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1 Adequacy of the JAMS-J2000 river networks with the observed river networks

Figure S.1, S.2 and S.3 show the comparison between the synthetic river networks generated for the hydrological modelling

with JAMS-J2000 and reference river networks provided by local DRN teams from the DRYvER projetc Datry et al. (2021).

For the Albarine and Lepsämänjoki catchments, the spatial resolution of the generated river networks had to be increased in5

order to capture all reaches with available observed flow intermittence data.
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Figure S.1. Generated (green) and observed (blue) river networks for the Genal catchment.
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Figure S.2. Generated (green) and observed (blue) river networks for the Albarine catchment.
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Figure S.3. Generated (green) and observed (blue) river networks for the Lepsämänjoki catchment.

2 Calibration of the JAMS-J2000 model

2.1 Catchments for JAMS-J2000 calibration

Calibration of the JAMS-J2000 parameters was performed on larger catchments (1500 to 3700 km2) corresponding to the

intermediate-scale basins studied in the DRYvER project (to bridge the gap between the DRN scale and the continental scale).10

The larger catchments characteristics are presented in Figure S.4.
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Ain          3700 km2

Albarine  354 km2 
Guadiaro  1504 km2

Genal       343 km2
Vantaanjoki     1667 km2

Lepsämänjoki  208 km2
a) b) c)

Figure S.4. Catchments used for JAMS-J2000 calibration (larger catchments in light grey). Small catchments in dark grey are the catchments

used for the flow intermittence modelling. Gauging stations used for the calibration are represented in red. a) French study sites : Ain and

Albarine catchments, b) Spanish study sites : Guadiaro and Genal, c) Finnish study sites : Vantaanjoki and Lepsämänjoki.

2.2 Calibration of snow parameters

Snow parameters (Table S.1) were calibrated separately by comparing the simulated snow cover with the catchments’

fractional snow cover area from MODIS10A2 datasets using the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009). For that

purpose, the catchment fractional snow cover area (fSCA) from the MOD10A2 dataset available at an 8 days resolution (Hall15

et al., 2007) was used as observed data. For that purpose, MOD10A2 fSCA was downloaded for the period 2000-10-15 to

2021-05-25 and aggregated at the catchment scale. The NSGA-II algorithm (Deb et al., 2002) with 1000 iterations was used

for the automatic calibration, and the KGE as an objective function. The model time series were split into a period of

initialization (1995 to 2000), a period of calibration (even years from 2000 to 2020), and a period of validation (remaining

years from 2000 to 2020).20

For the Ain catchment, KGE is respectively equal to 0.81 and 0.74 for the calibration and validation period. For the

Vantaanjoki catchment, KGE is respectively equal to 0.80 and 0.74 for the calibration and validation period. Figures S.5 and

S.6 show simulated and observed snow cover areas in the Ain and Vantaanjoki catchments. The Guadiaro catchment is not

characterized by a regular winter snow cover, and therefore, snow calibration was neglected for this catchment.
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Figure S.5. Simulated (red) and observed (blue) snow cover area (fSCA) for the Ain catchment. KGE calibration = 0.81, KGE validation =

0.75

Figure S.6. Simulated (red) and observed (blue) snow cover area (fSCA) for the Vantaanjoki catchment. KGE calibration = 0.79, KGE

validation = 0.76

2.3 Calibration of discharge25

Measured streamflow available at different gauging stations was used for model calibration and validation. For this purpose,

the available streamflow data was split into two periods for calibration and validation (Table S.3). Due to different catchment

6



characteristics, process dynamics, and data availability, the calibration approaches were slightly different for the three

catchments. The calibration procedures are therefore presented separately for the Guadiaro catchment on the one hand and for

the Ain and Vantaanjoki catchments on the other hand. The list of the calibrated parameters with their calibration range is30

presented in Tables S.1 and S.2 and all the final parameter values can be found in the JAMS-J2000 model datasets available

on request.

Abbreviation Description Unit
Calibration range

Ain and Vantaanjoki Guadiaro

snow_trans Half width of the transition zone rainfall-snowfall K 0 - 3.5

snow_trs Threshold temperature for precip phase (the temp.

in which 50% of precip fall as snow and 50% as

rain)

°C 0 - 3

t_factor Temperature factor for snow melt mm*°C-1 0 - 8

ccf_factor Cold content factor - 0.0001 - 0.01

CropCoef_aAF Crop coefficient additive adaptation factor - -0.2 - 0.2

CropCoef_mAF Crop coefficient multiplicative adaptation factor - 0.5 - 2

FCAdaptation Multiplier for field capacity - 0.5 - 5 0.5 - 3

ACAdaptation Multiplier for air capacity - 0 - 3 0.5 - 3

soilPolRed Polynomic reduction factor for potential evapo-

transpiration

- 0 - 10

soilMaxInfSnow Maximum infiltration for snow covered areas mm 5 - 200

soilMaxInfSummer Maximum infiltration in summer (Apr - Sep) mm 5 - 200

soilMaxInfWinter Maximum infiltration in winter (Oct - Mar) mm 5 - 200

soilMaxPerc Maximum percolation rate mm 1 - 20

soilLatVertLPS LPS lateral-vertical distribution coefficient - 0 - 10

soilOutLPS LPS outflow coefficient - 0 - 10

SoilConcRD1 Recession coefficient for surface runoff - 1 - 5 1 - 10

SoilConcRD2 Recession coefficient for interflow - 1 - 10

gwRG1RG2dist Distribution factor between shallow and deep

groundwater aquifer

- 0 - 10

flowRouteTA Flow routing coefficient TA - 1 - 20 1 -30
Table S.1. List of the calibrated global parameters and their calibration range
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Abbreviation Description Unit
Calibration range

Ain and Vantaanjoki Guadiaro

RG1_max Maximum storage capacity of the upper ground-

water reservoir

mm 10 - 300 not calibrated

RG1_k Storage coefficient of the upper ground-water

reservoir

day 2 - 30 0.3 – 3-times of

physically deter-

mined parameter

RG2_max Maximum storage capacity of the lower ground-

water reservoir

mm 100 - 1500 not calibrated

RG2_k Storage coefficient of the lower ground-water

reservoir

day 10 - 600 0.3 – 3-times of

physically deter-

mined parameter
Table S.2. List of the calibrated spatially distributed parameters and the calibration range

DRN Initialization period Calibration period Validation period

Albarine 1990-1995 1995-2009 2009-2020

Genal 1998-2001 2001-2004 2012-2018

Lepsämänjoki 2000-2005 2005-2014 2014-2020
Table S.3. Calibration and validation periods. Hydrological years start on the 1st of October and end on the 30th of September.

2.3.1 Model calibration and validation for the Guadiaro catchment

The models’ performance of simulating the measured streamflow at multiple gauging stations was evaluated using a

semi-automatic calibration method, which utilizes automatic and manual calibration techniques. To assess model35

performance, different performance criteria were used, which focus on different evaluation criteria, such as low-flow, high

flows, and bias (Kundzewicz et al., 2018) (Table S.4).
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Efficiency criteria Definition and reason for selection

Nash-Sutcliffe Efficiency (NSE) Multi-objective function, strong focus on simulation of peak flows,

widely used

Logarithmic Nash-Sutcliffe Efficiency

(NSElog)

Like NSE, but logarithm focuses on the representation of simulation of

low flows

Relative Volume Error (pBias) Representing overall under or overestimation

Kling-Gupta-Efficiency (KGE) multi-objective function, representing bias, correlation, and flow vari-

ability
Table S.4. Efficiency criteria used for automatic model calibration and performance evaluation (Gupta et al., 2009)

Overall, 15 global model parameters were calibrated, which showed a moderate to high sensitivity on processes related to

infiltration, evapotranspiration, percolation, soil, groundwater, and runoff routing (Tables S.1 and S.2). Besides,

hydrogeological parameters influencing the recession of the water from shallow and deep groundwater aquifers were40

calibrated in a spatially distributed manner. For the automatic optimization, the multi-objective, non-dominated sorting

genetic search algorithm NSGA-II was applied (Deb et al., 2002). Here, the three performance criteria NSE, NSElog and

pBias at different gauging stations were used in 5000 iterations to optimize the 15 parameters and hence, simulated

streamflow in the Genal DRN. Additionally, the process was repeated for different spatially distributed hydrogeology

parameter sets addressing the varying groundwater recession from shallow and deep groundwater aquifers. This resulted in45

several pareto-optimal model solutions, which still inherited strong differences of hydrological process patterns, considering,

for example, the overland flow or groundwater contribution to the overall runoff. Even though statistical measures have the

advantage to objectively classify model performance and allow comparison across different models, they do not substitute

visual interpretation of simulated and observed hydrographs and interpretation of process dynamics by domain experts

(Legates and McCabe Jr, 1999; Moriasi et al., 2007). Therefore, the models were manually calibrated in a second step to50

fine-tune the results of the automated calibration procedure. The focus here was particularly on the representation of the runoff

recession and groundwater contribution. Besides, due to the modeling of flow intermittence, the performance of modeling low

flows was weighted higher than the model’s ability to simulate high flows accurately. Further, when selecting the final

parameter sets for the DRN, sets showing higher performance at the smaller basin were given preference over sets showing

higher performance at the larger basin. During calibration, the following hydrological characteristics were taken into account:55

1. runoff components (Hortonian and Hewlettian runoff, subsurface flow from soil and upper groundwater zones as well as

baseflow), precipitation, actual evapotranspiration, and soil saturation;

2. seasonal and annual water balances;

3. spatially distributed processes at the HRU level: runoff generation, interflow, soil water balancing, evapotranspiration,

and groundwater recharge.60
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Finally, from all pareto-optimal solutions identified through automatic and manual calibration, the most plausible model in

terms of process representation according to the observed data and the knowledge about environmental characteristics was

selected.

Figures S.7 and S.8 show the performance of the JAMS-J2000 model in the Guadiaro catchment.

Figure S.7. KGE for the a) calibration period (2002 - 2012; Genal: 2001 - 2004) and b) the validation period (2012 - 2018) for the Guadiaro

catchment
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Figure S.8. Simulated (red) and observed (blue) discharge at the Jubrique gauging station (in the Genal catchment). KGE calibration = 0.75,

KGE validation = 0.76

2.3.2 Model calibration and validation for the Ain and Vantaanjoki catchments65

The calibration for the Ain, Fekete, and Vantaanjoki catchments also uses a multi-stations and multi-objectives approach, but

using a different method. 15 global parameters related to evapotranspiration, infiltration in the soil layer, and percolation to

the groundwater layer, (Table S.1) as well as 4 spatially distributed parameters related to the groundwater reservoirs

(Table S.2), are calibrated. The calibration and validation periods (Table S.4) were selected based on the availability of the

observed discharge data in the different river basins. In a first step, the Latin Hyper Cube Sampling (LHS) is used to generate70

5000 model runs for each pilot river basin (the calibration ranges are provided in Tables S.1 and S.2). Then the calibrated set

of parameters is selected among the 5000 parameters sets so that the model performs best on (i) a multi-objective function

(MOF ) representing KGE, low-flows (10th percentile Q10), and mean annual outflow (Qyr), (ii) all the stations. The MOF

function is computed for all stations and all parameter sets (Eq. 1), then a weighted average over the stations is calculated to

prioritize the stations located at the outlets of the large and small river basins (Ref1) and the other stations located in the75

small river basin (Ref2) (Eq. 2) (other stations located in the large catchment are referred as Ref3). The final calibrated set of

parameters is selected among the model runs leading to the lowest MOFallstations.

MOF = 0.6 ∗ (1−KGE)+
0.2 ∗ |Q10sim −Q10obs|

Q10obs
+

0.2 ∗ |Qyrsim −Qyrobs|
Qyrobs

(1)
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MOF =
wRef1

∑
i∈Ref1

MOFi +wRef2

∑
j∈Ref2

MOFj +wRef3

∑
k∈Ref3

MOFk∑
i∈Ref1

wRef1 +
∑

j∈Ref2
wRef2 +

∑
k∈Ref3

wRef3

(2)

with wRef1 = 5, wRef2 = 2, wRef3 = 180

The Ain catchment is characterized by karstic areas which have a strong impact on the hydrological response of the

sub-catchments. As the JAMS-J2000 model does not represent the karst-related processes, a correction factor k was applied to

the observed discharges at the gauges before comparison with simulated discharges to consider water input or water losses in

sub-catchments through the karstic network (Eq. 3).

k =
P −ETact −Q

P −ETact
(3)85

with P the observed mean annual precipitation in mm (from the Safran reanalysis; Vidal et al. (2010)), ETatc the mean

annual actual evapotranspiration simulated with JAMS-J2000 in mm (forced with Safran reanalysis as climate input data), and

Q the observed mean annual outflow in mm.

Figures S.9 and S.10 show the performance of the JAMS-J2000 model in the Ain catchment.
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b)a)

Figure S.9. KGE for the a) calibration period (1995-2009) and b) the validation period (2009-2019) for the Ain catchment. Missing values

during the validation period are due to the shutdown of gauging stations
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Figure S.10. Simulated (red) and observed (blue) discharge at the Saint-Rambert station (in the Albarine catchment) for the validation period.

KGE calibration = 0.76, KGE validation = 0.79

Figures S.11 and S.12 show the performance of the JAMS-J2000 model in the Vantaanjoki catchment.90

a) b)

Figure S.11. KGE for the a) calibration period (2005-2014) and b) the validation period (2014-2020) for the Vantaanjoki catchment
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Figure S.12. Simulated (red) and observed (blue) discharge at the Lepsämänjoki station for the validation period. KGE calibration = 0.74,

KGE validation = 0.81

3 Validation of the simulated spatial flow intermittence pattern in the Albarine and Genal DRNs

Some classification of the reaches flow regime (permanent or intermittent) were provided for the Albarine and Genal DRN by

local teams based on their observations. Figures S.13 and S.14 show the comparison between the simulated spatial pattern of

flow intermittence in the Albarine and Genal DRNs with the observed flow regimes in the river networks.
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Figure S.13. a) Mean annual number of days with a dry condition predicted in the Albarine DRN with the flow intermittence model, b)

classification of the reaches (perennial or intermittent) provided by the DRN local experts based on observations.
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Figure S.14. a) Mean annual number of days with a dry condition predicted in the Genal DRN with the flow intermittence model, b)

classification of the reaches (perennial or intermittent) provided by the DRN local experts based on observations.
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