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\begin{abstract} 

 

Irrigation activities are important for sustaining food production, and account for 70\% of total 

global water withdrawals. In addition, due to increased evapotranspiration (ET) and changes 

on leaf area index (LAI), these activities have an impact on hydrology and climate. In this 

paper we present a new irrigation scheme within the land surface model ORCHIDEE. It 

restrains actual irrigation according to available freshwater by including a simple 

environmental limit and using allocation rules depending on local infrastructure. We perform 

a simple sensitivity analysis and parameter tuning to set the parameter values and match the 

observed irrigation amounts against reported values, assuming uniform parameter values 

over land. Our scheme matches irrigation withdrawals amounts at global scale, but we 

identify some areas in India, China and the US (some of the most intensively irrigated 

regions worldwide) where irrigation is underestimated. In all irrigated areas, the scheme 

reduces the negative bias of ET. It also exacerbates the positive bias of the leaf area index 

(LAI) except for the very intensively irrigated areas, where irrigation reduces a negative LAI 

bias. The increase of ET decreases river discharge values, in some cases significantly, 

although this does not necessarily lead to a better representation of discharge dynamics. 

Irrigation, however, does not have a large impact on the simulated total water storage 

anomalies (TWSA) and its trends. This may be partly explained by the absence of non-

renewable groundwater use, and its inclusion could increase irrigation estimates in arid and 

semiarid regions by increasing the supply. Correlation of irrigation biases with landscape 

descriptors suggests that inclusion of irrigated rice and dam management could improve the 

irrigation estimates as well. Regardless of this complexity, our results show that the new 

irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated 

areas, which is important to explore the joint evolution of climate, water resources and 

irrigation activities. 
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\introduction   

Irrigation seeks to increase crop yields by reducing plant water stress 

\citep{Siebert2010a,Goldewijk2017}, and supports about 43\% of the world’s food production 

on about 20\% of arable land \citep{Siebert2010a,Grafton2017}. The beneficial effects of 

irrigation on food production, population and economic growth, have dramatically pushed the 

increase of irrigated areas during the 20th century, from 28 Mha in 1850 to 276 Mha in 2000 



\citep{Goldewijk2017,Siebert2015}. As a consequence, by the year 2000, irrigation 

accounted for 70\% of the total water withdrawn (between 2657 and 3594 km$^3$/year). The 

consumptive water use, i.e. the part of the withdrawn water that actually becomes 

evapotranspiration (ET) and does not flow to surface supplies and groundwater, represents 

half of that volume (between 1021-1598 km$^3$/year, around 1.7\% of total continental ET  

of 75.6x10$^3$ km$^3$/year according to \citet{Jung2019}) and represents around 90\% of 

the total consumptive water use by human activities 

\citep{Pokhrel2016,Doll2012,Hoogeveen2015}. 

 

Water abstraction and corresponding ET increase have a direct impact on the water and 

energy balances, and on surface and subsurface hydrology 

\citep{Doll2012,Taylor2013,VicenteSerrano2019}. Atmosphere reacts as well to these 

changes on land surface fluxes, for instance with regional increases/decreases in rainfall 

rate, or decreases in temperature extremes 

\citep{Lo2013,Guimberteau2012a,Cook2015a,Al-Yaari2019,Thiery2020}. Thus it was 

recently shown that climate models better capture historical trends in evapotranspiration if 

they account for irrigation and its expansion, although the resulting cooling effect is too 

strong if irrigation is not limited by water availability \citep{AlYaari2022}. Finally, with the 

acceleration of climate change, the irrigation water demand is likely to increase, not only by 

expansion of the irrigated area, but also by increasing temperature and changing 

precipitation variability \citep{Wada2013}. All these impacts and effects have promoted the 

inclusion of irrigation inside land surface models (LSMs), which represent the continental 

branch of the hydrologic cycle in the earth system models \citep{Pokhrel2016}. 

 

Besides LSMs, global hydrology models (GHMs) also represent irrigation at global scale. 

Originally, GHMs were developed to assess water resources availability and water use. In 

GHMs, irrigation demand is equal to the increase of ET due to irrigation (i.e. water that 

becomes evapotranspiration). This ET increase is estimated as the differences between 

crop-specific potential ET and actual ET with no irrigation 

\citep{Siebert2010a,Mekonnen2011,Wada2014,Chiarelli2020}. Following  

\citet{AllenG.2006}, the crop specific potential ET is defined as $ET_c = k_\text{c}\cdot 

ET_\text{0}$, where parameter $k_\text{c}$ depends on crop-type and growing stage, and 

$ET_0$ is the reference crop ET, corresponding to the atmospheric evaporative demand. 

Some models also consider conveyance losses and return flows to rivers and aquifers, i.e. 

they consider the total water withdrawal (water demand plus losses), by using empirical 

ratios of irrigation efficiency (ratio of ET increase to water withdrawal) or specific rules 

according to the irrigation technique \citep{Rost2008,Jagermeyr2015}. The advantage of 

calculating the withdrawn volume is that it allows comparison and validation with datasets of 

reported values, for example the FAO AQUASTAT dataset \citep{AgriInfo2011}.  GHMs 

explicitly represents water supply sources \citep{Doll2012} and allow the estimation of non-

sustainable groundwater used for irrigation \citep{Wada2012}. Some GHMs also simulate 

water allocation (use of water by type of source) based on rules that use information of local 

infrastructure and environmental flow estimations \citep{Siebert2010,Hanasaki2008}. 

 

LSMs do not use in general a PET to estimate irrigation demand. The reason is that LSMs 

do not deduce ET from daily PET input data but from surface energy balance at hourly and 

subhourly time steps. This difference raises consistency issues between empirical PET 

formulas and potential ET rates in LSMs \citep{Barella-Ortiz2013}. Some LSMs prescribe 



irrigation rates estimated offline \citep{Lo2013,Cook2015a}, but most of LSMs and some 

GHMs estimate irrigation demand by calculating a deficit, for instance, a soil moisture deficit 

between actual and a target soil moisture 

\citep{Haddeland2006,Hanasaki2008,Leng2014,Pokhrel2015,Jagermeyr2015}. Some LSMs, 

which benefit from a physically based description of surface runoff and drainage, can 

explicitly calculate return flow, but conveyance losses are not explicitly included 

\citep{Yin2020,Leng2017}. In addition, irrigation shortage due to water availability is not 

always well represented in those LSMs (and GHMs) including this feature, as some of them 

include a virtual infinite reservoir to fulfill irrigation demand 

\citep{Ozdogan2010,Leng2014,Pokhrel2012}. This virtual reservoir may represent fossil 

groundwater use and water table depletion, which is important in some areas like US high 

plains and India \citep{Pokhrel2015,Leng2017,Felfelani2020}. Water allocation is commonly 

based on a stream-water-supply first rule \citep{Guimberteau2012a} with some exceptions 

that use the global groundwater inventory from \citet{Siebert2010} 

\citep{Leng2017,Felfelani2020}. These rather simple irrigation schemes are used in land 

surface-atmosphere simulations to assess irrigation effects on climate 

\citep{Puma2010,Lo2013,Guimberteau2012a,Lo2021} but not on water resources 

assessment. 

 

ORCHIDEE, the LSM of the IPSL (Institut Pierre Simon Laplace) Earth system model 

\citep{Krinner2005,Boucher2020} has been used to assess irrigation effects on climate. First 

attempts to crudely represent irrigation were based on potential evaporation and potential 

transpiration for a generic crop type \citep{DeRosnay2003,Guimberteau2012a}. This 

irrigation scheme restraints irrigation according to available water, and includes simple 

allocation rules. Recently, ORCHIDEE-CROP, a version of the model that includes a crop 

phenology module, improved the irrigation scheme by representing flood and paddy 

irrigation techniques, and was tested in offline mode in China \citep{Yin2020}.  These 

improvements open the possibility to assess irrigation effects on water resources. This is 

important, as there is evidence that some modelling biases within ORCHIDEE in offline and 

coupled modes are correlated to the surface equipped for irrigation \citep{Mizuochi2021}. 

 

Here, we present evidence on the effect of irrigation on reduction of modelling biases in 

some key variables like ET and leaf area index (LAI), and on river discharge and total water 

storage dynamics (TWSA). After describing the ORCHIDEE model and the global irrigation 

scheme, we set the parameter values by using short simulations. We perform a sensitivity 

analysis and a simple parameter tuning to fit observed irrigation rates. We then perform long 

simulations and we compare irrigation estimates to observations and corresponding 

variability due to parameter values and input maps. We validate irrigation estimates by 

reported values, and we assess the spatial variability of the modelling bias. Then we assess 

the modelling bias against observed datasets using a factor analysis, with and without 

irrigation, for ET and LAI. In large basins with extensive irrigation activities, we compare 

simulated and observed values of discharge, and total water storage anomalies (TWSA). We 

also show some results on the correlation between the irrigation bias and some landscape 

descriptors, as a first step to improve the realism of the scheme. Finally, we discuss the 

results and we present the main conclusions and perspectives. 

 

 

 



\section{Model description} 

\label{sec2} 

 

\subsection{ORCHIDEE v2.2}\label{sec2_1} 

ORCHIDEE describes the fluxes of mass, momentum, and heat between the surface and 

the atmosphere \citep{Krinner2005}. Here we use version 2.2, which is close to the version 

used for CMIP6 (corresponding to 2.0). Version 2.0 has been largely described in many 

papers \citep{Cheruy2020,Boucher2020,Tafasca} and version 2.2 only adds a few minor bug 

corrections. We summarize the main characteristics of the model that mediate in the 

simulation of irrigation. 

 

In each grid cell, vegetation is represented by a mosaic of up to 15 plant functional types 

(PFTs), including generic C3 and C4 crops, as well as generic C4 grasses, and tropical, 

boreal and temperate C3 grasses. The PFTs fractions are described by the LUHv2 dataset 

\citep{Lurton2020}, and each PFT is characterized by a specific set of parameters, applied to 

same set of equations \citep{Boucher2020,Mizuochi2021}. Plant phenology is controlled by 

the STOMATE module, which couples photosynthesis and the carbon cycle and computes 

the evolution of the leaf area index (LAI), all these processes depending on  CO$_2$ 

atmospheric concentration \citep{Krinner2005}. 

 

A specialized version of ORCHIDEE has been proposed by \citet{Wu2016} and evaluated by 

\citet{Muller2017} to better describe temperate crops, with phenology thresholds based on 

accumulated degree days after sowing date, improved carbon allocation to reconcile the 

calculations for leaf and root biomass and grain yield, and nitrogen limitation related to 

fertilization. It was not used in this work by lack of ubiquitous parameters at global scale, so 

that C3 and C4 crops are simply assumed to have the same phenology as natural 

grasslands, but with higher carboxylation rates and adapted maximum possible LAI 

\citep{Krinner2005}. The crop growing season depends on mean annual air temperature, as 

detailed in  \citet{Krinner2005}. In cool regions, it starts after a predefined number of growing 

degree days, while in warm regions, it starts a predefined number of days after soil moisture 

has reached its minimum during the dry season. In intermediate zones, the two criteria have 

to be fulfilled. The end of the growing season also depends on temperature and water 

stress, and on leaf age. 

 

Roots constitute an important link between the carbon and the water balance. In each PFT, 

root density decreases exponentially with depth, and the parameter that controls the decay 

is PFT-dependent. It is worth noting that the root density profile is constant in time and goes 

down to the bottom of the soil column, set at 2 m, but forest PFTs have much denser roots 

than crop and grass PFTs, especially in the bottom part of the soil \citep{Wang2018}. The 

resulting root density profile is combined with the soil moisture profile and a water stress 

function to define the water stress factor of each PFT on transpiration \citep{Tafasca} and to 

estimate the water uptake for transpiration \citep{DeRosnay2002}. 

 

Evapotranspiration is represented by a classical aerodynamic approach and is composed of 

snow sublimation, interception loss, bare soil evaporation (E), and transpiration (T). The first 

two proceed at a potential rate, while bare soil evaporation is limited by upward diffusion of 

water through the soil, and transpiration is controlled by a stomatal resistance, which 

depends on soil moisture and vegetation parameters. The vegetation types are grouped into 



three soil columns according to their physiological behavior: high vegetation (eight forest 

PFTs), low vegetation (six PFTs for grasses and crops), and bare soil. While the energy 

balance is calculated for the whole grid cell \citep{Boucher2020}, a separate water budget is 

calculated independently for each soil column, in order to prevent forest PFTs from depriving 

the other PFTs of soil moisture. 

 

Vertical soil water flow is represented by a 1-D Richards equation coupled to a mass 

balance, and lateral flow between cells and soil columns is neglected 

\citep{DeRosnay2002,Campoy2013}. Here, soil depth is set to 2 meters, and discretized into 

22 layers here to finely model lower layers implicated in drainage. Infiltration is simulated as 

a sharp wetting front based on the Green and Ampt model \citep{Tafasca,DOrgeval2008}. 

The resulting increase in top soil moisture is redistributed by the Richards equation. The 

bottom boundary condition assumes free drainage, equal to the hydraulic conductivity of the 

deepest node. The saturated hydraulic conductivity decreases with depth, but roots increase 

the hydraulic conductivity near the surface \citep{DOrgeval2008}. Soil parameters are a 

function of soil texture \citep{Tafasca}, and the spatial distribution is taken from the 

\citet{Zobler1986} map. 

 

A routing scheme transfers surface runoff and drainage from land to the ocean through a 

cascade of linear reservoirs \citep{Ngo-Duc2007,Guimberteau2012}. Each grid cell is split 

into sub-basins according to a 0.5° flow direction map. Three reservoirs are considered 

inside every sub-basin, representing groundwater, overland, and river reservoir, and each 

one presents a distinct residence time \citep{Ngo-Duc2007}. The groundwater reservoir 

collects drainage from the soil column, while the overland reservoir collects surface runoff. 

Both reservoirs are internal to each subbasin and flow to the stream reservoir, which also 

collects streamflow from the upstream basins and contributes to large-scale routing across 

sub-basins and grid cells. Note that there are two surface reservoirs, overland representing 

the headwater streams, and river reservoir representing large rivers. 

 

The water and energy budgets and the routing scheme are computed at the same 30-minute 

time step, while the carbon and plant phenology processes in STOMATE are solved with a 

daily time step. 

 

 

\subsection{Irrigation scheme}\label{sec2_2} 

The irrigation scheme (Figure \ref{fig01}) is based on the flood irrigation representation from 

\citet{Yin2020}, but it includes some changes in the parameterization to run at global scale. 

The flood irrigation technique (which consists of adding water to the soil surface to achieve a 

certain soil moisture content) is chosen for global simulations, as it is the most used 

\citep{Jagermeyr2015, Sacks2009a}. 

 

Firstly, the scheme defines a root zone depth in the crop and grass soil column, based on 

the cumulative root density (CRD), ranging from 0 at the soil surface to 1 at the soil bottom: 

the root zone comprises all soil layers with a CRD below a user-defined threshold, 

$\text{Root}_\text{lim}$. When the threshold is set to 0.9, the root zone includes 90\% of the 

root system. For a 2-m soil column with 22 layers, and an exponential root density decay of 

4 (default value for crops and grasses in ORCHIDEE), this threshold defines a root zone 

depth of 0.65 m, encompassing 11 soil layers. 



 

We can then define a soil moisture deficit $D$ [mm] in the root zone, as the sum of the 

difference between actual soil moisture and a soil moisture target, in all layers of the root 

zone: 

\begin{equation}\label{eq4_2} 

D = \sum_{i \in \text{Root zone}} \max(0, \beta \, W_i^{fc} - W_i), 

\end{equation} 

where $W_i$ and $W_i^{fc}$ (both in mm) are the actual and field capacity soil moisture in 

soil layer $i$, respectively, and $\beta$ is a user-dependent parameter that controls the 

target value with respect to field capacity (shown in Fig. S10 with soil texture). When soil 

moisture drops below the target, irrigation is triggered. To prevent irrigation when there is no 

plant development, for example during winter, we set the deficit $D$ to zero if all crops and 

grasses are below a certain LAI threshold, $\text{LAI}_\text{lim}$. By doing so, we overlook 

irrigation used to enhance germination, and tend to underestimate irrigation amounts. 

 

\begin{figure*}[t] 

\includegraphics[width=1.0\textwidth]{Figures/Fig01.png} 

\caption[ORCHIDEE model and new irrigation scheme.]{ORCHIDEE model and new 

irrigation scheme. See text for explanation of parameters.} 

\label{fig01} 

\end{figure*} 

 

The irrigation requirement $I_\text{req}$ [mm/s] is calculated as: 

\begin{equation}\label{eq4_1} 

I_\text{req} = f_\text{irr} \, \min(D / \Delta t, I_\text{max}), 

\end{equation} 

 

where $f_\text{irr}$ is the fraction of irrigated surface [-] in the grid cell, defined by a map of 

irrigated fractions. The map that prescribes the irrigated fraction may change every year, but 

note that we do not separate the irrigated area into a separate soil column, i.e. the soil 

column includes crops (both irrigated and rainfed) and grasses. $I_\text{max}$ is a user-

defined maximum hourly irrigation rate [mm/h]. This third threshold is used to avoid 

excessive runoff production when the deficit is larger than the infiltration capacity of the soil. 

Therefore, the deficit is fulfilled progressively, over the subsequent time step.  

The effective irrigation ($I$, see below) is uniformly applied over the crop and grass soil 

column. Therefore, care must be taken by the model that the irrigated fraction is not greater 

than the soil column. If the fraction of irrigated surface is much smaller than the crop and 

grass soil column, irrigation will eventually be spread over a larger area than the actually 

irrigated surface. This particular case (an important difference in irrigated fraction and soil 

column fraction) could likely result in overestimation of the amount of irrigation (mainly 

because the water put on the surface will not be sufficient to reach the soil moisture target, 

see Figure S9). Besides,  the fraction of irrigation water that actually evaporates could be 

larger than in reality. The latter could lead to an overestimation of the evapotranspiration 

increase, especially in areas that are energy-controlled \citep{Puma2010} and an 

overestimation of irrigation efficiency. 

 



Irrigation can be withdrawn from three routing reservoirs, but the effective water availability, 

$A_w$ [mm], also depends on the facility to access surface water and groundwater, and it 

can be reduced to preserve environmental flows: 

\begin{equation}\label{eq4_3} 

A_w = f_{sw} \, (a_1 \, S_1 + a_2 \, S_2)  + f_{gw} \, a_3 \, S_3. 

\end{equation} 

 

In this equation, $S_j$ [mm] is the volume storage in each routing reservoir, with index $j$ 

equal 1, 2 and 3 for the stream, overland, and renewable-groundwater (i.e. shallow aquifers 

that are recharged by drainage at the soil bottom) reservoirs, respectively. To prevent 

complete depletion of these reservoirs, which all feed streamflow and support aquatic 

ecosystems, we mimic an environmental flow regulation by reducing the available volume 

owing to a user-defined parameter $a_j$, between 0 and 1. It is set here to 0.9 for all three 

reservoirs, such as to keep at least 10\% of the available water at each time step. The facility 

to irrigate from surface water reservoirs ($S_1$ and $S_2$) and groundwater reservoir 

($S_3$) is accounted for by factors $f_{sw}$ and $f_{gw}$, also ranging between 0 if the 

reservoirs cannot be used and 1 if they are fully accessible. In the present application, these 

factors represent the fraction of irrigated areas that are equipped for irrigation with surface 

and groundwater, respectively, following the global map of \citet{Siebert2010}. We do not 

consider irrigation from non-conventional sources (e.g., wastewater and water from 

desalination plants). This map assumes that a grid-cell is either equipped for groundwater 

irrigation or for surface water irrigation, so $f_{sw} + f_{gw} = 1$. 

 

Eventually, the actual irrigation $I$ [mm/s] is  estimated at each time step by comparing 

$I_\text{req}$, i.e. the demand, to water availability $A_w$ [mm], i.e. the supply: 

\begin{equation}\label{eq4_4} 

I = \min(A_w / dt , I_\text{req}). 

\end{equation} 

 

If we assumed that water abstraction $Q_j$ from each natural reservoir due to irrigation 

withdrawal is simply proportional to available water in each of them, it would be given by the 

following equations, the sum of the three right-hand side terms being equal to $I$: 

\begin{eqnarray}\label{eq4_5} 

\frac{dS_1}{dt} &=& -\, Q_1 = - \frac{ f_{sw} \, a_1 \, S_1}{A_w} \, I \\ 

\frac{dS_2}{dt} &=& -\, Q_2 = - \frac{ f_{sw} \, a_2 \, S_2}{A_w} \, I \\ 

\frac{dS_3}{dt} &=& -\, Q_3 = - \frac{ f_{gw} \, a_3 \, S_3}{A_w} \, I 

\end{eqnarray} 

But we chose to implement an additional constraint for surface water withdrawals, which are 

withdrawn from the stream reservoir (corresponding to large rivers) in priority. This new 

constraint leads to define the revised set of equations, where the total surface water 

availability is $A_{sw} = f_{sw} \, (a_1 \, S_1 + a_2 \, S_2)$:   

\begin{eqnarray}\label{eq4_5_bis} 

\frac{dS_1}{dt} &=& -Q_1 = -\min \left( \frac{A_{sw}}{A_w} \, I \,,\,\frac{ f_{sw} \, a_1 \, 

S_1}{\Delta t} \right)  \\ 

\frac{dS_2}{dt} &=& -Q_2 = -\min \left( \frac{A_{sw}}{A_w} \, I - Q_1 \,,\, \frac{f_{sw} \, a_2 \, 

S_2}{\Delta t} \right )  \\ 

\frac{dS_3}{dt} &=& -Q_3 = - \frac{f_{gw} \, a_3 \,  S_3}{A_w} \, I 

\end{eqnarray} 



The sum of $Q_1$, $Q_2$, and $Q_3$, still equals $I$. 

 

When $I_\text{req} - I > 0$, i.e. there is a deficit and the water supply cannot satisfy the 

irrigation demand, the scheme may adduct water from the neighboring grid cell with the 

largest streamflow volume. The choice of water adduction was introduced in 

\citet{Guimberteau2012a}, but was disabled due to the coarse modelling resolution (grid-cell 

larger than 100 x 100 $km$ of size). Here we use a similar parameterization, but we add a 

user-defined parameter to take into account the facility to access distant river reservoirs:   

\begin{equation}\label{eq4_6} 

\frac{dS_\text{1,add}}{dt} = -Q_\text{1,add} =  -\min{(I_\text{req} - I \,,\, \frac{a_\text{1,add} \, 

S_\text{1,add}}{dt})} 

\end{equation} 

 

In this equation, water adduction $Q_\text{1,add}$ from the largest river reservoir in the 

neighboring grid cell $S_\text{1,add}$, will depend on the facility of access represented by 

the factor $a_\text{1,add}$. This factor can range between 0 if there is no adduction, and 1 if 

the distant river reservoir is fully accessible for water adduction. 

 

The irrigation water, $I+Q_\text{1,add}$, is finally added at the soil surface for infiltration, 

thus resembling a flood or drip irrigation technique. We note that irrigation is not restricted to 

an optimal period during the day, but may be triggered at any moment. It may lead to an 

overestimation of evapotranspiration \citep{Ozdogan2010}. We do not represent dams 

operation in this simulation, even if they play an important role to modulate the temporal 

dynamics of surface water and assure a water supply for irrigation in many large river basins 

\citep{Pokhrel2016, Hanasaki2008}. 

 

\section{Data description}\label{sec3} 

 

\subsection{Input data for ORCHIDEE}\label{sec3_1} 

Firstly, ORCHIDEE is run at global scale in offline mode. We run the model for the period 

1970 - 2013, but we leave the first 10 years as warm-up, and we focus our analysis on the 

period 1980 - 2013. We use the GSWP3 \citep{VanDenHurk2016} as meteorological forcing 

(\url{http://hydro.iis.u-tokyo.ac.jp/GSWP3/}) with a resolution of 0.5 degrees. We also run 

short simulations for the sensitivity analysis and parameter tuning (see below in Section 

\ref{sec4_sa_tu}). We prescribe the irrigated surfaces in transient mode, i.e. irrigated 

surfaces may change every year, based on the Historical Irrigation Dataset (HID) from 

\citet{Siebert2015} and on Land Use Harmonization 2 (LUHv2) dataset from 

\citet{Hurtt2020}. 

 

HID presents a map every 10 years before 1980 and every 5 years after at 5 arcmin 

resolution, and for each year, we use the nearest map in time to avoid data interpolation, 

LUHv2 presents a map every year with a 0.25 degrees resolution. The main difference 

between the HID and LUHv2 maps is that HID prescribes the area that is equipped for 

irrigation (AEI), while LUHv2 prescribes the area that is actually irrigated (AAI). As a result, 

the HID dataset has a greater irrigated surface (3.0 $10^6 km^2$ for HID, 2.5 $10^6 km^2$ 

for LUHv2 at global scale around 2000). It also means that AAI should be included in the AEI 

if the two datasets shared a similar spatial distribution. But this is not the case, as the two 



datasets rely on different information sources, processed with  different methods 

\citep{Oliveira2022}.   

The performed simulations use uniform parameters over irrigated areas, main changes 

between simulations are summarized in Table \ref{table02}. As a reference, we use a 

simulation with no irrigation, called NoIrr, while simulation Irr with irrigation activated, uses 

parameter values according to results from the sensitivity and tuning analysis (Section 

\ref{sec4_sa_tu}) and the HID maps. The simulation Irr\_NoTuned also activates irrigation 

and uses the HID dataset as input, but it uses a priori parameter values. This latter 

simulation does not consider the conclusions from the sensitivity analysis, and for instance 

does not activate irrigation withdrawal from the overland reservoir nor adduction. 

 

We run additional simulations to assess the uncertainty of the simulated irrigation amount 

and the influence of the most sensitive parameters, according to the sensitivity analysis: the 

impact of the desactivation of adduction in our scheme is considered in simulation 

Irr\_NoAdd, the effects of changes in the $\beta$ value are considered in simulations 

Irr\_NoTuned, Irr, and Irr\_Beta, and finally the effect of changes in the $I_{max}$ value is 

considered in simulation Irr\_Imax. All these simulations use HID to prescribe irrigated areas. 

We analyze the effect of large differences in prescribed irrigated areas on irrigation amounts 

by using the LUHv2 dataset as input (simulation Irr\_LUH) and using the same parameter 

values as the Irr simulation.  

 

\begin{table*} 

\caption{Simulations with inputs and parameter values. In brackets, the units of the 

parameter, [-] means that the parameter corresponds to a fraction and does not have a unit. 

In bold the change in parameter values with respect to the Irr simulation.} 

\label{table02} 

\begin{tabular} 

{|>{\centering\arraybackslash}m{2.6cm} 

|>{\centering\arraybackslash}m{1.9cm} 

|>{\centering\arraybackslash}m{1.8cm} 

|>{\centering\arraybackslash}m{1.2cm} 

|>{\centering\arraybackslash}m{2.3cm} 

|>{\centering\arraybackslash}m{1.6cm} 

|>{\centering\arraybackslash}m{2.1cm}|} 

\hline 

{\textbf{Simulation}}    & \textbf{Irrigation} & \textbf{Irrigated surfaces} & \textbf{$\beta$ {[}-{]}}     

& \textbf{$a_i$ {[}-{]}}           & \textbf{$I_{max}$ {[}mm/h{]}} & \textbf{Adduction {[}-{]}} \\ \hline 

NoIrr         & \textbf{No}         & –                  & –             & –                    & –               & –                 

\\ \hline 

Irr\_NoTuned & Yes        & HID                & \textbf{1.0}           & \textbf{0.9,0.0,0.9}          & 

\textbf{1.0}             & \textbf{0.0}               \\ \hline 

Irr           & Yes        & HID                & 0.9  & 0.9,0.9,0.9 & 3.0   & 0.05     \\ \hline 

Irr\_LUH      & Yes        & \textbf{LUHv2}     & 0.9           & 0.9,0.9,0.9          & 3.0             & 

0.05              \\ \hline 

Irr\_NoAdd    & Yes        & HID                & 0.9           & 0.9,0.9,0.9          & 3.0             & 

\textbf{0.0}      \\ \hline 

Irr\_Beta     & Yes        & HID                & \textbf{0.75} & 0.9,0.9,0.9          & 3.0             & 

0.05              \\ \hline 



Irr\_Imax     & Yes        & HID                & 0.9           & 0.9,0.9,0.9          & \textbf{1.0}    & 0.05              

\\ \hline 

\end{tabular} 

\end{table*} 

 

\subsection{Validation datasets and landscape descriptors}\label{sec3_2} 

The validation of the new irrigation scheme and its effect on the model bias is focused on 

five variables: evapotranspiration, leaf area index, discharge, irrigation withdrawal and total 

water storage anomalies. We also use two landscape descriptors datasets (see below). 

 

\medskip 

\textbf{Irrigation water withdrawals -} 

We use two datasets: first, we compare the simulated irrigation rates with values from the 

FAO-AQUASTAT database (\url{https://www.fao.org/aquastat/en/}) reported in 

\citet{AgriInfo2011} for irrigation volumes around 2000. AQUASTAT is based on reported 

values at the country scale, so it does not inform on seasonal values or their spatial 

distribution. In countries with a lack of information, data is completed using modelling outputs 

to estimate the plant requirement, and country-level ratios of irrigation efficiency to calculate 

the irrigation water withdrawal \citep{Hoogeveen2015}. While the plant requirement 

corresponds to the increase of evapotranspiration, the irrigation water withdrawal is the 

volume that is abstracted from the natural reservoirs, and includes the losses and return 

flows. 

 

 We also use the spatially explicit information of irrigation water withdrawal around the year 

2000 from \citet{Sacks2009a}. This reconstruction uses national-level census data, primarily 

from AQUASTAT, with maps of croplands by crop type, areas equipped for irrigation, and 

climatic water deficit. The result is a gridded map with a resolution of 0.5 degrees. 

 

\medskip 

\textbf{Evapotranspiration - } 

We use two datasets: the first product is GLEAM v3.3a, which combines satellite-observed 

values of soil moisture, vegetation optical depth, and snow-water equivalent, reanalysis of air 

temperature and radiation, and a multisource precipitation product at 0.25º resolution 

\citep{Martens2017}. The second dataset is FLUXCOM \citep{Jung2019}, which merges 

Fluxnet eddy covariance towers with remote sensing (RS) and meteorological (METEO) data 

using machine learning algorithms at 0.5º resolution. Here we use RS+METEO products, 

specifically the averages of RS+METEO$_\text{WFDEI}$ and 

RS+METEO$_\text{CRUNCEP\,v8}$, to cover the analysis period. 

 

\medskip 

\textbf{Leaf area index - } 

We use the LAI3g dataset \citep{Zhu2013} climatological values for the period 1983-2015. 

This dataset applies a neural network algorithm on satellite observations of the Normalized 

Difference Vegetation Index (NDVI) 3g to estimate LAI at 5 arcmin resolution. 

 

\medskip 

\textbf{River discharge - } 



We use monthly data from the Global Runoff Data Centre (GRDC, 

\url{https://www.bafg.de/GRDC-/EN/Home/homepage\_node.html}) in 14 large basins with 

strong irrigation activities. We choose the station nearest to the river mouth that also has 

data available for the study period (Figure S4 shows the basins and its corresponding 

discharge station). Basin boundaries were delineated with the flow directions map used by 

ORCHIDEE (section \ref{sec2_1}).   

 

\medskip 

\textbf{Total water storage anomalies - } 

We compare the total water storage anomalies (TWSA) from our simulations with three 

different monthly products of TWSA based on GRACE (Gravity Recovery and Climate 

Experiments) observations based on global mascon solutions, that are suitable for 

hydrologic applications \citep{Scanlon2016a}: CSR \citep{Save2016}, GRC Tellus, called 

here TELLUS \citep{Emry2014} and NASA GSFC \citep{Loomis2019}. CSR has a spatial 

resolution of 0.25 degree, while TELLUS and NASA GSFC have a resolution of 0.5 degrees. 

As the differences between products at the large river basin scale are small, we use the 

average value of the three products. All the products cover the period from april 2002 to the 

end of the simulation in 2014. 

 

\textbf{Landscape descriptors -} 

We compare the simulation results with two landscape descriptors which are linked to 

irrigation and may contribute to the irrigation bias. We use the fraction of irrigated rice 

around year 2000 from MIRCA2000 \citep{Portmann2010} (see spatial distribution and focus 

on Southeast Asia in Fig. S5), and the location and volume of major dams based on the 

Global Reservoir and Dams dataset, GRanD \citep{Lehner2011}. GRanD contains 

information on the maximum storage capacity and main use of dams with reservoirs larger 

than 0.1 ha. Here we consider dams that have irrigation as their main purpose. 

 

\subsection{Data processing and analysis}\label{sec3_3} 

We aggregate and interpolate all the observed data to the 0.5 degrees spatial resolution of 

the ORCHIDEE simulations. For ET, we mask GLEAM and the simulated data according to 

FLUXCOM, which does not cover all the continents, so all the comparisons are made over 

the same grid cells with available information. For LAI, we exclude grid-cells with no data in 

LAI3g from the analysis. We compare grid cell values and zonal average values. The 

statistical significance of the mean difference between observed and simulated time series is 

assessed with a Student’s t-test at the 5 \% significance level. 

 

We use the simulated discharge from the grid cell that best matches the watershed area 

upstream of the discharge station. In addition, we only use time steps with data available 

from observations, so that both time series agree. For TWSA, we compare observed and 

simulated basin averages. As ORCHIDEE gives the total water storage (TWS) value, we 

normalize the time series with the mean value of the NoIrr simulation for the period 2002-

2008, the same as the observed products. In this way, the effect of irrigation over TWS is 

observed in the simulated time series. 

 

In addition to direct comparison at the grid cell, zonal or basin scale, we perform a factor 

analysis to reveal relationships between modelling bias and landscape descriptors. We use 

the fraction of irrigated areas around 2000 from HID, as well as the fraction of irrigated rice 



from MIRCA2000, both interpolated to the ORCHIDEE resolution. We categorized grid cells 

into six classes by irrigation fraction levels based on the two datasets, following 

\citet{Mizuochi2021}: Class 1: 0\%, Class 2: 0 to 5\%, Class 3: 5 to 10\%, Class 4: 10 to 

20\%, Class 5: 20 to 50\% and Class 6: 50 to 100\%.    

 

We also performed a comparison between the average basin-scale irrigation bias and the 

volume capacity of dams used for irrigation within the basin, according to GRanD. We use 

the Pearson's correlation coefficient (r) as a metric for the correlation analysis. 

 

\section{Sensitivity analysis and parameter tuning}\label{sec4_sa_tu} 

 

\subsection{Sensitivity analysis} 

Short simulations were run to assess the sensitivity of the irrigation amount at the global 

scale to different parameter values, assumed to be uniform in all irrigated areas. We used 

GSWP3 as meteorological forcing, and the LUHv2 from \citet{Hurtt2020} to prescribe the 

irrigated surfaces (see Section \ref{sec3_1}). We ran a total of 23 simulations with varying 

parameters, plus a reference simulation with no irrigation. All of them were run with the same 

initial conditions for three years (1998 - 2000), and a comparison of irrigation amount and ET 

increase was performed for the year 2000. By using the last simulation year, we reduce the 

effect of the common initial conditions on the simulation results, and the year 2000 

corresponds to the values given in AQUASTAT and \citet{Sacks2009a}. Note that we use a 

single meteorological forcing dataset and compare our estimates to a single set of observed 

AQUASTAT data for the period around the year 2000. We choose to compare our estimates 

for the year 2000 because this year is commonly used as the reference period in the 

literature concerning the estimation of the amount of irrigation on a global scale (see, e.g., 

Pokhrel et al., 2016, Table 2). The choice of the year 2000 is mainly due to the existence of 

more complete reported or observed values for that year, as well as simulated estimates. 

We use the same reference period to compare our results with independent data. A brief 

description of each parameter as well as the unit, range, and values used in the sensitivity 

analysis is shown in Table \ref{Table01}. 

 

\begin{table*} 

\caption{Parameters of the irrigation module, brief description, range and values used in the 

sensitivity analysis. Values in bold correspond to the reference value. Note that, for 

parameter $a_i$, the three reservoirs share the same value.} 

\label{Table01}  

\begin{tabular}{ 

  | >{\raggedright\arraybackslash}m{2.1cm}  

  | >{\raggedright\arraybackslash}m{6.4cm}  

  | >{\raggedright\arraybackslash}m{2.0cm} 

  | >{\raggedright\arraybackslash}m{1.4cm} 

  | >{\raggedright\arraybackslash}m{2.6cm} | } 

  \hline 

\textbf{Parameter}           & \textbf{Description}     &              \textbf{Unit}     &              

\textbf{Range}   &              \textbf{Values}  \\ \hline 

$\beta$          & Controls the soil moisture target, equal to $\theta_{fc}*\beta$                 & 

Fraction, no units                        & {[}0-$\infty${]}      &  0.6, 0.8, \textbf{0.9}, 1.0, 1.2, 1.4  \\ 

\hline 



$a_j$         & Controls the fraction in reservoir available for irrigation, the complement being 

the fraction left for ecosystems          & Fraction, no units                        & {[}0-1{]}    &  0.1, 

0.5, \textbf{0.9}, 1.0  \\ \hline 

$a_{1,add}$  & Controls the fraction in stream reservoir available for adduction & Fraction, 

no units                        & {[}0-1{]}    &  0.0, \textbf{0.05}, 0.1, 0.2 \\ \hline 

$I_{max}$       & Maximum irrigation rate per hour                                  & mm/h                                      

& {[}0-$\infty${]}     &  0.5, 1.0, \textbf{3.0}, 5.0, 7.0   \\ \hline 

$Root_{lim}$ & Defines if a soil layer is part of the root zone                  & Cumulated relative 

root density           & {[}0-1{]}    &  0.0, 0.5 \textbf{0.9}, 1.0   \\ \hline 

$LAI_{lim}$  & Minimum LAI in crops and grasses PFTs to trigger irrigation       & 

m\textasciicircum{}2/m\textasciicircum{}2 & {[}0-$\infty${]}     &  0.0, \textbf{0.1}, 0.3, 0.5, 1.0   

\\ \hline 

\end{tabular} 

\end{table*} 

 

We change the value of one parameter at a time (once-at-a-time screening, see 

\citet{Mishra2009a,Song2015b}) and then we observe its effect on the irrigation rate and on 

the increase in evapotranspiration. We tried to include the full range of parameters, but it is 

worth noting that in some cases, values were restricted to ensure an expected behavior. In 

the case of $\beta$, we set values around 1.0 (target equal to the field capacity soil 

moisture) as it seems a plausible target for flood irrigation, but note that values higher than 

1.4 or lower than 0.6 are possible. Theoretically the upper limit is infinite, but values above 

1.5 may exceed the saturated soil moisture for some soil textures, the lower limit is zero (see 

Table S4). For adduction, we set parameter values under 0.2 (20\% of streamflow available 

for adduction at every time-step), which seem high enough to represent water adduction in 

large river basins \citep{Leng2015}. In the case of the LAI$_\text{lim}$ and $I_{max}$, upper 

values were selected a priori. Those values in bold in Table \ref{Table01} are called 

reference values afterwards. The reference parameter values are intended to maximize the 

irrigation amount, as preliminary tests (not shown) performed with a priori values exhibited 

an underestimation of irrigation rates at global scale. The reference values do not change if 

not explicitly required by the once-at-a-time screening method. 

 

\begin{figure*}[hb!] 

\includegraphics[width=16cm]{Figures/Fig02.png} 

\caption{Sensitivity of global irrigation volumes and increase of evapotranspiration ($km^3$) 

to changes in parameter values, for the year 2000 using short simulations. Secondary y-axis 

correspond to ET increase values compared to the simulation with no irrigation. Note that the 

y-axis scales differ between parameters.} 

\label{fig02} 

\end{figure*} 

 

Figure \ref{fig02} shows that $\beta$ is the parameter with the strongest effect on the global 

mean irrigation rate, followed by the cumulated root density threshold 

$\text{Root}_\text{lim}$, $I_\text{max}$, and the fraction of stream storage available for 

adduction $a_\text{1,add}$. The fraction of water storage left for the ecosystems (called 

Environmental in the figure, $a_j$) has a more limited effect, suggesting that in many 

irrigated areas, there is enough water from surface and groundwater to fulfill the irrigation 

requirements. Finally, the LAI limit, $LAI_\text{lim}$, to trigger irrigation has a weaker effect 



than the other parameters. In the case of ET increase (Fig. \ref{fig02}, blue line), the 

sensitivity to the different parameters is similarly hierarchized, although the magnitude is not 

necessarily the same. Also note that the effect on irrigation efficiency (i.e. ratio of ET 

increase to irrigation amount) is different for $\beta$ values higher than 1.0 and for 

$\text{Root}_\text{lim}$ values higher than 0.5. This implies that the fraction of irrigation 

water that becomes runoff or deep drainage is more important. 

 

\subsection{Parameter tuning} 

 

\begin{figure*}[hb!] 

\includegraphics[width=12cm]{Figures/Fig03.png} 

\caption{Calibration of $\beta$ value with \citet{Sacks2009a} dataset as observed value, 

using outputs from the short simulations. Bias in total irrigation volume  in $km^3$ by 

$\beta$ value (a), boxplot of the bias of irrigation rates in gridcells in mm/d by $\beta$ value 

(b).}  

\label{fig03} 

\end{figure*} 

 

The sensitivity analysis showed that $\beta$ has the strongest effect on the simulated 

irrigation amount, and that these effects can induce changes on the irrigation efficiency. 

Therefore, we explored in more detail its behavior to set an value. Note that we used the 

chosen reference values for the other parameters. We compared the irrigation rate 

estimated by ORCHIDEE for 2000 in the short tests with the observed irrigation from 

\citet{Sacks2009a} (Fig. \ref{fig03}) using total irrigation volume at global scale, and irrigation 

difference at grid-cell scale. When comparing the irrigation water amount at global scale (in 

$km^3$ for the year 2000, Fig. \ref{fig03}-a) we observe that a value of 1.2 maximizes the 

irrigation and minimizes the irrigation bias. When we assess the distribution of bias using 

grid-cell values (in mm/d, Fig. \ref{fig03}-b) we observe that for $\beta$ equal to 0.8, 0.9, or 

1, the bias distribution is centered around 0, while it starts to move up for values 1.2 and 1.4. 

This behavior can be slightly different depending on the irrigated fraction (see Fig S9). For 

simplicity here and as a tradeoff between the underestimation of irrigation volume and the 

spatial distribution of bias, we choose to set $\beta$ to 0.9 in all irrigated areas. We decided 

to use the reference values for the other parameters, as they play a minor role according to 

the sensitivity analysis, and the reference values does not minimize the irrigation amount. 

 

After this analysis we underline four points. First, this process does not correspond to a 

proper calibration, as we assumed uniform parameter values, the number of simulations is 

low and the observed data is sparse. The objective of the sensitivity analysis and parameter 

tuning was to identify key parameters and reduce the underestimation of irrigation by tuning 

the uniform parameter values. Second, our scheme does not include conveyance losses 

although application losses and return flows are represented. As ORCHIDEE determines the 

water partitioning, some model flaws in hydrologic processes like infiltration or bare soil 

evaporation could bias the effect in return flows, in the increase of ET, and ultimately in the 

irrigation efficiency. Third, although the once-at-a-time method is suitable given the 

computational cost of running an ORCHIDEE simulation, it also has drawbacks and 

limitations in its analysis \citep{Song2015b}, for instance its qualitative nature, and lack of 

quantification of individual interaction between parameters. Fourth, we use the LUHv2 map, 

which represents the areas actually irrigated, AAI (a lower value than the areas equipped for 



irrigation, AEI, which is used in other datasets). We do not consider the effect of prescribed 

data uncertainty nor the effect of meteorological forcing in this analysis. 

 

 

\section{Results}\label{sec4} 

 

\subsection{Validation of irrigation water withdrawals}\label{sec4_1} 

Irrigation from the Irr simulation is estimated at 0.049 mm/d (2452.5 km$^3$/year) around 

the year 2000 (Fig. \ref{fig4}-a). This estimation is in the lower part of other studies which 

range between 2465 and 3755 km$^3$/year \citep{Pokhrel2016} and is lower than 

AQUASTAT estimation of 2735.1 km$^3$/year around the year 2000 \citep{AgriInfo2011}. 

The results suggest that the proposed scheme is adequate to simulate the reported 

estimations of irrigation despite the underestimation (-10\% than the 2735.1 km$^3$/year 

from AQUASTAT around 2000). We note that this estimate is also higher than that of the old 

irrigation scheme of \citet{Guimberteau2012a}, but the scheme proposed here can still 

benefit from a more robust parameter tuning. 

 

 

\begin{figure*}[!h] 

\includegraphics[width=1.0\textwidth]{Figures/Fig04.png} 

\caption{Total water withdrawal for irrigation in the Irr simulation, yearly average for 1998-

2002 (a), groundwater irrigation withdrawn for irrigation, yearly average for 1998-2002 , 

difference in water withdrawn for irrigation between Irr (yearly average, 1998 - 2002) and 

AQUASTAT values \citep{AgriInfo2011} at country level in km3/year (b), difference in water 

withdrawn for irrigation between Irr (yearly average, 1998 - 2002) and dataset from 

\citet{Sacks2009a} (c).} 

\label{fig4} 

\end{figure*} 

 

At the country-scale, Fig. \ref{fig4}-b shows that the irrigation module underestimates water 

withdrawals in the main hotspots of irrigation, i.e. India, China, and the USA, while it 

overestimates irrigation rates in Africa, East Europe and Latin America (see also Fig. S1). 

Such reduced contrasts between highly and weakly irrigated countries could indicate a 

limitation of the irrigation scheme to represent local irrigation strategies, as our scheme uses 

global uniform values for all the parameters. Comparison with the estimation from 

\citet{Sacks2009a} (see Fig. S1) supports this result (-0.004 mm/d, -219.2 km3/y, Fig. 

\ref{fig4}-c) and allows us to identify the areas where the irrigation bias is the strongest. In 

India, the Indus basin presents a strong underestimation, as well as in the Northern part of 

the Ganges-Brahmaputra basin. In China, there is a more widespread underestimation. That 

is also the case in the west part of the US Great Plains. The other regions present in general 

an overestimation of irrigation withdrawals, which is especially important in some small areas 

in Africa, in Eastern Europe and north to the Caspian sea, and in some areas of central Asia. 

Finally, we note that within a country, it is possible to observe areas with positive and 

negative bias, for instance in the USA or India. This could also be partially explained by the 

use of globally uniform values, as there could be important local differences on irrigation 

strategies within the same country, and it remarks the need to assess the irrigation bias at 

different scales (See Fig. S11). 

 



\subsection{Variability of the irrigation rates due to parameter values and input 

data}\label{sec4_2} 

The global annual irrigation volumes (Fig. \ref{fig5}-a) show a large uncertainty across the 

simulations due to changes in the parameter values (for instance, -24.7\% between 

Irr\_NoTunned and Irr) , but note that the change on irrigation rates at gridcell scale can 

have a strong spatial heterogeneity within a country (\ref{fig5}-c) for instance in India or the 

USA. The parameter set used in the Irr simulation manages to increase the irrigation rate 

and to markedly reduce the irrigation bias when compared to the Irr\_NoTuned simulation at 

global scale, even if locally we may observe both an increase or a decrease on the irrigation 

rate in the same country, for instance in China (with a marked north-south difference, 

(\ref{fig5}-c, Irr\_NoTuned-Irr) or the Indus river basin in Pakistan and India  (see (\ref{fig5}-c, 

Irr\_NoTuned-Irr). Also, a positive trend in the annual irrigation volume is observed in all 

simulations. It is caused by the increase in irrigated area, observed in both HID and LUHv2 

datasets (see simulations Irr and Irr\_LUH). The irrigated area has been identified by 

\citet{Puy2021} as the main driver of irrigation water withdrawal, and the increase of the 

prescribed irrigated area in the simulations explains in part the positive trend in the irrigation 

rate (see Fig. S6). 

 

 

\begin{figure*}[p] 

\includegraphics[width=1.0\textwidth]{Figures/Fig05.png} 

\caption{Time series of globally averaged irrigation rates simulated by ORCHIDEE (a). Map 

of the standard deviation of mean irrigation rates from all simulations in mm/d (b). Maps of 

mean difference between Irr simulation and others, for the period 1980 - 2013 in mm/d (c). 

Blank areas correspond to grid-cells with no irrigated areas} 

\label{fig5} 

\end{figure*} 

 

Based on the mean annual values (Fig. \ref{fig5}-c), the $\beta$ parameter has the largest 

effect on the mean irrigation rate (-22.3\% when $\beta$ decreases from 0.9 to 0.75), 

followed by the change of input map from HID to LUHv2 (-19.7\%), a lower $I_{max}$ (-

16.5\%) and, finally, no adduction (-15.7\%). From a spatial point of view, the overall 

reduction in irrigation due to the above changes is not homogeneous and large areas may 

even display an increased irrigation rate. The exception is the $\beta$ parameter, which 

shows an overall reduction in irrigation with a lower parameter value, except in the Indus 

basin. The Indus river basin is a region that depends on both surface and groundwater for 

irrigation, and the irrigation demand is one of the most important worldwide 

\citep{Laghari2012}. In Irr\_Beta, a lower $\beta$ induces a reduction of water demand in the 

upper areas of the Indus river basin, increasing the river discharge downstream. More 

surface water supply in the middle and lower parts of the basin can increase irrigation in 

these areas, even if the water demand also decreases, because the irrigation deficit i.e. the 

difference between demand and supply, is still high despite the demand reduction. We 

advance here that the propagation of water supply through the river system can explain part 

of the heterogeneity in the response to other parameter changes. 

 

To estimate the interannual irrigation rate variablity, we calculate the coefficient of variation 

(ratio of standard deviation to the mean, Fig. \ref{fig5}-b). We use the pluriannual mean 

irrigation rate from all simulations with irrigation activated from table \ref{table02}. Results 



highlight a certain homogeneity, but we can identify at least two distinct areas: an area of low 

variability (around 0.25) in Southern Asia, some areas in the Mediterranean and North and 

South America, and an area of high variability (around 0.75) in Northern Europe, North 

America, Africa and Australia, with some points where the coefficient of variation is the 

highest (over 2.0), especially in Africa. The use of global parameter values could explain the 

relative homogeneity of the coefficient of variation, while regional differences like climate 

variablity and irrigation water demand could explain the existence of these two variability 

classes. 

 

\subsection{Factor analysis: correlation of modelling biases and irrigation 

classes}\label{sec4_3} 

Figure \ref{fig06}-a shows the bias of ET by class of irrigated fraction at grid-cell scale, when 

we compare ORCHIDEE simulations with FLUXCOM dataset. It shows that the activation of 

irrigation reduces the ET bias in those areas with high irrigation fractions (also see S7 for the 

spatial distribution). For the comparison with GLEAM in Fig. \ref{fig06}-b, it shows that the 

activation of irrigation induces a positive bias in those areas with irrigation. When comparing 

absolute ET values by irrigation class (Fig. \ref{fig06}-c), we observe that NoIrr and GLEAM 

are similar in all the classes except for 0 and All, i.e. no irrigated fraction and all grid cells. It 

means that the differences between NoIrr and GLEAM comes from non-irrigated areas. This 

could suggest a limitation in GLEAM to represent the effects of irrigation on ET rates as this 

product does not respond to the presence of irrigated areas. On the other hand, Irr and 

FLUXCOM boxplots are similar for classes 10-20, 20-50, and 50-100. A seasonal 

assessment on zonal average values for irrigated areas support this suggestion (Fig. S7). 

Thus, from now we prioritize FLUXCOM for our analysis regarding the ET bias. 

 

 

\begin{figure*}[p] 

\includegraphics[width=1.0\textwidth]{Figures/Fig06.png} 

\caption{Factor analysis of ET bias with FLUXCOM against irrigated fraction classes (a), and 

with GLEAM (b). Mean ET values of simulations and observed products against irrigated 

fraction classes (c). LAI bais with LAI3g against irrigated fraction classes (d) and mean LAI 

values of simulations and observed product against irrigated fraction classes (e).} 

\label{fig06} 

\end{figure*} 

 

A similar analysis for the LAI bias and classes of irrigated fraction (Fig \ref{fig06}-d) shows 

an increase in the LAI difference between ORCHIDEE and LAI3g in the Irr simulation. Also, 

for all classes, the positive bias in the NoIrr simulation is exacerbated in the Irr simulation, 

except for the most intensively class (class 50-100), which reduces the negative bias when 

comparing NoIrr and Irr simulations. It is worth noting that the class 50-100, where irrigation 

is more important, is the single one with a negative bias in NoIrr, and this negative bias is 

partially reduced when irrigation activities are included (see Fig. S8 for spatial distribution 

and zonal average values). This is due to less water stress and thus more photosynthesis 

and biomass production, which is coherent with the decrease of ET bias for this class. When 

comparing absolute values  between the simulations and the observed product (Fig. 

\ref{fig06}-e), we observe that irrigation activation within ORCHIDEE does not significantly 

change the distribution of LAI values at global scale. These results are coherent with 



changes that irrigation induces on water fluxes and reservoirs, as well as on water and 

energy budget (see Fig. S2 and S3). 

 

\subsection{Effect of irrigation on TWSA and river discharge}\label{sec4_5} 

We now focus on the average TWSA value at the basin scale (Fig. \ref{fig09}). Activation of 

irrigation induces small changes in TWSA, which is coherent with changes in TWS between 

both simulations (Figure S2). For instance, we observe higher peaks in Huang He when 

irrigation is activated. Low values also become lower for the Irr simulation in Huang He 

basin. In the Ganges river basin, low values are lower as well in the Irr simulation than in 

NoIrr. The changes in water pathways and related residence times that explains changes in 

TWS between Irr and NoIrr (transfer of water from a reservoir with rapid flows like the 

streamflow to the soil, with a slow flow), also could explain these changes in TWSA 

dynamics at large basin scale. Other basins, like the Nile river basin or the Amu-Darya, show 

little effect between both simulations, even if extreme peaks values can be overestimated 

(during 2007 in the Nile) or underestimated (during 2005 and 2006 in Amu-Darya). But note 

that the model is unable to follow the GRACE trends, in basins with negative trends (for 

instance Huang He, Indus or Ganges) or positive trends (Murray river between 2011 and 

2014). 

 

 

\begin{figure}[p] 

\centering 

\includegraphics[width=1.0\textwidth]{Figures/Fig09.png} 

\caption{Comparison of TWSA between  ORCHIDEE simulations and GRACE datasets in 

large basins with strong irrigation activities.} 

\label{fig09} 

\end{figure} 

 

 

The correct simulation of river discharge (Fig. \ref{fig10}) is another challenge in ORCHIDEE 

and other LSMs \citep{Oki1999,Ducharne2003,Guimberteau2012,Koirala2014,Cheruy2020}. 

Irrigation plays an important role to reduce the average values when we compare NoIrr and 

Irr simulations (see for example the Nile, or the Indus rivers, these results are coherent with 

those from \citet{DeGraaf2014}). The main effect of irrigation over the seasonal variations is 

that peak discharge can occur before in the Irr simulation (for instance Missouri river or 

Yellow river), or that the decrease after the peak is more rapid and low values are lower in Irr 

than in NoIrr (for instance Colorado river or the Danube river). These changes are due to the 

triggering of irrigation during spring and summer, and the corresponding ET increase. It is 

worth noting that the Irr simulation does not necessarily reduce the discharge bias against 

GRCD data compared to the NoIrr simulation, with the exception of the Danube river (see 

Table S1 for some goodness-of-fit metrics for observed and simulated discharge values). 

 

 

\begin{figure}[p] 

\centering 

\includegraphics[width=1.0\textwidth]{Figures/Fig010.png} 

\caption{Comparison of observed and simulated river discharge in large basins with strong 

irrigation activities.} 



\label{fig10} 

\end{figure} 

 

\subsection{Factor analysis: correlation of irrigation biases and landscape 

descriptors}\label{sec4_6} 

 

We compare biases and errors in irrigation estimates with landscape descriptors that could 

help explain these modelling errors. We also seek a perspective to increase the realism of 

the irrigation scheme and reduce the error in irrigation estimation. For the irrigation bias, 

classes with a high fraction of irrigated paddy rice, (for instance class 20-50 or 50-100), 

exhibit a higher bias than classes with small fractions (Fig \ref{fig11}-a). The spatial 

distribution of irrigated paddy rice is concentrated in southeast Asia, and includes the most 

irrigated river basins worldwide (see Fig. S5). At the large basin scale (see values in Table 

S2), the irrigation bias also correlates well with the capacity of dams used for irrigation (Fig. 

\ref{fig11}-b) if we retire a single outlier corresponding to the Nile river basin (r value without 

the outlier is -0.55). 

 

\begin{figure}[!h] 

\centering 

\includegraphics[width=16cm]{Figures/Fig011.png} 

\caption{Factor analysis of irrigation rate bias with data from \citet{Sacks2009a}, against 

irrigated paddy rice classes (a). Basin average value of irrigation bias against dams capacity 

(b). Map of $\beta$ that minimizes the irrigation bias, according to the short simulations (c) 

and corresponding map of minimum irrigation bias according to the $\beta$ value in (c), in 

mm/d (d).} 

\label{fig11} 

\end{figure} 

 

The correlation between paddy rice and irrigation bias suggests the need to explicitly 

represent paddy irrigation at global scale. Thus, we add an assessment of the $\beta$ value 

and irrigation bias, using the short simulations used on the parameter tuning (see section 

\ref{sec4_sa_tu}). We use all simulations with changes on the $\beta$ parameter from Table 

\ref{Table01}. Then, we build a composite map of the $\beta$ value that minimizes the 

irrigation bias at a grid-cell scale (Fig. \ref{fig11}-c) and then we show the corresponding 

irrigation bias as compared to \citet{Sacks2009a} dataset. The results roughly show at least 

two classes for $\beta$: the first with values of 1.2 and 1.4 (for instance in China and north 

India) and the second with values of 0.6. Using at least two $\beta$ values is not enough to 

reduce the irrigation bias at global scale, but it has an important effect on the spatial 

distribution of the irrigation bias in Southern Asia, the region with the most paddy rice area. 

These results suggest that the $\beta$ parameter should have at least two values, 1.3 in 

areas with paddy rice, and 0.6 in the rest of irrigated areas. But note that the data used for 

this analysis correspond to a single year, i.e. year 2000. Also, regional characteristics, like 

more than one harvest of paddy rice due to optimal climate conditions, are not taken into 

account in this analysis, but could also help to explain the irrigation underestimation in our 

estimations \citep{Yin2020}. 

 

\section{Discussion}\label{sect5} 



In this study, we implemented a new global irrigation scheme inside the ORCHIDEE land 

surface model based on previous work from \citet{Yin2020} in China. While we found a 

reduction in some modelling biases when irrigation is activated, we also identified at least 

four types of limitations in our modelling framework that can affect the estimates of irrigation 

or the effects of irrigation on other variables inside the land surface model:  

\begin{enumerate} 

\item The irrigation scheme exhibits some shortcomings that may bias the estimated 

irrigation amount: the use of a single irrigation technique; simplified rules to trigger irrigation 

and allocate the available water; the joint representation of rainfed and irrigated crops within 

the same soil column; the non-representation of conveyance losses, although losses due to 

return flows are represented.   

\item The parameter tuning is overly simplistic. As a first step, we considered globally 

uniform parameters, which is overly simplistic, although spatially distributed values would 

allow us to better describe the local features of irrigation systems, as shown by the spatial 

variations in optimized β map, and the dependence of the local irrigation bias on the fraction 

of paddy rice.  

\item We also use a single meteorological forcing dataset and a single year to characterize 

observed irrigation values. This contributes to biasing the parameter adjustment process by 

taking uncertain data (meteorological forcing and reference irrigation) as certain. 

\item The ORCHIDEE model exhibits many uncertainties that are not related to the irrigation 

scheme, but ultimately impact the irrigation withdrawals and efficiency (defined here as the 

ratio of additional ET due to irrigation to water withdrawal) and the temporal dynamics of 

irrigation. One particular uncertainty comes from the overestimation of bare soil evaporation 

\citep{Cheruy2020}, that we presently try to correct in ORCHIDEE. Other uncertainties result 

from the inherent simplifications of any model. In ORCHIDEE, they include the use of a 

single soil texture in each grid cell, of only two kinds of crops with simplified phenology and 

crop calendars, and the choices made to simulate infiltration and evaporative processes. 

\end{enumerate} 

 

These shortcomings and limitations could induce positive or negative biases in the simulated 

regional irrigation amounts; this as a result of differences in regional landscape, hydro-

climatic conditions and local irrigation practices not well represented or absent in our 

scheme. For example, the missing representation of paddy irrigation induces under-irrigation 

in paddy rice areas, the joint representation of rainfed and irrigated crops induces over-

irrigation in areas with other crop types and irrigation techniques, and the simplistic 

parameter tuning could tend to minimize the overall net bias, while increasing regional 

biases. These limitations (some shared with other global LSMs) call for further model 

developments that aim at a better representation of the water supply (fossil groundwater and 

water adduction to list two mentioned in the results) and the water demand (a separate water 

budget for irrigated areas, the inclusion of other irrigation techniques, new irrigation rules 

such as irrigation before sowing or interruption of irrigation before harvest). In addition to the 

improvements noted here that focus on model developments, the irrigation representation 

can be improved by using new input datasets and regional parameter values to include local 

practices (if these datasets exist at the coarse model resolution in the global domain, and for 

historical period or future scenarios). For instance, to prescribe regional $\beta$ values, or to 

prescribe the start and end of the growing season. 

 

 



The model estimates the irrigation water demand by calculating a soil moisture deficit 

according to a user-defined soil moisture target. Besides, it constrains the actual irrigation 

rate by the available water supply. The water supply takes into account the facility to access 

surface or underground water sources according to local infrastructure, and environmental 

restrictions. Note that this environmental restriction is a simplification compared to the 

complex methods used in the real world to estimate environmental flow requirements, and 

other more robust approaches exist (for instance in \citet{Hanasaki2008}, providing monthly 

environmental flow requirements). Strict environmental requirements could reduce the 

surface water supply, thus the irrigation rate \citep{Hanasaki2008a}. 

 

 

 

For the facility to access the water sources, we use two static factors based on local 

infrastructure, while water allocation is dynamic and can change according to water 

availability \citep{DeGraaf2014} as well as economic and societal aspects 

\citep{DOdorico2020}. The irrigation scheme also allows the adduction of water from 

neighboring grid cells, which can be important in areas of China and India 

\citep{Laghari2012,Yin2020b}, where surface water is intensively used. This representation 

of water adduction, however, is very simple, and could be improved by including human 

water management and dams operation, as in \citet{Zhou2021a}, where the supply and 

demand network is operated as a system, taking into account some constraints like 

topography and environmental flow \citep{hanasaki2018}.  

 

On the water demandFinally, we observed that the conditions to trigger and stop irrigation, 

although controlled by four parameters, may seem too simple in our scheme, especially 

compared to specialized irrigation models, the new irrigation scheme in LSM CLM5 

\citep{yao2022}, which includes multiple irrigation techniques, or the ISBA LSM 

\citep{Druel2022}, which implement complex sets of rules to represent different irrigation 

strategies. Some rules could change the moment when irrigation is triggered and increase 

the amount (for instance allowing irrigation some days before the crop emergence) or 

decrease itthe irrigation amount (for instance, preventing irrigation during maturity of the 

crop, shortening the growing season, or preventing continuous irrigation during more than a 

certain number of days). Implementing these sets of rules for irrigation strategies in 

ORCHIDEE is feasible, for instance the definition of the growing season (with trigger of 

irrigation before sowing and stop before harvesting) could be based on the prescription of 

start and ending dates as done by Yin et al., 2020, or could use the phenology information 

simulated by the model (as in the version used here, or using a crop-specific module as in 

Wu et al., 2016). But defining the set of rules and parameter values would need a careful 

tuning and evaluation process, with local data at sub-yearly scale.    

  

 

Despite thesethis limitations, the evaluated irrigation scheme produces acceptable 

estimations of yearly irrigation withdrawals on a global mean basis, but it underestimates 

irrigation volumes in areas of China, India and the US (the most irrigated areas). Our 

estimations are affected by the uncertainty on global parameter values assumed to be 

uniform, and on the map of irrigated fractions \citep{Puy2021}. We show that the lack of 

paddy rice irrigation could contribute to the underestimation of irrigation in southern Asia, as 

the paddy technique needs the inundation of the field and maintains a saturated soil at least 



during 80\% of the crop duration \citep{DeVrese2018}. The irrigation module of LSM 

MATSIRO, called MAT-HI and HiWG-MAT \citep{Pokhrel2012, Pokhrel2015}, already 

implemented an explicit representation of paddy rice irrigation, by setting a higher soil 

moisture target for rice than for other crops. An explicit paddy representation was also 

implemented in ORCHIDEE-CROP \citep{Yin2020} at a regional scale, by implementing a 

pond for paddy rice and using a water level target, but it uses detailed crop information not 

easy to access at global scale. A surrogate approach in our simpler irrigation scheme could 

be to use at least two $\beta$ values, one for paddy rice and another one for other crops, as 

suggested by the composite map of $\beta$ values minimizing the irrigation bias. 

 

An outcome of our study is to reveal that the GLEAM values do not exhibit a significant 

sensitivity of ET to the presence of irrigated areas. This suggests that GLEAM is not suitable 

for estimating ET rates in irrigated areas. For instance, coupled simulations using CLM4 in 

northern India showed as strong modelling underestimation of ET rates, even with no 

irrigation \citep{Fowler2018}. When we compare the simulations with the FLUXCOM product, 

the activation of irrigation leads to a reduction of the negative evapotranspiration bias, but 

the use of a single soil column in ORCHIDEE for both rainfed and irrigated crops could 

induce an overestimation of ET increase (See Fig. S11, in some cases the irrigation 

efficiency by country is too high). The ET bias improvement is particularly substantial in 

heavily irrigated areas, where the simulated LAI is also improved by irrigation (which reduces 

there the negative LAI bias). These results show the benefits of including an irrigation 

scheme to partially reduce some modelling biases, especially in intensively irrigated areas, 

and are coherent with the multivariate evaluation of ORCHIDEE done in 

\citet{Mizuochi2021}. 

 

ET and LAI are two important drivers of land-atmosphere coupling via water, energy and 

momentum transfer \citep{Seneviratne2010,Greve2019}, but there is evidence that the 

effects on ET and LAI due to human land-cover change and landscape management are not 

monotonic \citep{Sterling2013}. The sensitivity of these drivers to irrigation calls for further 

studies in coupled mode to explore the joint evolution of climate, land surface fluxes, and the 

use of water resources. Some studies focuses on the effects of irrigation on climate and land 

surface fluxes for the historical climate 

\citep{Boucher2004,Sacks2009a,Puma2010,Guimberteau2012a,Cook2015a,Thiery2017a,Al

Yaari2022}, but to the best of our knowledge, that is not the case for the future climate under 

different scenarios. 

 

In contrast to the effects on ET and LAI, the effect of irrigation on land surface hydrology is 

rather weak. For discharge, activation of irrigation logically reduces river discharge, because 

of surface and groundwater withdrawal for irrigation. This reduction does not necessarily 

improve the model performance to fit observed values, with the exception of the Danube 

river basin. Multiple causes could explain the incorrect simulation of discharge dynamics in 

ORCHIDEE, even when irrigation is activated. For instance, uncertainties resulting from the 

atmospheric forcing are not assessed here, while they are known to affect the yearly and 

seasonal values of discharge \citep{Guimberteau2012,Decharme2019}. Also, a wrong ET 

estimation, errors in snow dynamics, and the lack of permafrost representation contribute to 

the mismatches \citep{Cheruy2020}. Finally, a lack of representation of other anthropogenic 

processes like dam management (Fig. \ref{fig11}), and water withdrawal for other economic 



sectors and other uses could explain the differences in seasonal discharge dynamics 

between ORCHIDEE and observed data in some basins \citep{Pokhrel2016}. 

 

Effect of irrigation on simulated TWSA is weak. In some large river basins, we observed 

increases in low values in areas with significant surface water supply. But even when 

irrigation is activated, ORCHIDEE is not able to follow the trends exhibited by GRACE 

datasets, for instance in Huang He and Indus river basin, two heavily irrigated areas where 

water depletion has been related to groundwater pumping for irrigation 

\citep{Rodell2018,Yin2020}. There are probably multiple causes for inability of LSMs to 

capture large negative decadal water storage trends \citep{Scanlon2018}, starting with the 

underestimation of irrigation rates at country-level and grid-cell scale (Fig. \ref{fig4}). Glacier 

loss misrepresentation in ORCHIDEE could also explain part of the differences to observed 

negative trends in some basins, for instance in the Indus and Ganges basins, that depend 

on water flow from the Himalaya mountains \citep{Rodell2018}. And of course, errors in the 

partitioning between the different water fluxes in ORCHIDEE 

\citep{Cheruy2020,Mizuochi2021} contribute to the problems in both simulations (NoIrr and 

Irr). 

 

We also underline the lack of fossil groundwater abstraction in ORCHIDEE as a very likely 

cause to the underestimation of irrigation rates and TSWA trend mismatch. Fossil 

groundwater, also called non renewable groundwater, is important in semiarid areas like 

Pakistan and Middle East, and contributes nearly 20\% to gross irrigation water demand for 

the year 2000 \citep{Wada2012}. As the irrigation scheme represents abstractions from 

shallow aquifers but not from fossil sources, it probably restrains irrigation too often due to a 

supply shortage, thus could have problems fitting the negative trend in those areas with 

heavy groundwater use, as already reported by \citet{Yin2020} for China. But we must add 

that the estimation of fossil groundwater use is challenging. For instance, an assessment of 

the TWSA trends of residuals between our simulation and GRACE shows differences with 

estimates of groundwater depletion from \citep{Wada2012} in some countries (see Table 

S3). Underestimation of irrigation rates, and uncertainties arising from fluxes partitioning and 

from meteorological data would also affect the estimations of fossil groundwater abstraction. 

So far, we cannot explain to which extent each one of these possible causes participates in 

the misrepresentation of GRACE TWSA trends by ORCHIDEE. 

 

Our results show that the new irrigation scheme helps simulate acceptable land surface 

conditions and fluxes in irrigated areas for ET and LAI, but they also show that inclusion of 

irrigation alone is not necessarily sufficient for a good fit between the simulated values of 

TWSA and discharge and observed products. Including additional anthropogenic processes 

could help to reduce some of these biases. For instance, dams management and fossil 

irrigation withdrawal could increase the water supply in some basins during dry months or 

years, thus increasing irrigation amount in areas with high irrigation demand and water 

supply shortage. At the same time, these processes may have an impact on river discharge 

dynamics and could help to represent the misrepresentation of TWSA trends in some areas. 

 

\conclusions  %% \conclusions[modified heading if necessary] 

 

We implemented a global irrigation scheme within ORCHIDEE LSM, with a simple 

representation of environmental restriction, water allocation rules based on local 



infrastructure, and water adduction from non-local water reservoirs. We compared the 

irrigation estimates to reported values of irrigation withdrawal, and then we compared the 

outputs with and without irrigation to observed products of ET, LAI, TWSA and discharge. 

Our results highlight how the inclusion of irrigation can reduce some modelling biases, 

especially on ET and LAI, but they also underline the difficulties to represent irrigation on a 

large scale by using a simple scheme and limited information. 

 

The model could still benefit from improvements on parameter tuning by explicitly 

representing paddy rice irrigation. Paddy irrigation could decrease irrigation bias in areas of 

southern Asia by increasing the irrigation demand. Dam management representation and 

inclusion of non-renewable groundwater use could also reduce negative biases in some 

heavily regulated basins by increasing the water supply. These three aspects could change 

the spatial distribution of the ET and LAI increases within the model. For TWSA and 

discharge, the inclusion of processes like dams management or fossil groundwater use 

could help to represent observed seasonal dynamics and trends that the model is not 

currently able to represent. 

 

Finally, we remember that LSMs are commonly used in coupled mode with climate models 

and irrigation can have an impact on some atmospheric variables via changes on latent heat 

flux and leaf area index. Thus, the results obtained here encourage the use of coupled 

simulations to explore the joint evolution of climate under the ongoing climate change (for 

historical and especially for future periods), water resources, and irrigation activities. While 

there is an increasing literature body that explores the coupling of irrigation and climate for 

the historical period, to the best of our knowledge that is not the case for future scenarios. 

Coupled climate simulations for future scenarios could help to foresee potential changes on 

the joint long-term evolution of water resources use and climate, and might help to identify 

possible social consequences. 

 

 


