv2 0.9 0.9,0.9,0.9 3.0 0.05

Irr_NoAdd Yes HID 0.9 0.9,0.9,0.9 3.0 0.0

Irr_Beta Yes HID 0.75 0.9,0.9,0.9 3.0 0.05

Irr_Imax Yes HID 0.9 0.9,0.9,0.9 1.0 0.05

prescribes the area that is actually irrigated (AAI). As a result, the HID dataset has a greater irrigated surface (3.0 106km2 for

HID, 2.5 106km2 for LUHv2 at global scale around 2000). It also means that AAI should be included in the AEI if the two

datasets shared a similar spatial distribution. But this is not the case, as the two datasets rely on different information sources,

processed with different methods (de Oliveira, 2022). The performed simulations use uniform parameters over irrigated areas,230

main changes between simulations are summarized in Table 1. As a reference, we use a simulation with no irrigation, called

NoIrr, while simulation Irr with irrigation activated, uses parameter values according to results from the sensitivity and tuning

analysis (Section 4) and the HID maps. The simulation Irr_NoTuned also activates irrigation and uses the HID dataset as input,

but it uses a priori parameter values. This latter simulation does not consider the conclusions from the sensitivity analysis, and

for instance does not activate irrigation withdrawal from the overland reservoir nor adduction.235

We run additional simulations to assess the uncertainty of the simulated irrigation amount and the influence of the most sen-

sitive parameters, according to the sensitivity analysis: the impact of the desactivation of adduction in our scheme is considered

in simulation Irr_NoAdd, the effects of changes in the β value are considered in simulations Irr_NoTuned, Irr, and Irr_Beta,

and finally the effect of changes in the Imax value is considered in simulation Irr_Imax. All these simulations use HID to

prescribe irrigated areas. We analyze the effect of large differences in prescribed irrigated areas on irrigation amounts by using240

the LUHv2 dataset as input (simulation Irr_LUH) and using the same parameter values as the Irr simulation.

3.2 Validation datasets and landscape descriptors

The validation of the new irrigation scheme and its effect on the model bias is focused on five variables: evapotranspiration, leaf

area index, discharge, irrigation withdrawal and total water storage anomalies. We also use two landscape descriptors datasets

(see below).245

Irrigation water withdrawals - We use two datasets: first, we compare the simulated irrigation rates with values from the

FAO-AQUASTAT database (https://www.fao.org/aquastat/en/) reported in Frenken and Gillet (2012) for irrigation volumes
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around 2000. AQUASTAT is based on reported values at the country scale, so it does not inform on seasonal values or their

spatial distribution. In countries with a lack of information, data is completed using modelling outputs to estimate the plant

requirement, and country-level ratios of irrigation efficiency to calculate the irrigation water withdrawal (Hoogeveen et al.,250

2015). While the plant requirement corresponds to the increase of evapotranspiration, the irrigation water withdrawal is the

volume that is abstracted from the natural reservoirs, and includes the losses and return flows.

We also use the spatially explicit information of irrigation water withdrawal around the year 2000 from Sacks et al. (2009).

This reconstruction uses national-level census data, primarily from AQUASTAT, with maps of croplands by crop type, areas

equipped for irrigation, and climatic water deficit. The result is a gridded map with a resolution of 0.5 degrees.255

Evapotranspiration - We use two datasets: the first product is GLEAM v3.3a, which combines satellite-observed values

of soil moisture, vegetation optical depth, and snow-water equivalent, reanalysis of air temperature and radiation, and a mul-

tisource precipitation product at 0.25º resolution (Martens et al., 2017). The second dataset is FLUXCOM (Jung et al., 2019),

which merges Fluxnet eddy covariance towers with remote sensing (RS) and meteorological (METEO) data using machine

learning algorithms at 0.5º resolution. Here we use RS+METEO products, specifically the averages of RS+METEOWFDEI and260

RS+METEOCRUNCEP v8, to cover the analysis period.

Leaf area index - We use the LAI3g dataset (Zhu et al., 2013) climatological values for the period 1983-2015. This dataset

applies a neural network algorithm on satellite observations of the Normalized Difference Vegetation Index (NDVI) 3g to

estimate LAI at 5 arcmin resolution.

River discharge - We use monthly data from the Global Runoff Data Centre (GRDC, https://www.bafg.de/GRDC-/EN/265

Home/homepage_node.html) in 14 large basins with strong irrigation activities. We choose the station nearest to the river

mouth that also has data available for the study period (Figure S4 shows the basins and its corresponding discharge station).

Basin boundaries were delineated with the flow directions map used by ORCHIDEE (section 2.1).

Total water storage anomalies - We compare the total water storage anomalies (TWSA) from our simulations with three

different monthly products of TWSA based on GRACE (Gravity Recovery and Climate Experiments) observations based on270

global mascon solutions, that are suitable for hydrologic applications (Scanlon et al., 2016): CSR (Save et al., 2016), GRC

Tellus, called here TELLUS (Watkins et al., 2015) and NASA GSFC (Loomis et al., 2019). CSR has a spatial resolution of

0.25 degree, while TELLUS and NASA GSFC have a resolution of 0.5 degrees. As the differences between products at the

large river basin scale are small, we use the average value of the three products. All the products cover the period from april

2002 to the end of the simulation in 2014.275

Landscape descriptors - We compare the simulation results with two landscape descriptors which are linked to irrigation

and may contribute to the irrigation bias. We use the fraction of irrigated rice around year 2000 from MIRCA2000 (Portmann

et al., 2010) (see spatial distribution and focus on Southeast Asia in Fig. S5), and the location and volume of major dams

based on the Global Reservoir and Dams dataset, GRanD (Lehner et al., 2011). GRanD contains information on the maximum

storage capacity and main use of dams with reservoirs larger than 0.1 ha. Here we consider dams that have irrigation as their280

main purpose.
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3.3 Data processing and analysis

We aggregate and interpolate all the observed data to the 0.5 degrees spatial resolution of the ORCHIDEE simulations. For

ET, we mask GLEAM and the simulated data according to FLUXCOM, which does not cover all the continents, so all the

comparisons are made over the same grid cells with available information. For LAI, we exclude grid-cells with no data in285

LAI3g from the analysis. We compare grid cell values and zonal average values. The statistical significance of the mean

difference between observed and simulated time series is assessed with a Student’s t-test at the 5 % significance level.

We use the simulated discharge from the grid cell that best matches the watershed area upstream of the discharge station. In

addition, we only use time steps with data available from observations, so that both time series agree. For TWSA, we compare

observed and simulated basin averages. As ORCHIDEE gives the total water storage (TWS) value, we normalize the time290

series with the mean value of the NoIrr simulation for the period 2002-2008, the same as the observed products. In this way,

the effect of irrigation over TWS is observed in the simulated time series.

In addition to direct comparison at the grid cell, zonal or basin scale, we perform a factor analysis to reveal relationships

between modelling bias and landscape descriptors. We use the fraction of irrigated areas around 2000 from HID, as well as the

fraction of irrigated rice from MIRCA2000, both interpolated to the ORCHIDEE resolution. We categorized grid cells into six295

classes by irrigation fraction levels based on the two datasets, following Mizuochi et al. (2021): Class 1: 0%, Class 2: 0 to 5%,

Class 3: 5 to 10%, Class 4: 10 to 20%, Class 5: 20 to 50% and Class 6: 50 to 100%.

We also performed a comparison between the average basin-scale irrigation bias and the volume capacity of dams used for

irrigation within the basin, according to GRanD. We use the Pearson’s correlation coefficient (r) as a metric for the correlation

analysis.300

4 Sensitivity analysis and parameter tuning

4.1 Sensitivity analysis

Short simulations were run to assess the sensitivity of the irrigation amount at the global scale to different parameter values,

assumed to be uniform in all irrigated areas. We used GSWP3 as meteorological forcing, and the LUHv2 from Hurtt et al.

(2020) to prescribe the irrigated surfaces (see Section 3.1). We ran a total of 23 simulations with varying parameters, plus a305

reference simulation with no irrigation. All of them were run with the same initial conditions for three years (1998 - 2000),

and a comparison of irrigation amount and ET increase was performed for the year 2000. By using the last simulation year, we

reduce the effect of the common initial conditions on the simulation results, and the year 2000 corresponds to the values given

in AQUASTAT and Sacks et al. (2009). Note that we use a single meteorological forcing dataset and compare our estimates to

a single set of observed AQUASTAT data for the period around the year 2000. We choose to compare our estimates for the year310

2000 because this year is commonly used as the reference period in the literature concerning the estimation of the amount of

irrigation on a global scale (see, e.g., Pokhrel et al., 2016, Table 2). The choice of the year 2000 is mainly due to the existence

of more complete reported or observed values for that year, as well as simulated estimates. We use the same reference period
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Table 2. Parameters of the irrigation module, brief description, range and values used in the sensitivity analysis. Values in bold correspond

to the reference value. Note that, for parameter ai, the three reservoirs share the same value.

Parameter Description Unit Range Values

β Controls the soil moisture target, equal to θfc ∗β
Fraction, no

units
[0-∞]

0.6, 0.8, 0.9, 1.0,

1.2, 1.4

aj

Controls the fraction in reservoir available for

irrigation, the complement being the fraction left

for ecosystems

Fraction, no

units
[0-1] 0.1, 0.5, 0.9, 1.0

a1,add

Controls the fraction in stream reservoir available

for adduction

Fraction, no

units
[0-1] 0.0, 0.05, 0.1, 0.2

Imax Maximum irrigation rate per hour mm/h [0-∞] 0.5, 1.0, 3.0, 5.0, 7.0

Rootlim Defines if a soil layer is part of the root zone

Cumulated

relative root

density

[0-1] 0.0, 0.5 0.9, 1.0

LAIlim
Minimum LAI in crops and grasses PFTs to

trigger irrigation
m^2/m^2 [0-∞] 0.0, 0.1, 0.3, 0.5, 1.0

to compare our results with independent data. A brief description of each parameter as well as the unit, range, and values used

in the sensitivity analysis is shown in Table 2.315

We change the value of one parameter at a time (once-at-a-time screening, see Mishra (2009); Song et al. (2015)) and then

we observe its effect on the irrigation rate and on the increase in evapotranspiration. We tried to include the full range of

parameters, but it is worth noting that in some cases, values were restricted to ensure an expected behavior. In the case of β, we

set values around 1.0 (target equal to the field capacity soil moisture) as it seems a plausible target for flood irrigation, but note

that values higher than 1.4 or lower than 0.6 are possible. Theoretically the upper limit is infinite, but values above 1.5 may320

exceed the saturated soil moisture for some soil textures, the lower limit is zero (see Table S4). For adduction, we set parameter

values under 0.2 (20% of streamflow available for adduction at every time-step), which seem high enough to represent water

adduction in large river basins (Leng et al., 2015). In the case of the LAIlim and Imax, upper values were selected a priori. Those

values in bold in Table 2 are called reference values afterwards. The reference parameter values are intended to maximize the

irrigation amount, as preliminary tests (not shown) performed with a priori values exhibited an underestimation of irrigation325

rates at global scale. The reference values do not change if not explicitly required by the once-at-a-time screening method.

Figure 2 shows that β is the parameter with the strongest effect on the global mean irrigation rate, followed by the cumulated

root density threshold Rootlim, Imax, and the fraction of stream storage available for adduction a1,add. The fraction of water

storage left for the ecosystems (called Environmental in the figure, aj) has a more limited effect, suggesting that in many

irrigated areas, there is enough water from surface and groundwater to fulfill the irrigation requirements. Finally, the LAI limit,330

LAIlim, to trigger irrigation has a weaker effect than the other parameters. In the case of ET increase (Fig. 2, blue line), the
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sensitivity to the different parameters is similarly hierarchized, although the magnitude is not necessarily the same. Also note

that the effect on irrigation efficiency (i.e. ratio of ET increase to irrigation amount) is different for β values higher than 1.0

and for Rootlim values higher than 0.5. This implies that the fraction of irrigation water that becomes runoff or deep drainage

is more important.335

Figure 2. Sensitivity of global irrigation volumes and increase of evapotranspiration (km3) to changes in parameter values, for the year 2000

using short simulations. Secondary y-axis correspond to ET increase values compared to the simulation with no irrigation. Note that the

y-axis scales differ between parameters.
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4.2 Parameter tuning

The sensitivity analysis showed that β has the strongest effect on the simulated irrigation amount, and that these effects can

induce changes on the irrigation efficiency. Therefore, we explored in more detail its behavior to set a value. Note that we

used the chosen reference values for the other parameters. We compared the irrigation rate estimated by ORCHIDEE for 2000

in the short tests with the observed irrigation from Sacks et al. (2009) (Fig. 3) using total irrigation volume at global scale,340

and irrigation difference at grid-cell scale. When comparing the irrigation water amount at global scale (in km3 for the year

2000, Fig. 3-a) we observe that a value of 1.2 maximizes the irrigation and minimizes the irrigation bias. When we assess the

distribution of bias using grid-cell values (in mm/d, Fig. 3-b) we observe that for β equal to 0.8, 0.9, or 1, the bias distribution

is centered around 0, while it starts to move up for values 1.2 and 1.4. This behavior can be slightly different depending on

the irrigated fraction (see Fig S9). For simplicity here and as a tradeoff between the underestimation of irrigation volume and345

the spatial distribution of bias, we choose to set β to 0.9 in all irrigated areas. We decided to use the reference values for the

other parameters, as they play a minor role according to the sensitivity analysis, and the reference values does not minimize

the irrigation amount.

Figure 3. Calibration of β value with Sacks et al. (2009) dataset as observed value, using outputs from the short simulations. Bias in total

irrigation volume in km3 by β value (a), boxplot of the bias of irrigation rates in gridcells in mm/d by β value (b).
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After this analysis we underline four points. First, this process does not correspond to a proper calibration, as we assumed

uniform parameter values, the number of simulations is low and the observed data is sparse. The objective of the sensitivity350

analysis and parameter tuning was to identify key parameters and reduce the underestimation of irrigation by tuning the uniform

parameter values. Second, our scheme does not include conveyance losses although application losses and return flows are

represented. As ORCHIDEE determines the water partitioning, some model flaws in hydrologic processes like infiltration or

bare soil evaporation could bias the effect in return flows, in the increase of ET, and ultimately in the irrigation efficiency. Third,

although the once-at-a-time method is suitable given the computational cost of running an ORCHIDEE simulation, it also has355

drawbacks and limitations in its analysis (Song et al., 2015), for instance its qualitative nature, and lack of quantification of

individual interaction between parameters. Fourth, we use the LUHv2 map, which represents the areas actually irrigated, AAI

(a lower value than the areas equipped for irrigation, AEI, which is used in other datasets). We do not consider the effect of

prescribed data uncertainty nor the effect of meteorological forcing in this analysis.

5 Results360

5.1 Validation of irrigation water withdrawals

Irrigation from the Irr simulation is estimated at 0.049 mm/d (2452.5 km3/year) around the year 2000 (Fig. 4-a). This estimation

is in the lower part of other studies which range between 2465 and 3755 km3/year (Pokhrel et al., 2016) and is lower than

AQUASTAT estimation of 2735.1 km3/year around the year 2000 (Frenken and Gillet, 2012). The results suggest that the

proposed scheme is adequate to simulate the reported estimations of irrigation despite the underestimation (-10% than the365

2735.1 km3/year from AQUASTAT around 2000). We note that this estimate is also higher than that of the old irrigation

scheme of Guimberteau et al. (2012b), but the scheme proposed here can still benefit from a more robust parameter tuning.

At the country-scale, Fig. 4-b shows that the irrigation module underestimates water withdrawals in the main hotspots of

irrigation, i.e. India, China, and the USA, while it overestimates irrigation rates in Africa, East Europe and Latin America (see

also Fig. S1). Such reduced contrasts between highly and weakly irrigated countries could indicate a limitation of the irrigation370

scheme to represent local irrigation strategies, as our scheme uses global uniform values for all the parameters. Comparison

with the estimation from Sacks et al. (2009) (see Fig. S1) supports this result (-0.004 mm/d, -219.2 km3/y, Fig. 4-c) and allows

us to identify the areas where the irrigation bias is the strongest. In India, the Indus basin presents a strong underestimation,

as well as in the Northern part of the Ganges-Brahmaputra basin. In China, there is a more widespread underestimation. That

is also the case in the west part of the US Great Plains. The other regions present in general an overestimation of irrigation375

withdrawals, which is especially important in some small areas in Africa, in Eastern Europe and north to the Caspian sea, and

in some areas of central Asia. Finally, we note that within a country, it is possible to observe areas with positive and negative

bias, for instance in the USA or India. This could also be partially explained by the use of globally uniform values, as there

could be important local differences on irrigation strategies within the same country, and it remarks the need to assess the

irrigation bias at different scales (See Fig. S11).380
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Figure 4. Total water withdrawal for irrigation in the Irr simulation, yearly average for 1998-2002 (a), groundwater irrigation withdrawn

for irrigation, yearly average for 1998-2002 , difference in water withdrawn for irrigation between Irr (yearly average, 1998 - 2002) and

AQUASTAT values (Frenken and Gillet, 2012) at country level in km3/year (b), difference in water withdrawn for irrigation between Irr

(yearly average, 1998 - 2002) and dataset from Sacks et al. (2009) (c).

5.2 Variability of the irrigation rates due to parameter values and input data

The global annual irrigation volumes (Fig. 5-a) show a large uncertainty across the simulations due to changes in the parameter

values (for instance, -24.7% between Irr_NoTunned and Irr) , but note that the change on irrigation rates at gridcell scale

can have a strong spatial heterogeneity within a country (5-c) for instance in India or the USA. The parameter set used in

the Irr simulation manages to increase the irrigation rate and to markedly reduce the irrigation bias when compared to the385

Irr_NoTuned simulation at global scale, even if locally we may observe both an increase or a decrease on the irrigation rate

in the same country, for instance in China (with a marked north-south difference, (5-c, Irr_NoTuned-Irr) or the Indus river

basin in Pakistan and India (see (5-c, Irr_NoTuned-Irr). Also, a positive trend in the annual irrigation volume is observed in all

simulations. It is caused by the increase in irrigated area, observed in both HID and LUHv2 datasets (see simulations Irr and
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Irr_LUH). The irrigated area has been identified by Puy et al. (2021) as the main driver of irrigation water withdrawal, and the390

increase of the prescribed irrigated area in the simulations explains in part the positive trend in the irrigation rate (see Fig. S6).

Based on the mean annual values (Fig. 5-c), the β parameter has the largest effect on the mean irrigation rate (-22.3% when

β decreases from 0.9 to 0.75), followed by the change of input map from HID to LUHv2 (-19.7%), a lower Imax (-16.5%)

and, finally, no adduction (-15.7%). From a spatial point of view, the overall reduction in irrigation due to the above changes

is not homogeneous and large areas may even display an increased irrigation rate. The exception is the β parameter, which395

shows an overall reduction in irrigation with a lower parameter value, except in the Indus basin. The Indus river basin is a

region that depends on both surface and groundwater for irrigation, and the irrigation demand is one of the most important

worldwide (Laghari et al., 2012). In Irr_Beta, a lower β induces a reduction of water demand in the upper areas of the Indus

river basin, increasing the river discharge downstream. More surface water supply in the middle and lower parts of the basin

can increase irrigation in these areas, even if the water demand also decreases, because the irrigation deficit i.e. the difference400

between demand and supply, is still high despite the demand reduction. We advance here that the propagation of water supply

through the river system can explain part of the heterogeneity in the response to other parameter changes.

To estimate the interannual irrigation rate variablity, we calculate the coefficient of variation (ratio of standard deviation to

the mean, Fig. 5-b). We use the pluriannual mean irrigation rate from all simulations with irrigation activated from table 1.

Results highlight a certain homogeneity, but we can identify at least two distinct areas: an area of low variability (around 0.25)405

in Southern Asia, some areas in the Mediterranean and North and South America, and an area of high variability (around 0.75)

in Northern Europe, North America, Africa and Australia, with some points where the coefficient of variation is the highest

(over 2.0), especially in Africa. The use of global parameter values could explain the relative homogeneity of the coefficient

of variation, while regional differences like climate variablity and irrigation water demand could explain the existence of these

two variability classes.410

5.3 Factor analysis: correlation of modelling biases and irrigation classes

Figure 6-a shows the bias of ET by class of irrigated fraction at grid-cell scale, when we compare ORCHIDEE simulations with

FLUXCOM dataset. It shows that the activation of irrigation reduces the ET bias in those areas with high irrigation fractions

(also see S7 for the spatial distribution). For the comparison with GLEAM in Fig. 6-b, it shows that the activation of irrigation

induces a positive bias in those areas with irrigation. When comparing absolute ET values by irrigation class (Fig. 6-c), we415

observe that NoIrr and GLEAM are similar in all the classes except for 0 and All, i.e. no irrigated fraction and all grid cells.

It means that the differences between NoIrr and GLEAM comes from non-irrigated areas. This could suggest a limitation in

GLEAM to represent the effects of irrigation on ET rates as this product does not respond to the presence of irrigated areas. On

the other hand, Irr and FLUXCOM boxplots are similar for classes 10-20, 20-50, and 50-100. A seasonal assessment on zonal

average values for irrigated areas support this suggestion (Fig. S7). Thus, from now we prioritize FLUXCOM for our analysis420

regarding the ET bias.

A similar analysis for the LAI bias and classes of irrigated fraction (Fig 6-d) shows an increase in the LAI difference between

ORCHIDEE and LAI3g in the Irr simulation. Also, for all classes, the positive bias in the NoIrr simulation is exacerbated in the
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Figure 5. Time series of globally averaged irrigation rates simulated by ORCHIDEE (a). Map of the standard deviation of mean irrigation

rates from all simulations in mm/d (b). Maps of mean difference between Irr simulation and others, for the period 1980 - 2013 in mm/d (c).

Blank areas correspond to grid-cells with no irrigated areas
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Figure 6. Factor analysis of ET bias with FLUXCOM against irrigated fraction classes (a), and with GLEAM (b). Mean ET values of

simulations and observed products against irrigated fraction classes (c). LAI bais with LAI3g against irrigated fraction classes (d) and mean

LAI values of simulations and observed product against irrigated fraction classes (e).
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Irr simulation, except for the most intensively class (class 50-100), which reduces the negative bias when comparing NoIrr and

Irr simulations. It is worth noting that the class 50-100, where irrigation is more important, is the single one with a negative bias425

in NoIrr, and this negative bias is partially reduced when irrigation activities are included (see Fig. S8 for spatial distribution and

zonal average values). This is due to less water stress and thus more photosynthesis and biomass production, which is coherent

with the decrease of ET bias for this class. When comparing absolute values between the simulations and the observed product

(Fig. 6-e), we observe that irrigation activation within ORCHIDEE does not significantly change the distribution of LAI values

at global scale. These results are coherent with changes that irrigation induces on water fluxes and reservoirs, as well as on430

water and energy budget (see Fig. S2 and S3).

5.4 Effect of irrigation on TWSA and river discharge

We now focus on the average TWSA value at the basin scale (Fig. 7). Activation of irrigation induces small changes in TWSA,

which is coherent with changes in TWS between both simulations (Figure S2). For instance, we observe higher peaks in Huang

He when irrigation is activated. Low values also become lower for the Irr simulation in Huang He basin. In the Ganges river435

basin, low values are lower as well in the Irr simulation than in NoIrr. The changes in water pathways and related residence times

that explains changes in TWS between Irr and NoIrr (transfer of water from a reservoir with rapid flows like the streamflow to

the soil, with a slow flow), also could explain these changes in TWSA dynamics at large basin scale. Other basins, like the Nile

river basin or the Amu-Darya, show little effect between both simulations, even if extreme peaks values can be overestimated

(during 2007 in the Nile) or underestimated (during 2005 and 2006 in Amu-Darya). But note that the model is unable to follow440

the GRACE trends, in basins with negative trends (for instance Huang He, Indus or Ganges) or positive trends (Murray river

between 2011 and 2014).

The correct simulation of river discharge (Fig. 8) is another challenge in ORCHIDEE and other LSMs (Oki et al., 1999;

Ducharne et al., 2003; Guimberteau et al., 2012a; Koirala et al., 2014; Cheruy et al., 2020). Irrigation plays an important role

to reduce the average values when we compare NoIrr and Irr simulations (see for example the Nile, or the Indus rivers, these445

results are coherent with those from de Graaf et al. (2014)). The main effect of irrigation over the seasonal variations is that

peak discharge can occur before in the Irr simulation (for instance Missouri river or Yellow river), or that the decrease after

the peak is more rapid and low values are lower in Irr than in NoIrr (for instance Colorado river or the Danube river). These

changes are due to the triggering of irrigation during spring and summer, and the corresponding ET increase. It is worth noting

that the Irr simulation does not necessarily reduce the discharge bias against GRCD data compared to the NoIrr simulation,450

with the exception of the Danube river (see Table S1 for some goodness-of-fit metrics for observed and simulated discharge

values).

5.5 Factor analysis: correlation of irrigation biases and landscape descriptors

We compare biases and errors in irrigation estimates with landscape descriptors that could help explain these modelling errors.

We also seek a perspective to increase the realism of the irrigation scheme and reduce the error in irrigation estimation. For the455

irrigation bias, classes with a high fraction of irrigated paddy rice, (for instance class 20-50 or 50-100), exhibit a higher bias
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Figure 7. Comparison of TWSA between ORCHIDEE simulations and GRACE datasets in large basins with strong irrigation activities.

21



Figure 8. Comparison of observed and simulated river discharge in large basins with strong irrigation activities.
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than classes with small fractions (Fig 9-a). The spatial distribution of irrigated paddy rice is concentrated in southeast Asia, and

includes the most irrigated river basins worldwide (see Fig. S5). At the large basin scale (see values in Table S2), the irrigation

bias also correlates well with the capacity of dams used for irrigation (Fig. 9-b) if we retire a single outlier corresponding to

the Nile river basin (r value without the outlier is -0.55).460

The correlation between paddy rice and irrigation bias suggests the need to explicitly represent paddy irrigation at global

scale. Thus, we add an assessment of the β value and irrigation bias, using the short simulations used on the parameter tuning

(see section 4). We use all simulations with changes on the β parameter from Table 2. Then, we build a composite map of the

β value that minimizes the irrigation bias at a grid-cell scale (Fig. 9-c) and then we show the corresponding irrigation bias as

compared to Sacks et al. (2009) dataset. The results roughly show at least two classes for β: the first with values of 1.2 and 1.4465

(for instance in China and north India) and the second with values of 0.6. Using at least two β values is not enough to reduce

the irrigation bias at global scale, but it has an important effect on the spatial distribution of the irrigation bias in Southern

Asia, the region with the most paddy rice area. These results suggest that the β parameter should have at least two values, 1.3

in areas with paddy rice, and 0.6 in the rest of irrigated areas. But note that the data used for this analysis correspond to a single

year, i.e. year 2000. Also, regional characteristics, like more than one harvest of paddy rice due to optimal climate conditions,470

are not taken into account in this analysis, but could also help to explain the irrigation underestimation in our estimations (Yin

et al., 2020).

6 Discussion

In this study, we implemented a new global irrigation scheme inside the ORCHIDEE land surface model based on previous

work from Yin et al. (2020) in China. While we found a reduction in some modelling biases when irrigation is activated, we475

also identified at least four types of limitations in our modelling framework that can affect the estimates of irrigation or the

effects of irrigation on other variables inside the land surface model:

1. The irrigation scheme exhibits some shortcomings that may bias the estimated irrigation amount: the use of a single

irrigation technique; simplified rules to trigger irrigation and allocate the available water; the joint representation of

rainfed and irrigated crops within the same soil column; the non-representation of conveyance losses, although losses480

due to return flows are represented.

2. The parameter tuning is overly simplistic. As a first step, we considered globally uniform parameters, which is overly

simplistic, although spatially distributed values would allow us to better describe the local features of irrigation systems,

as shown by the spatial variations in optimized β map, and the dependence of the local irrigation bias on the fraction of

paddy rice.485

3. We also use a single meteorological forcing dataset and a single year to characterize observed irrigation values. This

contributes to biasing the parameter adjustment process by taking uncertain data (meteorological forcing and reference

irrigation) as certain.
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Figure 9. Factor analysis of irrigation rate bias with data from Sacks et al. (2009), against irrigated paddy rice classes (a). Basin average

value of irrigation bias against dams capacity (b). Map of β that minimizes the irrigation bias, according to the short simulations (c) and

corresponding map of minimum irrigation bias according to the β value in (c), in mm/d (d).
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4. The ORCHIDEE model exhibits many uncertainties that are not related to the irrigation scheme, but ultimately impact

the irrigation withdrawals and efficiency (defined here as the ratio of additional ET due to irrigation to water with-490

drawal) and the temporal dynamics of irrigation. One particular uncertainty comes from the overestimation of bare soil

evaporation (Cheruy et al., 2020), that we presently try to correct in ORCHIDEE. Other uncertainties result from the

inherent simplifications of any model. In ORCHIDEE, they include the use of a single soil texture in each grid cell, of

only two kinds of crops with simplified phenology and crop calendars, and the choices made to simulate infiltration and

evaporative processes.495

These shortcomings and limitations could induce positive or negative biases in the simulated regional irrigation amounts; this

as a result of differences in regional landscape, hydro-climatic conditions and local irrigation practices not well represented

or absent in our scheme. For example, the missing representation of paddy irrigation induces under-irrigation in paddy rice

areas, the joint representation of rainfed and irrigated crops induces over-irrigation in areas with other crop types and irrigation

techniques, and the simplistic parameter tuning could tend to minimize the overall net bias, while increasing regional biases.500

These limitations (some shared with other global LSMs) call for further model developments that aim at a better representation

of the water supply (fossil groundwater and water adduction to list two mentioned in the results) and the water demand (a

separate water budget for irrigated areas, the inclusion of other irrigation techniques, new irrigation rules such as irrigation

before sowing or interruption of irrigation before harvest). In addition to the improvements noted here that focus on model

developments, the irrigation representation can be improved by using new input datasets and regional parameter values to505

include local practices (if these datasets exist at the coarse model resolution in the global domain, and for historical period or

future scenarios). For instance, to prescribe regional β values, or to prescribe the start and end of the growing season.

The model estimates the irrigation water demand by calculating a soil moisture deficit according to a user-defined soil mois-

ture target. Besides, it constrains the actual irrigation rate by the available water supply. The water supply takes into account

the facility to access surface or underground water sources according to local infrastructure, and environmental restrictions.510

Note that this environmental restriction is a simplification compared to the complex methods used in the real world to estimate

environmental flow requirements, and other more robust approaches exist (for instance in Hanasaki et al. (2008a), providing

monthly environmental flow requirements). Strict environmental requirements could reduce the surface water supply, thus the

irrigation rate (Hanasaki et al., 2008b).

For the facility to access the water sources, we use two static factors based on local infrastructure, while water allocation515

is dynamic and can change according to water availability (de Graaf et al., 2014) as well as economic and societal aspects

(D’Odorico et al., 2020). The irrigation scheme also allows the adduction of water from neighboring grid cells, which can be

important in areas of China and India (Laghari et al., 2012; Yin et al., 2021), where surface water is intensively used. This

representation of water adduction, however, is very simple, and could be improved by including human water management and

dams operation, as in Zhou et al. (2021), where the supply and demand network is operated as a system, taking into account520

some constraints like topography and environmental flow (Hanasaki et al., 2018).

On the water demand, we observed that the conditions to trigger and stop irrigation, although controlled by four parameters,

may seem too simple in our scheme, especially compared to specialized irrigation models, the new irrigation scheme in LSM
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CLM5 (Yao et al., 2022), which includes multiple irrigation techniques, or the ISBA LSM (Druel et al., 2022), which implement

complex sets of rules to represent different irrigation strategies. Some rules could change the moment when irrigation is525

triggered and increase the amount (for instance allowing irrigation some days before the crop emergence) or decrease it (for

instance, preventing irrigation during maturity of the crop, shortening the growing season, or preventing continuous irrigation

during more than a certain number of days). Implementing these sets of rules for irrigation strategies in ORCHIDEE is feasible,

for instance the definition of the growing season (with trigger of irrigation before sowing and stop before harvesting) could

be based on the prescription of start and ending dates as done by Yin et al. (2020), or could use the phenology information530

simulated by the model (as in the version used here, or using a crop-specific module as in Wu et al. (2016)). But defining the

set of rules and parameter values would need a careful tuning and evaluation process, with local data at sub-yearly scale.

Despite these limitations, the evaluated irrigation scheme produces acceptable estimations of yearly irrigation withdrawals

on a global mean basis, but it underestimates irrigation volumes in areas of China, India and the US (the most irrigated areas).

Our estimations are affected by the uncertainty on global parameter values assumed to be uniform, and on the map of irrigated535

fractions (Puy et al., 2021). We show that the lack of paddy rice irrigation could contribute to the underestimation of irrigation

in southern Asia, as the paddy technique needs the inundation of the field and maintains a saturated soil at least during 80% of

the crop duration (de Vrese and Hagemann, 2018). The irrigation module of LSM MATSIRO, called MAT-HI and HiWG-MAT

(Pokhrel et al., 2012, 2015), already implemented an explicit representation of paddy rice irrigation, by setting a higher soil

moisture target for rice than for other crops. An explicit paddy representation was also implemented in ORCHIDEE-CROP540

(Yin et al., 2020) at a regional scale, by implementing a pond for paddy rice and using a water level target, but it uses detailed

crop information not easy to access at global scale. A surrogate approach in our simpler irrigation scheme could be to use

at least two β values, one for paddy rice and another one for other crops, as suggested by the composite map of β values

minimizing the irrigation bias.

An outcome of our study is to reveal that the GLEAM values do not exhibit a significant sensitivity of ET to the presence of545

irrigated areas. This suggests that GLEAM is not suitable for estimating ET rates in irrigated areas. For instance, coupled sim-

ulations using CLM4 in northern India showed a strong modelling underestimation of ET rates, even with no irrigation (Fowler

et al., 2018). When we compare the simulations with the FLUXCOM product, the activation of irrigation leads to a reduction

of the negative evapotranspiration bias, but the use of a single soil column in ORCHIDEE for both rainfed and irrigated crops

could induce an overestimation of ET increase (See Fig. S11, in some cases the irrigation efficiency by country is too high).550

The ET bias improvement is particularly substantial in heavily irrigated areas, where the simulated LAI is also improved by

irrigation (which reduces there the negative LAI bias). These results show the benefits of including an irrigation scheme to par-

tially reduce some modelling biases, especially in intensively irrigated areas, and are coherent with the multivariate evaluation

of ORCHIDEE done in Mizuochi et al. (2021).

ET and LAI are two important drivers of land-atmosphere coupling via water, energy and momentum transfer (Seneviratne555

et al., 2010; Greve et al., 2019), but there is evidence that the effects on ET and LAI due to human land-cover change and

landscape management are not monotonic (Sterling et al., 2013). The sensitivity of these drivers to irrigation calls for further

studies in coupled mode to explore the joint evolution of climate, land surface fluxes, and the use of water resources. Some
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studies focuses on the effects of irrigation on climate and land surface fluxes for the historical climate (Boucher et al., 2004;

Sacks et al., 2009; Puma and Cook, 2010; Guimberteau et al., 2012b; Cook et al., 2015; Thiery et al., 2017; Al-Yaari et al.,560

2022), but to the best of our knowledge, that is not the case for the future climate under different scenarios.

In contrast to the effects on ET and LAI, the effect of irrigation on land surface hydrology is rather weak. For discharge,

activation of irrigation logically reduces river discharge, because of surface and groundwater withdrawal for irrigation. This

reduction does not necessarily improve the model performance to fit observed values, with the exception of the Danube river

basin. Multiple causes could explain the incorrect simulation of discharge dynamics in ORCHIDEE, even when irrigation565

is activated. For instance, uncertainties resulting from the atmospheric forcing are not assessed here, while they are known

to affect the yearly and seasonal values of discharge (Guimberteau et al., 2012a; Decharme et al., 2019). Also, a wrong ET

estimation, errors in snow dynamics, and the lack of permafrost representation contribute to the mismatches (Cheruy et al.,

2020). Finally, a lack of representation of other anthropogenic processes like dam management (Fig. 9), and water withdrawal

for other economic sectors and other uses could explain the differences in seasonal discharge dynamics between ORCHIDEE570

and observed data in some basins (Pokhrel et al., 2016).

Effect of irrigation on simulated TWSA is weak. In some large river basins, we observed increases in low values in areas with

significant surface water supply. But even when irrigation is activated, ORCHIDEE is not able to follow the trends exhibited by

GRACE datasets, for instance in Huang He and Indus river basin, two heavily irrigated areas where water depletion has been

related to groundwater pumping for irrigation (Rodell et al., 2018; Yin et al., 2020). There are probably multiple causes for575

inability of LSMs to capture large negative decadal water storage trends (Scanlon et al., 2018), starting with the underestimation

of irrigation rates at country-level and grid-cell scale (Fig. 4). Glacier loss misrepresentation in ORCHIDEE could also explain

part of the differences to observed negative trends in some basins, for instance in the Indus and Ganges basins, that depend on

water flow from the Himalaya mountains (Rodell et al., 2018). And of course, errors in the partitioning between the different

water fluxes in ORCHIDEE (Cheruy et al., 2020; Mizuochi et al., 2021) contribute to the problems in both simulations (NoIrr580

and Irr).

We also underline the lack of fossil groundwater abstraction in ORCHIDEE as a very likely cause to the underestimation

of irrigation rates and TSWA trend mismatch. Fossil groundwater, also called non renewable groundwater, is important in

semiarid areas like Pakistan and Middle East, and contributes nearly 20% to gross irrigation water demand for the year 2000

(Wada et al., 2012). As the irrigation scheme represents abstractions from shallow aquifers but not from fossil sources, it585

probably restrains irrigation too often due to a supply shortage, thus could have problems fitting the negative trend in those

areas with heavy groundwater use, as already reported by Yin et al. (2020) for China. But we must add that the estimation of

fossil groundwater use is challenging. For instance, an assessment of the TWSA trends of residuals between our simulation and

GRACE shows differences with estimates of groundwater depletion from (Wada et al., 2012) in some countries (see Table S3).

Underestimation of irrigation rates, and uncertainties arising from fluxes partitioning and from meteorological data would also590

affect the estimations of fossil groundwater abstraction. So far, we cannot explain to which extent each one of these possible

causes participates in the misrepresentation of GRACE TWSA trends by ORCHIDEE.
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Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated

areas for ET and LAI, but they also show that inclusion of irrigation alone is not necessarily sufficient for a good fit between

the simulated values of TWSA and discharge and observed products. Including additional anthropogenic processes could help595

to reduce some of these biases. For instance, dams management and fossil irrigation withdrawal could increase the water supply

in some basins during dry months or years, thus increasing irrigation amount in areas with high irrigation demand and water

supply shortage. At the same time, these processes may have an impact on river discharge dynamics and could help to represent

the misrepresentation of TWSA trends in some areas.

7 Conclusions600

We implemented a global irrigation scheme within ORCHIDEE LSM, with a simple representation of environmental restric-

tion, water allocation rules based on local infrastructure, and water adduction from non-local water reservoirs. We compared

the irrigation estimates to reported values of irrigation withdrawal, and then we compared the outputs with and without irriga-

tion to observed products of ET, LAI, TWSA and discharge. Our results highlight how the inclusion of irrigation can reduce

some modelling biases, especially on ET and LAI, but they also underline the difficulties to represent irrigation on a large scale605

by using a simple scheme and limited information.

The model could still benefit from improvements on parameter tuning by explicitly representing paddy rice irrigation. Paddy

irrigation could decrease irrigation bias in areas of southern Asia by increasing the irrigation demand. Dam management

representation and inclusion of non-renewable groundwater use could also reduce negative biases in some heavily regulated

basins by increasing the water supply. These three aspects could change the spatial distribution of the ET and LAI increases610

within the model. For TWSA and discharge, the inclusion of processes like dams management or fossil groundwater use could

help to represent observed seasonal dynamics and trends that the model is not currently able to represent.

Finally, we remember that LSMs are commonly used in coupled mode with climate models and irrigation can have an

impact on some atmospheric variables via changes on latent heat flux and leaf area index. Thus, the results obtained here

encourage the use of coupled simulations to explore the joint evolution of climate under the ongoing climate change (for615

historical and especially for future periods), water resources, and irrigation activities. While there is an increasing literature

body that explores the coupling of irrigation and climate for the historical period, to the best of our knowledge that is not the

case for future scenarios. Coupled climate simulations for future scenarios could help to foresee potential changes on the joint

long-term evolution of water resources use and climate, and might help to identify possible social consequences.

Code availability. The version of the ORCHIDEE LSM used for this study corresponds to tag 2.2, revision 7709 (Arboleda et al., 2023), and620

is freely available from https://forge.ipsl.jussieu.fr/orchidee/log/branches/ORCHIDEE_2_2/ (last access: 16 june 2023). It is provided under

a CECILL-C License (French equivalent to the L-GPL licence).
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Data availability. The data from the ORCHIDEE simulations used for this study is freely accesible (Arboleda-Obando et al., 2023). Flux-

com is available at https://www.bgc-jena.mpg.de/geodb/projects/Home.php after registration, GLEAM is available at https://www.gleam.eu/

after registration. LAI3g is available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1653. Monthly discharge data from the GRDC is625

available at https://www.bafg.de/GRDC/EN/Home/homepage_node.html. For TWSA, CSR dataset is available at https://www2.csr.utexas.

edu/grace/RL06_mascons.html, Tellus is available at https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_

RL06.1_V3, and GSFC is available at https://earth.gsfc.nasa.gov/geo/data/grace-mascons. We thanks William Sacks for providing the grid-

ded irrigation rates dataset. HID dataset is available at https://mygeohub.org/publications/8/2 and LUHv2 is available at https://luh.umd.edu/.

MIRCA2000 is available at https://zenodo.org/record/7422506. GRanD dataset is available at https://sedac.ciesin.columbia.edu/data/set/630

grand-v1-dams-rev01. For analysis, we used standard packages from R v.4.0.4 (R Core Team, 2016), https://www.R-project.org/
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